2013年广州市中考数学试卷附答案(求解答供)

合集下载

2013年广东省中考数学试题及答案-精编

2013年广东省中考数学试题及答案-精编

2013年广东省中考数 学说明:1. 全卷共4页,考试用时100 分钟.满分为 120 分.2.答题前,考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己准考证号、姓名、试室号、座位号,用2B 铅笔把对应号码的标号涂黑. 3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案,答案不能答在试题上. 4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 2的相反数是A.21-B. 21C.-2D.2 2.下列几何体中,俯视图为四边形的是3.据报道,2013年第一季度,广东省实现地区生产总值约1 260 000 000 000元,用科学记数法表示为A. 0.126×1012元 B. 1.26×1012元 C. 1.26×1011元 D. 12.6×1011元 4.已知实数a 、b ,若a >b ,则下列结论正确的是 A.55-<-b a B.b a +<+22 C.33ba < D.b a 33>5.数据1、2、5、3、5、3、3的中位数是 A.1 B.2 C.3 D.56.如题6图,AC ∥DF,AB ∥EF,点D 、E 分别在AB 、AC 上,若∠2=50°,则∠1的大小是A.30°B.40°C.50°D.60°7.下列等式正确的是 A.1)1(3=-- B. 1)4(0=- C. 6322)2()2(-=-⨯- D. 2245)5()5(-=-÷-8.不等式5215+>-x x 的解集在数轴上表示正确的是9.下列图形中,不是..轴对称图形的是10.已知210k k <<,则是函数11-=x k y 和xk y 2=的图象大致是二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:92-x =________________.12.若实数a 、b 满足042=-++b a ,则=ba 2________.13.一个六边形的内角和是__________.14.在Rt △ABC 中,∠ABC=90°,AB=3,BC=4,则sinA=________.15.如题15图,将一张直角三角板纸片ABC 沿中位线DE 剪开后,在平面上将△BDE 绕着CB 的中点D 逆时针旋转180°,点E 到了点E ′位置, 则四边形ACE ′E 的形状是________________.16.如题16图,三个小正方形的边长都为1,则图中阴影部分面积的和是__________(结果保留π).三、解答题(一)(本大题3小题,每小题5分,共15分) 17.解方程组⎩⎨⎧=++=821y x y x18.从三个代数式:①222b ab a +-,②b a 33-,③22b a -中任意选择两个代数式构造成分式,然后进行化简,并求当3,6==b a 时该分式的值.①②19.如题19图,已知□ABCD.(1)作图:延长BC,并在BC的延长线上截取线段CE,使得CE=BC(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,不连结AE,交CD于点F,求证:△AFD≌△EFC.四、解答题(二)(本大题3小题,每小题8分,共24分)20.某校教导处为了解该校七年级同学对排球、乒乓球、羽毛球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能选择最喜爱的一项运动项目),进行了随机抽样调查,并将调查结果统计后绘制成了如【表1】和题20图所示的不完整统计图表.(1)请你补全下列样本人数分布表(【表1】)和条形统计图(题20图);(2)若七年级学生总人数为920人,请你估计七年级学生喜爱羽毛球运动项目的人数.21.雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?22.如题22图,矩形ABCD中,以对角线BD为一边构造一个矩形BDEF,使得另一边EF过原矩形的顶点C.(1)设Rt △CBD 的面积为S 1, Rt △BFC 的面积为S 2, Rt △DCE 的面积为S 3 , 则S 1______ S 2+ S 3(用“>”、“=”、“<”填空);(2)写出题22图中的三对相似三角形,并选择其中一对进行证明.五、解答题(三)(本大题3小题,每小题9分,共27分) 23. 已知二次函数1222-+-=m mx x y .(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式; (2)如题23图,当2=m 时,该抛物线与y 轴交于点C,顶点为D, 求C 、D 两点的坐标;(3)在(2)的条件下,x 轴上是否存在一点P,使得PC+PD 最短?若P 点 存在,求出P 点的坐标;若P 点不存在,请说明理由.24.如题24图,⊙O 是Rt △ABC 的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE ⊥DC 交DC 的延长线于点E. (1)求证:∠BCA=∠BAD; (2)求DE 的长;(3)求证:BE 是⊙O 的切线.25.有一副直角三角板,在三角板ABC 中,∠BAC=90°,AB=AC=6,在三角板DEF 中,∠FDE=90°,DF=4,DE=34.将这副直角三角板按如题25图(1)所示位置摆放,点B 与点F 重合,直角边BA 与FD 在同一条直线上.现固定三角板ABC,将三角板DEF 沿射线BA 方向平行移动,当点F 运动到点A 时停止运动.(1)如题25图(2),当三角板DEF 运动到点D 与点A 重合时,设EF 与BC 交于点M, 则∠EMC=______度;(2)如题25图(3),在三角板DEF 运动过程中,当EF 经过点C 时,求FC 的长; (3)在三角板DEF 运动过程中,设BF=x ,两块三角板重叠部分面积为y ,求y 与x 的函数解析式,并求出对应的x 取值范围.2013年广东省中考数学参考答案1、答案:C解析:2的相反数为-2,选C,本题较简单。

【精校】2013年广东省广州市初中毕业生学业考试数学(含答案)

【精校】2013年广东省广州市初中毕业生学业考试数学(含答案)

