人教版数学九年级上册第二十五章《概率初步》导学案

合集下载

九年级数学上册 第二十五章 概率初步 25.2 用列举法求概率(1)教案 (新版)新人教版-(新版)

九年级数学上册 第二十五章 概率初步 25.2 用列举法求概率(1)教案 (新版)新人教版-(新版)

25.2 用列举法求概率第1课时用直接列举法求简单事件的概率※教学目标※【知识与技能】1.初步掌握直接列举法计算一些简单事件的概率的方法.2.理解“包含两步,并且每一步的结果为有限多个情形”的意义.【过程与方法】通过用列举法求简单事件的概率的学习,使学生在具体情境中分析事件.计算其发生的概率,解决实际问题.【情感态度】体会概率在生活实践中的应用,激发学生学习数学的兴趣,提高分析问题的能力.【教学重点】1.熟练掌握直接列举法计算简单事件的概率.2.正确理解个区分一次试验中包含两步或两个因素的试验.【教学难点】能不重不漏而又简洁地列出所有可能的结果.※教学过程※一、情境导入1.复习回顾前面一节课的内容:(1)概率的意义;(2)对于试验结果是有限等可能的事件的概率的求法.2.多媒体展示扫雷游戏,引入新课.二、掌握新知例1 如图所示是计算机中“扫雷”99个方格的正方形雷区中,随机埋藏着10颗地雷,每个方格内最多只能埋藏1颗地雷.A区域(画线部分),A区域外的部分记为BAA区域还是B区域?分析:第二步怎样走取决于踩在哪部分遇到地雷的可能性的大小,因此,问题的关键是分别计算在两个区域的任何一个方格内踩中地雷的概率并比较大小距可以了.解:A区域的方格共有8个,标号3表示在这8个方格中有3个方格各埋藏有1颗地雷.因此,点击A区域的任一方格,遇到地雷的概率为38.B区域方格数为9981=72⨯--.其中有地雷的方格数为103=7-.因此,点击B区域的任一方格,遇到地雷的概率是772.而38>772,即点击A区域遇到地雷的可能性大于点击B区域遇到地雷的可能性,因此第二步应该点击B区域.提问1:若例题中,小王在游戏开始时踩中的第一个格上出现了标号1,则下一步踩在那一区域比较安全?18.提问2:你能重新设计,通过改变雷的总数,使得下一步踩在A区域合适吗?请通过计算说明原因.答案:(这是一个开放性问题,仅举一例供参考)把雷的总数由10颗改为31颗.原因如下:A区域的方格共有8个,标号3表示在这8个方格中有3个方格各埋藏有1颗地雷.因此,点击A区域的任一方格,遇到地雷的概率为38.B区域方格数为9981=72⨯--.其中有地雷的方格数为313=28-.因此,点击B区域的任一方格,遇到地雷的概率是28 72.而38<2872,即点击A区域遇到地雷的可能性小于踩B区域点击B区域遇到地雷的可能性,因此第二步应该点击A区域.例2 同时抛掷两枚质地均匀的硬币,求下列事件的概率:(1)两枚硬币全部正面向上;(2)两枚银币全部反面向上;(3)一枚硬币正面向上、一枚硬币反面向上.解:可能的结果共有4种,并且这4种结果出现的可能性相等.(1)所有可能的结果中,满足两枚硬币全部正面向上(记为事件A)的结果只有1种,即“正正”,所以P(A)=14.(2)两枚硬币全部反面向上(记为事件B)的结果也只有1种,即“反反”,所以P(B)=14.(3)一枚硬币正面向上、一枚硬币反面向上(记为事件C)的结果共有2种,即“反正”“正反”,所以P(C)=24=12.提问:“同时掷两枚硬币”与“先后掷一枚硬币”这两种试验有可能一样吗?答案:一样.三、巩固练习A,B两个不透明的口袋,每个口袋里装有两个相同的球,A袋中的两个球上分别写了“细”“致”的字样,B袋中的两个球上分别写了“信”“心”的字样,从每个口袋里各摸出一个球,刚好能组成“细心”字样的概率是()A.13B.14C.23D.342.从1,2,3,4这四个数中,任意抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是()A.13B.14C.16D.1123.从-2,-1,2这三个数中任取两个不同的数作为点的坐标,改点在第四象限内的概率为.4.袋子中装有红、绿两种颜色的小球各一个,除颜色外无其他差别,随机摸出一个小球后放回,再随机摸出一个.求:(1)第一次摸到红球,第二次摸到绿球的概率;(2)两次都摸到相同颜色的小球的概率;(3)两次摸到的球中有一个绿球和一个红球的概率.“闯关游戏”的规则,请你探究“闯关游戏”的奥秘,求出闯关成功的概率.答案:1.B 2.A 3.134.(1)14(2)12(3)125.14四、归纳小结1.本节课你学到了哪些知识?有哪些收获?2.你能不重不漏地列举出事件发生的所有可能吗?P(A)mn吗?※布置作业※从教材习题中选取.※教学反思※1.本节课通过扫雷、掷硬币等游戏为载体,充分激发了学生的学习欲望,将学生摆在了真正的主体位置上,重分发挥了他们的主观能动性,从而让学生在趣味中掌握本节课的知识.生活中有许多有关概率问题,本节课的学习亦能让学生尝试用概率的知识去解决生活中的问题,从而体会到概率知识在生活中的应用价值.2.教师引导学生交流归纳知识点,看学生能否会不重不漏地列举出事件发生的所有可能,能否找出事件A中包含几种可能的结果,并能求P(A),教学时要重点突出方法.。

