学案二空间几何体
「精品」高中数学必修二导学案:第一章空间几何体复习-精品

第一章空间几何体复习三维目标1.认识柱、锥、台、球及其简单组合体的结构特征;2. 能画出简单空间几何体的三视图,能识别三视图所表示的立体模型;3. 了解球、柱体、锥体与台体的表面积和体积的计算公式.能用这些公式解决简单实际问题. ________________________________________________________________________________ 目标三导 学做思1问题1. 请做以下基础练习(1)充满气的车轮内胎可由下面某个图形绕对称轴旋转而成,这个图形是()(2)如图,在正四面体A -BCD 中, E 、F 、G 分别是三角形ADC 、ABD 、BCD 的中心,则△EFG 在该正四面体各个面上的射影所有可能的序号是( C )A .①③B .②③④C .③④D .②④*(3)如图所示,圆台的上、下底半径和高的比为1:4:4,母线长为10,则圆台的侧面积为( ) A .81π B .100π C .14π D .169π① ② ③ ④A BCD∙∙∙EF G问题2. 请梳理本章的知识结构.【学做思2】1.已知三棱锥的底面是边长为1的正三角形,两条侧棱长为132,则第三条侧棱长的取值范围是________.2.―个几何体的三视图如图所示 (单位:m ),则该几何体的体积为______3m .*3.长方体1111A B C D ABCD 内接于底面半径为1,高为1的圆柱内,如图,设矩形ABCD 的面积为S ,长方体A 1B 1C 1D 1-ABCD 的体积为V ,设矩形ABCD 的一边长AB =x . (1)将S 表达为x 的函数; (2)求V 的最大值. 达标检测1.已知两个圆锥,底面重合在一起,其中一个圆锥顶点到底面的距离为2cm ,另一个圆锥顶点到底面的距离为3cm ,则其直观图中这两个顶点之间的距离为()A .2cmB .3cmC .2.5cmD .5cm2.一个几何体的三视图如图(2)所示,其中正视图和侧视图是腰长为4的两个全等的等腰直角三角形,则用________个这样的几何体可以拼成一个棱长为4的正方体.3.圆柱形容器内盛有高度为8cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球如图(3)所示,则球的半径是________cm.*4.已知在直三棱柱ABC -A 1B 1C 1中,底面为直角三角形,∠ACB =90°,AC =6,BC =CC 1=2,P 是BC 1上一动点,如图所示,则CP +P A 1的最小值为_____.(3)。
人教A版高中数学必修二导学案空间几何体的三视图

1.2.1空间几何体的三视图一、学习目标:知识与技能:(1)掌握画三视图的基本技能;(2)丰富空间想象力过程与方法:主要通过亲身实践,动手作图,体会三视图的作用情感态度与价值观:(1)提高空间想象力(2)体会三视图的作用二、学习重点、难点:学习重点:画出简单组合体的三视图学习难点:识别三视图所表示的空间几何体三、使用说明及学法指导:1、先浏览教材,再逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。
2、要求小班、重点班学生全部完成,平行班学生完成A、B类问题。
3、A类是自主探究,B类是合作交流。
四、知识链接:圆柱:圆锥:圆台:五、学习过程:A问题1:什么是投影、投影线、投影面?投射线可自一点发出,也可是一束与投影面成一定角度的平行线,这样就使投影法分为中心投影和平行投影A问题2:什么是中心投影、平行投影?物体上某一点与其投影面上的投影点的连线是平行的,则为平行投影,如果聚于一点,则为中心投影.A问题3.(1).光线叫做几何体的正视图.(2).光线叫做几何体侧视图.(3).光线叫做几何体的俯视图.几何体的正视图、侧视图和俯视图统称为几何体的三视图。
A例1.根据长方体的模型,请您画出它们的三视图,并观察三种图形之间的关系.三视图的画法规则: 、、。
A例2.请您画出圆柱、圆锥、圆台、球的三视图六、达标测试A1、两条相交直线的平行投影是()A.两条相交直线B.一条直线C.两条平行线D.两条相交直线或一条直线A2、如果一个几何体的正视图与侧视图均为全等的等边三角形,俯视图为一个圆及其圆心,那么这个几何体为()A.棱柱B.棱锥C.圆锥D.圆柱B3、课本15页1.、2、3、4题七、小结与反思:【励志良言】当你感到悲哀痛苦时,最好是去学些什么东西。
学习会使你永远立于不败之地。
[精品]新人教A版必修二高中数学1.2.1空间几何体的三视图导学案
![[精品]新人教A版必修二高中数学1.2.1空间几何体的三视图导学案](https://img.taocdn.com/s3/m/54dfdcffad51f01dc281f1e5.png)
1. 2.1空间几何体的三视图【教学目标】1、理解三视图的含义,能画出简单几何体的三视图,掌握画法规则.2、能根据三视图,运用空间想象能力,识别并说出它所表示的空间图形.【教学重难点】教学重点:画出简单组合体的三视图教学难点:识别三视图所表示的空间几何体【教学过程】(一)情景导入“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。
在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗?(二)展示目标这也是我们今天要学习的主要内容:1理解三视图的含义,能画出简单几何体的三视图,掌握画法规则.2.能根据三视图,运用空间想象能力,识别并说出它所表示的空间图形.(三)检查预习1.空间几何体的三视图是指正视图、侧视图、俯视图。
2.三视图的排列规则是俯视图放在正视图的下方,长度与正视图一样,侧视图放在正视图右边,宽度与俯视图的宽度一样。
3.三视图的正视图、俯视图、侧视图分别是从前、右、上观察同一个几何体,画出的空间几何体的图形。
4.三视图对于认识空间几何体有何作用?你有何体会?略(四)合作探究1.讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学生画完后可交流结果并讨论;2.教师引导学生用类比方法画出简单组合体的三视图(1)画出球放在长方体上的三视图(2)画出矿泉水瓶(实物放在桌面上)的三视图学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得。
作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。
(五)交流展示略(六)精讲精练例1.如图甲所示,在正方体1111D C B A ABCD -中,E 、F 分别是1AA 、11D C 的中点,G 是正方形11B BCC 的中心,则四边形AGFE 在该正方体的各个面上的投影可能是图乙中的 。
人教A版最新必修二第1章《空间几何体》导学案设计(含答案)1.1第1课时

A. ①③ B. ②④ C.③④ D.①② 答案 C 解析 可选择阴影三角形作为底面进行折叠,
发现 ①② 可折成正四面体, ③④ 不论选哪一个
三角形作底面折叠都不能折成正四面体 .