2013年广州市初中毕业生学业考试第一部分 选择题(共30分) 一、选择题:1、比0大的数是( ) A -1 B 12-C 0D 1 2、图1所示的几何体的主视图是( )(A )(B)(C)(D)正面3、在6×6方格中,将图2—①中的图形N 平移后位置如图2—②所示,则图形N 的平移方法中,正确的是( )A 向下移动1格B 向上移动1格C 向上移动2格D 向下移动2格 4、计算:()23m n 的结果是( )A 6m nB 62m nC 52m nD 32m n5、为了解中学生获取资讯的主要渠道,设置“A :报纸,B :电视,C :网络,D :身边的人,E :其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图3,该调查的方式是( ),图3中的a 的值是( )A 全面调查,26B 全面调查,24C 抽样调查,26D 抽样调查,2429.已知两数x,y 之和是10,x 比y 的3倍大2,则下面所列方程组正确的是( )A 1032x y y x +=⎧⎨=+⎩B 1032x y y x +=⎧⎨=-⎩C 1032x y x y +=⎧⎨=+⎩D 1032x y x y +=⎧⎨=-⎩30.实数a 在数轴上的位置如图4所示,则 2.5a -=( )图4aA 2.5a -B 2.5a -C 2.5a +D 2.5a -- 31.有意义,则实数x 的取值范围是( ) A 1x ≠ B 0x ≥ C 0x > D 01x x ≥≠且32.若5200k +<,则关于x 的一元二次方程240x x k +-=的根的情况是( ) A 没有实数根 B 有两个相等的实数根 C 有两个不相等的实数根 D 无法判断33.如图5,四边形ABCD 是梯形,AD∥BC,CA 是BCD ∠的平分线,且,4,6,AB AC AB AD ⊥==则tan B =( )A114 D 4图5B第二部分 非选择题(共120分)二.填空题(本大题共6小题,每小题3分,满分18分) 11.点P 在线段AB 的垂直平分线上,PA=7,则PB=______________ .12.广州某慈善机构全年共募集善款5250000元,将5250000用科学记数法表示为___________ .13.分解因式:=+xy x 2_______________.14.一次函数,1)2(++=x m y 若随的增大而增大,则的取值范围是___________ .15.如图6,ABC Rt ∆的斜边AB=16, ABC Rt ∆绕点O 顺时针旋转后得到C B A Rt '''∆,则C B A Rt '''∆的斜边B A ''上的中线D C '的长度为_____________ .16.如图7,在平面直角坐标系中,点O 为坐标原点,点P 在第一象限,P Θ与轴交于O,A 两点,点A 的坐标为(6,0),P Θ的半径为13,则点P 的坐标为 ____________.三.解答题(本大题共9小题,满分102分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分9分) 解方程:09102=+-x x . 18.(本小题满分9分)如图8,四边形ABCD 是菱形,对角线AC 与BD 相交于O,AB=5,AO=4,求BD 的长.图819.(本小题满分10分)先化简,再求值:yx y y x x ---22,其中.321,321-=+=y x20.(本小题满分10分)已知四边形ABCD 是平行四边形(如图9),把△ABD 沿对角线BD 翻折180°得到△A ˊBD.(1) 利用尺规作出△A ˊBD.(要求保留作图痕迹,不写作法); (2)设D A ˊ 与BC 交于点E ,求证:△BA ˊE ≌△DCE.D图9B21.(本小题满分12分)在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m,规定:当m≥10时为A级,当5≤m<10时为B级,当0≤m<5时为C级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下:11 10 6 15 9 16 13 12 0 82 8 10 17 6 13 7 5 7 312 10 7 11 3 6 8 14 15 12(1)求样本数据中为A级的频率;(2)试估计1000个18~35岁的青年人中“日均发微博条数”为A级的人数;(3)从样本数据为C级的人中随机抽取2人,用列举法求抽得2个人的“日均发微博条数”都是3的概率.22.(本小题满分12分)如图10,在东西方向的海岸线MN上有A、B两艘船,均收到已触礁搁浅的船P的求救信号,已知船P 在船A的北偏东58°方向,船P在船B的北偏西35°方向,AP的距离为30海里.(1)求船P到海岸线MN的距离(精确到0.1海里);(2)若船A、船B分别以20海里/小时、15海里/小时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P处.PBA图10北东NM23.(本小题满分12分)如图11,在平面直角坐标系中,点O为坐标原点,正方形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(2,2),反比例函数kyx(x>0,k≠0)的图像经过线段BC的中点D.(1)求k的值;(2)若点P(x,y)在该反比例函数的图像上运动(不与点D重合),过点P作PR⊥y轴于点R,作PQ⊥BC所在直线于点Q,记四边形CQPR的面积为S,求S关于x的解析式并写出x的取值范围。