人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第2课时教学设计

人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第2课时教学设计

人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第2课时教学设计一. 教材分析人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第2课时,主要介绍了必然事件、不可能事件和随机事件的概念,以及如何利用概率来描述随机事件发生的可能性。

本节课的内容是学生对概率初步知识的掌握,为后续更深入的学习概率论打下基础。

二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,他们对概率的概念和应用有一定的好奇心。

但是,由于概率是一个比较抽象的概念,学生可能难以理解和接受。

因此,在教学过程中,需要注重引导学生通过实际例子来理解和掌握概率的概念。

三. 教学目标1.了解必然事件、不可能事件和随机事件的概念。

2.掌握如何利用概率来描述随机事件发生的可能性。

3.能够运用概率知识解决一些实际问题。

四. 教学重难点1.必然事件、不可能事件和随机事件的概念。

2.概率的计算方法。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过实际例子来理解和掌握概率的概念。

2.利用多媒体教学,通过动画和图片等形式,使抽象的概率概念更直观、生动。

3.采用分组讨论的教学方法,培养学生的团队合作能力和解决问题的能力。

4.以学生为主体,注重启发式教学,引导学生主动探索、积极思考。

六. 教学准备1.准备相关的教学多媒体课件。

2.准备一些实际例子,用于引导学生理解和应用概率知识。

3.准备分组讨论的问题和任务。

七. 教学过程1.导入(5分钟)利用多媒体展示一些实际例子,如抛硬币、掷骰子等,引导学生思考这些事件发生的可能性是如何描述的。

从而引出必然事件、不可能事件和随机事件的概念。

2.呈现(10分钟)讲解必然事件、不可能事件和随机事件的定义,并通过多媒体展示一些图片和动画,使学生更直观地理解这些概念。

3.操练(10分钟)让学生分组讨论,每组选取一个实际例子,运用必然事件、不可能事件和随机事件的概念进行分析。

引导学生通过实际例子来巩固对概率概念的理解。

九年级数学上册 第二十五章 概率初步 25.2 用列举法求概率(1)教案 新人教版

九年级数学上册 第二十五章 概率初步 25.2 用列举法求概率(1)教案 新人教版
体验列表法求概率的优越性




三、巩固练习


1
2
3
4
5
6
1
(1,1)
(2,1)
(3,1)
(4,1)
(5,1)
(6,1)
2
(1,2)
(2,2)
(3,2)
(4,2)
(5,2)
(6,2)
3
(1,3)
(2,3)
(3,3)
(4,3)
(5,3)
(6,3)
4
(1,4)
(2,4)
(3,4)
(4,4)
(5,4)
(6,4)
2、学情分析:
九年级的学生在日常生活中接触过一些有关概率的问题;对有限可能性事件概率的意义有了初步的认识,并能用直接列举法求简单事件的概率;因而,学生具有一定的数学基础和思维能力。再则,选用的问题是贴近学生的生活,学生易于理解和接受,有较强的探究兴趣和学习欲望,他们更希望通过一系列探究活动发现知识,体验知识的获得过程,感受合作学习的乐趣。
用列举法求概率
课题:25.2 用列举法求概率(1)
课时
1 课 时
教学设计
课标
要求
1、能通过列表、画树状图等方法列出简单随机事件所有可能的结果,以及指定事件发生的所有可能结果,了解事件的概率。
2、知道通过大量重复的试验,可以用频率估计概率。







1、教材分析:
概率在日常生活中、科学预测中有着非常重要而广泛的应用,因此它是整个初中数学的一个重点,也是数学研究的一个重要分支。本节内容是在学生已经对事件的可能性有了初步的认识,并能用直接列举法求简单事件的概率的基础上,再用两种更一般的列举方法求概率——列表法和画树形图求概率.在列举过程中培养学生思维的条理性,并把思考过程有条理、直观、简洁地呈现出来,使得列举结果不重不漏。又为今后进一步学习概率知识打下基础,起着承上启下的作用。

人教版九年级数学上册《概率初步》全册教案

人教版九年级数学上册《概率初步》全册教案

第二十五章概率初步(本章第1课时)25.1 概率(共2课时)25.1.1 随机事件(第1课时)教学内容:必然会发生、都不会发生事件和随机事件的概念;一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。

教学目标:了解必然会发生、都不会发生事件和随机事件的概念;理解一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。

设置问题情景,由问题抽象,归纳概念,利用概念归纳总结结论。

教学重点:一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。

教学难点与关键:难点:理解一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。

关键:设置问题情景,概括概念。

教具、学具准备:小黑板、黑白小球若干个和骰子。

教学过程:一、回顾知识(复习引入,学生活动):请同学们完成下面各题:1.2006年8月,某书店各学科点拨书销售情况如下图:(1)这个月语文点拨与数学点拨销售量的比是多少?(2)这个月总共销售了多少本书?(3)语文书占总销售量的百分之多少?(4)四种类型的书籍中哪一种所占的百分比最大?哪一种最小呢?2.(1)你能说,进店又买点拨书,买哪一种点拨书可能性最大?买哪一种可能性最小?(2)进书店有买点拨书,有可能买数学点拨书吗?(3)进书店有可能买猪肉吗?(4)进书店又有买点拨书,就是买四种书籍(假如书店只有这四种书籍)的其中一种。

