1.3 空间几何体的表面积与体积 教学设计 教案

合集下载

1.3_空间几何体的表面积与体积(修改)优质课

1.3_空间几何体的表面积与体积(修改)优质课

P
根据台体的特征,如何求台体的体积? 由于圆台(棱台)是由圆锥(棱 锥)截成的,因此可以利用两个锥 体的体积差.得到圆台(棱台)的 体积公式.
A
S
B
D
C
h
A
D
V VP ABCD VP ABCD
1 ( S S S S )h 3
S
C
B
台体的上底面积S’,下底面积S,高h,由此如 何计算切割前的锥体的高? 如何计算台体的体积?
'2
r
O
圆柱、圆锥、圆台三者的表面积公式 之间有什么关系?
S ( r r 2 r ' l rl )
'2
l
r
O
r ' O’
l
l
r
O
O
S 2 r 2 2 rl 2 r (r l )
r
O
S r 2 rl r (r l )
例2.如图,一个圆台形花盆盆口直径20cm, 盆底直径为15cm,底部渗水圆孔直径为1.5cm, 盆壁长15cm.为了美化花盆的外观,需要涂油 漆.已知每平方米用100毫升油漆,涂100个这样 的花盆需要多少油漆(取 3.14,结果精确到 1毫升,可用计算器)? 20cm
1. 本节课学习了柱体、椎体、台体的表面积求解 方法及公式,运用运动变化的观点看待三者之间 的联系更便于我们对空间几何体的了解和掌握。
圆柱 S 2 r (r l ) r r
柱体、锥体、 台体的表面积
圆台 (r 2 r 2 r l rl )
r 0
圆锥 展开图
解:设切割前的锥体的高为x, 则:
x 2 S x S ( ) xh S h S S S 1 1 x h V S (h x ) S x S S 3 3