2013年广东省中考数学试题(卷)与答案解析

2013年广东省中考数学试题(卷)与答案解析

2013年省初中毕业生学业考试数学(时间:100分钟 满分:120分)班别:__________学号:____________:___________成绩:______________一、选择题(本大题10小题,每小题3分,共30分) 1. 2的相反数是( )A.21-B. 21C.-2D.22.下列几何体中,俯视图为四边形的是( )3.据报道,2013年第一季度,省实现地区生产总值约1 260 000 000 000元,用科学记数法表示为( )A. 0.126×1012元 B. 1.26×1012元 C. 1.26×1011元 D. 12.6×1011元 4.已知实数a 、b ,若a >b ,则下列结论正确的是( )A.55-<-b aB.b a +<+22C.33ba < D.b a 33> 5.数据1、2、5、3、5、3、3的中位数是( ) A.1 B.2 C.3 D.56.如题6图,AC ∥DF,AB ∥EF,点D 、E 分别在AB 、AC 上,若∠2=50°,则∠1的大小是( ) A.30° B.40° C.50° D.60°7.下列等式正确的是( ) A.1)1(3=-- B. 1)4(0=- C. 6322)2()2(-=-⨯- D. 2245)5()5(-=-÷-8.不等式5215+>-x x 的解集在数轴上表示正确的是( )9.下列图形中,不是..轴对称图形的是( )10.已知210k k <<,则是函数11-=x k y 和xk y 2=的图象大致是( )二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:92-x =________________.12.若实数a 、b 满足042=-++b a ,则=ba 2________. 13.一个六边形的角和是__________.14.在Rt △ABC 中,∠ABC=90°,AB=3,BC=4,则sinA=________.15.如题15图,将一直角三角板纸片ABC 沿中位线DE 剪开后,在平面上将△BDE 绕着CB 的中点D 逆时针旋转180°,点E 到了点E ′位置, 则四边形ACE ′E 的形状是________________.16.如题16图,三个小正方形的边长都为1,则图中阴影部分面积的和是__________(结果保留π).三、解答题(一)(本大题3小题,每小题5分,共15分)17.解方程组⎩⎨⎧=++=821y x y x① ②18.从三个代数式:①222b ab a +-,②b a 33-,③22b a -中任意选择两个代数式构造成分式,然后进行化简,并求当3,6==b a 时该分式的值.19.如题19图,已知□ABCD .(1)作图:延长BC,并在BC 的延长线上截取线段CE,使得CE=BC (用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,不连结AE,交CD 于点F,求证:△AFD ≌△EFC.四、解答题(二)(本大题3小题,每小题8分,共24分)20.某校教导处为了解该校七年级同学对排球、乒乓球、羽毛球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能选择最喜爱的一项运动项目),进行了随机抽样调查,并将调查结果统计后绘制成了如【表1】和题20图所示的不完整统计图表. (1)请你补全下列样本人数分布表(【表1】)和条形统计图(题20图);(2)若七年级学生总人数为920人,请你估计七年级学生喜爱羽毛球运动项目的人数.21.地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?22.如题22图,矩形ABCD 中,以对角线BD 为一边构造一个矩形BDEF,使得另一边EF 过原矩形的顶点C.(1)设Rt △CBD 的面积为S 1, Rt △BFC 的面积为S 2, Rt △DCE 的面积为S 3 , 则S 1______ S 2+ S 3(用“>”、“=”、“<”填空);(2)写出题22图中的三对相似三角形,并选择其中一对进行证明.五、解答题(三)(本大题3小题,每小题9分,共27分) 23. 已知二次函数1222-+-=m mx x y .(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式; (2)如题23图,当2=m 时,该抛物线与y 轴交于点C,顶点为D, 求C 、D 两点的坐标;(3)在(2)的条件下,x 轴上是否存在一点P,使得PC+PD 最短?若P 点 存在,求出P 点的坐标;若P 点不存在,请说明理由.24.如题24图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.25.有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,4.将这副直角三角板按如题25图(1)所示位置摆放,点B与点F重∠FDE=90°,DF=4,DE=3合,直角边BA与FD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动.(1)如题25图(2),当三角板DEF运动到点D与点A重合时,设EF与BC交于点M,则∠EMC=______度;(2)如题25图(3),在三角板DEF运动过程中,当EF经过点C时,求FC的长;(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分面积为y,求y与x的函数解析式,并求出对应的x取值围.FED CBA参考答案一、C D B D C C B A C A二、11.)3)(3(-+x x ;12. 1;13. 720°;14.54;15.平行四边形;16.83π 三、17.⎩⎨⎧==23y x ;18.选取①、②得3)(3)(332222b a b a b a b a b ab a -=--=-+-,当3,6==b a 时,原式=1336=-(有6种情况).19. (1)如图所示,线段CE 为所求;(2)证明:在□ABCD 中,AD ∥BC,AD=BC.∴∠CEF=∠DAF ∵CE=BC,∴AD=CE,又∵∠CFE=∠DFA,∴△AFD ≌△EFC. 20.(1)30%、10、50;图略;(2)276(人).21.(1)10%;(2)12100×(1+0.1)=13310(元). 22.(1) S 1= S 2+ S 3;(2)△BCF ∽△DBC ∽△CDE; 选△BCF ∽△CDE证明:在矩形ABCD 中,∠BCD=90°且点C 在边EF 上,∴∠BCF+∠DCE=90° 在矩形BDEF 中,∠F=∠E=90°,∴在Rt △BCF 中,∠CBF+∠BCF=90° ∴∠CBF=∠DCE,∴△BCF ∽△CDE.23.(1)m=±1,二次函数关系式为x x y x x y 2222-=+=或;(2)当m=2时,1)2(3422--=+-=x x x y ,∴D(2,-1);当0=x 时,3=y ,∴C(0,3). (3)存在.连结C 、D 交x 轴于点P,则点P 为所求,由C(0,3)、D(2,-1)求得直线CD 为32+-=x yFNMEDC BAGFN MEDCB AFEA当0=y 时,23=x ,∴P(23,0).24.(1)∵AB=DB,∴∠BDA=∠BAD,又∵∠BDA=∠BCA,∴∠BCA=∠BAD. (2)在Rt △ABC 中,AC=135122222=+=+BC AB ,易证△ACB ∽△DBE,得ACBDAB DE =, ∴DE=13144131212=⨯ (3)连结OB,则OB=OC,∴∠OBC=∠OCB,∵四边形ABCD 接于⊙O,∴∠BAC+∠BCD=180°,又∵∠BCE+∠BCD=180°,∴∠BCE=∠BAC,由(1)知∠BCA=∠BAD,∴∠BCE=∠OBC,∴OB ∥DE ∵BE ⊥DE,∴OB ⊥BE,∴BE 是⊙O 的切线.25. 解:(1)15;(2)在Rt △CFA 中,AC=6,∠ACF=∠E=30°,∴FC=ο30cos AC=6÷3423= (3)如图(4),设过点M 作MN ⊥AB 于点N,则MN ∥DE,∠NMB=∠B=45°,∴NB=NM,NF=NB-FB=MN-x∵MN ∥DE ∴△FMN ∽FED,∴FD FNDE MN =,即434x MN MN -=,∴x MN 233+= ①当20≤≤x 时,如图(4) ,设DE 与BC 相交于点G ,则DG=DB=4+x ∴x x x MN BF DG DB S S y BMF BGD 23321)4(2121212+⋅⋅-+=⋅⋅-⋅⋅=-=∆ 即844312+++-=x x y ; ②当3262-≤<x 时,如图(5),x x MN BF AC S S y BMFBCA 23321362121212+⋅-⨯=⋅⋅-⋅=-=∆ 即184332++-=x y ; ③当4326≤<-x 时, 如图(6) 设AC 与EF 交于点H , ∵AF=6-x ,∠AHF=∠E=30° ∴AH=)6(33x AF -=2)6(23)6(3)6(21x x x S y FHA -=-⋅-==∆ 综上所述,当20≤≤x 时,844312+++-=x x y 题25图(4)题25图(5)当3262-≤<x ,184332++-=x y 当4326≤<-x 时,2)6(23x y -=。

