超材料微带天线的研究进展

超材料微带天线的研究进展
超材料微带天线的研究进展

200

10.16638/https://www.360docs.net/doc/d614764570.html,ki.1671-7988.2019.07.068

超材料微带天线的研究进展

周精浩,董焱章*

(汽车动力传动与电子控制湖北省重点实验室,湖北汽车工业学院汽车工程学院,湖北 十堰 442002)

摘 要:汽车的智能网联化对车载雷达等智能车身传感器提出了更高的性能要求,其中内置微带天线的性能至关重要。超材料的新颖特性非常有利于提高微带天线的增益、小型化和集成化程度,这里超材料与微带天线的合理匹配是设计研究的重点。从天线结构角度来看,超材料微带天线的类型可分为超材料覆层型微带天线、超材料基板型微带天线、复合左右手传输线型微带天线。超材料微带天线在抑制天线表面波、提高天线方向性和天线多频化等方面具有很好的应用潜力。

关键词:超材料;微带天线;小型化;增益;集成化

中图分类号:U445 文献标识码:A 文章编号:1671-7988(2019)07-200-07

Research progress of metamaterial microstrip antenna

Zhou Jinghao, Dong Yanzhang *

(Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Automobile Engineering,

Hubei University of Automotive Technology, Hubei Shiyan 442002)

Abstract: The intelligent networking of automobiles puts higher performance requirements on smart body sensors such as vehicle radars, and the performance of built-in microstrip antennas is crucial. The novel characteristics of metamaterials are very beneficial to improve the gain, miniaturizion and integration of microstrip antennas. The Reasonable matching of metamaterials and microstrip antennas is considered to be the focus of design research. According to the structure of micro -strip antennas, it can be divided into metamaterial coated microstrip antenna, metamaterial substrate microstrip antenna and composite left/right- handed transmission line microstrip antenna. The metamaterial microstrip antenna has a good applica -tion potential in suppressing the antenna surface wave, improving the antenna directivity and multi-frequency antenna. Keywords: metamaterial; microstrip antenna; miniaturizion; gain; integrated

CLC NO.: U445 Document Code: A Article ID: 1671-7988(2019)07-200-07

前言

1953年Deschamps 首次提出微带天线,然而受限于覆铜、覆金介质基片光刻技术的落后,直到20世纪70年代Munson 和Howel 才制造出第一个实际意义上的微带天线[1]。微带天线具有体积小、结构简单、成本低、易与与其他电磁器件共形、方便与馈电网络和其他有源器件集成等优点。在汽车智能网连化蓬勃发展的过程中,对车载雷达等智能车身传感器作者简介:周精浩,男,湖北汽车工业学院硕士生,主要研究方向:

智能车身轻量化设计。*通讯作者:董焱章(1983-),男,博士,副

教授,主要从事工程力学、结构与多学科优化、超材料设计等方面

的研究。基金项目:国家自然科学基金青年科学基金(11502075,

11504102,51605149);汽车零部件技术湖北省协同创新项目(2015

XTZX0401,2015XTZX0421);湖北汽车工业学院博士科研启动基金

(BK201501) 。

基于HFSS矩形微带贴片天线的仿真设计报告

.. .. .. 矩形微带贴片天线的仿真设计 实验目的:运用HFSS的仿真能力对矩形微带天线进行仿真 实验容:矩形微带天线仿真:工作频率7.55GHz 天线结构尺寸如表所示: 名称起点尺寸类型材料 Sub -14.05,-16,0 28.1,32,0.794 Box Rogers 5880 (tm)GND -14.05,-16,-0.05 28.1,32,0.05 Box pec Patch -6.225,-8,0.794 12.45 , 16, 0.05 Box pec MSLine -3.1125,-8,0.794 2.49 , -8 , 0.05 Box pec Port -3.1125,-16,-0.05 2.49 ,0, 0.894 Rectangle Air -40,-40,-20 80,80,40 Box Vacumn 一、新建文件、重命名、保存、环境设置。 (1)、菜单栏File>>save as,输入0841,点击保存。 (2). 设置激励终端求解方式:菜单栏HFSS>Solution type>Driven Termin ,点击OK。

(3)、设置模型单位:3D Modeler>Units选择mm ,点击OK。 (4)、菜单栏Tools>>Options>>Modeler Options,勾选”Edit properties of new pri”, 点击OK。 二、建立微带天线模型 (1)、插入模型设计 (2)、重命名

输入0841 (3)点击创建GND,起始点:x:-14.05,y:-16,z:-0.05,dx:28.1,dy:32,dz:0.05 修改名称为GND, 修改材料属性为 pec, (4)介质基片:点击,:x:-14.05,y:-16,z:0。dx: 28.1,dy: 32,dz: 0.794, 修 改名称为Sub,修改材料属性为Rogers RT/Duriod 5880,修改颜色为绿色,透明度0.4。

