空间几何体的表面积与体积教学设计教案

合集下载

空间几何体的表面积与体积教案

空间几何体的表面积与体积教案

空间几何体的表面积与体积教案一、教学目标:1. 让学生掌握空间几何体的表面积和体积的计算公式。

2. 培养学生运用空间几何知识解决实际问题的能力。

3. 提高学生的空间想象能力和逻辑思维能力。

二、教学内容:1. 空间几何体的表面积和体积的定义。

2. 常见空间几何体的表面积和体积计算公式。

3. 空间几何体表面积和体积的求解方法。

4. 空间几何体表面积和体积在实际问题中的应用。

三、教学重点与难点:1. 教学重点:空间几何体的表面积和体积的计算公式,求解方法及实际应用。

2. 教学难点:空间几何体表面积和体积的求解方法,实际问题的解决。

四、教学方法:1. 采用讲解法,引导学生掌握空间几何体的表面积和体积的计算公式。

2. 采用案例分析法,让学生通过实际问题,运用空间几何知识解决问题。

3. 采用讨论法,激发学生思考,提高学生的空间想象能力和逻辑思维能力。

五、教学过程:1. 导入:通过展示生活中常见空间几何体,引导学生思考空间几何体的表面积和体积的计算方法。

2. 新课导入:讲解空间几何体的表面积和体积的定义及计算公式。

3. 案例分析:分析实际问题,运用空间几何体的表面积和体积计算公式解决问4. 课堂练习:让学生独立完成练习题,巩固所学知识。

6. 课后作业:布置作业,让学生进一步巩固空间几何体的表面积和体积的计算方法。

7. 课后反思:教师反思教学过程,针对学生的掌握情况,调整教学策略。

六、教学评价:1. 评价学生对空间几何体表面积和体积计算公式的掌握程度。

2. 评价学生运用空间几何知识解决实际问题的能力。

3. 评价学生的空间想象能力和逻辑思维能力。

七、教学拓展:1. 引导学生研究空间几何体的表面积和体积在实际工程中的应用。

2. 引导学生探索空间几何体表面积和体积的求解方法的创新。

八、教学资源:1. 教学课件:制作课件,展示空间几何体的表面积和体积的计算公式及实际问题。

2. 练习题库:整理空间几何体表面积和体积的练习题,供学生课堂练习及课后巩固。

空间几何体的表面积和体积》教学设计

空间几何体的表面积和体积》教学设计

空间几何体的表面积和体积》教学设计下底半径为R,母线长为l,则圆台的底面积为_______,侧面积为_________,全面积为______。

三、重点讲解1、柱体的表面积和体积公式推导及应用柱体是由两个底面相等的平行圆面和连接它们的矩形侧面组成的几何体。

柱体的表面积公式为S=2πr²+2πrh,其中r为底面半径,h为柱体高;柱体的体积公式为V=πr²h。

柱体常见的有圆柱、正方柱和长方柱等。

2、锥体的表面积和体积公式推导及应用锥体是由一个底面和连接底面各点到一点的直线段组成的几何体。

锥体的表面积公式为S=πr²+πrl,其中r为底面半径,l为母线长;锥体的体积公式为V=1/3πr²h,其中h为锥体高。

锥体常见的有圆锥、正方锥和棱锥等。

3、台体的表面积和体积公式推导及应用台体是由两个平行的底面和连接它们的侧面组成的几何体。

台体的表面积公式为S=2π(R+r)l+2πR²-2πr²,其中R为上底半径,r为下底半径,l为台体斜高;台体的体积公式为V=1/3π(R²+Rr+r²)h,其中h为台体高。