2013学年广东省中考数学年试题答案

2013学年广东省中考数学年试题答案

数学试卷 第1页(共4页) 数学试卷 第2页(共4页)绝密★启用前2013年普通高等学校招生全国统一考试(重庆卷)数学试题卷(文史类)数学试题卷(文史类)共4页.满分150分.考试时间120分钟. 注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其他答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,将试题卷和答题卡一并交回.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.已知全集{1,2,3,4}U =,集合={1,2}A ,={2,3}B ,则()U A B =( )A .{1,3,4}B .{3,4}C .{3}D .{4} 2.命题“对任意x ∈R ,都有20x ≥”的否定为( )A .存在0x ∈R ,使得200x < B .对任意x ∈R ,都有20x < C .存在0x ∈R ,使得20x ≥ D .不存在x ∈R ,使得20x < 3.函数21log (2)y x =-的定义域是( )A .(,2)-∞B .(2,)+∞C .(2,3)(3,)+∞D .(2,4)(4,)+∞4.设P 是圆22(3)(1)4x y -++=上的动点,Q 是直线3x =-上的动点,则||PQ 的最小值为( )A .6B .4C .3D .25.执行如图所示的程序框图,则输出的k 的值是 ( )A .3B .4C .5D .66.如图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为( )1 8 92 1 2 2 7 9 33A .0.2B .0.4C .0.5D .0.67.关于x 的不等式22280x ax a --<(0)a >的解集为12(,)x x ,且2115x x -=,则a =( )A .52B .72C .154 D .1528.某几何体的三视图如图所示,则该几何体的表面积为( )A .180B .200C .220D .2409.已知函数3()sin 4f x ax b x =++(,)a b ∈R ,2(lg(log 10))5f =,则(lg(lg 2))f =( ) A .5- B .1- C .3D .410.设双曲线C 的中心为点O ,若有且只有一对相交于点O ,所成的角为60 的直线11A B 和22A B ,使1122||||A B A B =,其中1A ,1B 和2A ,2B 分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是( )A. B. C.)+∞ D.)+∞ 姓名________________ 准考证号_____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共4页) 数学试卷 第4页(共4页)二、填空题:本大题共5小题,每小题5分,共25分.把答案填写在答题卡相应位置上. 11.设复数12i z =+(i 是虚数单位),则||z = . 12.若2,a ,b ,c ,9成等差数列,则c a -= .13.若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为 .14.在OA 为边,OB 为对角线的矩形中,(3,1)OA =- ,(2,)OB k =-,则实数k = . 15.设0πα≤≤,不等式28(8sin )cos 20x x αα-+≥对x ∈R 恒成立,则a 的取值范围为 .三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分13分,(Ⅰ)小问7分,(Ⅱ)小问6分)设数列{}n a 满足:11a =,13n n a a +=,*n ∈N . (Ⅰ)求{}n a 的通项公式及前n 项和n S ;(Ⅱ)已知{}n b 是等差数列,n T 为其前n 项和,且12b a =,3123b a a a =++,求20T .17.(本小题满分13分,(Ⅰ)小问9分,(Ⅱ),(Ⅲ)小问各2分)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入i x (单位:千元)与月储蓄iy (单位:千元)的数据资料,算得10180i i x ==∑,10120i i y ==∑,101184i i i x y ==∑,1021720i i x ==∑. (Ⅰ)求家庭的月储蓄y 对月收入x 的线性回归方程y bx a =+; (Ⅱ)判断变量x 与y 之间是正相关还是负相关;(Ⅲ)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:线性回归方程y bx a =+中,1221ni ii nii x ynx y b xnx==-=-∑∑,a y bx =-,其中x ,y 为样本平均值.线性回归方程也可写为 y bxa =+ .18.(本小题满分13分,(Ⅰ)小问4分,(Ⅱ)小问9分)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c,且222a b c =+. (Ⅰ)求A ;(Ⅱ)设a ,S 为△ABC 的面积,求3cos cos S B C +的最大值,并指出此时B 的值.19.(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分)如图,四棱锥P ABCD -中,PA ⊥底面ABCD,PA =,2BC CD ==,π3ACB ACD ∠=∠=. (Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)若侧棱PC 上的点F 满足7PF FC =,求三棱锥P BDF -的体积.20.(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分)某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度),设该蓄水池的底面半径为r 米,高为h 米,体积为V 立方米,假设建造成本仅与表面积有关,侧面的建造成本为100 元/平方米,底面的建造成本为160 元/平方米,该蓄水池的总建造成本为12 000π 元(π为圆周率).(Ⅰ)将V 表示成r 的函数()V r ,并求该函数的定义域;(Ⅱ)讨论函数()V r 的单调性,并确定r 和h 为何值时该蓄水池的体积最大.21.(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分)如图,椭圆的中心为原点O ,长轴在x轴上,离心率e =,过左焦点1F 作x 轴的垂线交椭圆于A ,A '两点,||4AA '=.(Ⅰ)求该椭圆的标准方程;(Ⅱ)取平行于y 轴的直线与椭圆相交于不同的两点P ,P ',过P ,P '作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外.求PP Q '△的面积S 的最大值,并写出对应的圆Q的标准方程.。

2013年广州市普通高中毕业班综合测2答案

2013年广州市普通高中毕业班综合测2答案

值. ……………………………………………10分
若 p q 是真命题,则 p 是真命题且 q 是真命题,即 p 是假命题且 q 是真命
题.……………11分
所以
0
a≤
2 1,或a 1 , 2
……………………………………………………12分
0 a≤1.


0 a≤ 2 1

1 a≤1. ………………………………………………………………………13分 2
不同的线段.…………………………5 分
其中长度为 1 的线段有 8 条,长度为 2 的线段有 4 条,长度为 2 的线段有 6 条,长度
为 5 的线段有 8 条,长度为 2 2 的线段有 2 条. 所以 所有可能的取值为1, 2,2, 5,2 2 .………7 分
且 P 1 8 2 , P 2 4 1 , P 2 6 3 ,





15. 2

AB2 AC2 BC2 cos BAC
………………………………………………………2 分
2 AB AC
802 502 702 1 .………………………3 分 280 50 2
因为 BAC 为△ ABC 的内角,所以 BAC .……………………4 分 3
(2)方法 1:因为发射点 O 到 A 、 B 、 C 三个工作点的距离相等, 所以点 O 为△ ABC 外接圆的圆心.…………………… 5 分 设外接圆的半径为 R , 在△ ABC 中,由正弦定理得 BC 2R , …………………………………7 分 sin A
半轴,建立空间直角坐标系 D xyz 如图.…………………5 分
D
H B x
E y

广东省深圳市2013年中考数学真题试卷(含答案)