一种小型超宽带微带天线

文章编号:1005-6122(2011)02-0060-03 一种小型超宽带微带天线* 官伯然曹建伟 (杭州电子科技大学天线与微波技术研究所,杭州310018) 摘要:给出了一种小型化超宽带微带天线,该天线采用微带线对半圆形和矩形组成的阶梯状辐射单元进行馈电,基板背面为相似形缺陷地结构窗口。天线参数采用电磁仿真软件CST进行仿真和优化。所设计的小型化超宽带微带天线相对带宽达144.9%(2.15 13.47GHz),带内回波损耗均在-10dB以下,整个工作频段内天线的增益平均在4dB以上,天线的辐射方向图形状在频带内基本保持不变。该天线具有结构紧凑和形状简单的特点,易于加工和集成。最终实际制作了天线样品,并进行了测试,实测数据与仿真结果吻合良好。实验结果表明该微带天线具有良好的小型化和超宽带特性。 关键词:超宽带,小型化,微带天线,缺陷地结构 A Small Size Ultra-wideband Microstrip Antenna GUAN Bo-ran,CAO Jian-wei (Institute of Antenna and Microwave Technology,Hangzhou Dianzi University,Hangzhou310018,China) Abstract:A compact ultra-wideband microstrip antenna is presented in the paper.The radiating element of this an-tenna is made up of semicircle plane and rectangle planes,which are fed by microstrip line.The same window of Defected Ground Structre(DGS)is etched on the back of the microstrip antenna.The performance of the antenna is simulated and op-timized by CST.The simulate result shows that the relative bandwidth of the designed antenna is over144.9%(2.15 13.47GHz),and the return loss is less than-10dB.The average gain is over4dB in the operating range.The radiation pattern is remained almost same type in the operating range.In addition to small size and simple shapes,the antenna is also easier to be fabricated and integrated.Finally,a sample antenna is fabricated and the performance is tested.The measured result shows a good agreement with the simulated one.The experimental results show that the microstrip antenna has the advantages of small size and UWB characteristic. Key words:ultra-wideband,small size,microstrip antenna,DGS 引言 随着现代通讯系统的飞速发展,通信设备的体积不断减小,通信频带不断向宽频带、高频段发展,对通信设备提出了越来越高的要求,推动了作为通信系统中的关键部件天线的小型化和宽带化的发展。2002年FCC将3.1 10.6GHz频段划归为超宽带(UWB)的民用频段[1]。UWB天线是超宽带通信的关键部件之一。超宽带天线在电气指标上需要满足输入端反射特性、辐射方向图和增益等指标。 微带天线是一种用微带贴片作为辐射单元的天线,由于其结构简单、体积小、重量轻、易于集成等优点,得到了广泛的应用。由于其频带窄的缺点限制了微带天线的发展[2-4],近年来微带天线的小型化和宽带技术越来越受到大家的重视[5-6]。目前国内外采用的小型化技术有:采用高介电常数或高磁导率的特殊材料基片(如LTCC)、改变电流路径、天线加载、附加有源网络等方法[1-6,8-9]。宽带化技术有渐变结构、增大基板厚度、降低基板的相对介电常数、引入寄生元等方法[2,4-6,11-12]。 本文通过对一种缺陷地类型的超宽带微带天线[10]进行仿真研究得出,除了在辐射单元下面采用缺陷地结构外,如果在馈电部位也采用缺陷地结构,不仅能使得天线的带宽加宽,而且还可以使天线的 第27卷第2期2011年4月 微波学报 JOURNAL OF MICROWAVES Vol.27No.2 Apr.2011 *收稿日期:2011-01-08;修回日期:2011-03-27 基金项目:国家自然科学基金(60673143),浙江省科技计划(2006C21020)项目

左手材料在天线中的运用研究进展doc 12页.doc

左手材料在天线中的运用研究进展(doc 12页)

左手材料在天线中的应用研究进展 摘要:首先从理论上解释了左手材料用于天线设计时实现天线高指向性、高效率、小型化以及大的扫描范围的原因,然后重点介绍了基于金属谐振结构和复合左/右手传输线(CRLH TL)结构的左手材料用于天线设计时的研究进展,显示了金属谐振结构在提高天线方向性、增大天线增益、减小天线体积等方面具有很大优势,而CRLH TL结构在提高天线带宽、增加天线频带、增大漏波天线扫描范围等方面具有潜在应用价值。关键词:左手材料;天线;金属谐振结构;复合左/右手传输线结构 0引言 左手材料(Left-Handed Material,LHM)又被称为双负介质,它是一类在一定的频率下同时

具有负磁导率和负介电常数的新型人工电磁结构材料。1968年,前苏联物理学家Veselago[1]首次从理论上研究了电磁波在介电常数和磁导率同时为负的物质中传播的奇异特性,如负折射率等。20世纪90年代,英国物理学家Pendry 等人相继提出了用周期性金属棒结构(Rod)[2]和金属谐振环结构(SRR)[3]分别来实现负介电常数和负磁导率的设想,为左手材料的实现提供了基础。依据Pendry的设计思想,2000年Smith 等人[4]把以上两种结构有规律地排列在一起,首次制出了在微波段同时具有负介电常数和负磁导率的材料。而Pendry[5]关于双负介质平板可以放大或恢复倏逝波来实现完美聚焦成像的建议为左手材料的研究起到了进一步的推动作用。 2002年,美国加州大学的Itoh教授[6]提出了一种新的设计左手材料的方法—左手传输线,它是用串联交指电容来实现的。几乎同时加拿大多伦多大学的Eleftheriades教授[7]提出了周期加载串联电容和并联电感组成的平面一维左手传输线结构。2004年,Itoh等人[8]又提出了复合左/右手传输线(CRLH TL)概念,这开创了一个全新的研究领域,复合左/右手传输线是最有可