台体常见的有圆台、正方台和长方台等。

4、球的表面积和体积公式推导及应用球是由所有到球心距离相等的点组成的几何体。

球的表面积公式为S=4πr²,其中r为球半径;球的体积公式为V=4/3πr³。

球体常见的有实心球和空心球等。

四、练巩固1、已知正方体的体积为8,求它的表面积。

2、已知正八面体的棱长为6,求它的表面积和体积。

3、已知一个底面半径为4,高为5的圆锥,求它的侧面积和全面积。

4、已知一个上底半径为3,下底半径为6,高为4的圆台,求它的体积。

5、已知一个球的表面积为100π,求它的体积。

五、课堂小结通过本节课的研究,我们了解了柱体、锥体、台体和球的表面积和体积公式,学会了如何利用这些公式解决实际问题。

同时也体验了数学发现和创造的过程。

关于空间几何体的表面积和体积数学教案

关于空间几何体的表面积和体积数学教案

关于空间几何体的表面积和体积一、教学目标:1. 让学生掌握常见空间几何体的表面积和体积的计算公式。

2. 培养学生运用空间几何知识解决实际问题的能力。

3. 提高学生对数学知识的兴趣,培养学生的空间想象力。

二、教学内容:1. 立方体、立方体的表面积和体积计算。

2. 圆柱体、圆柱体的表面积和体积计算。

3. 球体、球体的表面积和体积计算。

4. 锥体、锥体的表面积和体积计算。

5. 空间几何体表面积和体积在实际问题中的应用。

三、教学重点与难点:重点:掌握常见空间几何体的表面积和体积计算公式。

难点:空间几何体表面积和体积在实际问题中的应用。

四、教学方法:1. 采用问题驱动法,引导学生主动探究空间几何体的表面积和体积计算方法。

2. 利用多媒体课件,展示空间几何体的形状,增强学生的空间想象力。

3. 通过实例分析,让学生学会将空间几何知识应用于实际问题。

五、教学过程:1. 导入新课:回顾平面几何知识,引出空间几何体的概念。

2. 讲解立方体的表面积和体积计算公式,让学生动手计算实例。

3. 讲解圆柱体的表面积和体积计算公式,让学生动手计算实例。

4. 讲解球体的表面积和体积计算公式,让学生动手计算实例。

5. 讲解锥体的表面积和体积计算公式,让学生动手计算实例。

6. 分析空间几何体表面积和体积在实际问题中的应用,让学生尝试解决实际问题。

7. 课堂练习:布置练习题,让学生巩固所学知识。

9. 布置课后作业,要求学生运用所学知识解决实际问题。

六、教学评价:1. 通过课堂问答、练习题和课后作业,评估学生对空间几何体表面积和体积计算公式的掌握情况。

2. 观察学生在解决实际问题时是否能灵活运用所学知识,评价其运用能力。

3. 结合学生的课堂表现和作业完成情况,对学生的学习态度、合作精神和创新能力进行评价。

七、教学资源:1. 多媒体课件:用于展示空间几何体的形状,增强学生的空间想象力。

2. 练习题:用于巩固学生对空间几何体表面积和体积计算公式的掌握。

空间几何体的表面积与体积 优秀教案

空间几何体的表面积与体积 优秀教案

《空间几何体的表面积与体积》教学设计
【教学目标】
一、知识技能:
1.通过对柱、锥、台体的研究,掌握柱、锥、台的表面积的求法
2.能运用公式求解柱体、锥体和台体表面积,并且熟悉台体与柱体和锥体之间的转换关系
3.培养学生空间想象能力和思维能力
二、教学方法:
1.通过展开空间几何体来让同学感知几何体的形状
2.通过比较来联系柱体、锥体和台体之间表面积的关系
三、解决问题:
空间想象能力联系立体几何表面积公式的证明
四、态度情感:
通过学习加强学生的空间想象能力,并且加强同学们对空间图形的感知力和思考能力
【教学对象】
高二学生
【教学重点】
柱体、锥体、台体的表面积
【教学难点】
柱体、椎体、台体表面积公式的推导
【教学策略】
将讲课与现实以及课题练习相结合
【教学资源与工具】
纸制立体图形,PPT投影仪
【教学过程设计】1、教学流程
2.教学过程
将提前准备好的空间几何体的实物给同
学们展示,并将其展开来
根据上图来引导同学对该直棱柱的表面
积进行分析和讲解
对正棱锥和正棱台的概念进行讲解
让同学们根据之前对正棱柱的分析来自
【板书设计】。