广东省深圳市2013年中考数学真题试卷(含答案)
4
23.如图 1,直线 AB 过点 A(m,0),B(0,n),且 m+n=20(其中 m>0,n>0). (1)m 为何值时,△OAB 面积最大?最大值是多少?
(2)如图 2,在(1)的条件下,函数 求 k 的值.
ʹ ⺁ 的图象与直线 AB 相交于 C、D 两点,若 ㊀ᥦ
㊀ᥦ ,
(3)在(2)的条件下,将△OCD 以每秒 1 个单位的速度沿 x 轴的正方向平移,如图 3,设它与△OAB 的 重叠部分面积为 S,请求出 S 与运动时间 t(秒)的函数关系式(0<t<10).
5
答案解析部分
1.【答案】A 【解析】【解答】解:﹣3 的绝对值是 3. 故选:A. 【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉 这个绝对值的符号.此题主要考查了绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的 绝对值是它的相反数;0 的绝对值是 0. 2.【答案】D 【解析】【解答】解:A、原式=a2+2ab+b2,本选项错误; B、原式=a2b2,本选项错误; C、原式=a6,本选项错误; D、原式=a3,本选项正确. 故选 D. 【分析】A、原式利用完全平方公式展开得到结果,即可作出判断; B、原式利用积的乘方运算法则计算得到结果,即可作出判断; C、原式利用幂的乘方运算法则计算得到结果,即可作出判断; D、原式利用同底数幂的乘法法则计算得到结果,即可作出判断. 3.【答案】C 【解析】【解答】解:32 000 000=3.2×107, 故选:C. 【分析】科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值时,要看把原数变 成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当 原数的绝对值<1 时,n 是负数. 4.【答案】B 【解析】【解答】解:A、是轴对称图形,也是中心对称图形,故本选项错误; B、是轴对称图形,不是中心对称图形,故本选项正确; C、是轴对称图形,也是中心对称图形,故本选项错误; D、是轴对称图形,也是中心对称图形,故本选项错误. 故选 B. 【分析】根据轴对称及中心对称概念,结合选项即可得出答案. 5.【答案】B 【解析】【解答】解:共有 21 名学生参加预赛,取前 11 名,所以小颖需要知道自己的成绩是否进入前 11.我

2013年广东省中考数学试题与答案

2013年省初中毕业生学业考试数学(时间:100分钟 满分:120分)班别:__________学号:____________:___________成绩:______________一、选择题(本大题10小题,每小题3分,共30分) 1. 2的相反数是( )A.21-B. 21C.-2D.22.下列几何体中,俯视图为四边形的是( )3.据报道,2013年第一季度,省实现地区生产总值约1 260 000 000 000元,用科学记数法表示为( )A. 0.126×1012元 B. 1.26×1012元 C. 1.26×1011元 D. 12.6×1011元 4.已知实数a 、b ,若a >b ,则下列结论正确的是( )A.55-<-b aB.b a +<+22C.33ba < D.b a 33> 5.数据1、2、5、3、5、3、3的中位数是( ) A.1 B.2 C.3 D.56.如题6图,AC ∥DF,AB ∥EF,点D 、E 分别在AB 、AC 上,若∠2=50°,则∠1的大小是( ) A.30° B.40° C.50° D.60°7.下列等式正确的是( ) A.1)1(3=-- B. 1)4(0=- C. 6322)2()2(-=-⨯- D. 2245)5()5(-=-÷-8.不等式5215+>-x x 的解集在数轴上表示正确的是( )9.下列图形中,不是..轴对称图形的是( )10.已知210k k <<,则是函数11-=x k y 和xk y 2=的图象大致是( )二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:92-x =________________.12.若实数a 、b 满足042=-++b a ,则=ba 2________. 13.一个六边形的角和是__________.14.在R t △ABC 中,∠ABC=90°,AB=3,BC=4,则sinA=________.15.如题15图,将一直角三角板纸片ABC 沿中位线DE 剪开后,在平面上将△BDE 绕着CB 的中点D 逆时针旋转180°,点E 到了点E ′位置, 则四边形ACE ′E 的形状是________________.16.如题16图,三个小正方形的边长都为1,则图中阴影部分面积的和是__________(结果保留π).三、解答题(一)(本大题3小题,每小题5分,共15分)17.解方程组⎩⎨⎧=++=821y x y x① ②18.从三个代数式:①222b ab a +-,②b a 33-,③22b a -中任意选择两个代数式构造成分式,然后进行化简,并求当3,6==b a 时该分式的值.19.如题19图,已知□ABCD .(1)作图:延长BC,并在BC 的延长线上截取线段CE,使得CE=BC (用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,不连结AE,交CD 于点F,求证:△AFD ≌△EFC.四、解答题(二)(本大题3小题,每小题8分,共24分)20.某校教导处为了解该校七年级同学对排球、乒乓球、羽毛球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能选择最喜爱的一项运动项目),进行了随机抽样调查,并将调查结果统计后绘制成了如【表1】和题20图所示的不完整统计图表. (1)请你补全下列样本人数分布表(【表1】)和条形统计图(题20图);(2)若七年级学生总人数为920人,请你估计七年级学生喜爱羽毛球运动项目的人数.21.地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?22.如题22图,矩形ABCD 中,以对角线BD 为一边构造一个矩形BDEF,使得另一边EF 过原矩形的顶点C.(1)设R t △CBD 的面积为S 1, R t △BFC 的面积为S 2, R t △DCE 的面积为S 3 , 则S 1______ S 2+ S 3(用“>”、“=”、“<”填空);(2)写出题22图中的三对相似三角形,并选择其中一对进行证明.五、解答题(三)(本大题3小题,每小题9分,共27分) 23. 已知二次函数1222-+-=m mx x y .(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式; (2)如题23图,当2=m 时,该抛物线与y 轴交于点C,顶点为D, 求C 、D 两点的坐标;(3)在(2)的条件下,x 轴上是否存在一点P,使得PC+PD 最短?若P 点 存在,求出P 点的坐标;若P 点不存在,请说明理由.24.如题24图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.25.有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,4.将这副直角三角板按如题25图(1)所示位置摆放,点B与点F重∠FDE=90°,DF=4,DE=3合,直角边BA与FD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动.(1)如题25图(2),当三角板DEF运动到点D与点A重合时,设EF与BC交于点M,则∠EMC=______度;(2)如题25图(3),在三角板DEF运动过程中,当EF经过点C时,求FC的长;(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分面积为y,求y与x的函数解析式,并求出对应的x取值围.FED CBA参考答案一、C D B D C C B A C A二、11.)3)(3(-+x x ;12. 1;13. 720°;14.54;15.平行四边形;16.83π 三、17.⎩⎨⎧==23y x ;18.选取①、②得3)(3)(332222b a b a b a b a b ab a -=--=-+-,当3,6==b a 时,原式=1336=-(有6种情况).19. (1)如图所示,线段CE 为所求;(2)证明:在□ABCD 中,A D ∥BC,AD=BC.∴∠CEF=∠DAF ∵CE=BC,∴AD=CE,又∵∠CFE=∠DFA,∴△AFD ≌△EFC. 20.(1)30%、10、50;图略;(2)276(人).21.(1)10%;(2)12100×(1+0.1)=13310(元). 22.(1) S 1= S 2+ S 3;(2)△BCF ∽△DBC ∽△CDE; 选△BCF ∽△CDE证明:在矩形ABCD 中,∠BCD=90°且点C 在边EF 上,∴∠BCF+∠DCE=90° 在矩形BDEF 中,∠F=∠E=90°,∴在Rt △BCF 中,∠CBF+∠BCF=90° ∴∠CBF=∠DCE,∴△BCF ∽△CDE.23.(1)m=±1,二次函数关系式为x x y x x y 2222-=+=或;(2)当m=2时,1)2(3422--=+-=x x x y ,∴D(2,-1);当0=x 时,3=y ,∴C(0,3). (3)存在.连结C 、D 交x 轴于点P,则点P 为所求,由C(0,3)、D(2,-1)求得直线CD 为32+-=x yFNMEDC BAGFN MEDCB AFEA当0=y 时,23=x ,∴P(23,0).24.(1)∵AB=DB,∴∠BDA=∠BAD,又∵∠BDA=∠BCA,∴∠BCA=∠BAD. (2)在Rt △ABC 中,AC=135122222=+=+BC AB ,易证△ACB ∽△DBE,得ACBDAB DE =, ∴DE=13144131212=⨯ (3)连结OB,则OB=OC,∴∠OBC=∠OCB,∵四边形ABCD 接于⊙O,∴∠BAC+∠BCD=180°,又∵∠BCE+∠BCD=180°,∴∠BCE=∠BAC,由(1)知∠BCA=∠BAD,∴∠BCE=∠OBC,∴OB ∥DE ∵BE ⊥DE,∴OB ⊥BE,∴BE 是⊙O 的切线.25. 解:(1)15;(2)在R t △CFA 中,AC=6,∠ACF=∠E=30°,∴FC=ο30cos AC=6÷3423= (3)如图(4),设过点M 作MN ⊥AB 于点N,则MN ∥DE,∠NMB=∠B=45°,∴NB=NM,NF=NB-FB=MN-x∵MN ∥DE ∴△FMN ∽FED,∴FD FNDE MN =,即434x MN MN -=,∴x MN 233+= ①当20≤≤x 时,如图(4) ,设DE 与BC 相交于点G ,则DG=DB=4+x ∴x x x MN BF DG DB S S y BMF BGD 23321)4(2121212+⋅⋅-+=⋅⋅-⋅⋅=-=∆ 即844312+++-=x x y ; ②当3262-≤<x 时,如图(5),x x MN BF AC S S y BMFBCA 23321362121212+⋅-⨯=⋅⋅-⋅=-=∆ 即184332++-=x y ; ③当4326≤<-x 时, 如图(6) 设AC 与EF 交于点H , ∵AF=6-x ,∠AHF =∠E=30° ∴AH=)6(33x AF -=2)6(23)6(3)6(21x x x S y FHA -=-⋅-==∆ 综上所述,当20≤≤x 时,844312+++-=x x y 题25图(4)题25图(5)当3262-≤<x ,184332++-=x y 当4326≤<-x 时,2)6(23x y -=。