教师点评:(1)买语文点拨最大,买思品点拨最小;(2)有可能;(3)书店中没有买猪肉,因此在书店中是买不到猪肉的。

(4)进店又有买点拨书,肯定是四种中任意一种。

二、新课(探索新知):1.从回顾知识后导出今节学习的内容:(1)师生共同分析第136页“问题1”。

(2)师生共同分析第136页“问题2”。

2.引出结论:必然会发生、都不会发生事件和随机事件等概念。

三、训练(巩固练习):课本第138页练习题(抄于小黑板备用)。

人教版初中初三年级九年级数学上册 画树状图求概率 精品导学案

人教版初中初三年级九年级数学上册  画树状图求概率 精品导学案

第二十五章概率初步25.2 用列举法求概率第2课时画树状图法求概率学习目标:1.进一步理解等可能事件概率的意义.2.学习运用树形图计算事件的概率.3.会正确用画树状图法求出所有可能出现的结果,并计算事件的概率.重点:会运用树形图计算事件的概率.难点:会正确用画树状图法求出所有可能出现的结果,并计算事件的概率.一、知识链接1.什么是列举法?列举一次试验可能出现的所有结果时,学过哪些方法?2. 用列表法求概率(1)一口袋中装有3个完全相同的小球,它们分别标有1,2,3,随机地摸出一个小球,然后放回,再随机摸出一个小球,求出两次摸取的小球的标号之和是奇数的概率.(2)若上题中摸出一球后不放回,再随机摸出一球,标号之和是奇数的概率是多少?二、要点探究探究点1:利用画树状图法求概率问题1 抛掷一枚均匀的硬币,出现正面向上的概率是_______.问题 2 同时抛掷两枚均匀的硬币,出现正面向上的概率是_______;一枚硬币正面朝上,一枚硬币反面朝上的概率是.要点归纳:树状图的画法如一个试验中涉及2个因素,第一个因素中有2种可能情况;第二个因素中有3种可能的情况.则其树形图如下图:树状图法:按事件发生的次序,列出事件可能出现的结果.合作探究活动:石头、剪刀、布同学们:你们玩过“石头、剪刀、布”的游戏吗,小明和小华正在兴致勃勃的玩这个游戏,你想一想,这个游戏中有概率的知识吗?问题:尝试用树状图法列出小明和小华所玩游戏中所有可能出现的结果,并求出事件A,B,C 的概率.A:“小明胜” B:“小华胜” C:“平局”归纳总结:画树状图求概率的基本步骤:(1)明确一次试验的几个步骤及顺序;(2)画树状图列举一次试验的所有可能结果;(3)数出随机事件A包含的结果数m,试验的所有可能结果数n;(4)用概率公式进行计算.例1 甲口袋中装有2个相同的,它们分别写有字母A和B,乙口袋中装3个相同的小球,它们分别写有字母C、D和E;丙口袋中装有2个相同的,它们分别写有字母H和I,从三个口袋中各随机取出1个小球.(1) 取出的3个小球上恰好有1个、2个、3个元音字母的概率分别是多少?(2) 取出的3个小球上全部是辅音字母的概率是多少?例2 某班有1名男生、2名女生在校文艺演出中获演唱奖,另有2名男生、2名女生获演奏奖.从获演唱奖和演奏奖的学生中各任选一人去领奖,求两人都是女生的概率.方法总结:计算等可能情形下概念的关键是确定所有可能性相等的结果总数n和求出事件A 发生的结果总数m,“树状图”能帮助我们有序的思考,不重复,不遗漏地得出n和m.例3 甲、乙、丙三人做传球的游戏,开始时,球在甲手中,每次传球,持球的人将球任意传给其余两人中的一人,如此传球三次.(1)写出三次传球的所有可能结果(即传球的方式);(2)指定事件A:“传球三次后,球又回到甲的手中”,写出A发生的所有可能结果;(3)求P(A).思考你能够用列表法写出3次传球的所有可能结果吗?方法总结:当试验包含两步时,列表法比较方便;当然,此时也可以用树形图法;当事件要经过多个(三个或三个以上)步骤完成时,应选用树状图法求事件的概率.练一练1.现在学校决定由甲同学代表学校参加全县的诗歌朗诵比赛,甲同学有3件上衣,分别为红色(R)、黄色(Y)、蓝色(B),有2条裤子,分别为蓝色(B)和棕色(b).甲同学想要穿蓝色上衣和蓝色裤子参加比赛,你知道甲同学任意拿出1件上衣和1条裤子,恰好是蓝色上衣和蓝色裤子的概率是多少吗?2.经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,求三辆汽车经过这个十字路口时,下列事件的概率:(1) 三辆车全部继续直行;(2) 两车向右,一车向左;(3) 至少两车向左.三、课堂小结1.三女一男四人同行,从中任意选出两人,其性别不同的概率为()A.14B.13C.12D.342.a、b、c、d四本不同的书放入一个书包,至少放一本,最多放2本,共有种不同的放法.3.在一个不透明的盒子里,装有三个分别写有数字6,-2,7的小球,它们的形状、大小、质地等完全相同.先从盒子里随机取出一个小球,记下数字后放回盒子里,摇匀后再随机取出一个小球,记下数字.请你用列表或画树状图的方法求下列事件的概率.(1) 两次取出的小球上的数字相同;(2) 两次取出的小球上的数字之和大于10.4.现有A、B、C三盘包子,已知A盘中有两个酸菜包和一个糖包,B盘中有一个酸菜包和一个糖包和一个韭菜包,C盘中有一个酸菜包和一个糖包以及一个馒头.老师就爱吃酸菜包,如果老师从每个盘中各选一个包子(馒头除外),那请你帮老师算算选的包子全部是酸菜包的概率是多少?参考答案自主学习知识链接1.在一次试验中,如果出现的结果只有有限个,且各种结果出现的可能性大小相等,那我可以通过列举试验结果的方法,求出随机事件发生概率,这种方法,叫做列举法.学过的列举法有直接列举法和列表法.由表格可知,一共有9种等可能的结果,两次摸取的小球的标号之和是奇数的有概率是4种,则P(两次摸取的小球的标号之和是奇数)=4 9 .由表格可知,一共有6种等可能的结果,两次摸取的小球的标号之和是奇数的有概率是4种,则P(两次摸取的小球的标号之和是奇数)=42 = 63.课堂探究二、要点探究探究点1:利用画树状图法求概率问题1 12问题21412合作探究问题:一次游戏共有9个可能结果,而且它们出现的可能性相等.事件A发生的所有可能结果:(石头,剪刀)(剪刀,布)(布,石头);因此P(A)=31 = 93.事件B发生的所有可能结果:(剪刀,石头)(布,剪刀)(石头,布);因此P(B )=31 = 93.事件C发生的所有可能结果:(石头,石头)(剪刀,剪刀)(布,布).因此P(C )=31 = 93.,画树状图如下:从树状图中可以看出,有12种等可能的结果.(1)取出的3个小球上恰好有1个元音字母的结果有5种,即ACH、ADH、BCI、BDI、BEH,所以P(1个元音)=5. 12有2个元音字母的结果有4种,即ACI、ADI、AEH、BEI,所以P(2个元音)=41=. 123部为元音字母的结果有1种,即AEI,所以P(3个元音)=1. 12(2)取出的3个小球上全部是元音字母的结果有2种,即BCH、BDH,所以P(3个辅音)= 21=.126例2 解:设两名领奖学生都是女生的事件为A,两种奖项各任选1人的结果用“树状图”来表示.共有12中结果,且每种结果出现的可能性相等,其中2名都是女生的结果有4种,所以事件A发生的概率为P(A)=41=. 123例3 解:(1)画树状图如图所示:由树状图可知共有八种可能的结果,每种结果出现的可能性相同;(2) 传球三次后,球又回到甲手中,事件A发生有两种可能出现结果(乙,丙,甲)(丙,乙,甲)(3) P(A)=21=.84练一练 1.解:用“树状图”列出所有可能出现的结果:由树状图可知,一共有6种等可能的结果,“取出1件蓝色上衣和1条蓝色裤子”记为事件A,那么事件A发生的概率是1 . 62.解:用“树状图”列出所有可能出现的结果:由树状图可知,共有27种等可能的结果.(1)全部直行的结果只有1种,则P(全部继续直行)= 1. 27(2)两车向右,一车向左的结果有3种,则P(两车向右,一车向左)=31=. 279(3)至少两车向左的结果有5种,则P(至少两车向左)=7. 27当堂检测1. C2.103.解:根据题意,画出树状图如下由树状图可知,一共有9种等可能的结果.(1) 两次取出的小球上的数字相同的可能性只有3种,所以P(数字相同)=31 = 93.(2) 两次取出的小球上的数字之和大于10的可能性只有4种,所以P(数字之和大于10)=4 . 94.解:根据题意,画出树状图如下由树状图得,所有可能出现的结果有18个,它们出现的可能性相等.选的包子全部是酸菜包有2个,所以选的包子全部是酸菜包的概率是:P(全是酸菜包)=21= 189.。