关于空间几何体的表面积和体积数学教案

关于空间几何体的表面积和体积数学教案

关于空间几何体的表面积和体积一、教学目标:1. 让学生掌握常见空间几何体的表面积和体积的计算公式。

2. 培养学生运用空间几何知识解决实际问题的能力。

3. 提高学生对数学知识的兴趣,培养学生的空间想象力。

二、教学内容:1. 立方体、立方体的表面积和体积计算。

2. 圆柱体、圆柱体的表面积和体积计算。

3. 球体、球体的表面积和体积计算。

4. 锥体、锥体的表面积和体积计算。

5. 空间几何体表面积和体积在实际问题中的应用。

三、教学重点与难点:重点:掌握常见空间几何体的表面积和体积计算公式。

难点:空间几何体表面积和体积在实际问题中的应用。

四、教学方法:1. 采用问题驱动法,引导学生主动探究空间几何体的表面积和体积计算方法。

2. 利用多媒体课件,展示空间几何体的形状,增强学生的空间想象力。

3. 通过实例分析,让学生学会将空间几何知识应用于实际问题。

五、教学过程:1. 导入新课:回顾平面几何知识,引出空间几何体的概念。

2. 讲解立方体的表面积和体积计算公式,让学生动手计算实例。

3. 讲解圆柱体的表面积和体积计算公式,让学生动手计算实例。

4. 讲解球体的表面积和体积计算公式,让学生动手计算实例。

5. 讲解锥体的表面积和体积计算公式,让学生动手计算实例。

6. 分析空间几何体表面积和体积在实际问题中的应用,让学生尝试解决实际问题。

7. 课堂练习:布置练习题,让学生巩固所学知识。

9. 布置课后作业,要求学生运用所学知识解决实际问题。

六、教学评价:1. 通过课堂问答、练习题和课后作业,评估学生对空间几何体表面积和体积计算公式的掌握情况。

2. 观察学生在解决实际问题时是否能灵活运用所学知识,评价其运用能力。

3. 结合学生的课堂表现和作业完成情况,对学生的学习态度、合作精神和创新能力进行评价。

七、教学资源:1. 多媒体课件:用于展示空间几何体的形状,增强学生的空间想象力。

2. 练习题:用于巩固学生对空间几何体表面积和体积计算公式的掌握。

《圆柱、圆锥、圆台的表面积》教学设计

《圆柱、圆锥、圆台的表面积》教学设计

1.3.1 空间几何体的表面积和体积第2课时 圆柱、圆锥和圆台的表面积三维目标1.了解圆体、圆锥、圆台的表面积计算公式(不要求记忆),提高学生的空间想象能力和几何直观能力,培养学生的应用意识,增加学生学习数学的兴趣.2.掌握简单几何体的体积与表面积的求法,提高学生的运算能力,培养学生转化、化归以及类比的能力. 重点难点教学重点:了解圆体、圆锥、圆台的表面积计算公式及其应用. 教学难点:表面积计算公式的应用. 课时安排 1课时教学过程一、复习回顾①初中学过的平面图形的面积公式棱柱、棱锥、棱台的表面积 面积:平面图形所占平面的大小 体积:几何体所占空间的大小 表面积:几何体表面面积的大小二、导入新课思考:在过去的学习中,我们已经接触过一些几何体的面积的求法及公式,哪些几何体可以求出表面积?(引导学生回忆,互相交流,教师归类)几何体的表面积等于它的展开图的面积,那么,圆体、圆锥、圆台的侧面展开图是怎样的?你能否计算?我们知道,圆柱的侧面展开图是一个矩形(图2).如果圆柱的底面半径为r,母线长为l ,那么圆柱的底面面积为πr 2,侧面面积为2πrl.因此,圆柱的表面积S=2πr 2+2πrl=2πr(r+l).图2 图3圆锥的侧面展开图是一个扇形(图3).如果圆锥的底面半径为r,母线长为l,那么它的表面积S=πr2+πrl=πr(r+l).点评:将空间图形问题转化为平面图形问题,是解决立体几何问题基本的、常用的方法.④圆台的侧面展开图是一个扇环(图4),它的表面积等于上、下两个底面的面积和加上侧面的面积,即S=π(r2+r′2+rl+r′l).图4⑤圆柱、圆锥、圆台侧面积的关系:圆柱和圆锥都可以看作是圆台退化而成的几何体.圆柱可以看作是上下底面全等的圆台,圆锥可看作是上底面退化成一点的圆台,观察它们的侧面积,不难发现:S圆柱表=2πr(r+l)−−−←==rrr21S圆台表=π(r1l+r2l+r12+r22)−−−→−==rrr21,0S圆锥表=πr(r+l).从上面可以很清楚地看出圆柱和圆锥的侧面积公式都可以看作由圆台侧面积公式演变而来.练习:1、看图回答下列问题:2.一个圆柱形锅炉的底面半径为1m ,侧面展开图为正方形,则它的表面积为h=____SS==圆柱侧圆柱表____SS圆锥侧圆锥表==____SS==圆台侧圆台表2m2题 3题3.以直角边长为1的等腰直角三角形的一直角边为轴旋转,所得旋转体的表面积为____________. 典型例题例2、.如图,一个圆台形花盆盆口直径20 cm15cm孔直径为1.5 cm ,盆壁长15cm.为了美化花盆外观,需要涂油漆.已知每平方米用100ml 油漆,涂100个这样的花盆需要多少油漆?(π取3.14,结果精确到1ml ) 解:由圆台的表面积公式得 花盆的表面积:2225.11522015215215⎪⎭⎫ ⎝⎛-⎥⎥⎦⎤⎢⎢⎣⎡⨯+⨯+⎪⎭⎫ ⎝⎛=ππS 21000()cm ≈20.1()m =涂100个花盆需油漆:0.1100100⨯⨯=答:涂100个这样的花盆约需要1000毫升油漆.例3、已知圆台的上、下底面半径分别是r 、R , 且侧面积等于两底面积之和,求圆台的母线长。