广东省2013年中考数学试卷及答案解析(精品真题)

广东省2013年中考数学试卷及答案解析(精品真题) 学校:___________姓名:___________班级:___________考号:___________一、单选题1.(2013年)2-的相反数是( )A .2-B .2C .12D .12- 2.(2013年)下列几何体中,俯视图为四边形的是( )A .B .C .D .3.(2013年)据报道,2013年第一季度,实现地区生产总值约1260 0亿元,用科学记数法表示为( )A .0.126×1012元B .1.26×1012元C .1.26×1011元D .12.6×1011元4.(2013年)已知实数a 、b ,若a >b ,则下列结论正确的是A .a 5<b 5--B .2a<2b ++C .a b <33D .3a>3b5.(2013年)数据1、2、5、3、5、3、3的中位数是( )A .1B .2C .3D .56.(2013年)如图,AC ∥DF ,AB ∥EF ,点D 、E 分别在AB 、AC 上,若∠2=50°,则∠1的大小是( )A .30°B .40°C .50°D .60°7.(2013年)下列等式正确的是( )A .311()--=B .041-=()C .()()236222-⨯-=-D .()()422555-÷-=-8.(2013年)不等式5x 1>2x 5-+的解集在数轴上表示正确的是( )A .B .C .D . 9.(2013年)下列图形中,不是轴对称图形的是( )A .B .C .D .10.(2013年)已知k 1<0<k 2,则函数1y k x 1=-和2k y x= 的图象大致是 A . B . C .D .二、填空题11.(2013年)分解因式:x 2-9=______.12.(2013年)若实数a 、b 满足a 20+,则2a b=_______. 13.(2013年)一个六边形的内角和是 ___________.14.(2013年)在Rt △ABC 中,∠ABC=90°,AB=3,BC=4,则sinA=_____. 15.(2013年)如图,将一张直角三角板纸片ABC 沿中位线DE 剪开后,在平面上将△BDE 绕着CB 的中点D 逆时针旋转180°,点E 到了点E ′位置,则四边形ACE ′E 的形状是_____16.(2013年)如图,三个小正方形的边长都为1,则图中阴影部分面积的和是_______(结果保留π).三、解答题17.(2013年)解方程组x y 1{2x y 8=++=18.(2013年)从三个代数式:2222a 2ab b 3a 3b a b -+--①,②,③中任意选择两个代数式构造成分式,然后进行化简,并求当a=6,b=3时该分式的值.19.(2013年)如图,已知□ABCD .(1)作图:延长BC ,并在BC 的延长线上截取线段CE ,使得CE =BC .(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连结AE ,交CD 于点F ,求证:△AFD ≌ △EFC .20.(2013年)某校教导处为了解该校七年级同学对排球、乒乓球、羽毛球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能选择最喜爱的一项运动项目),进行了随机抽样调查,并将调查结果统计后绘制成了如表和图所示的不完整统计图表.(1)请你补全下列样本人数分布表和条形统计图;样本人数分布表(2)若七年级学生总人数为920人,请你估计七年级学生喜爱羽毛球运动项目的人数.21.(2013年)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?22.(2013年)如图,矩形ABCD 中,以对角线BD 为一边构造一个矩形BDEF ,使得另一边EF 过原矩形的顶点C .(1)设Rt △CBD 的面积为S 1, Rt △BFC 的面积为S 2, Rt △DCE 的面积为S 3 , 则S 1 S 2+ S 3(用“>”、“=”、“<”填空);(2)写出图中的三对相似三角形,并选择其中一对进行证明.23.(2013年)已知二次函数22y x 2mx m 1=-+-.(1)当二次函数的图象经过坐标原点O (0,0)时,求二次函数的解析式;(2)如图,当m=2时,该抛物线与y 轴交于点C ,顶点为D ,求C 、D 两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由24.(2013年)如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE ⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线。