人教版九年级上册第二十五章概率初步课程设计

人教版九年级上册第二十五章概率初步课程设计

人教版九年级上册第二十五章概率初步课程设计一、课程背景九年级是中学阶段的重要年级,也是学生初步接触数学概率的时期。

在这一阶段,学生需要通过实践和理论课程学习,初步掌握概率的基本概念和一些常见的概率计算方法。

因此,本文将介绍一些针对人教版九年级上册第二十五章概率初步的课程设计方案。

二、课程内容1. 理论课1.1 概率的基本概念•概率的定义和性质•潜在事件和样本空间•事件的概念和其组合形式•频率和概率之间的联系1.2 概率的计算方法•排列和组合•相关的公式和推算方法•可重复和不可重复的实验1.3 概率分布方式•离散和连续型的概率分布•平均值、方差和标准差•概率分布函数和密度函数2. 实践课2.1 立方体骰子实验2.1.1 实验目的通过掷一枚六面立方体骰子的实验,演示概率的基本概念,以及计算离散性的概率分布。

2.1.2 实验材料•六面立方体骰子•表格或本子2.1.3 实验过程•对每个学生发放一个六面立方体骰子。

•让学生在组内轮流掷骰子,并记录每组成员掷骰子的结果。

•分别计算每个点数的出现频率,以及每个点数的概率。

•将每个点数的出现频率和概率画出柱形图,并分析比较两者间的异同和规律。

2.2 投篮实验2.2.1 实验目的通过投篮实验,对概率的计算方法进行实践操作,并演示概率分布方式的计算方法。

2.2.2 实验材料•篮球架和篮球•障碍物(如墙或椅子)2.2.3 实验过程•对每个学生发放一架篮球架和一只篮球。

•安排学生们轮流进行投篮实验,并计算出每位学生的命中率。

•计算每个命中率的出现频率,以及命中率的概率分布。

•结合柱形图和分布图的方式,对概率分布的规律和特征进行分析和讨论。

三、课程评估本次课程评估分为两个部分,包括理论部分和实践部分。

1. 理论部分理论部分的评估主要包括以下方面:•知识点的掌握程度•对概率基本概念的理解和运用•概率计算方法的正确性和灵活性•能否运用基本公式和方法解决概率问题2. 实践部分实践部分的评估主要考察以下方面:•实验过程的正确性和科学性•实验数据的收集和处理•对概率分布方式的掌握和应用•通过分析结果,对实验引发的问题进行思考和总结四、总结通过以上的课程设计方案,可以帮助学生初步掌握概率的基本概念和计算方法。