手性超材料研究进展

手性超材料研究进展 钟柯松 2111409023 物理 1. 引言 超材料是有特殊电磁性质的人造结构性材料,其中一个典型的性质就是负折射率。第一种负折射率材料1两个部分组成:一个是连续的金属线,它来实现负介电常数2,另一个是开环谐振器,来实现负的磁导率3。在同时实现复介电常数和负磁导率的时候,负折射率就是实现了。后来,人们大多数以这个原则4-5来设计负折射率材料。虽然负磁导率在微波段很容易实现,但是在光频区域却极其困难7,8。与此同时,Pendry9,Tretyakov10,11和Monzon12等人从理论上提出了另一种利用手性实现负折射率的途径。而手性材料层作为完美透镜也从理论上实现了9-13。在这些报告中,Pendry提出了一种3D螺旋线结构来实现负折射率的手性超材料9。Tretyakov等人则在理论上研究了在手性和偶极粒子手性复合材料中得到负折射率的可能性11。理论表明,负折射率是可以在以3D螺旋对称为晶格的金属球超材料中可以得到14。同时也表明,周期上的手性散射是3D和各向同性负折射率的原因15。实际上,Bose曾经在1898年利用螺旋结构研究了平面偏振电磁波的旋转16。Lindman也是研究微波段人造手性介质的先驱17。最近,Zhang等人在实验上实现了一个3D手性超材料在THz波段的负折射率18。Wang等人则在微波段同时实现了3D手性超材料的负折射率和巨大的光学活性和圆二色性19,20。但是,这些提到的3D手性超材料都很难构建。同时,平面手型超材料显示了光学活性也被报道了21-24。这里需要指出的是,平面手性结构是正真的3D手性结构是不同的。Arnaut和Davis第一次把平面手性结构引入到了电磁波的研究中25,26。一个结构如果被定义为手性结构,那么它应该是在任何平面是没有镜面对称的,然而,一个平面结构被认为是手性的,则它是不能和它在该平面上的镜像重叠的,除非它不在这个平面上。实际上,一个平面手性结构还是和镜像镜面对称的。在垂直入射的情况下,在光传播方向上镜面对称的结构是没有光学活性的27。除非在这个结构上增加衬底来打破传播方向上的镜面对称,这样光学活性就能得到了22-24。然而,手性在这些结构是非常微弱的。后来,Rogacheva等人进一步地提出了双层的手性结构,展现出了很强的光学活性28。这个两层的花环状的平面金属层相互平面扭和在两个平面中,它们也不像3D手性原胞一样连接在一起18-20,二是通过电磁场来相互耦合。它的光学活性强到了整个结构都显示出了负折射率。在这个开创性的工作下,一些不同的双层手性结构,从微波段到近红外波段被相继的提出。如双层花环结构29,30,双层十字线结构31,32,金属切线对33,卍字结构34,四个‘U’型结构35-37,互补性手性结构38等等。另外,多层的平面手性结构也被提了出来29,39。它表明,在构建体手性超材料时,邻近原胞之间的耦合效应也应该考虑在内。由于存在这个耦合效应,体手性超材料和单原胞手性超材料的性质存在差异39。当手性超材料在负折射率带中工作是,品质因素(FOM)来评估它的损耗级别40。FOM被定义为折射率实部和虚部比值的绝对值。在一个波长对应的介质中波振幅衰竭为exp(-2π/FOM)。为了得到高的FOM,一种复合的手性超材料在最近提了出来41。另外,可调节的手性超材料也有报道42。 基于传输和反射参数的有效折射率的提取是一种在表征设计的超材料是的方便有用的手段43-47。随着手性超材料研究的进展,负折射率用其他提取方法中也得到了18,29,48,49。Zhao 等人总结了这些提取方法,简练出了几个简单的公式,这在手性超材料的研究中是非常有用的50。非互易式传输在信息处理中起到了至关重要的作用,点偶极子就是一个典型的例子,它在电

多孔陶瓷材料在天线罩上的应用进展

《陶瓷学报》 JOURNAL OF CERAMICS 第29卷第4期2008年12月 Vol.29,No.4Dec.2008 文章编号:1000-2278(2008)04-0384-06 多孔陶瓷材料在天线罩上的应用进展 邬浩雷景轩赵中坚胡伟王萍萍 (上海玻璃钢研究院,上海:201404) 摘要 现代导弹的发展对天线罩的性能提出了更高的要求,多孔陶瓷材料有着优良的介电性能及耐热性能,是理想的天线罩用材料;介绍了多孔陶瓷材料的分类方法及制备工艺,综述了几种体系多孔陶瓷材料在天线罩上的应用进展情况,并指出了今后多孔陶瓷材料在天线罩领域的重点研究方向。关键词多孔陶瓷,天线罩,进展中图分类号:TQ174.75文献标识码:A 收稿日期:2008-04-19 通讯联系人:邬浩,男,E-mail:scwuhao@https://www.360docs.net/doc/d614764570.html, 1前言 导弹天线罩是制导武器弹头结构的重要组成部分,是安装在导弹雷达导引头天线外面、起保护作用的外罩,又是保护天线系统不受高速飞行造成的恶劣气动环境影响、正常进行信号传输工作的屏障[1]。随着导弹飞行马赫数的增加以及新一代导弹向宽频多模方向发展,对导弹天线罩材料的性能提出了新的要求。多孔陶瓷透波材料本身密度低,气孔率高,介电常数较小,抗腐蚀耐热性能良好,使用寿命长,且介电常数可以根据气孔率的多少进行调节,能在较大温度范围内正常使用,优异的性能使其在航天透波天线罩方面有很大的应用空间,是一种理想的新型高性能天线罩候选材料。 2多孔陶瓷材料分类及制备方法 多孔陶瓷材料的分类方法很多,以材质分类可将多孔陶瓷分为[2]: (1)高硅质硅酸盐材料;(2)铝硅酸盐材料;(3)精陶质材料瓷材料;(4)硅藻土质材料;(5)纯碳质材料;(6)刚玉和金刚砂材料;(7)堇青石、钛酸铝材料;(8)采用工业废料、尾矿和石英玻璃或普通玻璃为原料构成的材料。根据孔径大小可将多孔陶瓷分为三 类[3]:微孔陶瓷(孔径尺寸小于2nm), 介孔陶瓷(孔径尺寸在2nm 和50nm 之间),宏孔陶瓷(孔径尺寸大于50nm)。而根据结构又通常将多孔陶瓷材料分为两类[4]:网状(或开孔)陶瓷材料以及泡沫(或闭孔)陶瓷材料。但随着缠结纤维网络结构(或粘结纤维)多孔陶瓷的发展以及在多孔陶瓷膜方面取得的进展,D.A.Hirschfeld 等将这两种结构的多孔陶瓷单独分类,将多孔陶瓷分为了以下四类[4]:开孔结构、闭孔结构、缠结纤维网结构、膜。 由于材料的应用要求各不相同,而多孔陶瓷材料的气孔率、孔径及其分布对材料的性能和功能有着重大的影响,因此多孔陶瓷的制备工艺除具有普通陶瓷工艺的特点外,还具有一些特有的工艺机制。其中工艺比较成熟,应用比较广泛的制备方法有粉末烧结法、 添加造孔剂法、料浆发泡法、有机泡沫浸浆法、溶胶凝胶法等[5],后来又发展了微波加热工艺、水热-热静压工艺、注凝成型工艺、颗粒堆积工艺、凝胶铸造工艺等新的制备技术[6-9]。 3多孔陶瓷材料在天线罩方面应用的 研究进展 陶瓷材料在天线罩上的应用始于20世纪50年代,从第一种商业化天线罩材料氧化铝至今,陶瓷天