高中数学必修2《空间几何体的表面积与体积》教案

高中数学必修2《空间几何体的表面积与体积》教案

⾼中数学必修2《空间⼏何体的表⾯积与体积》教案 ⾼中数学必修2《空间⼏何体的表⾯积与体积》教案 1教学⺫标 1.知道柱体、锥体、台体侧⾯展开图,弄懂柱体、锥体、台体的表⾯积的求法. 2.能运⽤公式求解柱体、锥体和台体的表⾯积,并知道柱体、锥体和台体表⾯积之间的关系. 2学情分析 通过学习空间⼏何体的结构特征,空间⼏何体的三视图和直观图,了解了空间⼏何体和平⾯图形之间的关系,从中反映出⼀个思想⽅法,即平⾯图形和空间⼏何体的互化,尤其是空间⼏何问题向平⾯问题的转化。

该部分内容中有些是学⽣已经熟悉的,在解决这些问题的过程中,⾸先要对学⽣已有的知识进⾏再认识,提炼出解决问题的⼀般思想——化归的思想,总结出⼀般的求解⽅法,在此基础上通过类⽐获得解决新问题的思路,通过化归解决问题,深化对化归、类⽐等思想⽅法的应⽤。

3重点难点 重点:知道柱体、锥体、台体侧⾯展开图,弄懂柱体、锥体、台体的表⾯积公式。

难点:会求柱体、锥体和台体的表⾯积,并知道柱体、锥体和台体表⾯积之间的关系. 4教学过程 4.1 第⼀学时教学活动活动1【导⼊】第1课时 柱体、锥体、台体的表⾯积 (⼀)、基础⾃测: 1.棱⻓为a的正⽅体表⾯积为__________. 2.⻓、宽、⾼分别为a、b、c的⻓⽅体,其表⾯积为___________________. 3.⻓⽅体、正⽅体的侧⾯展开图为__________. 4.圆柱的侧⾯展开图为__________. 5.圆锥的侧⾯展开图为__________. (⼆).尝试学习 1.柱体的表⾯积 (1)侧⾯展开图:棱柱的侧⾯展开图是____________,⼀边是棱柱的侧棱,另⼀边等于棱柱的__________,如图①所⽰;圆柱的侧⾯展开图是_______,其中⼀边是圆柱的⺟线,另⼀边等于圆柱的底⾯周⻓,如图②所⽰. (2)⾯积:柱体的表⾯积S表=S侧+2S底.特别地,圆柱的底⾯半径为r,⺟线⻓为l,则圆柱的侧⾯积S侧=__________,表⾯积S表=__________. 2.锥体的表⾯积 (1)侧⾯展开图:棱锥的侧⾯展开图是由若干个__________拼成的,则侧⾯积为各个三⾓形⾯积的_____,如图①所⽰;圆锥的侧⾯展开图是_______,扇形的半径是圆锥的______,扇形的弧⻓等于圆锥的__________,如图②所⽰. (2)⾯积:锥体的表⾯积S表=S侧+S底.特别地,圆锥的底⾯半径为r,⺟线⻓为l,则圆锥的侧⾯积S侧=__________,表⾯积S表=__________. 3.台体的表⾯积 (1)侧⾯展开图:棱台的侧⾯展开图是由若干个__________拼接⽽成的,则侧⾯积为各个梯形⾯积的______,如图①所⽰;圆台的侧⾯展开图是扇环,其侧⾯积可由⼤扇形的⾯积减去⼩扇形的⾯积⽽得到,如图②所⽰. (2)⾯积:台体的表⾯积S表=S侧+S上底+S下底.特别地,圆台的上、下底⾯半径分别为r′,r,⺟线⻓为l,则侧⾯积S侧=____________,表⾯积S表=________________________. (三).互动课堂 例1:在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,∠AA1B1=∠AA1C1=60°,∠BB1C1=90°,侧棱⻓为b,则其侧⾯积为( ) A. B.ab C.