广州等七地2013年数学中考压轴题解析汇编-推荐下载

的取值范围。
解:(1)∵抛物线过点 A(1,0)
∴a+b+c=0
∴b=-a-c
(2)点 B 在第四象限。理由如下:
当 y1=0 时,ax2+bx+c=0
c
由韦达定理得,x1·x2=
a
∵a≠c
∴x1·x2≠1 ∵抛物线过点 A(1,0)
∴1 是方程的根,令 x1=1 ∴x2≠1 ∴抛物线与 x 轴有两个交点
∴m=-
a
c
a
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2013年广州市初中毕业生学业考试数学试卷

1 2013年广州市初中毕业生学业考试 数 学 本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分.考试时间120分钟. 注意事项: 1.答卷前,考生务必在答题卡第 1 面、第 3 面上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;填写座位号,再用 2B 铅笔把对应号码的标号涂黑. 2.选择题每小题选出答案后,用 2B 铅笔把答题卡上对应题同的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上. 3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用 2B 铅笔画图.答案必须写在答题卡各题指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效. 4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.

第一部分 选择题(共30分) 一、选择题: 1、比0大的数是( ) A. -1 B. 12 C. 0 D. 1 2、下图所示的几何体的主视图是( )

3、在6×6方格中,将图2—①中的图形N平移后位置如图2—②所示,则图形N的平移方法中,正确的是( )

A. 向下移动1格 B. 向上移动1格 C. 向上移动2格 D. 向下移动2格 4、计算:(m3n)2的结果是( ) A. m6n B.m6n2 C. m5n2 D. m3n2 5、为了解中学生获取资讯的主要渠道,设置“A:报纸,B:电视,C:网络,D:身边的人,E:其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图3,该调查的方式是( ),图3中的a的值是( ) A. 全面调查,26 B. 全面调查,24 C. 抽样调查,26 D. 全面调查,24 2

6、已知两数x,y之和是10,x比y的3倍大2,则下面所列方程组正确的是( ) 2310.xyyxA 2310.xyyxB 2310.xyyxC 7、实数a在数轴上的位置如图所示,则|a-2.5|=( )

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年广州市初中毕业生学业考试数学本试卷分选择和非选择题两部分,共三大题25小题,共4页,满分150分,考试时间120分钟注意事项:1.答卷前,考生务必在答题卡第一面,第三面上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;填写座位号、再用2B铅笔把对应号码的标号涂黑.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题的答案标号涂黑:如需改动,用橡皮擦干净后,再选涂其他答案标号:不能打在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B铅笔画图,答案必须写在答题卡各题指定区域内的相应位置上:如需改动,先划掉原来的答案,然后再写上新的答案:改动的答案也不能超出指定的区域,不准使用铅笔,圆珠笔和涂改液,不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分选择题(共30分)一、选择题:1.比0大的数是()A -1 B12- C 0 D 1答案:1.D1-1012<-<<2.图1所示的几何体的主视图是答案:2.A 主视图3.在6×6方格中,将图2-①中的图形N平移后位置如图2-②所示,则图形N的方法中,正确的是()A.向下移动1格B.向上移动1格C.向上移动2格D.向下移动2格答案: 3.D4.计算:32()m n 的结果是()A. 32()m nB. 62m n C. 52m n D. 32m n 答案: 4.B3262m m n =(n )5. 为了解中学生获取资讯的主要渠道,设置“A:报纸,B:电视,C:网络,D:身边的人,E:其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图3,该调查方式是(),图3中的a 的值是() A 全面调查,26 B 全面调查,24 C 抽样调查,26 D 全面调查,24答案: 5.D6.已知两数x,y 之和是10,x 比y 的3倍大2,则下面所列方程组正确的是() A 1032x y y x +=⎧⎨=+⎩ B1032x y y x +=⎧⎨=-⎩ C 1032x y x y +=⎧⎨=+⎩ D 1032x y x y +=⎧⎨=-⎩ 答案: 6.C x+y=10;x=3y+2.7.实数a 在数轴上的位置如图4所示,则|a-2.5|=()答案: 7.B 0<a<2.5 |a-2.5|=2.5-a8.x 的取值范围是()A x ≠1B x ≥0C x>0D x ≥0且x ≠1 答案:8.D1x - x 01x ≥⎧⎨≠⎩9.若5k+20<0,则关于x 的一元二次方程240x x k +-=的根的情况是()A 没有实数根B 有两个相等的实数根是C 有两个不相等的实数根D 无法判断 答案: 9.A=16+4k 4(4)5205(4)k K K =++=+ 0⇒<10.如图5,四边形ABCD 是梯形,AD ∥BC ,CA 是BCD ∠的平分线且AB ⊥AC,AB=4,AD=6,则tanB=( )ABC114答案: 10.B解析:作DE ∥AB,DE AC ⊥,AD=DC ⇒M 为AC 的中点,角平分线+垂线⇒中线 ∴M 为DE 中点,ME=MD=2∴⇒第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分) 11.点P 在线段AB 的垂直平分线上,PA=7,则PB=________. 答案: 11.PB=712.广州某慈善机构全年共募集善款5250000元,将5250000用科学计数法表示为________. 答案: 12. 65.2510⨯13.分解因式:2x xy +=_________. 答案: 13.x (x+y )14.一次函数y=(m+2)x+1,若y 随x 的增大而增大,则m 的取值范围是_______. 答案: 14.m>-215.如图6,Rt △ABC 的斜边AB=16,Rt △ABC 绕点O 顺时针旋转后得到Rt A B C ''' 则Rt A B C ''' 的斜边A B ''上的中线C D '的长度为_________.答案: 15. 8 旋转不改变形状,依然是Rt16.如图7,在平面直角坐标系中,点O 为坐标原点,点P 在第一象限,⊙P 与X 轴交于O,A两点,点A 的坐标为(6,0),⊙P P 的坐标为_______.答案: 16.P(3,2)三、解答题17.解方程:21090x x -+=. 答案: 17.21090(1)(9)0x=1x=9x x x x -+=⇒--=⇒或18.如图8,四边形ABCD 是菱形,对角线AC 与BD 相较于O ,AB=5,AO=4,求BD 的长.答案:18. 菱形ABCD 中,AC BD ⊥R t AOB 中,AB=5,AO=4⇒BO=3 DB 26BO ∴==19.先化解,再求值:22x y x y x y---,其中答案:19. 2222()()x y x y x y x y x y x y x y x y x y -+--===+----1x ==y 1=-112x y +=+-= 20.已知四边形ABCD 是平行四边形(如图9),把ABD 沿对角线BD 翻折180得到'A BD . (1)利用尺规作出'A BD .(要求保留作图很痕迹,不写作法); (2)设DA ’与BC 交于点E,求证:BA 'E DCE ≅.答案:(1)如图;(2)翻折得A'BD=ADB=DBC ∠∠∠ 'A BD ABD BDC ∠=∠=∠ A ''BE A BD DBC ∴∠=∠-∠A 'D ''E BDC A DB A BD DBC ∠=∠-∠=∠-∠ A ''BE A DE ∴∠=∠BA'=DC 'BA E DCE ∴≅21.在某项针对18~35岁的年轻人发微博数量的调查中,设一个人的“日均发微博条数”为m ,规定:当m 10≥时为A 级,当5m 10≤≤时为B 级,当0m 5≤≤时为C 级,现随机抽取30个符合年龄条件的年轻人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下:(1)求样本数据中为A 级的频率;(2)试估计1000个18~35岁的年轻人中“日均发微博条数” 为A 级的人数;(3)从样本数据为C 级的人中随机抽取2人,用列举法求丑得2个人的“日均发微博条数”都是3的概率。