矩形微带天线设计与分析

矩形微带天线设计与分析 万聪,沈诚诚, 王一平 2011级通信2、4班 沈诚诚:主要负责资料准备与整理 王一平:主要负责论文的格式与后期资料扩充 万聪:主要负责设计模型 三人共同学习hfss软件设计模型,共同参与讨论编写论文,发扬团结合作的精神,克服所遇到问题,完成好老师布置的作业。 摘要:微带天线以其体积小、重量轻、低剖面等独特的优点引起了相关领域的广泛重视,已经被广泛应用在1OOMHz—1OOGHz的宽广频域上的大量的无线电设备中。本文介绍了一种谐振频率为2.45GHz,天线输入阻抗为50Ω的使用同轴线馈电的矩形微带天线。本论文给出了详细的设计流程:根据理论经验公式初步计算出矩形微带天线的尺寸,然后在HFSS里建模仿真,根据仿真结果反复调整天线的尺寸,直到仿真结果中天线的中心频率不再偏离2.44GHz为止。微带天线固有的缺陷是窄带性,它的窄带性主要是受尺寸的影响,在不改变天线中心频率的前提下,通过理论经验公式与仿真软件的结合,给出了微带天线比较合理的尺寸。通过HFSS 13.0软件对该天线进行仿真、优化,最终得到最佳性能。 关键词:微带天线、谐振频率、HFSS

Abstract: the microstrip antenna has attracted wide attention from related fields with the advantages of small volume, light weight, low profile, unique, a lot of radio equipment has been widely applied in broad frequency range 1OOMHz - 1OOGHz of the. This paper introduces a 2.45GHz resonant frequency, input impedance of the antenna for the rectangular microstrip antenna using a 50 ohm coaxial feed. This paper gives a detailed design process: according to the theory of empirical formula calculated the size of rectangular microstrip antenna, then modeling and Simulation in HFSS, repeated adjustment according to the simulation results of the antenna size, until the simulation results in the center frequency antenna can not depart from the 2.44GHz to stop. The inherent defects of microstrip antenna is narrow, narrow band it is mainly affected by the size, in the premise of not changing the antenna center frequency, through a combination of theoretical formula and simulation software, the reasonable size of microstrip antenna. The antenna is simulated by HFSS 13 software, optimization, and ultimately get the best performance. Keywords: microstrip antenna, resonant frequency, HFSS