(+)ab D.ab 例2:(1)若⼀个圆锥的轴截⾯是等边三⾓形,其⾯积为,则这个圆锥的侧⾯积是( )A.2πB.C.6πD.9π (2)已知棱⻓均为5,底⾯为正⽅形的四棱锥S-ABCD,如图,求它的侧⾯积、表⾯积. 例3:⼀个四棱台的上、下底⾯都为正⽅形,且上底⾯的中⼼在下底⾯的投影为下底⾯中⼼(正四棱台)两底⾯边⻓分别为1,2,侧⾯积等于两个底⾯积之和,则这个棱台的⾼为( ) A. B.2 C. D. (四).巩固练习: 1.⼀个棱柱的侧⾯展开图是三个全等的矩形,矩形的⻓和宽分别为6 cm,4 cm,则该棱柱的侧⾯积为________. 2.已知⼀个四棱锥底⾯为正⽅形且顶点在底⾯正⽅形射影为底⾯正⽅形的中⼼(正四棱锥),底⾯正⽅形的边⻓为4 cm,⾼与斜⾼的夹⾓为30°,如图所⽰,求正四棱锥的侧⾯积________和表⾯积________(单位:cm2). 3.如图所⽰,圆台的上、下底半径和⾼的⽐为1:4:4,⺟线⻓为10,则圆台的侧⾯积为( )A.81πB.100πC.14πD.169π (五)、课堂⼩结: 求柱体表⾯积的⽅法 (1)直棱柱的侧⾯积等于它的底⾯周⻓和⾼的乘积;表⾯积等于它的侧⾯积与上、下两个底⾯的⾯积之和. (2)求斜棱柱的侧⾯积⼀般有两种⽅法:⼀是定义法;⼆是公式法.所谓定义法就是利⽤侧⾯积为各侧⾯⾯积之和来求,公式法即直接⽤公式求解. (3)求圆柱的侧⾯积只需利⽤公式即可求解. (4)求棱锥侧⾯积的⼀般⽅法:定义法. (5)求圆锥侧⾯积的⼀般⽅法:公式法:S侧=πrl. (6)求棱台侧⾯积的⼀般⽅法:定义法. (7)求圆台侧⾯积的⼀般⽅法:公式法S侧=2(r+r′)l. 五、当堂检测 1.(2011·北京)某四棱锥的三视图如图所⽰,该四棱锥的表⾯积是( )A.32B.16+16C.48D.16+32 ⺴] 2.(2013·重庆)某⼏何体的三视图如图所⽰,则该⼏何体的表⾯积为( )A.180B.200C.220D.240 3.(2013⼲东)若⼀个圆台的正视图如图所⽰,则其侧⾯积等于( )A.6B.6πC.3πD.6π 六、作业:(1)课时闯关(今晚交) 七、课后反思:本节课你会哪些?还存在哪些问题? 1.3 空间⼏何体的表⾯积与体积 课时设计课堂实录 1.3 空间⼏何体的表⾯积与体积 1第⼀学时教学活动活动1【导⼊】第1课时 柱体、锥体、台体的表⾯积 (⼀)、基础⾃测: 1.棱⻓为a的正⽅体表⾯积为__________. 2.⻓、宽、⾼分别为a、b、c的⻓⽅体,其表⾯积为___________________. 3.⻓⽅体、正⽅体的侧⾯展开图为__________. 4.圆柱的侧⾯展开图为__________. 5.圆锥的侧⾯展开图为__________. (⼆).尝试学习 1.柱体的表⾯积 (1)侧⾯展开图:棱柱的侧⾯展开图是____________,⼀边是棱柱的侧棱,另⼀边等于棱柱的__________,如图①所⽰;圆柱的侧⾯展开图是_______,其中⼀边是圆柱的⺟线,另⼀边等于圆柱的底⾯周⻓,如图②所⽰. (2)⾯积:柱体的表⾯积S表=S侧+2S底.特别地,圆柱的底⾯半径为r,⺟线⻓为l,则圆柱的侧⾯积S侧=__________,表⾯积S表=__________. 2.锥体的表⾯积 (1)侧⾯展开图:棱锥的侧⾯展开图是由若干个__________拼成的,则侧⾯积为各个三⾓形⾯积的_____,如图①所⽰;圆锥的侧⾯展开图是_______,扇形的半径是圆锥的______,扇形的弧⻓等于圆锥的__________,如图②所⽰. (2)⾯积:锥体的表⾯积S表=S侧+S底.