关于空间几何体的表面积和体积数学教案

关于空间几何体的表面积和体积数学教案

关于空间几何体的表面积和体积数学教案一、教学目标:1. 知识与技能:使学生掌握空间几何体的表面积和体积的计算方法,能够熟练运用这些方法解决实际问题。

2. 过程与方法:通过观察、操作、推理等过程,培养学生空间想象能力和逻辑思维能力。

3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的创新精神和合作意识。

二、教学内容:1. 立方体的表面积和体积计算。

2. 圆柱体的表面积和体积计算。

3. 圆锥体的表面积和体积计算。

4. 球的表面积和体积计算。

5. 空间几何体表面积和体积的综合应用。

三、教学重点与难点:1. 教学重点:空间几何体的表面积和体积的计算方法。

2. 教学难点:空间几何体表面积和体积的综合应用。

四、教学方法:1. 采用问题驱动法,引导学生主动探究空间几何体的表面积和体积计算方法。

2. 利用实物模型和多媒体辅助教学,帮助学生直观理解空间几何体的特点和计算方法。

3. 组织小组讨论和动手实践,培养学生的合作意识和解决问题的能力。

五、教学过程:1. 导入新课:通过展示各种空间几何体模型,引导学生观察和思考空间几何体的特点。

2. 讲解与示范:讲解立方体、圆柱体、圆锥体、球体的表面积和体积计算方法,并进行示范。

3. 练习与讨论:学生独立完成练习题,小组内讨论解题思路和方法。

4. 拓展与应用:引导学生运用所学知识解决实际问题,如计算实际物体的表面积和体积。

6. 作业布置:布置相关练习题,巩固所学知识。

六、教学评价:1. 课堂参与度:观察学生在课堂上的积极参与情况,包括提问、回答问题、小组讨论等。

2. 练习完成情况:检查学生完成练习题的情况,评估学生对知识点的理解和掌握程度。

3. 作业质量:评估学生作业的完成质量,包括解题的正确性、步骤的清晰性等。

4. 学生互评:组织学生进行互相评价,鼓励学生相互学习、相互帮助。

七、教学反思:2. 学生反馈:收集学生的反馈意见,了解学生的学习需求和困惑。

3. 教学内容:评估教学内容的难易程度,根据学生的实际情况进行调整。

高中数学必修2《空间几何体的表面积与体积》教案

高中数学必修2《空间几何体的表面积与体积》教案

⾼中数学必修2《空间⼏何体的表⾯积与体积》教案 ⾼中数学必修2《空间⼏何体的表⾯积与体积》教案 1教学⺫标 1.知道柱体、锥体、台体侧⾯展开图,弄懂柱体、锥体、台体的表⾯积的求法. 2.能运⽤公式求解柱体、锥体和台体的表⾯积,并知道柱体、锥体和台体表⾯积之间的关系. 2学情分析 通过学习空间⼏何体的结构特征,空间⼏何体的三视图和直观图,了解了空间⼏何体和平⾯图形之间的关系,从中反映出⼀个思想⽅法,即平⾯图形和空间⼏何体的互化,尤其是空间⼏何问题向平⾯问题的转化。

该部分内容中有些是学⽣已经熟悉的,在解决这些问题的过程中,⾸先要对学⽣已有的知识进⾏再认识,提炼出解决问题的⼀般思想——化归的思想,总结出⼀般的求解⽅法,在此基础上通过类⽐获得解决新问题的思路,通过化归解决问题,深化对化归、类⽐等思想⽅法的应⽤。