九年级数学上册 第二十五章 概率初步25.1 随机事件与概率25.1.2 概率教案 (新版)新人教版

25.1.2 概 率1.在具体情境中了解概率的意义,体会事件发生的可能性大小与概率的值的关系.2.理解概率的定义及计算公式P(A)=m n,明确概率的取值X 围,能求简单的等可能性事件的概率.重点在具体情境中了解概率的意义,理解概率定义及计算公式P(A)=m n.难点了解概率的定义,理解概率计算的两个前提条件.活动1 创设情境(1)事件可以分为哪几类?什么是随机事件?随机事件发生的可能性一样吗?(2)在同样的条件下,某一随机事件可能发生也可能不发生,那么它发生的可能性究竟有多大?能否用数值进行刻画呢?这节课我们就来研究这个问题.活动2 试验活动试验1:每位学生拿出课前准备好的分别标有1,2,3,4,5号的5根纸签,从中随机地抽取一根,观察上面的数字,看看有几种可能.(如此多次重复)试验2:教师随意抛掷一枚质地均匀的骰子,请学生观察骰子向上一面的点数,看看有几种不同的可能.(如此可重复多次)(1)试验1中共出现了几种可能的结果?你认为这些结果出现的可能性大小相等吗?如果相等,你认为它们的可能性各为多少?(2)试验2中共出现了几种可能的结果?你认为这些结果出现的可能性大小相等吗?如果相等,你认为它们的可能性各为多少?活动3 引出概率1.从数量上刻画一个随机事件A发生的可能性的大小,我们把它叫做这个随机事件A 的概率,记为P(A).2.概率计算必须满足的两个前提条件:(1)每一次试验中,可能出现的结果只有有限个;(2)每一次试验中,各种结果出现的可能性相等.3.一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=________.4.随机事件A发生的概率的取值X围是________,如果A是必然发生的事件,那么P(A)=________,如果A是不可能发生的事件,那么P(A)=________.活动4精讲例题例1 下列事件中哪些是等可能性事件,哪些不是?(1)运动员射击一次中靶心与不中靶心;(2)随意抛掷一枚硬币反面向上与正面向上;(3)随意抛掷一只可乐纸杯杯口朝上,或杯底朝上,或横卧;(4)分别从写有1,3,5,7,9中一个数的五X卡片中任抽1X结果是1,或3,或5,或7,或9.答案:(1)不是等可能事件;(2)是等可能事件;(3)不是等可能事件;(4)是等可能事件.例2 学生自己阅读教材第131页~132页例1及解答过程.例3 教师引导学生分析讲解教材第132页例2.想一想:把此题(1)和(3)两问及答案联系起来,你有什么发现?例4 教师引导学生分析讲解教材第133页例3.活动5过关练习教材第133页练习第1~3题.,这些球除了颜色外都相同.从袋子中随机地摸出一个球,它是红色与它是绿色的可能性相等吗?两者的概率分别是多少?2.一个质地均匀的小正方体骰子,六个面分别标有数字1,2,2,3,4,4,掷骰子后,观察向上一面的数字.(1)出现数字1的概率是多少?(2)出现的数字是偶数的概率是多少?(3)哪两个数字出现的概率相等?分别是多少?答案:,P(摸到红球)=58,P(摸到绿球)=38;2.(1)16;(2)23;(3)数字1和3出现的概率相同,都是16,数字2和4出现的概率相同,都是13. 活动6 课堂小结与作业布置课堂小结1.随机事件概率的意义,等可能性事件的概率计算公式P(A)=m n. 2.概率计算的两个前提条件:可能出现的结果只有有限个;各种结果出现的可能性相同.作业布置教材第134页~135页 习题第3~6题.。

人教版数学九年级上册导学案:25.10 概率初步

第二十五章概率初步年级:九年级内容:第二十五章章概率初步复习(一)课型: 复习课执笔: 审核:定稿:使用时间:学习目标1、立足教材,打好基础,查漏补缺,系统复习,熟练掌握本部分的基本知识、基本方法和基本技能.2、让学生自己总结交流所学内容,发展学生的语言表达能力和合作交流能力.3、通过学生自己归纳总结本部分内容,使他们在动手操作方面,探索研究方面,语言表达方面,分类讨论、归纳等方面都有所发展.学习重点:将本部分的知识有机结合,强化训练学生综合运用数学知识的能力,.学习难点:把数学知识转化为自身素质. 增强用数学的意识.教材分析一、知识脉络二、基础知识1必然事件。

2不能事件.3确定事件.4不确定事件(随机事件)5表示,叫做该事件的概率.6概率的理论计算有:①;②三、知识应用例1、任意掷一枚均匀的小立方体(立方体的每个面上分别标有数字1、2、3、4、5、6),“6”朝上的概率是多少?【分析】考虑两个方面,一是所有可能出现的结果有几种,二是“6”朝上的结果有几种。