特别地,圆锥的底⾯半径为r,⺟线⻓为l,则圆锥的侧⾯积S侧=__________,表⾯积S表=__________. 3.台体的表⾯积 (1)侧⾯展开图:棱台的侧⾯展开图是由若干个__________拼接⽽成的,则侧⾯积为各个梯形⾯积的______,如图①所⽰;圆台的侧⾯展开图是扇环,其侧⾯积可由⼤扇形的⾯积减去⼩扇形的⾯积⽽得到,如图②所⽰. (2)⾯积:台体的表⾯积S表=S侧+S上底+S下底.特别地,圆台的上、下底⾯半径分别为r′,r,⺟线⻓为l,则侧⾯积S侧=____________,表⾯积S表=________________________. (三).互动课堂 例1:在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,∠AA1B1=∠AA1C1=60°,∠BB1C1=90°,侧棱⻓为b,则其侧⾯积为( ) A. B.ab C.(+)ab D.ab 例2:(1)若⼀个圆锥的轴截⾯是等边三⾓形,其⾯积为,则这个圆锥的侧⾯积是( )A.2πB.C.6πD.9π (2)已知棱⻓均为5,底⾯为正⽅形的四棱锥S-ABCD,如图,求它的侧⾯积、表⾯积. 例3:⼀个四棱台的上、下底⾯都为正⽅形,且上底⾯的中⼼在下底⾯的投影为下底⾯中⼼(正四棱台)两底⾯边⻓分别为1,2,侧⾯积等于两个底⾯积之和,则这个棱台的⾼为( ) A. B.2 C. D. (四).巩固练习: 1.⼀个棱柱的侧⾯展开图是三个全等的矩形,矩形的⻓和宽分别为6 cm,4 cm,则该棱柱的侧⾯积为________. 2.已知⼀个四棱锥底⾯为正⽅形且顶点在底⾯正⽅形射影为底⾯正⽅形的中⼼(正四棱锥),底⾯正⽅形的边⻓为4 cm,⾼与斜⾼的夹⾓为30°,如图所⽰,求正四棱锥的侧⾯积________和表⾯积________(单位:cm2). 3.如图所⽰,圆台的上、下底半径和⾼的⽐为1:4:4,⺟线⻓为10,则圆台的侧⾯积为( )A.81πB.100πC.14πD.169π (五)、课堂⼩结: 求柱体表⾯积的⽅法 (1)直棱柱的侧⾯积等于它的底⾯周⻓和⾼的乘积;表⾯积等于它的侧⾯积与上、下两个底⾯的⾯积之和. (2)求斜棱柱的侧⾯积⼀般有两种⽅法:⼀是定义法;⼆是公式法.所谓定义法就是利⽤侧⾯积为各侧⾯⾯积之和来求,公式法即直接⽤公式求解. (3)求圆柱的侧⾯积只需利⽤公式即可求解. (4)求棱锥侧⾯积的⼀般⽅法:定义法. (5)求圆锥侧⾯积的⼀般⽅法:公式法:S侧=πrl. (6)求棱台侧⾯积的⼀般⽅法:定义法. (7)求圆台侧⾯积的⼀般⽅法:公式法S侧=2(r+r′)l. 五、当堂检测 1.(2011·北京)某四棱锥的三视图如图所⽰,该四棱锥的表⾯积是( )A.32B.16+16C.48D.16+32 ⺴] 2.(2013·重庆)某⼏何体的三视图如图所⽰,则该⼏何体的表⾯积为( )A.180B.200C.220D.240 3.(2013⼲东)若⼀个圆台的正视图如图所⽰,则其侧⾯积等于( )A.6B.6πC.3πD.6π 六、作业:(1)课时闯关(今晚交) 七、课后反思:本节课你会哪些?还存在哪些问题? ⼩编推荐各科教学设计: 、、、、、、、、、、、、 ⼩编推荐各科教学设计: 、、、、、、、、、、、、。