3重点难点 重点:知道柱体、锥体、台体侧⾯展开图,弄懂柱体、锥体、台体的表⾯积公式。

难点:会求柱体、锥体和台体的表⾯积,并知道柱体、锥体和台体表⾯积之间的关系. 4教学过程 4.1 第⼀学时教学活动活动1【导⼊】第1课时 柱体、锥体、台体的表⾯积 (⼀)、基础⾃测: 1.棱⻓为a的正⽅体表⾯积为__________. 2.⻓、宽、⾼分别为a、b、c的⻓⽅体,其表⾯积为___________________. 3.⻓⽅体、正⽅体的侧⾯展开图为__________. 4.圆柱的侧⾯展开图为__________. 5.圆锥的侧⾯展开图为__________. (⼆).尝试学习 1.柱体的表⾯积 (1)侧⾯展开图:棱柱的侧⾯展开图是____________,⼀边是棱柱的侧棱,另⼀边等于棱柱的__________,如图①所⽰;圆柱的侧⾯展开图是_______,其中⼀边是圆柱的⺟线,另⼀边等于圆柱的底⾯周⻓,如图②所⽰. (2)⾯积:柱体的表⾯积S表=S侧+2S底.特别地,圆柱的底⾯半径为r,⺟线⻓为l,则圆柱的侧⾯积S侧=__________,表⾯积S表=__________. 2.锥体的表⾯积 (1)侧⾯展开图:棱锥的侧⾯展开图是由若干个__________拼成的,则侧⾯积为各个三⾓形⾯积的_____,如图①所⽰;圆锥的侧⾯展开图是_______,扇形的半径是圆锥的______,扇形的弧⻓等于圆锥的__________,如图②所⽰. (2)⾯积:锥体的表⾯积S表=S侧+S底.特别地,圆锥的底⾯半径为r,⺟线⻓为l,则圆锥的侧⾯积S侧=__________,表⾯积S表=__________. 3.台体的表⾯积 (1)侧⾯展开图:棱台的侧⾯展开图是由若干个__________拼接⽽成的,则侧⾯积为各个梯形⾯积的______,如图①所⽰;圆台的侧⾯展开图是扇环,其侧⾯积可由⼤扇形的⾯积减去⼩扇形的⾯积⽽得到,如图②所⽰. (2)⾯积:台体的表⾯积S表=S侧+S上底+S下底.特别地,圆台的上、下底⾯半径分别为r′,r,⺟线⻓为l,则侧⾯积S侧=____________,表⾯积S表=________________________. (三).互动课堂 例1:在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,∠AA1B1=∠AA1C1=60°,∠BB1C1=90°,侧棱⻓为b,则其侧⾯积为( ) A. B.ab C.(+)ab D.ab 例2:(1)若⼀个圆锥的轴截⾯是等边三⾓形,其⾯积为,则这个圆锥的侧⾯积是( )A.2πB.C.6πD.9π (2)已知棱⻓均为5,底⾯为正⽅形的四棱锥S-ABCD,如图,求它的侧⾯积、表⾯积. 例3:⼀个四棱台的上、下底⾯都为正⽅形,且上底⾯的中⼼在下底⾯的投影为下底⾯中⼼(正四棱台)两底⾯边⻓分别为1,2,侧⾯积等于两个底⾯积之和,则这个棱台的⾼为( ) A. B.2 C. D. (四).巩固练习: 1.⼀个棱柱的侧⾯展开图是三个全等的矩形,矩形的⻓和宽分别为6 cm,4 cm,则该棱柱的侧⾯积为________. 