【讨论解决】1列树状图求出概率P=( )例2、两人要去某风景区游玩,每天某一时段开往该风景区有三辆车(票价相同),但是他们不知道这些车的舒适程度,也不知道车子开过来的顺序. 两人采取了不同的乘车方案: 甲无论如何总是上开来的第一辆车,而乙则是先观察后上车,当第一辆车开来时他不上车,而是仔细观察车的舒适度, 如果第二辆车的状况比第一辆车好, 他就上第二辆车; 如果第二辆车不比第一辆好, 他就上第三辆车.如果把这三辆车的舒适程度分为上、中、下三等, 请尝试着解决下面的问题: ⑴三辆车按出现的先后顺序工有哪几种不同的可能?⑵ 你认为甲、乙两人采用的方案, 哪一种方案使自己..乘上等车的可能性大? 为什么? 【分析】由于各车的舒适度不同,而且开过来的顺序也事先未知,因此不同的乘车方案使自己乘坐上等车的可能性不一样.我们只要将三种不同的车开来的可能性顺序全部列出来,再对照甲乙二人不同的乘车方案,就可以得出两人乘坐上等车的可能性.【讨论解决】⑴三辆车开来的先后顺序有 种可能,分别是:( )、( )、( )、( )、( )、( );⑵由于不考率其他因素,三辆车6种顺序出现的可能性相同.甲、乙二人分别乘坐上等车的概率,用列表法可得. 于是不难看出,甲乘上等车的概率是(31);而乙乘上等车的概率是(21). ∴乙采取的方案乘坐上等车的可能性大.【说明】解决本题的关键是通过 的方法将三辆车开来的顺序列出来,再根据甲、乙两种不同的乘车方案求出他们乘坐上等车的概率.另外本题也可以通过画数状图来求解.例3、 某电脑公司现有A 、B 、C 三种型号的甲品牌电脑和D 、E 两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.顺序 甲 乙⑴写出所有选购方案(利用树状图或列表方法表示);⑵如果⑴中各种选购方案被选中的可能性相同,那么A型号电脑被选中的概率是多少?⑶现知希望中学购买甲、乙两种品牌电脑共36台(价格如图所示),恰好用了10万元人民币,其中甲品牌电脑为A型号电脑,求购买的A型号电脑有几台.【分析】本题实际上是要在A,B,C三种型号的甲品牌电脑中选择一种,再从D,E两种型号的乙品牌电脑中选择一种,我们可以在所有选购方案中按照题意要求就可以确定符合条件的方案. 【解】⑴树状图如下:或列表如下:有6种可能结果:.1) .⑵因为选中A型号电脑有种方案,即,所以A型号电脑被选中的概率是(3(3) 由(2)可知,当选用方案(A,D)时,设购买A型号、D型号电脑分别为x,y台,根据题意,得(要求学生写出过程)【分析】本题通过画树状图确定了所有选购方案后,再运用方程组对所有的方案进行取舍,从而确定符合题意的方案,题目设计巧妙,各问之间环环相扣,并且渗透了方程思想,是一道不可多得的好题.四、问题式小结:1、本章包括哪些内容?2、应用本章知识解决哪些问题?五、【目标检测】(1)从一副没有“大小王”的扑克牌中随机地抽取一张,点数为“5”的概率是(2)在()a2( )4a( )4中,任意填上“+”或“—”共得到种不同的代数式,能构成完全平方式的概率是(3)布袋中有红黄蓝三种颜色的球各一个,A、从中先摸出一个球,记下他的颜色,将他放回布袋,搅匀,再摸出一个球,记下他的颜色,求得到的两颜色中有一红一黄的概率;B、如果摸出第一个球之后不放回布袋,再摸第二个球,这时得到的两个颜色中有一红一黄的概率是多少?。

人教版九年级数学上册第二十五章概率初步《25.2用列举法求概率》教学设计

人教版九年级数学上册第二十五章概率初步《25.2用列举法求概率》教学设计一. 教材分析本节课的主题是“用列举法求概率”,这是人教版九年级数学上册第二十五章概率初步的内容。

教材通过实例引入概率的概念,让学生了解概率是反映事件发生可能性大小的量。

本节课的主要内容是用列举法求概率,通过列举所有可能的结果,再计算符合条件的结果数与总结果数之比,从而得到概率。

二. 学情分析学生在学习本节课之前,已经学习了概率的基本概念,了解了随机事件、必然事件和不可能事件。

他们已经能够理解事件发生的可能性,并能够用分数表示事件发生的概率。

但是,学生对于用列举法求概率的方法可能还不够熟悉,需要通过本节课的学习和实践来掌握。

三. 教学目标1.知识与技能:使学生掌握用列举法求概率的方法,能够通过列举所有可能的结果,计算符合条件的结果数与总结果数之比,得到概率。

2.过程与方法:培养学生运用概率知识解决实际问题的能力,提高学生分析问题、解决问题的能力。

3.情感态度与价值观:激发学生对概率学科的兴趣,培养学生积极的学习态度,使学生认识到数学在生活中的应用。

四. 教学重难点1.重点:掌握用列举法求概率的方法。

2.难点:如何引导学生列举出所有可能的结果,并计算出概率。

五. 教学方法1.情境教学法:通过生活实例引入概率的概念,激发学生的学习兴趣。

2.讲授法:讲解概率的定义和列举法求概率的方法。

3.实践操作法:让学生动手列举实例,求解概率,提高学生的实践能力。

4.讨论法:分组讨论,引导学生交流与合作,共同解决问题。

六. 教学准备1.教学课件:制作课件,展示概率的定义和列举法求概率的方法。

2.实例:准备一些生活实例,用于导入和巩固所学知识。

3.练习题:准备一些练习题,用于让学生动手实践,巩固所学知识。

七. 教学过程1.导入(5分钟)通过一个简单的实例引入概率的概念,如抛硬币实验。

向学生展示硬币抛掷的结果,并引导学生思考:如何计算抛出正面的概率?2.呈现(10分钟)向学生讲解概率的定义,并用课件展示。

九年级数学上册 第二十五章 概率初步 25.3 用频率估计概率教案 新人教版

25.3 用频率估计概率【教材分析】《利用频率估计概率》是人教版九年级上册第二十五章《概率初步》的第三节。

它是学习了前两节概率和用列举法求概率的基础上,即学习了理论概率后,进一步从试验的角度来估计概率,让学生再次体会频率与概率间的关系,通过这部分内容的学习可以帮助学生进一步理解试验频率和理论概率的关系。