论-基于左手材料的高增益双频带微带天线

103254-1 第27卷第10期强激光与粒子束 V o l .27,N o .10 2015年10月 H I G H P OW E R L A S E R A N D P A R T I C L E B E AM S O c t .,2015 基于左手材料的高增益双频带微带天线 * 赵亚娟1,2 , 王东红1,2, 李宝毅1,2, 王 蓬1,2, 周必成1,2, 江 波1,2 (1.中国电子科技集团公司第三十三研究所,太原030006;2.电磁防护材料及技术山西省重点实验室,太原030006 ) 摘 要: 左手材料具有平板透镜聚焦效应,突破电磁波的衍射极限实现倏逝波的放大,其覆盖于微带天线上方,可以提高天线增益三设计了一种应用于UH F 和W L A N 的双频微带天线, 通过在接地板上刻蚀 己 字形弯折缝隙的方法实现双频谐振三为了改善微带天线低频段的增益,设计了一种新型的哑铃型结构双频段左手材料,将其作为微带天线的覆层三测试结果表明,覆层左手材料微带天线的低频段和高频段的峰值增益分别为2.1d B i 和7.4d B i 三 关键词: 左手材料; 微带天线; 双频天线; 带宽; 增益 中图分类号: T N 828.6 文献标志码: A d o i :10.11884/H P L P B 201527.103254 微带天线由于具有结构简单二 易于制作二重量轻二体积小二成本低等诸多优点,在军事与民用中得到广泛应用,包括雷达天线二空间科学二生物医学领域及各种无线通信系统三然而,微带天线损耗大二增益低降低了辐射 效率,因此提高微带天线增益成为研究的热点[1-4 ]三目前,无线通信的快速发展促使多频段共用变得普遍,对 天线的研究者来说,设计出同时工作在多个频段,兼容多种协议的天线尤为重要三因此,双频微带天线引起了 诸多学者的广泛关注[5-9 ]三左手材料(l e f t - h a n d e d m e t a m a t e r i a l s ,L HM s ),是指同时具有负介电常数和负磁导率,电场二磁场和波矢三者构成左手关系的人工周期结构材料三左手材料表现出许多奇异特性,如负折射二逆D o p p l e r 效应二逆C e r e n k o v 辐射效应二完美透镜等物理现象三左手材料由于具有诸多奇异特性,在微波通信领域有着广泛的应用价值,特别是有效改善天线的性能[10-14 ]三文献[12]设计了基于左手材料的小型化雷达阵列天线,采用左手材料有效地减小了天线的体积三文献[13]将单层左手材料作为天线的覆层,天线的带宽明显得到改善三文献[14]通过覆层添加多层左手材料介质,微带天线的方向性和增益均大大提高三本文设计了一种应用于UH F 和 W L A N 的双频微带天线,其低频段和高频段的增益值分别为-1.2d B i 和3.3d B i ,不能满足无线通信的需求三为了改善天线低频段的增益,设计了一种新型的双频段左手材料三利用左手材料平板透镜聚焦效应,覆层左手材料的微带天线的低频段和高频段的增益值分别提高了3.3d B i 和4.1d B i 三1 双频微带天线 F i g .1 S t r u c t u r e o f d u a l -b a n dm i c r o s t r i p a n t e n n a 图1 双频微带天线结构示意图 设计的双频微带天线的结构如图1所示三天线 包括三层,上层是 己 字形缝隙的接地板,中间层为介质基板,下层为微带馈线三在接地板上开有四个对称 己 字结构的弯折形槽,用来实现微带天线的双频谐振三接地板边缘开缝,实现天线的小型化三其中,低频段谐振由缝隙s l o t 1和s l o t 2共同激励,l 1+l 2+l 3+l 4+l 5的总尺寸约为λ1/4(λ1表示低频段 的导波波长);高频段谐振由s l o t 1激励,其中l 1+l 2的总尺寸约为λ2/2(λ2表示高频段的导波波长) 三设计的双频微带天线工作频率为0.9G H z 和2. 4G H z ,采用介电常数为4.4,损耗角正切值为0.02,厚度为1.524mm 的R F 4介质基板三通过三维电磁仿真软件C S T 进行模拟仿真,天线参数为:l g =60mm ,w g =55mm ,l 1=10mm ,l 2=9.5mm ,l 3=10mm ,l 4=11.5mm ,l 5= 16mm ,a =1.5mm ,b =2mm ,c =26mm 三*收稿日期:2015-07-10; 修订日期:2015-09-07 基金项目:中国电子科技集团公司山西省重点实验室专项资金项目(Z X 15Z S 391);国家重点基础研究发展计划项目(2013C B A 01700 );国家国际科技合作专项资助课题(2014D F R 10020 )作者简介:赵亚娟(1989 ),女,硕士,工程师,从事电磁防护材料及技术研究;798710363@q q .c o m 三

天线罩的研究

天线罩的研究 ------应用电磁学与电磁兼容大作业天线罩主要有航空天线罩、地面天线罩、充气天线罩、壳体结构天线罩及空间骨架天线罩五种结构。 天线罩是保护天线系统免受外部环境影响的结构物。它在电气上具有良好的电磁透过性能,在结构上能经受外部恶劣环境的作用。 天线通常置于露天工作,直接受到自然界中暴风雨、冰雪、沙尘以及太阳辐射等的侵袭,致使天线精度降低、寿命缩短和工作可靠性差。使用天线罩的目的是:保护天线系统免受风雨、冰雪、沙尘和太阳辐射等的影响,使天线系统工作性能比较稳定可靠,同时减轻天线系统的磨损、腐蚀和老化,延长使用寿命;消除风负荷和风力矩,减小转动天线的驱动功率,减轻机械结构重量,减小惯量,提高固有频率;有关设备和人员可在罩内工作,不受外界环境影响,提高设备的使用效率和改善操作人员的工作条件;对于高速飞行的飞行器,天线罩可以解决高温、空气动力负荷和其他负荷给天线带来的问题。 但是,天线罩是天线前面的障碍物,对天线辐射波会产生吸收和反射,改变天线的自由空间能量分布,并在一定程度上影响天线的电气性能。其原

因有:天线罩壁的反射和不均匀部分的绕射会引起天线主波瓣电轴偏移,从而产生瞄准误差;天线罩对高频能量的吸收和反射会引起传输损耗,从而影响天线增益(接收时使系统噪声温度增加);天线罩引起的天线波瓣畸变,使天线主瓣宽度改变、零点深度提高和旁瓣电平增加。 天线罩分类方面:从使用上分为航空型和地面(含舰载)型两大类;航空型天线罩气动载荷分析的目的,首先是保证飞机良好的气动外形。其二,为天线罩强度/刚度设计提供载荷依据。 从电气上根据天线辐射波的入射角分为垂直入射天线罩和大入射角 天线罩。辐射波射线与罩壁法线的夹角为入射角。入射角小于30°的称垂直入射天线罩。天线在罩内扫描到任何位置、入射角的变化范围都比较大(从0~75以上),称为大入射角天线罩。后者电气性能比前者大为降低;按天线罩壁横断面形状,天线罩分为均匀单壁结构、夹层结构和空间骨架结构三种;根据天线罩的成形方式,地面天线罩分为充气罩和刚性罩两种。 天线罩的结构和其他建筑结构的不同点在于,设计时对结构型式、构件尺寸、罩壁厚度、材料选择以及结构细节等都必须考虑电气特性。罩壁厚度:与工作波长有关。在电气上,为了使反射最小,必须按工作波长设计均匀单壁壁厚或夹层结构的夹芯厚度。但所选择的壁厚必须能承受预计的最大空气动力负荷和其他负荷而不被破坏或不产生大的变形。壁厚的具体选择应根据工作波长、天线罩尺寸和形状、环境条件、所用材料等在电气和结构性能上互相兼顾;材料选择:对天线罩壁所用介质材料要考虑的