2.已知⼀个四棱锥底⾯为正⽅形且顶点在底⾯正⽅形射影为底⾯正⽅形的中⼼(正四棱锥),底⾯正⽅形的边⻓为4 cm,⾼与斜⾼的夹⾓为30°,如图所⽰,求正四棱锥的侧⾯积________和表⾯积________(单位:cm2). 3.如图所⽰,圆台的上、下底半径和⾼的⽐为1:4:4,⺟线⻓为10,则圆台的侧⾯积为( )A.81πB.100πC.14πD.169π (五)、课堂⼩结: 求柱体表⾯积的⽅法 (1)直棱柱的侧⾯积等于它的底⾯周⻓和⾼的乘积;表⾯积等于它的侧⾯积与上、下两个底⾯的⾯积之和. (2)求斜棱柱的侧⾯积⼀般有两种⽅法:⼀是定义法;⼆是公式法.所谓定义法就是利⽤侧⾯积为各侧⾯⾯积之和来求,公式法即直接⽤公式求解. (3)求圆柱的侧⾯积只需利⽤公式即可求解. (4)求棱锥侧⾯积的⼀般⽅法:定义法. (5)求圆锥侧⾯积的⼀般⽅法:公式法:S侧=πrl. (6)求棱台侧⾯积的⼀般⽅法:定义法. (7)求圆台侧⾯积的⼀般⽅法:公式法S侧=2(r+r′)l. 五、当堂检测 1.(2011·北京)某四棱锥的三视图如图所⽰,该四棱锥的表⾯积是( )A.32B.16+16C.48D.16+32 ⺴] 2.(2013·重庆)某⼏何体的三视图如图所⽰,则该⼏何体的表⾯积为( )A.180B.200C.220D.240 3.(2013⼲东)若⼀个圆台的正视图如图所⽰,则其侧⾯积等于( )A.6B.6πC.3πD.6π 六、作业:(1)课时闯关(今晚交) 七、课后反思:本节课你会哪些?还存在哪些问题? 1.3 空间⼏何体的表⾯积与体积 课时设计课堂实录 1.3 空间⼏何体的表⾯积与体积 1第⼀学时教学活动活动1【导⼊】第1课时 柱体、锥体、台体的表⾯积 (⼀)、基础⾃测: 1.棱⻓为a的正⽅体表⾯积为__________. 2.⻓、宽、⾼分别为a、b、c的⻓⽅体,其表⾯积为___________________. 3.⻓⽅体、正⽅体的侧⾯展开图为__________. 4.圆柱的侧⾯展开图为__________. 5.圆锥的侧⾯展开图为__________. (⼆).尝试学习 1.柱体的表⾯积 (1)侧⾯展开图:棱柱的侧⾯展开图是____________,⼀边是棱柱的侧棱,另⼀边等于棱柱的__________,如图①所⽰;圆柱的侧⾯展开图是_______,其中⼀边是圆柱的⺟线,另⼀边等于圆柱的底⾯周⻓,如图②所⽰. (2)⾯积:柱体的表⾯积S表=S侧+2S底.特别地,圆柱的底⾯半径为r,⺟线⻓为l,则圆柱的侧⾯积S侧=__________,表⾯积S表=__________. 2.锥体的表⾯积 (1)侧⾯展开图:棱锥的侧⾯展开图是由若干个__________拼成的,则侧⾯积为各个三⾓形⾯积的_____,如图①所⽰;圆锥的侧⾯展开图是_______,扇形的半径是圆锥的______,扇形的弧⻓等于圆锥的__________,如图②所⽰. (2)⾯积:锥体的表⾯积S表=S侧+S底.特别地,圆锥的底⾯半径为r,⺟线⻓为l,则圆锥的侧⾯积S侧=__________,表⾯积S表=__________. 3.