4.下列几何体中, _______是棱柱, _______是棱锥, _______是棱台 (仅填相应序号 ).
答案 ①③④ ⑥ ⑤ 解析 结合棱柱、棱锥和棱台的定义可知
是假命题;
对于选项 D,顶点在底面上的正投影是底面三角形的外心,又因为底面三角形为正三角形,
所以外心即为中心,故该命题是真命题 .
2.下列三个命题:
①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;
②两个底面平行且相似,其余各面都是菱形的多面体是棱台;
③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台
看侧棱
相交于一点
延长后相交于一点
跟踪训练 2 下列说法中,正确的是 ( ) ①棱锥的各个侧面都是三角形; ②有一个面是多边形,其余各面都是三角形,由这些面围成的几何体是棱锥; ③四面体的任何一个面都可以作为棱锥的底面; ④棱锥的各侧棱长相等 . A. ①② B. ①③ C.②③ D.②④ 答案 B 解析 由棱锥的定义,知棱锥的各侧面都是三角形,故 ① 正确;有一个面是多边形,其余各
邻两个四边形的公 共边都互相平行, 由这些面所围成的 多面体叫做棱柱 .
高中数学 第一章 空间几何体学案 新人教A版必修2

【三维设计】2015高中数学第一章空间几何体学案新人教A版必修21.1空间几何体的结构1.1.1 棱柱、棱锥、棱台的结构特征[提出问题]观察下列图片:问题1:图片(1)(2)(3)中的物体的形状有何特点?提示:由若干个平面多边形围成.问题2:图片(4)(5)(6)(7)的物体的形状与(1)(2)(3)中有何不同?提示:(4)(5)(6)的表面是由平面与曲面围成,(7)的表面是由曲面围成的.问题3:图片(4)(5)(6)(7)中的几何体是否可以看作平面图形绕某定直线旋转而成?提示:可以.[导入新知]1.空间几何体2.多面体[化解疑难]1.对于多面体概念的理解,注意以下两个方面:(1)多面体是由平面多边形围成的,围成一个多面体至少要四个面.一个多面体由几个面围成,就称为几面体.(2)多面体是一个“封闭”的几何体,包括其内部的部分.2.棱柱具有以下结构特征和特点:(1)侧棱互相平行且相等,侧面都是平行四边形.(2)两个底面与平行于底面的截面是全等的多边形,如图a所示.(3)过不相邻的两条侧棱的截面是平行四边形,如图b所示.(4)有两个面平行,其余各面都是平行四边形的几何体不一定是棱柱,如图c所示.3.对于棱锥要注意有一个面是多边形,其余各面都是三角形的几何体不一定是棱锥,必须强调其余各面是共顶点的三角形,如图d所示.4.棱台中各侧棱延长后必相交于一点,否则不是棱台.[例1](1)所有的面都是平行四边形;(2)每一个面都不会是三角形;(3)两底面平行,并且各侧棱也平行;(4)被平面截成的两部分可以都是棱柱.其中正确说法的序号是________.[解析] (1)错误,棱柱的底面不一定是平行四边形;(2)错误,棱柱的底面可以是三角形;(3)正确,由棱柱的定义易知;(4)正确,棱柱可以被平行于底面的平面截成两个棱柱,所以说法正确的序号是(3)(4).[答案] (3)(4)[类题通法]有关棱柱的结构特征问题的解题策略(1)紧扣棱柱的结构特征进行有关概念辨析①两个面互相平行;②其余各面是四边形;③相邻两个四边形的公共边互相平行.求解时,首先看是否有两个平行的面作为底面,再看是否满足其他特征.(2)多注意观察一些实物模型和图片便于反例排除.[活学活用]1.下列四个命题中,假命题为( )A.棱柱中两个互相平行的平面一定是棱柱的底面B.棱柱的各个侧面都是平行四边形C.棱柱的两底面是全等的多边形D.棱柱的面中,至少有两个面互相平行解析:选A A错,正六棱柱的两个相对的侧面互相平行,但不是棱柱的底面,B、C、D 是正确的.[例2](1)用一个平面去截棱锥,底面和截面之间的部分组成的几何体叫棱台;(2)棱台的侧面一定不会是平行四边形;(3)棱锥的侧面只能是三角形;(4)由四个面围成的封闭图形只能是三棱锥;(5)棱锥被平面截成的两部分不可能都是棱锥,其中正确说法的序号是________.[解析] (1)错误,若平面不与棱锥底面平行,用这个平面去截棱锥,棱锥底面和截面之间的部分不是棱台;(2)正确,棱台的侧面一定是梯形,而不是平行四边形;(3)正确,由棱锥的定义知棱锥的侧面只能是三角形;(4)正确,由四个面围成的封闭图形只能是三棱锥;(5)错误,如图所示四棱锥被平面截成的两部分都是棱锥.[答案] (2)(3)(4)[类题通法]判断棱锥、棱台形状的两个方法(1)举反例法:结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法:[活学活用]2.试判断下列说法正确与否:①由六个面围成的封闭图形只能是五棱锥;②两个底面平行且相似,其余各面都是梯形的多面体是棱台.解:①不正确,由六个面围成的封闭图形有可能是四棱柱;②不正确,两个底面平行且相似,其余各面都是梯形的多面体.