《空间几何体的表面积和体积》教学设计

《空间几何体的表面积和体积》教学设计

《空间几何体的表面积和体积》教学设计教材的地位和作用几何学是研究现实世界中物体的形状、大小与位置关系的数学学科。

通常采用直观感知、操作确认、思辨论证、度量计算等方法和探索几何图形及其性质。

三维空间是人类生存的现实空间,认识空间图形,培养和发展学生的几何直观能力、运用图形语言进行交流的能力空间想象能力在本章,学生将从对空间几何体的整体入手,认知空间图形;了解简单几何体的表面积和体积的计算方法。

学情分析学生是在义务教育阶段学习的基础上展开的,具有一定的直观感知、操作确认、度量计算等方法。

他们的思维正从属于经验性的逻辑思维向抽象思维发展,但仍需要依赖一定的具体形象的经验材料来理解抽象的逻辑关系。

同时思维的严密性还有待加强。

学习目标1、认识柱体、锥体、台体及其简单组合体的结构特征,认真了解它们的几何特征。

2、推导柱体、锥体、台体表面积和体积公式,会利用这些公式解决一些简单的实际问题。

3、认识球的结构特征,了解它的有关概念。

4、知道球的表面积和体积公式,并能解决一些简单的实际问题。

5、通过对柱体、锥体、台体及球的侧(表)面积公式和体积公式之间的关系,体验数学发现和创造的过程。

教学过程一、课题引入在初中我们学习了正方体和长方体的表面积,以及它们的展开图,问:你知道①正方体和长方体的表面积与它们的展开图的面积的关系吗?②其他几何体的展开图与其表面积的关系吗?③棱柱、棱锥、棱台都是多面体,它们的展开图是什么?④如何计算棱柱、棱锥、棱台的表面积?二、自学检测1、几何体的表面积,它表示___________________________;求多面体的表面积时,可以把多面体展成平面图形,利用__________________________的方法来求。