台体的表⾯积 (1)侧⾯展开图:棱台的侧⾯展开图是由若干个__________拼接⽽成的,则侧⾯积为各个梯形⾯积的______,如图①所⽰;圆台的侧⾯展开图是扇环,其侧⾯积可由⼤扇形的⾯积减去⼩扇形的⾯积⽽得到,如图②所⽰. (2)⾯积:台体的表⾯积S表=S侧+S上底+S下底.特别地,圆台的上、下底⾯半径分别为r′,r,⺟线⻓为l,则侧⾯积S侧=____________,表⾯积S表=________________________. (三).互动课堂 例1:在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,∠AA1B1=∠AA1C1=60°,∠BB1C1=90°,侧棱⻓为b,则其侧⾯积为( ) A. B.ab C.(+)ab D.ab 例2:(1)若⼀个圆锥的轴截⾯是等边三⾓形,其⾯积为,则这个圆锥的侧⾯积是( )A.2πB.C.6πD.9π (2)已知棱⻓均为5,底⾯为正⽅形的四棱锥S-ABCD,如图,求它的侧⾯积、表⾯积. 例3:⼀个四棱台的上、下底⾯都为正⽅形,且上底⾯的中⼼在下底⾯的投影为下底⾯中⼼(正四棱台)两底⾯边⻓分别为1,2,侧⾯积等于两个底⾯积之和,则这个棱台的⾼为( ) A. B.2 C. D. (四).巩固练习: 1.⼀个棱柱的侧⾯展开图是三个全等的矩形,矩形的⻓和宽分别为6 cm,4 cm,则该棱柱的侧⾯积为________. 2.已知⼀个四棱锥底⾯为正⽅形且顶点在底⾯正⽅形射影为底⾯正⽅形的中⼼(正四棱锥),底⾯正⽅形的边⻓为4 cm,⾼与斜⾼的夹⾓为30°,如图所⽰,求正四棱锥的侧⾯积________和表⾯积________(单位:cm2). 3.如图所⽰,圆台的上、下底半径和⾼的⽐为1:4:4,⺟线⻓为10,则圆台的侧⾯积为( )A.81πB.100πC.14πD.169π (五)、课堂⼩结: 求柱体表⾯积的⽅法 (1)直棱柱的侧⾯积等于它的底⾯周⻓和⾼的乘积;表⾯积等于它的侧⾯积与上、下两个底⾯的⾯积之和. (2)求斜棱柱的侧⾯积⼀般有两种⽅法:⼀是定义法;⼆是公式法.所谓定义法就是利⽤侧⾯积为各侧⾯⾯积之和来求,公式法即直接⽤公式求解. (3)求圆柱的侧⾯积只需利⽤公式即可求解. (4)求棱锥侧⾯积的⼀般⽅法:定义法. (5)求圆锥侧⾯积的⼀般⽅法:公式法:S侧=πrl. (6)求棱台侧⾯积的⼀般⽅法:定义法. (7)求圆台侧⾯积的⼀般⽅法:公式法S侧=2(r+r′)l. 五、当堂检测 1.(2011·北京)某四棱锥的三视图如图所⽰,该四棱锥的表⾯积是( )A.32B.16+16C.48D.16+32 ⺴] 2.(2013·重庆)某⼏何体的三视图如图所⽰,则该⼏何体的表⾯积为( )A.180B.200C.220D.240 3.(2013⼲东)若⼀个圆台的正视图如图所⽰,则其侧⾯积等于( )A.6B.6πC.3πD.6π 六、作业:(1)课时闯关(今晚交) 七、课后反思:本节课你会哪些?还存在哪些问题? ⼩编推荐各科教学设计: 、、、、、、、、、、、、 ⼩编推荐各科教学设计: 、、、、、、、、、、、、。