侧棱不一定相交于一点,所以不一定是棱台.[例3][解] 由几何体的侧面展开图的特点,结合棱柱,棱锥,棱台的定义,可把侧面展开图还原为原几何体,如图所示:所以①为五棱柱,②为五棱锥,③为三棱台.[类题通法]1.解答此类问题要结合多面体的结构特征发挥空间想象能力和动手能力.2.若给出多面体画其展开图时,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面.3.若是给出表面展开图,则可把上述程序逆推.[活学活用]3.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图(图中数字写在正方体的外表面上),若图中“0”上方的“2”在正方体的上面,则这个正方体的下面是( ) A.1 B.2C.快 D.乐解析:选B 由题意,将正方体的展开图还原成正方体,1与乐相对,2与2相对,0与快相对,所以下面是2.1.柱、锥、台结构特征判断中的误区[典例] 如图所示,几何体的正确说法的序号为________.(1)这是一个六面体;(2)这是一个四棱台;(3)这是一个四棱柱;(4)此几何体可由三棱柱截去一个三棱柱得到;(5)此几何体可由四棱柱截去一个三棱柱得到.[解析] (1)正确,因为有六个面,属于六面体的范围;(2)错误,因为侧棱的延长线不能交于一点,所以不正确;(3)正确,如果把几何体放倒就会发现是一个四棱柱;(4)(5)都正确,如图所示.[易错防范]1.解答过程中易忽视侧棱的延长线不能交于一点,直观感觉是棱台,而不注意逻辑推理.2.解答空间几何体概念的判断题时,要注意紧扣定义,切忌只凭图形主观臆断.[成功破障]如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是( )A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定解析:选A 如图∵平面AA1D1D∥平面BB1C1C,∴有水的部分始终有两个平面平行,而其余各面都易证是平行四边形(水面与两平行平面的交线)因此呈棱柱形状.[随堂即时演练]1.下列几何体中棱柱有( )A.5个B.4个C.3个D.2个解析:选D 由棱柱定义知,①③为棱柱.2.下列图形经过折叠可以围成一个棱柱的是( )解析:选D A、B、C中底面边数与侧面个数不一致,故不能围成棱柱.3.棱锥最少有________个面.答案:44.下列几何体中,________是棱柱,________是棱锥,________是棱台(仅填相应序号).答案:①③④⑥⑤5.(1)三棱锥、四棱锥、十五棱锥分别有多少条棱?多少个面?(2)有没有一个多棱锥,其棱数是2 012?若有,求出有多少个面;若没有,说明理由.解:(1)三棱锥有6条棱、4个面;四棱锥有8条棱、5个面;十五棱锥有30条棱、16个面.(2)设n棱锥的棱数是2 012,则2n=2012,所以n=1 006,1 006棱锥的棱数是2 012,它有1 007个面.[课时达标检测]一、选择题1.下列图形中,不是三棱柱的展开图的是( )答案:C2.有两个面平行的多面体不可能是( )A.棱柱B.棱锥C.棱台D.以上都错解析:选B 棱柱、棱台的上、下底面是平行的,而棱锥的任意两面均不平行.3.关于棱柱,下列说法正确的是( )A.只有两个面平行B.所有的棱都相等C.所有的面都是平行四边形D.两底面平行,侧棱也互相平行解析:选D 对于A,如正方体可以有六个面平行,故A错;对于B,如长方体并不是所有的棱都相等,故B错;对于C,如三棱柱的底面是三角形,故C错;对于D,由棱柱的概念,知两底面平行,侧棱也互相平行.故选D.4.(2011·广东高考)正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有( )A.20 B.15C.12 D.10解析:选D 从正五棱柱的上底面1个顶点与下底面不与此点在同一侧面上的两个顶点相连可得2条对角线,故共有5×2=10条对角线.5.下列命题中正确的是( )A.用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台B.两个底面平行且相似,其余各面都是梯形的多面体是棱台C.棱台的底面是两个相似的正方形D.棱台的侧棱延长后必交于一点解析:选D A中的平面不一定平行于底面,故A错;B中侧棱不一定交于一点;C中底面不一定是正方形.二、填空题6.面数最少的棱柱为________棱柱,共有________个面围成.解析:棱柱有相互平行的两个底面,其侧面至少有3个,故面数最少的棱柱为三棱柱,共有五个面围成.答案:三 57.如图,M是棱长为2 cm的正方体ABCD-A1B1C1D1的棱CC1的中点,沿正方体表面从点A到点M的最短路程是________ cm.解析:由题意,若以BC为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为2 cm,3 cm,故两点之间的距离是13 cm.