超宽频微带天线设计

Ultra-Wideband Microstripe Antenna Design 陳建宏 Chien-Hung Chen 摘要 近十年來由於微帶天線具有體積小、重量輕、製作容易、價格低廉、可信度高,同時可附著於任何物體之表面上的特性,在無線通訊的應用上扮演著重要的角色。本文將利用全平面正方形單極微帶天線當作設計天線的原型,藉由調整金屬貼片的上緣、下緣部份與接地面的上緣部份來研製適用於超寬頻通訊系統的微帶天線。由模擬與實驗結果比較得知,可以發現其響應非常吻合,是一個適用於超寬頻通訊產品的天線。 關鍵詞:微帶天線、單極、超寬頻

、簡介 美國聯邦通信委員會(Federal Communication Commission,FCC)在西元2002年2月14日允許超寬頻技術使用於消費性電子產品上,並公佈了初步規格,FCC開放3.1GHz~10.6GHz提供超寬頻通信及測試使用。為了研究開發適用於此頻段的天線技術。將利用微帶天線的優點:體積小、重量輕、低成本、容易製作等特性,來研製適用於超寬頻通訊系統的微帶天線。 傳統的寬頻天線[2]中有行進波線天線(Traveling-Wave Wire Antenna)、螺旋形天線(Helical Antenna)、偶極圓錐形天線(Biconical Antenna)、單極圓錐形天線(Monoconical Antenna)、盤錐形天線(Discone Antenna)、袖子形天線(Sleeve Antenna)、渦狀天線(Spiral Antenna)和對數週期天線(Log-Periodic Antenna),不過其中適用於超寬頻系統的只有偶極圓錐形天線、單極圓錐形天線和盤錐形天線[3]。因為其不僅有大的輸入阻抗頻寬(Large Input Impedance Bandwidth)、其輻射場形(Radiation Pattern)也能控制在一定的頻寬中。 利用虛像法(Method of Image)[4]及接地面(Ground Plane)來使偶極天線變成單極天線,從早期的線型單極天線-窄頻(Narrowband),演化成單極圓錐形天線-中頻寬(Intermediate

微带天线论文

基于微波技术中——小型微带 天线的应用综述 摘要:在无线通信系统中,天线是一个不可或缺的组件,它能有效辐射和接收自由空间的电磁波。在发射系统中,天线将发射机送来的高频电流变换为自由空间的电磁波,而在接收系统中天线则可将自由空间传来的电磁波转变为电流信号传送给接收机。因此,作为无线通信系统的重要前端器件,天线性能的好坏将直接影响到整个系统的通信质量。本文主要针对小型化、高集成度微带天线的研究现状和发展作了简单的综述,并对微带天线在日后生活中的应用提出了展望和希冀。 关键词:无线通信微带天线小型化高集成度 一.研究背景及意义 随着无线通信技术的迅猛发展,日趋小型化和高度集成化的无线通信系统要求通信设备具有多功能、小体积、高速率的特点,以往传统的通信设备的性能已经达不到系统的要求。为适应无线通信系统的发展,通信设备必须向小型化、多功能的方向发展,而终端天线的体积成为通信设备体积缩减的“瓶颈”。并且减小天线的尺寸又会影响到天线的带宽、增益等特性,如何设计出在天线尺寸减小的同时又能兼顾其他性能指标的小型多功能天线是一项极其富有挑战性的工作。微带天线介质基片的厚度往往远小于波长,因此它本身就实现了一维小型化,属于电小天线。与普通的微波天线相比,微带天线的剖面薄,体积小,重量轻;并且具有平面结构,可以制成和导弹、卫星等载体表面共形的结构;同时它的馈电网络可以和天线结构一起制成,便于印刷电路技术大批量生产;另外它能与有源器件和电路集成为单一的模件;而且便于获得线极化、圆极化,易实现双极化、多频段等多功能工作。微带天线的上述优点使其得到了广泛的应用。在军事方面的应用有卫星通信、导弹遥测、火箭、雷达等;在民用方面蓝牙(Bluetooth)、无线局域网(WLAN)、短距离无线网络(Zigbee)、超宽带通信(UWB)等诸多无线通信系统也都有微带天线的应用。伴随微波集成技术的发展和各种微波高性能介质材料的不断出现,小型化微带天线设计已成为现阶段无线通信领域研究的热点。因此,本文对小型化微带天线的研究和设计,具有很好的应用前景和实用价值。

900MHz同轴馈电矩形微带天线设计与HFSS仿真

900MHz 同轴馈电矩形微带天线设计与HFSS 仿真 微带天线它是在一块厚度远小于工作波长的介质基片的一面敷以金属辐射片、一面敷以金属薄层做接地板而成。辐射片可以根据不同的要求设计成各种形状。 微带天线馈电有多种馈电方式,如微带线馈电、同轴线馈电、耦合馈电和缝隙馈电等。其中,最常用的是微带线馈电和同轴线馈电两种馈电方式。 同轴线馈电又称背馈,它是将同轴插座安装在接地板上,同轴线内的导体穿过介质基片接在辐射贴片上。若寻取正确的馈电点位置,就可以获得良好的匹配。 1 矩形微带天线的特性参数 1.1 微带辐射贴片尺寸估算 设计微带天线的第一步是选择合适的介质基片,假设介质的介电常数为r ε,对于工作频率f 的矩形微带天线,可以用下式设计出高效率辐射贴片的宽度ω,即为: 2 1 )2 1(2-+=r f c εω(1) 式中,c 是光速,8 10*3=c 。 辐射贴片的长度一般取为 2 e λ,e λ是介质内的导波波长,即为: e e f c ελ= (2) 式中,e ε是有效介电常数,即为: 2 1 )121(2 1 2 1 -+-+ += ω εεεh r r e (3) 考虑到边缘缩短效应后,实际上的辐射单元长度L 应为: L f c L e ?-= 22ε(4) 式中,L ?是等效辐射缝隙长度,即为: ) 8.0)(258.0() 264.0)(3.0(412.0+-++=?h h h L e e ωεωε(5)