2、棱长为1的正四面体S-ABC的表面积为_______。

3、圆柱的侧面展开图是_________,若圆柱的底面半径为r,母线长为l,则圆柱的底面积为___,侧面积为_________,全面积为______。

关于空间几何体的表面积和体积数学教案

关于空间几何体的表面积和体积数学教案

关于空间几何体的表面积和体积数学教案教案章节一:引言与立方体教学目标:1. 让学生了解空间几何体的概念。

2. 引导学生通过观察立方体来理解表面积和体积的定义。

教学内容:1. 介绍空间几何体的基本概念,如立方体、球体、圆柱体等。

2. 通过观察立方体的实物或模型,让学生理解表面积和体积的定义。

教学步骤:1. 引入空间几何体的概念,展示立方体的实物或模型。

2. 引导学生观察立方体的特征,如六个面、八个顶点等。

3. 解释表面积和体积的定义,让学生理解它们是描述空间几何体大小的重要指标。

作业布置:1. 让学生绘制一个立方体,并标注出它的表面积和体积。

教案章节二:立方体的表面积和体积计算教学目标:1. 让学生掌握立方体的表面积和体积的计算方法。

2. 培养学生运用数学知识解决实际问题的能力。

教学内容:1. 介绍立方体的表面积和体积的计算公式。

2. 通过实例讲解如何运用公式计算立方体的表面积和体积。

1. 回顾立方体的特征,引导学生理解表面积和体积的计算方法。

2. 介绍立方体的表面积和体积的计算公式,如表面积=6a²,体积=a³。

3. 通过实例讲解如何运用公式计算立方体的表面积和体积,如给定边长a,计算表面积和体积。

作业布置:1. 让学生运用公式计算不同边长的立方体的表面积和体积,并进行比较。

教案章节三:球体的表面积和体积计算教学目标:1. 让学生掌握球体的表面积和体积的计算方法。

2. 培养学生运用数学知识解决实际问题的能力。

教学内容:1. 介绍球体的表面积和体积的计算公式。

2. 通过实例讲解如何运用公式计算球体的表面积和体积。

教学步骤:1. 引导学生回顾立方体的表面积和体积计算方法,引出球体的概念。

2. 介绍球体的表面积和体积的计算公式,如表面积=4πr²,体积=4/3πr³。

3. 通过实例讲解如何运用公式计算球体的表面积和体积,如给定半径r,计算表面积和体积。

作业布置:1. 让学生运用公式计算不同半径的球体的表面积和体积,并进行比较。

高中数学_空间几何体的表面积与体积教学设计学情分析教材分析课后反思

高中数学_空间几何体的表面积与体积教学设计学情分析教材分析课后反思

《空间几何体的表面积和体积》教学设计教学过程教学环节教学活动设计意图课前补偿(1)已知圆的半径为r,则周长C= 面积S=(2)半径为r,弧长为a的扇形面积S=师生活动:学生课前完成,老师对(2)进行点拨。

复习前面学过的与本节知识有关的内容,为学好本节知识做好铺垫。

表面积公式推导及应用(一)棱柱、棱锥、棱台的表面积:棱柱、棱锥、棱台的表面积就是各个面的,也就是。

例1.求各面都是边长为a的等边三角形的正四面体S-ABC的表面积。

师生活动:多面体和圆柱、圆锥的表面积公式的推导有学生自己完成,师生共同完成圆台的表面积公式的推导。

1、自主推导活动体现学生的自主性和调动学生的学习积极性。

2、圆台的推导过程让学生体会重要的数学方法“割补法。

”3、观察1的设计有助于学生对公式的记忆。

体积公式推导及应用师生活动:老师引导学生通过祖暅原理推导柱体和椎体的体积公式。

台体的体积公式的推导作为课后拓展学习内容。

通过几何画板展示椎体的体积与相应的柱体的体积之间的关系。

师生共同分析例2和变式中的几何体的结构特征,强调挖去和重叠的部分的表面积和体积的计算问题。

利用公式计算过程有学生自己完成。

1、台体的体积公式的过程复杂所以作为课后拓展学习内容。

拓展学生的知识视野。

2、例2和变式加强学生对体积和表面积公式的记忆。

3、通过几何画板展示椎体的体积公式的推导,提高学生的兴趣和注意力。

自我检测1.圆锥的底面直径为4,高为3,则其体积为:2.圆台的上、下底面半径3r'=,4r=,高h=6,则其体积为:3.直角三角形ABC的两直角边AB=3, AC=4 ,求AB为轴旋转所得几何体的表面积。

师生活动:学生自己完成。

老师对3题简单点拨。

通过3个小题对本节课的公式的加强记忆。

课堂小结以表格的形式复习几何体的表面积和体积公式。

师生活动:学习自己完成公式表格的填写,老师与学生一起分析公式之间的联系。

让学生们感受到公式不仅仅是枯燥的公式,同时还有蕴含在其中的概念和道理,让同学感受数学并不是枯燥单调的记公式。

几何体的表面积与体积计算教案

几何体的表面积与体积计算教案

几何体的表面积与体积计算教案一、引言几何体的表面积与体积是数学中常见的计算问题,掌握其计算方法对于几何学的学习至关重要。

通过本教案的学习,学生将能够准确计算不同几何体的表面积与体积,并且理解其中的计算原理与方法。

二、教学目标1. 理解几何体表面积与体积的概念;2. 能够运用适当的公式计算不同几何体的表面积与体积;3. 培养学生的观察力、分析能力和解决实际问题的能力;4. 培养学生的团队合作意识和交流能力。