若以BB1为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为1,4,故两点之间的距离是17 cm.故沿正方体表面从点A到点M的最短路程是13 cm.答案:138.侧棱垂直于底面的棱柱叫做直棱柱.侧棱不垂直于底面的棱柱叫做斜棱柱.底面是正多边形的直棱柱叫做正棱柱.底面是平行四边形的四棱柱叫做平行六面体.侧棱与底面垂直的平行六面体叫做直平行六面体.底面是矩形的直平行六面体叫做长方体.棱长都相等的长方体叫做正方体.请根据上述定义,回答下面的问题:(1)直四棱柱________是长方体;(2)正四棱柱________是正方体.(填“一定”、“不一定”、“一定不”)解析:根据上述定义知:长方体一定是直四棱柱,但是直四棱柱不一定是长方体;正方体一定是正四棱柱,但是正四棱柱不一定是正方体.答案:(1)不一定 (2)不一定 三、解答题9.观察下列四张图片,结合所学知识说出这四个建筑物主要的结构特征.解:(1)是上海世博会中国馆,其主体结构是四棱台. (2)是法国卢浮宫,其主体结构是四棱锥.(3)是国家游泳中心“水立方”,其主体结构是四棱柱. (4)是美国五角大楼,其主体结构是五棱柱.10.(2011·山东高考改编)给出两块正三角形纸片(如图所示),要求将其中一块剪拼成一个底面为正三角形的三棱锥模型,另一块剪拼成一个底面是正三角形的三棱柱模型,请设计一种剪拼方案,分别用虚线标示在图中,并作简要说明.解:如图(1)所示,沿正三角形三边中点连线折起,可拼得一个底面为正三角形的三棱锥.如图(2)所示,正三角形三个角上剪出三个相同的四边形,其较长的一组邻边边长为三角形边长的14,有一组对角为直角,余下部分按虚线折成,可成为一个缺上底的底面为正三角形的三棱柱,而剪出的三个相同的四边形恰好拼成这个底面为正三角形的棱柱的上底.1.1.2 圆柱、圆锥、圆台、球的结构特征 简单组合体的结构特征[提出问题]如图,给出下列实物图.问题1:上述三个实物图抽象出的几何体与多面体有何不同? 提示:它们不是由平面多边形围成的.问题2:上述实物图抽象出的几何体中的曲面能否以某平面图形旋转而成? 提示:可以.问题3:如何形成上述几何体的曲面?提示:可将半圆、直角梯形、直角三角形绕一边所在直线为轴旋转而成. [导入新知][化解疑难]1.以直角三角形斜边所在的直线为旋转轴,其余两边旋转成的曲面围成的旋转体不是圆锥.2.球与球面是完全不同的两个概念,球是指球面所围成的空间,而球面只指球的表面部分.3.圆台也可以看作是等腰梯形以其底边的中线所在的直线为轴,各边旋转半周形成的曲面所围成的几何体.[提出问题]中国首个空间实验室“天宫一号”于2011年9月29日16分成功发射升空,并与当年11月与“神舟八号”实现无人空间对接,下图为天宫一号目标飞行器的结构示意图.其主体结构如图所示:问题1:该几何体由几个几何体组合而成?提示:4个.问题2:图中标注的①②③④部分分别为什么几何体?提示:①为圆台,②为圆柱,③为圆台,④为圆柱.[导入新知]1.简单组合体的概念由简单几何体组合而成的几何体叫做简单组合体.2.简单组合体的构成形式有两种基本形式:一种是由简单几何体拼接而成的;另一种是由简单几何体截去或挖去一部分而成的.[化解疑难]简单组合体识别的要求(1)准确理解简单几何体(柱、锥、台、球)的结构特征.(2)正确掌握简单组合体构成的两种基本形式.(3)若用分割的方法,则需要根据几何体的结构特征恰当地作出辅助线(或面).[例1] 给出下列说法:(1)以直角三角形的一条边所在直线为轴,其余两边旋转形成的曲面围成的几何体是圆锥;(2)以等腰三角形底边上的中线所在直线为轴,将三角形旋转形成的曲面围成的几何体是圆锥;(3)经过圆锥任意两条母线的截面是等腰三角形;(4)圆锥侧面的母线长有可能大于圆锥底面圆直径,其中正确说法的序号是________.[解析] (1)不正确,因为当直角三角形绕斜边所在直线旋转得到的旋转体就不是圆锥,而是两个同底圆锥的组合体;(2)正确,以等腰三角形底边上的中线所在直线为轴,将三角形旋转形成的曲面围成的几何体是圆锥;(3)正确,如图所示,经过圆锥任意两条母线的截面是等腰三角形;(4)正确,如图所示,圆锥侧面的母线长有可能大于圆锥底面圆半径的2倍(即直径).[答案] (2)(3)(4)[类题通法]1.判断简单旋转体结构特征的方法(1)明确由哪个平面图形旋转而成.(2)明确旋转轴是哪条直线.2.简单旋转体的轴截面及其应用(1)简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构特征的关键量.(2)在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想.[活学活用]1.给出下列说法:(1)圆柱的底面是圆面;(2)经过圆柱任意两条母线的截面是一个矩形面;(3)圆台的任意两条母线的延长线可能相交,也可能不相交;(4)夹在圆柱的两个截面间的几何体还是一个旋转体.其中说法正确的是________.