概率与人们的日常生活密切相关,应用十分广泛。

纵观近几年的中考题,概率已是考查的热点,同时,对此内容的学习,也是为高中深入研究概率的相关知识打下坚实基础。

【教学目标】根据新课程标准的要求,课改应体现学生身心发展特点;应有利于引导学生主动探索和发现;有利于进行创造性的教学。

因此,我把本节课的教学目标确定为以下三个方面:知识目标:1.理解当事件的试验结果不是有限个,或各种可能结果发生的可能性不相等时,要用频率来估计概率,进一步发展概率观念。

2.进一步理解概率与频率之间的联系与区别,培养学生根据频率集中趋势估计概率的能力。

方法与过程目标:1.选择生活中的实例进行教学,使学生在解决实际问题过程中加强对概率的认识,突出用频率的集中趋势估计概率的思想,体现数学与生活的紧密联系.2.通过对问题的分析,理解用频率来估计概率的方法,渗透转化和估算的思想方法.情感态度与价值观目标:1.利用生活实例,介绍数学史,激发学生学习数学的热情和兴趣。

2.结合试验的随机性和规律性,让学生理解试验频率和理论概率的关系。

【重点与难点】重点:1.体会用频率估计概率的必要性和合理性。

2.学会依据问题特点,用频率来估计事件发生的概率。

难点:1.理解频率与概率的关系,2.用频率估计概率解决实际问题。

【学生分析】学习统计概率的学生并不是难在用频率估计概率,而是难在多大程度上感受用频率估计概率的必要性以及体会用频率估计概率所蕴含的基本思想,然后自觉地运用到实际生活中。

所以,要发动学生积极参与,动手实验,在实践中感悟。

【教学方法】树立以学生为本的思想,通过创设问题情境,利用《问题生成评价单》,以多媒体为教学平台,通过精心设计的问题串和活动系列,采取精讲多练、讲练结合的方法来落实知识点并不断地制造思维兴奋点,让学生脑、嘴、手动起来,充分调动了学生的学习积极性,达到事半功倍的教学效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十五章 概率初步 25.1 随机事件与概率 25.1.1 随机事件

1.了解必然发生的事件、不可能发生的事件、随机事件的特点. 2.能根据随机事件的特点,辨别哪些事件是随机事件. 3.有对随机事件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素.

重点:对生活中的随机事件作出准确判断,对随机事件发生的可能性大小作定性分析. 难点:对生活中的随机事件作出准确判断,理解大量重复试验的必要性.

一、自学指导.(10分钟) 自学:阅读教材P127~129. 归纳:在一定条件下必然发生的事件,叫做__必然事件__;在一定条件下不可能发生的事件,叫做__不可能事件__;在一定条件下可能发生也可能不发生的事件,叫做__随机事件__. 二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟) 1.下列问题哪些是必然发生的?哪些是不可能发生的? (1)太阳从西边落下; (2)某人的体温是100℃; (3)a2+b2=-1(其中a,b都是实数); (4)自然条件下,水往低处流; (5)三个人性别各不相同; (6)一元二次方程x2+2x+3=0无实数解. 解:(1)(4)(6)是必然发生的;(2)(3)(5)是不可能发生的. 2.在一个不透明的箱子里放有除颜色外,其余都相同的4个小球,其中红球3个、白球1个.搅匀后,从中随机摸出1个小球,请你写出这个摸球活动中的一个随机事件:__摸出红球__. 3.一副去掉大小王的扑克牌(共52张),洗匀后,摸到红桃的可能性__>__摸到J,Q,K的可能性.(填“>”“<”或“=”) 4.从一副扑克牌中任意抽出一张,则下列事件中可能性最大的是( D ) A.抽出一张红桃 B.抽出一张红桃K C.抽出一张梅花J D.抽出一张不是Q的牌 5.某学校的七年级(1)班,有男生23人,女生23人.其中男生有18人住宿,女生有20人住宿.现随机抽一名学生,则:a.抽到一名住宿女生;b.抽到一名住宿男生;c.抽到一名男生.其中可能性由大到小排列正确的是( A ) A.cab B.acb C.bca D.cba 点拨精讲:一般的,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.