2. 同轴馈电矩形微带天线设计 在使用同轴馈电时,在阻抗匹配方面,在主模10TM 工作模式下,馈电点在矩形辐射贴片长度L 方向边缘处(x=±L/2)的输入阻抗最高,约为100Ω-400Ω。馈电点在宽度ω方向的位移对输入阻抗的影响很小。但在宽度方向上偏离中心位置时,会激发n TM 1模式,增加天线的交叉极化辐射。因此,宽度方向上馈电点的位置一般取在中心点。 由下式可以近似计算出输入阻抗为50Ω时的馈电点的位置: )1 1(2 1re L L ξ- = (6) 式中, 2 1 )121(21 2 1 )(-+-+ += L h L r r re εεξ(7) 3. 设计要求 使用HFSS 设计中心频率为915MHz 的矩形微带天线,并给出天线参数。介质基片采用厚度为1.6mm 的RF4环氧树脂板,天线馈电方式采用50Ω同轴线馈电。 x 图1 同轴馈电俯视图 天线初始尺寸的计算: 辐射贴片宽度:mm 77.99=ω 辐射贴片长度:mm L 89.77= 50Ω匹配点初始位置1L ,计算出初始位置后,然后再使用HFSS 的参数扫描分析和优化设计功能,分析给出50Ω匹配点的实际位置即可,mm L 91.191=。

Vivaldi基于CST的超宽带微带天线设计

---------------------------------------------------------------范文最新推荐------------------------------------------------------ Vivaldi基于CST的超宽带微带天线设 计 摘要天线,在任何无线电系统组成中,都是必不可少的组件。随着无线电通信技术的发展,天线在各个领域得到了广泛的应用。 超宽带技术是当今最具竞争力和发展前景的技术之一。其具有许多窄带系统无法比拟的优点,例如:高数据速率、低系统成本和抗多径效应,抗干扰性强、频谱覆盖范围广、距离分辨率高、对现有系统干扰小等。 由于无线电的应用频段被不断地扩展,进而促进了超宽带电磁学的产生。在超宽带频段内,时域特性的研究表明,时域电磁波是人类非常重要的资源,作为超宽带无线电系统中不可缺少的一员,超宽带天线的研究也因此变得相当有意义。 本论文主要研究了关于超宽带微带天线的设计。首先 1 / 30

介绍了天线及微带天线的基本理论,然后重点研究了超宽带天线,Vivaldi天线,详细分析设计了Vivaldi天线的传统模型,以及改进模型,并利用CST STUDIO SUITE 2010软件仿真,分析了Vivaldi天线可以使用的工作频率范围、性能以及尺寸等。5558 关键词天线,超宽带,CST,Vivaldi天线 毕业设计说明书外文摘要 TitleTheCST-basedUltra-WidebandMicrostrip AntennaDesign Abstract Antenna, in the composed of any radio system, are essential components. With the development of radio communication technology, the antenna has been widely applied in various fields.

颠覆未来作战的前沿技术——超材料

超材料是通过在材料关键物理尺寸上的结构有序设计,突破某些表观自然规律的限制,获得超出自然界原有普通物理特性的超常材料的技术。超材料是一个具有重要军事应用价值和广泛应用前景的前沿技术领域,将对未来武器装备发展和作战产生革命性影响。 新型材料颠覆传统理论 尽管超材料的概念出现在2000年前后,但其源头可以追溯到更早。

1967年,苏联科学家维克托·韦谢拉戈提出,如果有一种材料同时具有负的介电常数和负的磁导率,电场矢量、磁场矢量以及波矢之间的关系将不再遵循作为经典电磁学基础的“右手定则”,而呈现出与之相反的“负折射率关系”。 这种物质将颠覆光学世界,使光波看起来如同倒流一般,并且在许多方面表现出有违常理的行为,例如光的负折射、“逆行光波”、反常多普勒效应等。这种设想在当时一经提出,就被科学界认为是“天方夜谭”。 随着传统材料设计思想的局限性日渐暴露,显著提高材料综合性能的难度越来越大,材料高性能化对稀缺资源的依赖程度越来越高,

发展超越常规材料性能极限的材料设计新思路,成为新材料研发的重要任务。 ● 2000年,首个关于负折射率材料的报告问世; ● 2001年,美国加州大学圣迭戈分校的科研人员首次制备出在微波波段同时具有负介电常数和负磁导率的超材料; ● 2002年,美国麻省理工学院研究人员从理论上证实了负折射率材料存在的合理性; ●2003年,由于超材料的研究在世界范围内取得了多项研究成果,被美国《科学》杂志评为当年全球十项重大科技进展之一。 此后,超材料研究在世界范围内取得了多项成果,维克托·韦谢拉戈的众多预测都得到了实验验证。 现有的超材料主要包括:负折射率材料、光子晶体、超磁材料、频率选择表面等。与常规材料相比,超材料主要有3个特征: 一是具有新奇人工结构; 二是具有超常规的物理性质; 三是采用逆向设计思路,能“按需定制”。 负折射率材料具有介电常数与磁导率同时为负值的电磁特性,电磁波在该介质中传播时,电场强度、磁场强度与传播矢量三者遵循负