解析:(1)正确,圆柱的底面是圆面;(2)正确,如图所示,经过圆柱任意两条母线的截面是一个矩形面;(3)不正确,圆台的母线延长相交于一点;(4)不正确,圆柱夹在两个平行于底面的截面间的几何体才是旋转体.答案:(1)(2)[例2](1)图①所示几何体是由哪些简单几何体构成的?试画出几何图形,可旋转该图形180°后得到几何体①;(2)图②所示几何体结构特点是什么?试画出几何图形,可旋转该图形360°得到几何体②;(3)图③所示几何体是由哪些简单几何体构成的?并说明该几何体的面数、棱数、顶点数.[解析] (1)图①是由圆锥和圆台组合而成.可旋转如下图形180°得到几何体①.(2)图②是由一个圆台,从上而下挖去一个圆锥,且圆锥的顶点恰为圆台底面圆的圆心.可旋转如下图形360°得到几何体②.(3)图③是由一个四棱锥与一个四棱柱组合而成,且四棱锥的底面与四棱柱底面相同.共有9个面,9个顶点,16条棱.[类题通法]1.明确组合体的结构特征,主要弄清它是由哪些简单几何体组成的,必要时也可以指出棱数、面数和顶点数,如图③所示的组合体有9个面,9个顶点,16条棱.2.会识别较复杂的图形是学好立体几何的第一步,因此我们应注意观察周围的物体,然后将它们“分拆”成几个简单的几何体,进而培养我们的空间想象能力和识图能力.[活学活用]2.下列组合体是由哪些几何体组成的?解:(1)由两个几何体组合而成,分别为球、圆柱.(2)由三个几何体组合而成,分别为圆柱、圆台、圆柱.(3)由三个几何体组合而成,分别为圆锥、圆柱、圆台.1.旋转体的生成过程[典例] 如图,四边形ABCD为直角梯形,试作出绕其各条边所在的直线旋转所得到的几何体.[解题流程]分别以边AD、AB、BC、CD所在直线为旋转轴旋转已知四边形ABCD为直角梯形[规范解答]以边AD所在直线为旋转轴旋转,形成的几何体是圆台,如图(1)所示.以边AB所在直线为旋转轴旋转,形成的几何体是一个圆锥和一个圆柱拼接而成的几何体,如图(2)所示.以边CD所在直线为旋转轴旋转,形成的几何体是一个圆柱挖掉一个圆锥构成的几何体,如图(3)所示.以边BC所在直线为旋转轴旋转,形成的几何体是由一个圆台挖掉一个圆锥构成的几何体和一个圆锥拼接而成,如图(4)所示.[活学活用]一个有30°角的直角三角板绕其各条边所在直线旋转一周所得几何体是圆锥吗?如果以斜边上的高所在的直线为轴旋转180°得到什么几何体?旋转360°又得到什么几何体?解:如图(1)和(2)所示,绕其直角边所在直线旋转一周围成的几何体是圆锥.如图(3)所示,绕其斜边所在直线旋转一周所得几何体是两个同底相对的圆锥.如图(4)所示,绕其斜边上的高所在的直线为轴旋转180°围成的几何体是两个半圆锥,旋转360°围成的几何体是一个圆锥.1.(2012·临海高一检测)圆锥的母线有( )A.1条B.2条C.3条D.无数条答案:D2.右图是由哪个平面图形旋转得到的( )解析:选A 图中几何体由圆锥、圆台组合而成,可由A中图形绕图中虚线旋转360°得到.3.等腰三角形绕底边上的高所在直线旋转180°,所得几何体是________.答案:圆锥4.如图所示的组合体的结构特征为________.解析:该组合体上面是一个四棱锥,下面是一个四棱柱,因此该组合体的结构特征是四棱锥和四棱柱的一个组合体.答案:一个四棱锥和一个四棱柱的组合体5.如图,AB为圆弧BC所在圆的直径,∠BAC=45°.将这个平面图形绕直线AB旋转一周,得到一个组合体,试说明这个组合体的结构特征.解:如图所示,这个组合体是由一个圆锥和一个半球体拼接而成的.[课时达标检测]一、选择题1.下列命题中正确的是( )①圆锥的轴截面是所有过顶点的截面中面积最大的一个;②圆柱的所有平行于底面的截面都是圆;③圆台的两个底面可以不平行.A.①② B.②C.②③ D.①③解析:选B ①中当圆锥过顶点的轴截面顶角大于90°时,其面积不是最大的;③圆台的两个底面一定平行.故①③错误.2.将一个等腰梯形绕它的较长的底边所在的直线旋转一周,所得的几何体包括( ) A.一个圆台、两个圆锥B.两个圆台、一个圆柱C.两个圆柱、一个圆台D.一个圆柱、两个圆锥解析:选D 从较短的底边的端点向另一底边作垂线,两条垂线把等腰梯形分成了两个直角三角形,一个矩形,所以一个等腰梯形绕它的较长的底边所在直线旋转一周形成的是由一个圆柱,两个圆锥所组成的几何体,如图:3.以钝角三角形的较小边所在的直线为轴,其他两边旋转一周所得到的几何体是( ) A.两个圆锥拼接而成的组合体B.一个圆台C.一个圆锥D.一个圆锥挖去一个同底的小圆锥解析:选D 如图以AB为轴所得的几何体是一个大圆锥挖去一个同底的小圆锥.4.下列叙述中正确的个数是( )①以直角三角形的一边所在直线为轴旋转所得的旋转体是圆锥;②以直角梯形的一腰所在直线为轴旋转所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆面;④用一个平面去截圆锥,得到一个圆锥和一个圆台.A.0 B.1C.2 D.3解析:选B ①中应以直角三角形的直角边所在直线为轴,②中应以直角梯形中的直角腰所在直线为轴,④中应用平行于底面的平面去截,③正确.5.