高中数学必修21.3 空间几何体的表面积与体积 教案

高中数学必修21.3 空间几何体的表面积与体积 教案

1.3空间几何体的表面积与体积教学任务分析:根据柱,锥,台的结构特征,并结合它们的展开图,推导它们的表面积的计算公式,从度量的角度认识空间几何体;用极限思想推导球的体积公式和表面公式,使学生初步了解利用极限思想解决问题的基本步骤,体会极限思想的基本内涵。

与此同时,培养学生积极探索的科学精神,培养学生的思维能力,空间想象能力。

教学重点:柱体,锥体,台体的表面积和体积的计算公式。

教学难点:球的体积和表面积的推导教学设计:1. 从学生熟悉的正方体和长方体的展开图入手,分析展开图与其表面积的关系。

其目的是㈠复习表面积的概念,即表面积是各个面的面积的和㈡介绍求几何体表面积的方法,把它们展开成平面图形,利用平面图形求面积的方法,求立体图形的表面积。

2. 通过类比正方体和长方体的表面积,讨论棱柱,棱锥,棱台的表面积问题。

实际上,求棱柱,棱锥,棱台的表面积问题可转化成求平行四边形,三角形和梯形问题。

3. 利用计算机或实物展示圆柱的侧面可以展开成一个矩形。

圆锥的侧面可以展开成一个扇形。

随后的有关圆台表面积的探究,也可以按照这样的思路进行教学。

说明圆台表面积公式时,可推导侧面积公式。

圆台侧面积的推导:设圆台侧面的母线长为,上,下底周长分别是,半径分别是则S 圆台侧=()x c x l c '-+2121=()[]x c c cl '-+21()()()l r r l c c c c l c c c cl S c c l c x lx x c c '+='+=⎥⎦⎤⎢⎣⎡'-''-+='-'=∴+='π2121圆台侧在分别学习了圆柱,圆锥,圆台的表面积公式后,可以引导学生用运动,变化的观点分析它们之间的关系。

圆柱可看成上,下两底面全等的圆台,圆锥可看成上底面半径为零的圆台。

因此,圆柱,圆锥可看成圆台的特例。

(可用计算机演示)4.柱体, 锥体和台体的体积从正方体,长方体的体积公式引入到一般棱柱的体积也是V=Sh若有时间,可推导棱锥的体积公式棱锥的体积公式的推导如图,设三棱柱ABC-ABC 的底面积(即ΔABC 的面积)为S ,高(即点A ¹到平面ABC 的距离)为h ,则它的体积为Sh ,沿平面A ¹BC 和平面A ¹B ¹C ,将这个三棱柱分割为3个三棱锥,其中三棱锥1,2的底面积相等(S ΔA ¹AB=S ΔA ¹B ¹B ),高也相等点C 到平面AB ,BA 的距离)三棱锥也有相等的底面积,和相等的高(点A ¹到平面BCC ¹B ¹ 的高)因此,这三个三棱锥的体积相等,每个三棱锥体积是sh ,得sh台体 推导出台体的体积公式V=S ¹+Sh让学生思考,柱体,锥体台体的体积公式之间的联系。

空间几何体的表面积和体积(精华教案)

空间几何体的表面积和体积(精华教案)

空间几何体的表面积和体积【教学要求】1、会求空间几何体表面积和体积2、熟练计算球面距离3、会解决求展开的几何体和不规则几何体的体积问题【要点回顾】1.多面体的面积和体积公式【学习过程】例1、求下列几何体的全面积和体积π1、已知正四棱锥的底面正方形的边长为4cm,高与斜高的夹角为42、在三棱锥S—ABC中,∠SAB=∠SAC=∠ACB=90°,且AC=BC=5,SB=55。

变式:一个长方体的相交于一个顶点的三个面的面积分别是2,3,6,求长方体的体积。

例2、1、一个圆柱的侧面展开图是一个边长为a的正方形,求这个圆柱的全面积和体积2、圆锥的母线长为2,侧面的展开图扇形的圆心角为240︒,求该圆锥的全面积和体积变式:已知圆台的上下底面半径分别是2,5,且侧面面积等于两底面面积之和,求该圆台的母线长例3、如图,正四棱锥P ABCD-底面的四个顶点,,,A B C D在球O的同一个大圆上,点P在球面上,如果163P ABCDV-=,求球O的表面积。