一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟) 1.小伟掷一个质地均匀的正方形骰子,骰子的六个面上分别刻有1至6的点数.请考虑以下问题,掷一次骰子,观察骰子向上的一面: (1)出现的点数是7,可能吗?这是什么事件? (2)出现的点数大于0,可能吗?这是什么事件? (3)出现的点数是4,可能吗?这是什么事件? (4)你能列举与事件(3)相似的事件吗? 点拨精讲:必然事件和不可能事件统称为确定事件.事先不能确定发生与否的事件为随机事件. 2.袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球.我们把“摸到白球”记为事件A,把“摸到黑球”记为事件B. (1)事件A和事件B是随机事件吗?哪个事件发生的可能性大? (2)20个小组进行“10次摸球”的试验中,事件A发生的可能性大约有几组?“20次摸球”的试验中呢?你认为哪种试验更能获得较正确结论呢? (3)如果把刚才各小组的20次“摸球”合并在一起是否等同于400次“摸球”?这样做会不会影响试验的正确性? (4)通过上述试验,你认为,要判断同一试验中哪个事件发生的可能性较大、必须怎么做? 点拨精讲:(4)进行大量的、重复的试验. 二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟) 1.下列事件中是必然事件的是( A ) A.早晨的太阳一定从东方升起 B.中秋节晚上一定能看到月亮 C.打开电视机正在播少儿节目 D.小红今年14岁了,她一定是初中生 2.一个鸡蛋在没有任何防护的情况下,从六层楼的阳台上掉下来砸在水泥地面上没摔破( B ) A.可能性很小 B.绝对不可能 C.有可能 D.不太可能 3.下列说法正确的是( C ) A.可能性很小的事件在一次试验中一定不会发生 B.可能性很小的事件在一次试验中一定发生 C.可能性很小的事件在一次试验中有可能发生 D.不可能事件在一次试验中也可能发生 4.20张卡片分别写着1,2,3,…,20,从中任意抽出一张,号码是2的倍数与号码是3的倍数的可能性哪个大? 解:号码是2的倍数的可能性大. 5.指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件. (1)两直线平行,内错角相等; (2)刘翔再次打破110米跨栏的世界纪录; (3)打靶命中靶心; (4)掷一次骰子,向上一面是3点; (5)13个人中,至少有两个人出生的月份相同; (6)经过有信号灯的十字路口,遇见红灯; (7)在装有3个球的布袋里摸出4个球; (8)物体在重力的作用下自由下落; (9)抛掷一千枚硬币,全部正面朝上. 解:必然事件:(1)(5);随机事件:(2)(3)(4)(6)(8)(9);不可能事件:(7). 6.已知地球表面陆地面积与海洋面积的比值为3∶7.如果宇宙中飞来一块陨石落在地球上,“落在海洋里”与“落在陆地上”哪个可能性更大? 解:“落在海洋里”可能性更大.

学生总结本堂课的收获与困惑.(2分钟) 1.必然事件、随机事件、不可能事件的特点. 2.对随机事件发生的可能性大小进行定性分析. 3.理解大量重复试验的必要性.

学习至此,请使用本课时对应训练部分.(10分钟) 25.1.2 概率(1)

1.了解从数量上刻画一个事件发生的可能性的大小. 2.理解P(A)=mn(在一次试验中有 n 种可能的结果,其中 A 包含 m 种)的意义.

重点:对概率意义的正确理解. 难点:对P(A)=mn(在一次试验中有 n 种可能的结果,其中 A 包含 m 种)的正确理解.

一、自学指导.(10分钟) 自学:阅读教材第130至132页. 归纳: 1.当A是必然事件时,P(A)=__1__;当A是不可能事件时,P(A)=__0__;任一事件A的概率P(A)的范围是__0≤P(A)≤1__. 2.事件发生的可能性越大,则它的概率越接近__1__;反之,事件发生的可能性越小,则它的概率越接近__0__.

3.一般地,在一次试验中,如果事件A发生的可能性大小为__mn__,那么这个常数mn就叫做事件A的概率,记作__P(A)__. 4.在上面的定义中,m,n各代表什么含义?mn的范围如何?为什么? 点拨精讲:(1)刻画事件A发生的可能性大小的数值称为事件A的概率. (2)__必然__事件的概率为1,__不可能__事件的概率为0,如果A为__随机__事件,那么0<P(A)<1. 二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)

1.在抛掷一枚普通正六面体骰子的过程中,出现点数为2的概率是__16__. 2.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯恰是黄灯亮的概率为__112__. 3.袋中有5个黑球,3个白球和2个红球,它们除颜色外,其余都相同.摸出后再放回,在连续摸9次且9次摸出的都是黑球的情况下,第10次摸出红球的概率为__15__. 一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(6分钟) 1.掷一个骰子,观察向上一面的点数,求下列事件的概率: (1)点数为2;(2)点数为奇数; (3)点数大于2小于5.

解:(1)16;(2)12;(3)13. 2.一个桶里有60个弹珠,其中一些是红色的,一些是蓝色的,一些是白色的.拿出红色弹珠的概率是35%,拿出蓝色弹珠的概率是25%.桶里每种颜色的弹珠各有多少? 解:红:21;蓝:15;白:24. 二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(12分钟) 1.袋子中装有24个和黑球2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋中摸出一个球,摸到黑球的概率大,还是摸到白球的概率大一些呢?说明理由,并说明你能得到什么结论?

解:摸到黑球的概率大.摸到黑球的可能性为1213,摸到白球的可能性为113,1213>113,故

摸到黑球的概率大.(结论略) 点拨精讲:要判断哪一个概率大,只要看哪一个可能性大.

学生总结本堂课的收获与困惑.(2分钟) 一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率为P(A)=__mn__且 __0__≤P(A)≤__1__.

学习至此,请使用本课时对应训练部分.(10分钟) 25.1.2 概率(2)

1. 进一步在具体情境中了解概率的意义;能够运用列举法计算简单事件发生的概率,并阐明理由.

2.运用P(A)=mn解决一些实际问题.

重点:运用P(A)=mn解决实际问题. 难点:运用列举法计算简单事件发生的概率.

一、自学指导.(10分钟) 自学:阅读教材P133. 二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟) 1.从分别标有1,2,3,4,5号的5根纸签中随机地抽取一根.抽出的号码有多少种?抽到1的概率为多少?

相关文档
最新文档