如图所示的几何体,关于其结构特征,下列说法不.正确的是( )A.该几何体是由两个同底的四棱锥组成的几何体B.该几何体有12条棱、6个顶点C.该几何体有8个面,并且各面均为三角形D.该几何体有9个面,其中一个面是四边形,其余均为三角形解析:选D 该几何体用平面ABCD可分割成两个四棱锥,因此它是这两个四棱锥的组合体,因而四边形ABCD是它的一个截面而不是一个面.二、填空题6.下列7种几何体:(1)柱体有________;(2)锥体有________;(3)球有__________;(4)棱柱有________;(5)圆柱有________;(6)棱锥有________;(7)圆锥有________.解析:由柱、锥、台及球的结构特点易于分析,柱体有a、d、e、f;锥体有b、g;球有c;棱柱有d、e、f;圆柱有a;棱锥为g;圆锥为b.答案:(1)a、d、e、f (2)b、g (3)c(4)d 、e 、f (5)a (6)g (7)b7.下面这个几何体的结构特征是___________________________________________ ________________________________________________________________________.解析:根据图形可知此几何体是由一个四棱锥、一个四棱柱拼接,又在四棱柱中挖去了一个圆柱而成.答案:由一个四棱锥、一个四棱柱拼接,又在四棱柱中挖去了一个圆柱而成 8.如图是一个几何体的表面展成的平面图形,则这个几何体是________.答案:圆柱 三、解答题9.指出如图(1)(2)所示的图形是由哪些简单几何体构成的.解:分割原图,使它的每一部分都是简单几何体.图(1)是由一个三棱柱和一个四棱柱拼接而成的简单组合体. 图(2)是由一个圆锥和一个四棱柱拼接而成的简单组合体.10.如图所示,用一个平行于圆锥SO 底面的平面截这个圆锥,截得圆台上、下底面的半径分别为2 cm 和5 cm ,圆台的母线长是12 cm ,求圆锥SO 的母线长.解:如图,过圆台的轴作截面,截面为等腰梯形ABCD ,由已知可得上底半径O 1A =2 cm ,下底半径OB =5 cm ,且腰长AB =12 cm.设截得此圆台的圆锥的母线长为l ,则由△SAO 1∽△SBO ,可得l -12l =25,所以l =20 cm ,即截得此圆台的圆锥的母线长为20 cm.1.2空间几何体的三视图和直观图1.2.1 & 1.2.2 中心投影与平行投影空间几何体的三视图[提出问题]15年之后,《泰坦尼克号》再次被搬上了荧屏,而这次的宣传噱头则是3D.《泰坦尼克号3D》让观众在明知下一步剧情发展的情况下,仍然会因为发生在“眼前”的真实爱情悲歌热泪盈眶.从右图中我们可以清楚看到3D电影是怎么一回事:两个投影机会从不同的方向错开一定距离,把画面中有距离区别的部分投射到荧幕上.而观众所佩戴的3D眼镜也会选择不同的光线进入左右眼,这样你就能看到物体“前于画面”或“后于画面”的视觉假象了.电影的播放实质是利用了小孔成像原理,而太阳光下地面上人的影子是阳光照射到人后留下的影像.放电影和太阳光照射成影像都具备光线、不透明物体和投影面这些相同的条件.问题1:放电影成像与太阳光成像原理一样吗?提示:不一样.问题2:电影成像中的光线有何特点?提示:光是由一点向外散射.问题3:太阳光照人成影像的光线又有何特点?提示:一束平行光线.[导入新知]1.投影的定义由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影.其中,把光线叫做投影线,把留下物体影子的屏幕叫做投影面.2.中心投影与平行投影[化解疑难]平行投影和中心投影都是空间图形的一种画法,但二者又有区别(1)中心投影的投影线交于一点,平行投影的投影线互相平行.(2)平行投影下,与投影面平行的平面图形留下的影子,与这个平面图形的形状和大小完全相同;而中心投影则不同.[提出问题]如梦似幻!——这是无数来自全世界的游客对国家游泳中心“水立方”的第一印象.同天安门、故宫、长城等北京标志性建筑一样,“水立方”成了游客在北京的必到之地.问题1:水立方的外观形状是什么?提示:长方体.问题2:假如你站在水立方入口处的正前方或在水立方的左侧看水立方,你看到的是什么?提示:水立方的一个侧面.问题3:若你在水立方的正上方观察水立方看到什么?提示:水立方的一个表面.问题4:根据上述三个方向观察到的平面,能否画出水立方的形状?提示:可以.[导入新知][化解疑难]1.每个视图都反映物体两个方向上的尺寸.正视图反映物体的上下和左右尺寸,俯视图反映物体的前后和左右尺寸,侧视图反映物体的前后和上下尺寸.。
人教A版高中数学必修二导学案空间几何体的直观图

1.2.2空间几何体的直观图一、学习目标:知识与技能:(1)掌握斜二测画法画水平设置的平面图形的直观图。
(2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。