三、教学内容与教学步骤1. 立方体的表面积与体积计算- 引导学生观察立方体的特点,并引导他们思考立方体表面积与体积之间的关系。

- 告诉学生立方体的表面积公式为:表面积 = 6 ×边长的平方,体积公式为:体积 = 边长的立方。

- 给学生提供几个立方体的边长数据,让他们根据公式计算并填写表面积和体积。

2. 圆柱体的表面积与体积计算- 引导学生观察圆柱体的特点,并引导他们思考圆柱体表面积与体积之间的关系。

- 告诉学生圆柱体的表面积公式为:表面积= 2π × 半径 ×(半径 + 高度),体积公式为:体积= π × 半径的平方 ×高度。

- 给学生提供几个圆柱体的半径和高度数据,让他们根据公式计算并填写表面积和体积。

3. 锥体的表面积与体积计算- 引导学生观察锥体的特点,并引导他们思考锥体表面积与体积之间的关系。

- 告诉学生锥体的表面积公式为:表面积= π × 半径 ×(半径 + 斜高),体积公式为:体积= 1/3 × π × 半径的平方 ×高度。

- 给学生提供几个锥体的半径、斜高和高度数据,让他们根据公式计算并填写表面积和体积。

4. 教学总结与拓展- 让学生总结本节课所学的不同几何体的表面积与体积公式,并核对计算结果的准确性。

- 给学生拓展更多几何体计算的例子,让他们尝试自主解决问题并运用所学的知识。

四、教学评价与反馈在教学过程中,可以通过以下方式对学生进行评价与反馈:1. 课堂练习:设计一些实用题目让学生运用所学的知识进行计算,并即时给予反馈。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学准备
1. 教学目标
1、知识与技能
(1)通过对柱、锥、台体的研究,掌握柱、锥、台的表面积和体积的求法。

(2)能运用公式求解,柱体、锥体和台全的全积,并且熟悉台体与术体和锥体之间的转换关系。

(3)培养学生空间想象能力和思维能力。

2、过程与方法
(1)让学生经历几何全的侧面展一过程,感知几何体的形状。

(2)让学生通对照比较,理顺柱体、锥体、台体三间的面积和体积的关系。

3、情感与价值
通过学习,使学生感受到几何体面积和体积的求解过程,对自己空间思维能力影响。

从而增强学习的积极性。

2. 教学重点/难点
重点:柱体、锥体、台体的表面积和体积计算
难点:台体体积公式的推导
3. 教学用具
投影仪等.
4. 标签
数学,立体几何
教学过程
1、创设情境
(1)教师提出问题:在过去的学习中,我们已经接触过一些几何体的面积和体积的求法及公式,哪些几何体可以求出表面积和体积?引导学生回忆,互相交流,教师归类。

(2)教师设疑:几何体的表面积等于它的展开圈的面积,那么,柱体,锥体,台体的侧面展开图是怎样的?你能否计算?引入本节内容。

2、探究新知
(1)利用多媒体设备向学生投放正棱柱、正三棱锥和正三棱台的侧面展开图
(2)组织学生分组讨论:这三个图形的表面由哪些平面图形构成?表面积如何求?
(3)教师对学生讨论归纳的结果进行点评。

3、质疑答辩、排难解惑、发展思维
(1)教师引导学生探究圆柱、圆锥、圆台的侧面展开图的结构,并归纳出其表面积的计算公式:
(2)组织学生思考圆台的表面积公式与圆柱及圆锥表面积公式之间的变化关系。

(3)教师引导学生探究:如何把一个三棱柱分割成三个等体积的棱锥?由此加深学生对等底、等高的锥体与柱体体积之间的关系的了解。

如图:
(4)教师指导学生思考,比较柱体、锥体,台体的体积公式之间存在的关系。

(s’,s分别我上下底面面积,h为台柱高)
4、例题分析讲解
(课本)例1、例2、例3
5、巩固深化、反馈矫正
教师投影练习
1、已知圆锥的表面积为 a ㎡,且它的侧面展开图是一个半圆,则这个圆锥的
底面直径为。

(答案:

2、棱台的两个底面面积分别是245c㎡和80c㎡,截得这个棱台的棱锥的高为35cm,求这个棱台的体积。

(答案:2352cm3)
6、课堂小结
本节课学习了柱体、锥体与台体的表面积和体积的结构和求解方法及公式。


联系的关点看待三者之间的关系,更加方便于我们对空间几何体的了解和掌握。

7、作业
习题1.3 A组1.3
课堂小结
课堂小结
本节课学习了柱体、锥体与台体的表面积和体积的结构和求解方法及公式。


联系的关点看待三者之间的关系,更加方便于我们对空间几何体的了解和掌握。

课后习题
习题1.3 A组1.3
板书
略。

相关文档
最新文档