答案:21.(1)A 级有15人则A 级的频率为151=302(2)11000=5002⨯(人) (3)C 级中有4人 抽取两人=(0,2)(0,3)(0,3)(2,3)(2,3)(3,3)1P 6∴=22.如图10,在东西方向的海岸MN 上有A,B 两艘船,均收到已触礁搁浅的船P 的求救信号,已知船P 在船A 的北偏东58方向,船P 在船B 的北偏西35方向,AP 距离为30海里。

(1)求船P 到海岸MN 的距离(精确到0.1海里);(2)若船A,船B 分别以20海里/小时、15海里/小时的速度同时出发,均速直线前往救援,是通过计算判断哪艘船先到达船P 处。

答案:22.(1)如图,作PD AB ⊥于DPAD 905832∠=-=PA=30R t ADP ∴ 中,PD=PA ·sin 30 =30sin3215.9⋅≈(2)R B t AD 中, 5.5PB sin 55 6.819PD =(PBD 903555∠=-=) 得PA 101A =0.520202===船时间 PB 6.7B =0.450.51515=≈<船时间∴B 船比A 船早到P 点。

23.如图11,在平面直角坐标系中,点O 为坐标原点,在平面直角坐标系中,正方形OABC 的边OA 、OC 分别在X 轴,Y 轴上,点B的坐标为(2,2),反比例函数ky x=(x>0,K ≠0)的图像经过线段BC 的中点D. (1)求K 的值;(2)若点P (x,y )在该反比例函数的图像上运动(不与点D 重合),过点P ,作PR ⊥y 轴于点R ,作PQ ⊥BC 所在直线于点Q,记四边形CQPR 的面积为S.求S 关于x 的解析式并写出x 取值范围。

答案: (1)y kx=过BC中点D (1,2)∴k=2 (2)PR Y ⊥轴PQ BC ⊥ ∴四边形CQPR 为矩形,P(x,y)2y k x x== 2S |2||2|CQPR PR PQ x y x x=⋅=-=-2(2)22=222(2)x x x xx x⎧-⎪-⎧⎪⇒⎨⎨-⎩⎪-⎪⎩ 022y y <<>20222xx<<>101x x ><<22;(1)22(01)x x S x x -⎧∴⎨-⎩>;<<24.已知AB 是⊙O 的直径,AB=4,点C 在线段AB 的延长线上运动,点D 在⊙O 上运动(不与点B 重合),连接CD,且CD=OA 。

(1)当OC=(如图12),求证:CD 是⊙O 的切线;(2)当OC>,CD 所在直线于⊙O 相交,设另一交点为E ,连接AE.① 当D 为CE 的中点时,求△ACE 的周长;②连接OD ,是否存在四边形AODE 为梯形?若存在,请说明梯形个数并求此时AE ED ⋅的值;若不存在,请说明理由。

答案:24.(1)证明:当1OA 22OD AB === CD=OA=2 ODC ∴ 中222OD CD OC += OD CD ∴⊥⇒CD 是O 的切线(2)当OC > ①D 为CE 中点,连OD∵CD=OA=2 ∴CE=2CD=4 1OD 2CE = ∴EOC 直角三角形∴OEC 60∠= ECO 30∠=1OD 2CE ∴=AOE 90∠= 可求得AE =∴C ACE AC AE CE AO OC AE CE =++=+++=②假设存在四边形AODE 为梯形则AE ∥OD作法:取⊙O 上一点D 连OD,过A 作AE ∥OD(D 在近B 点的半弧上)连ED,且长线必定与AB 延长线相交,取点C这样的梯形应能找到两个(C 在线段AB 连线上)设CB=x, ∵CD=OA=2又∵OD ∥AE ∴OD CO CD AE AC CE == 即22+x 24AE x CE==+ 2(4)AE 222(4)4222x CE DE x x DE x x +⇒===+++⇒=-=++ 又∵有CD ·CE=CB ·CA (圆割线定理)2x+2(4)12+xx x x ∴⋅=⋅+⇒=(4) DE∴= AE 22DE =+= 得AE (24ED ⋅== 25.已知抛物线21y (0,)ax bx c a a C =++≠≠过点A (1,0),顶点为B,且抛物线不经过第三象限。

相关文档
最新文档