过程与方法:通过观察和类比,利用斜二测画法画出空间几何体的直观图。
情感态度与价值观:(1)提高空间想象力与直观感受。
(2)体会对比在学习中的作用。
(3)感受几何作图在生产活动中的应用。
二、学习重点、难点:学习重点:用斜二测画法画空间几何体的直观图。
学习难点:用斜二测画法画空间几何体的直观图。
三、 使用说明及学法指导:1、先浏览教材,再逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。
2、要求小班、重点班学生全部完成,平行班学生完成A 、B 类问题。
3、A 类是自主探究,B 类是合作交流。
四、知识链接:正视图:侧视图:俯视图:五、学习过程:A 例1.用斜二测画法画水平放置的正六边形的直观图。
画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。
强调斜二测画法的步骤。
B 例2.用斜二测画法画长、宽、高分别是4cm 、3cm 、2cm 的长方体1111ABCD A BCD 的直观图。
B例3.课本P18图1.2-13,请说出三视图表示的几何体?并用斜二测画法画出它的直观图。
六、达标测试A1、利用斜二测画法得到的下列结论正确的是()①三角形的直观图是三角形②平行四边形的直观图是平行四边形③正方形的直观图是正方形④菱形的直观图是菱形A.①②B.①C.③④D.①②③④B2、已知正三角形ABC的边长为a,那么它的平面直观图的面积为七、小结与反思:【励志良言】生命之灯因热情而点燃,生命之舟因拼搏而前行。
人教版高中数学必修二学案:1.2空间几何体的三视图和
几种常见凸多面体间的关系
编制:闫利编制时刻:9月1日利用:高二(1-6)班编号:4学习目标:(1)掌握直棱柱、斜棱柱、正棱柱、平行六面体等概念和它们之间的转化关系;
(2)掌握正棱锥、正棱台、正四面体等概念和正四面体与正三棱锥之间的关系。
一、特殊棱柱、棱锥、棱台:1.棱柱:
2.棱锥与棱台:
二、几种常见凸多面体间的关系:
1.四棱柱、平行六面体、直平行六面体、长方体、正四棱柱、正方体2.三棱锥、正三棱锥、正四面体
三、合作学习:
例、下列说法正确的有_______________ A.直四棱柱是直平行六面体
B.底面是平行四边形的棱柱是平行六面体C.底面是矩形的平行六面体是长方体
D.有两个侧面是矩形的棱柱是直棱柱
E.正三棱锥的斜高均相等
F.正四面体的各面都是正三角形
G.直四棱柱的底面是平行四边形。
高中数学 第一章 空间几何体复习学案 新人教A版必修2
第一章空间几何体复习小结【教学目标】1.知识与技能:(1). 类比记忆棱柱、棱锥、棱台、圆柱、圆锥、圆台及球的定义,并理解空间几何体及组合体的结构特征;(2). 能正确画出空间图形的三视图并能识别三视图所表示的立体模型;(3). 在了解斜二测画法的基础上会用斜二测画法画出一些简单图形的直观图;(4). 掌握柱体、椎体、台体、球体的表面积与体积的求法,并能通过一些计算方法求出组合体的表面积与体积。
2.过程与方法:通过学生自主学习和动手实践,进一步增强他们的空间观念,用三视图和直观图表示现实世界中的物体。
掌握柱体、椎体、台体、球体的表面积与体积的求法;提高学生分析问题和解决问题的能力。
3.情感态度价值观:体现运动变化的思想认识事物的辩证唯物主义观点,通过和谐、对称、规范的图形,给学生以美的享受,引发学生的学习兴趣。
【重点难点】1.教学重点:几何体的表面积与体积.2.教学难点:三视图和直观图学习过程:一、知识点归纳(一)、空间几何体的结构特征1、几何体的分类:多面体和旋转体。
2、多面体的定义:由若干个平面多边形围成的几何体。
3、旋转体的定义:由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体。
4、相关概念:面:围成多面体的各个多边形。
棱:相邻两个面的公共边。
顶点:棱与棱的公共点。
轴:形成旋转体所绕的定直线。
5、柱体、锥体、球体、台体的结构特征棱柱:一个多面体有两个面互相平行,其余各面都是四边形,每相邻两个四边形的公共边都互相平行。
圆柱:以矩形的一边所在直线为旋转轴,其余边旋转形成的曲面所围成的几何体叫做圆柱。
棱锥:如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形。
圆锥:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫做圆锥。
棱台:棱锥的底面和平行于底面的一个截面间的部分。
圆台:圆锥的底面和平行于底面的一个截面间的部分。
球:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体。
湘教版高中同步学案数学必修第二册精品课件 第4章 立体几何初步 4.1.2 空间几何体的直观图
(方法 2)设直观图梯形 OA'B'C'面积为 S',原平面梯形 OABC 的面积为 S.由
2
S'= 4 S,得
S=2 2S'=2 2 × 2=4,故选 D.