A. 4πB. 8πC. 12πD. 16π变式:,求球的表面积和体积例4、如图,一圆锥内接于半径为R的球,求此圆锥的体积最大值基础达标:1、圆柱的一个底面积为S,侧面展开图是一个正方形,那么这个圆柱的侧面积是( ).A.4πS B.2πS C.πS D.233πS2、设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为( ).A.3πa2 B.6πa2 C.12πa2 D.24πa23、圆柱的轴截面是正方形,面积是S,则它的侧面积是( )A.1πS B.πS C.2πS D.4πS4、若某空间几何体的三视图如图所示,则该几何体的体积是( )A.12B.23C.1 D.25、右图是某几何体的三视图,则该几何体的体积为( ).A.92π+12 B.92π+18 C.9π+42 D.36π+186、如图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为12,则该几何体的俯视图可以是( )7、一个几何体的三视图如图,该几何体的表面积为( )A.280 B.292 C.360 D.3728、棱长为a的正方体中,连接相邻面的中心,以这些线段为棱的八面体的体积为( )A.a33B.a34C.a36D.a3129、已知一个球与一个正三棱柱的三个侧面和两个底面相切,若这个球的体积是32π3,则这个三棱柱的体积是( )A.96 3 B.16 3 C.24 3 D.48 310、一个几何体的三视图如图所示,则这个几何体的体积为________.11、若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是________cm3.12、圆柱形容器内盛有高度为8 cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是________cm.13、求棱长为1的正四面体(各棱长都相等的三棱柱)的外接球的体积与表面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间几何体的表面积与体积教学设计教案
1、教学目标
1、知识与技能(1)通过对柱、锥、台体的研究,掌握柱、锥、台的表面积和体积的求法。

(2)能运用公式求解,柱体、锥体和台全的全积,并且熟悉台体与术体和锥体之间的转换关系。

(3)培养学生空间想象能力和思维能力。

2、过程与方法(1)让学生经历几何全的侧面展一过程,感知几何体的形状。

(2)让学生通对照比较,理顺柱体、锥体、台体三间的面积和体积的关系。

3、情感与价值通过学习,使学生感受到几何体面积和体积的求解过程,对自己空间思维能力影响。

从而增强学习的积极性。

2、教学重点/难点重点:柱体、锥体、台体的表面积和体积计算难点:台体体积公式的推导
3、教学用具投影仪等、
4、标签数学,立体几何教学过程
1、创设情境(1)教师提出问题:在过去的学习中,我们已经接触过一些几何体的面积和体积的求法及公式,哪些几何体可以求出表面积和体积?引导学生回忆,互相交流,教师归类。

(2)教师设疑:几何体的表面积等于它的展开圈的面积,那么,柱体,锥体,台体的侧面展开图是怎样的?你能否计算?引入本节内容。

2、探究新知(1)利用多媒体设备向学生投放正棱柱、正三棱锥和正三棱台的侧面展开图(2)组织学生分组讨论:这三个图形的表面由哪些平面图形构成?表面积如何求?(3)教师对学生讨论归纳的结果进行点评。

3、质疑答辩、排难解惑、发展思维(1)教师引导学生探究圆柱、圆锥、圆台的侧面展开图的结构,并归纳出其表面积的计算公式:(2)组织学生思考圆台的表面积公式与圆柱及圆锥表面积公式之间的变化关系。

(3)教师引导学生探究:如何把一个三棱柱分割成三个等体积的棱锥?由此加深学生对等底、等高的锥体与柱体体积之间的关系的了解。

如图:
(4)教师指导学生思考,比较柱体、锥体,台体的体积公式之间存在的关系。

(s’,s分别我上下底面面积,h为台柱高)
4、例题分析讲解(课本)例
1、例
2、例
35、巩固深化、反馈矫正教师投影练习
1、已知圆锥的表面积为 a ㎡,且它的侧面展开图是一个半圆,则这个圆锥的底面直径为。

(答案:)
2、棱台的两个底面面积分别是245c㎡和80c㎡,截得这个棱台的棱锥的高为35cm,求这个棱台的体积。

(答案:2352cm3)
6、课堂小结本节课学习了柱体、锥体与台体的表面积和体积的结构和求解方法及公式。

用联系的关点看待三者之间的关系,更加方便于我们对空间几何体的了解和掌握。

7、作业习题
1、3 A组
1、3 课堂小结课堂小结本节课学习了柱体、锥体与台体的表面积和体积的结构和求解方法及公式。

用联系的关点看待三者之间的关系,更加方便于我们对空间几何体的了解和掌握。

课后习题习题
1、3 A组
1、3 板书略。

相关文档
最新文档