超材料.doc

超材料——过去十年中人类最重大的十项科技突破之一 狭义上超材料即指电磁超材料,电磁超材料具有超越自然界材料电磁响应极限的特性,能够实现对电磁波传播的人为设计、任意控制。目前该材料被应用在定向辐射高性能天线、电磁隐身、空间通信、探测技术和新型太赫兹波段功能器件等方面。 看好电磁超材料在军工、通信和智能结构等方面的应用前景 电磁超材料在军工领域的应用比较广泛,目前已应用的超材料产品包括超材料智能蒙皮、超材料雷达天线、吸波材料、电子对抗雷达、超材料通讯天线、无人机雷达、声学隐身技术等。 通信领域电磁超材料最具应用前景的就是无线Wi-fi网络,目前光启已进入该领域。 电磁超材料在智能结构中的应用主要有两类:地面行进装备用智能结构和可穿戴式超材料智能结构。智能结构用电磁超材料的市场前景非常广阔 A股超材料主题相关上市公司主要包括:国民技术(300077)、龙生股份(002625)、鹏博士(600804)和鹏欣资源(600490)等,建议重点关注国民技术、鹏博士和鹏欣资源。 超材料 “Metamaterial”是21世纪物理学领域出现的一个新的学术词汇,近年来经常出现在各类科学文献。拉丁语“meta-”,可以表达“超出…、亚…、另类”等含义。对于 metamaterial一词,目前尚未有一个严格的、权威的定义,各种不同的文献上给出的定义也各不相同。但一般文献中都认为metamaterial是“具有天然材料所不具备的超常物理性质的人工复合结构或复合材料”。 迄今发展出的“超材料”包括:“左手材料”、光子晶体、“超磁性材料”等。“左手材料”是一类在一定的频段下同时具有负的磁导率和负的介电常数的材料系统(对电磁波的传播形成负的折射率)。近一两年来“左手材料”引起了学术界的广泛关注,曾被美国《科学》杂志评为2003年的"年度十大科学突破"之一。 1原理 超材料的应用与原有的材料制备有很大的区别,以往是自然界有什么材料,就能制造出什么物品,而超材料完全是逆向设计,根据针对电磁波的具体应用需求,制造出具有相应功能的材料。 2特征 metamaterial重要的三个重要特征: (1)metamaterial通常是具有新奇人工结构的复合材料; (2)metamaterial具有超常的物理性质(往往是自然界的材料中所不具备的); (3)metamaterial性质往往不主要决定与构成材料的本征性质,而决定于其中的人工结构。 3隐形功能 具有讽刺意味的是,超材料曾被认为是不可能存在的,因为它违反了光学定律。然而,2006年,北卡罗来纳州的杜克大学(Duke University)和伦敦帝国理工学院(Imperial College)的研究者成功挑战传统概念,使用超材料让一个物体在微波射线下隐形。尽管仍有许多难关需要克服,但我们有史以来头一次拥有了能使普通物体隐形的方案(五角大楼的国防高级研究计划署[The Pentagon’s Defense Advanced Research Project Agency,DARPA]资助了这一研究)。

矩形微带天线设计

班级: 姓名: 学号: 指导教师:徐维 成绩: 电子与信息工程学院 信息与通信工程系

1微带天线简介 微带天线的概念首先是有Deschaps 于1953年提出来的,经过20年左右的发展,Munson 和Howell 于20世纪70年代初期造出了实际的微带天线。微带天线由于具有质量轻、体积小,易于制造等优点,现今已经广泛应用于个人无线通信中。 假设矩形贴片的有效长度设为L e ,则有 L e =λg /2 式中,λg 表示导波波长,有 λg =λ0/ε 式中,λ0表示自由空间波长;εe 表示有效介电常数,且 εe =21)121(2121-+-++w h εε 式中,εr 表示介质的相对介电常数;h 表示介质厚度;w 表示微带贴片的宽度。 因此,可计算出矩形贴片的实际长度L ,有 L=L e -2ΔL=λ0/e ε-2ΔL=2102-e f c εΔL 式中,c 表示真空中的光速;f 0表示天线的工作频率;ΔL 表示等效的辐射缝隙的长度,且有 ΔL=0.412h ()()()() 8.0264.0258.03.0++-+h W h W εε 矩形贴片的宽度W 可以由下式计算, W=21 2102-??? ??+εf c 对于同轴线馈电的微带贴片天线,在确定了贴片长度L 和宽度W 之后,还需要确定同轴线馈点的位置,馈点的位置会影响天线的输入阻抗。在微波应用中通常是使用50Ω的标准阻抗,因此需要确定馈点的位置使天线的输入阻抗等于50Ω.对于如图所示的同轴线馈电的微带贴片天线,坐标原点位于贴片的中心以(x f ,y f )表示馈点的位置坐标。

对于TM 10模式,在W 方向上的电场强度不变,因此理论上的W 方向上的任一点都可以作为馈点,为了避免激发TM 1n 模式,在W 方向上的馈点的位置一般取在中心点,即 y f =0 在L 方向上电场有λg /2的改变,因此在长度L 方向上,从中心点到两侧,阻抗逐渐变大;输入阻抗等于50Ω时的馈点可以由下式计算, x f =) (2L L ξ 式中, )121(2121 21)(l h L +--++=εεξ 上述分析都是基于参考地平面是无限大的基础上的,然而实际设计中,参考地都是有限面积的,理论分析证明来了当参考地平面比微带贴片大出6h 的距离时,计算结果就可以达到足够的准确,因此设计中参考地的长度L GND 和宽度W GND 只需要满足以下条件即可, L GND ≥L+6h W GND ≥W+6h 2设计指标和天线结构参数计算 我这次设计的矩形微带天线工作于ISM 频段,其中心频率为 2.45GHz ;无线局域网(WLAN )、蓝牙、ZigBee 的无线网络均可以工作在该频段上。选用的介质板材为Rogers R04003,其相对介电常数εr =3.38,厚度h=5mm ;天线使用同轴线馈电。微带天线的三个关键参数如下:工作频率f 0=2.45GHz ;介质板材的相对介电常数εr =3.38;介质厚到h=5mm 。 1.矩形贴片的宽度W 把c=3.0×108 m/s ,f0=2.45GHz ,εr =3.38带入,可以计算出微带天线矩形贴片的宽度,即 W=0.0414m=41.4mm

相关文档
最新文档