规律方法 1.原梯形与直观图中梯形上、下底边的长度一样,但高的长度不
一样.原梯形的高 OC 是直观图中 OC'的长度的 2 倍,OC'长度是直观图中梯
(2)画相应的 x'轴和 y'轴,使∠x'O'y'=45°,在 x'轴上取 O'B'=AB,在 y'轴上取
1
O'D'=2AD,过
D'作 x'轴的平行线 l,在 l 上沿 x'轴正方向取点 C'使得 D'C'=DC.
(3)连接 B'C',所得四边形 O'B'C'D'就是水平放置的直角梯形 ABCD 的直观图.
特征:
(1)与水平放置的平面图形的直观图画法相比多了一个z轴,直观图中与之
对应的是z'轴;
(2)平面x'O'y'表示水平平面,平面y'O'z'和x'O'z'表示竖直平面;
(3)已知空间几何体中平行于z轴(或在z轴上)的线段,在其直观图中平行关
系和长度都不变.
过关自诊
如图,观察边长2 cm的正方形ABCD及其直观图,A'B'与C'D'有何位置关
课 程 标 准
1.理解“斜二测画法”的概念并掌握斜二测画法的步骤.
高中数学空间几何体2-1复习学案苏教版必修2
试按此图判定原⊿ ABC中的四条线段
y′
( A) AB
(B)BC
A′
( C) AC
(D)AD
其中最长的线段是( );最短的线段是( )
B′
D′
C′
x′
5.已知正四棱锥 V-ABCD,底面面积为 16,一条侧棱长为 2 ,计算它的高和斜高
小结: 作业:
1.给出下列命题: ①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线; ②圆锥的顶点与底面圆周上任意一点的连线是圆锥的母线; ③在圆台的上、下底面的圆周上各取一点,则这两点的连线是圆台的母线; ④圆柱的任意两条母线所在的直线是互相平行的. 其中正确的是
h 随时间 t ()
4.如图, 一个简单空间几何体的三视图其主视图与左视图都是边长为 视图轮廓为正方形,则其体积是
2 的正三角形, 其俯 ()
3 A. 6
42 B. 3
43
8
C. 3
D. 3
5.有一正方体,六个面上分别写有数字
1、2、 3、 4、5、 6,有三个人从不同的角度观察
的结果如图所示.如果记 3 的对面的数字为 m,4 的对面的数字为 n,那么 m+ n 的值为 ( )
圆锥底面的平面去截
,底面与截面之间的部分,叫
做圆台.
(4) 球:以
直径所在的直线为旋转轴,半圆面旋转一周形成的几何体叫球
体.
3.平行投影与中心投影
(1) 把在一束平行光线照射下形成的投影叫做
(2) 把光由一点向外散射形成的投影,叫做
4.三视图
(1) 三视图就是从一个几何体的
、
、
三个不同的方向看这个几
________块木块
5.如图,一个正方体内接于高为 40 cm,底面半径为 30 cm 的圆锥,则正方体的 棱长是 ________cm.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学案二 空间几何体
一、选择题
1、下列说法中正确的是( )
A.棱柱的侧面可以是三角形
B.正方体和长方体都是特殊的四棱柱
C.所有的几何体的表面都能展成平面图形
D.棱柱的各条棱都相等
2、将一个等腰梯形绕着它的较长的底边所在的直线旋转一周,所得的几何体包括( )
A.一个圆台、两个圆锥 B.两个圆台、一个圆柱
C.两个圆台、一个圆柱 D.一个圆柱、两个圆锥
3、过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为( )
A. B. C. D.
4、如图所示的直观图是将正方体模型放置在你的水平视线的左上角而绘制的,其中正确的是( )
5、长方体的高等于h,底面积等于S,过相对侧棱的截面面积为S′,则长方体的侧面积等于( )
A. B.
C. D.
6、设长方体的对角线长度是4,过每一顶点有两条棱与对角线的夹角都是60°,则此长方体的体积是( )
A. B. C. D.
7、棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应的截面面积分别
为S1、S2、S3,则( )
A.S1<S2<S3 B.S3<S2<S1 C.S2<S1<S3 D.S1<S3<S2
8、正四面体的内切球球心到一个面的距离等于这个正四面体高的( )
A. B. C. D.
9、若圆台两底面周长的比是1∶4,过高的中点作平行于底面的平面,则圆台被分成两部分的体积比是( )
A.1∶16 B.3∶27 C.13∶129 D.39∶129
10、在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩
下的凸多面体的体积是( )
A. B. C. D.
11、已知高为3的直棱柱ABCA1B1C1的底面是边长为1的正三角形(如图),则三棱锥B1-ABC的体积为
( )
A. B. C. D.
12、向高为H的水瓶中注水,注满为止.如果注水量V与水深h的函数关系如图,那么水瓶的形状是图中
的( )
二、填空题
13、下列有关棱柱的说法:
①棱柱的所有的面都是平的;
②棱柱的所有的棱长都相等;
③棱柱的所有的侧面都是长方形或正方形;
④棱柱的侧面的个数与底面的边数相等;
⑤棱柱的上、下底面形状、大小相等.
正确的有__________.
14、一个横放的圆柱形水桶,桶内的水占底面周长的四分之一,那么当桶直立时,水的高度与桶的高度的
比为_________.
15、一个正三棱柱的三视图如图所示,则这个正三棱柱的表面积为_________.
16、一圆台上底半径为5 cm,下底半径为10 cm,母线AB长为20 cm,其中A在上底面上,B在下底面上,
从AB中点M,拉一条绳子,绕圆台的侧面一周转到B点,则这条绳子最短长为____________.