再结晶和晶粒长大
回复与再结晶

(1)温度 随T↑,晶粒长大 温度一定,晶粒达到一定尺寸后不再长大。 (2)杂质与合金元素 异类原子吸附晶界处,降低晶界能,减少驱动力,阻碍晶粒长大。
第八章: 回复与再结晶
8.4晶粒长大
8.4.1晶粒的正常长大 3.影响晶粒长大的因素 晶粒长大,是通过晶界处的原子扩散迁移实现
(3)分散相粒子 第二相粒子越细小,数量越多,则阻碍晶粒长大能力越强。
8.1.1 显微组织的变化
冷变形金属随加热温度升高组织变化示意图
再结晶后组织恢复到变形前的程度,性能也恢复到变形前的程度 晶粒长大:新晶粒逐渐相互合并长大.
第八章: 回复与再结晶
8.1 冷变形金属及合金在退火过程中的变化
8.1.2 储存能与内应力变化
随T↑,储存能逐渐释放. 再结晶后,形变储存能全部释放.
第八章: 回复与再结晶
8.5 金属的热加工(变形)
8.5.2热加工后的组织与性能
热加工对组织和性能有如下影响: 3.产生带状组织
未热轧的20钢组织:F+P
热轧后的20钢组织:F+P 带状分布
带状组织常在热轧板材、管材中 出现,性能上产生各向异性
第八章: 回复与再结晶
8.3再结晶(recrystallization)
8.3.2 再结晶动力学
第八章: 回复与再结晶
8.3再结晶(recrystallization)
8.3.3 再结晶温度及其影响因素 再结晶温度:经过严重冷变形的金属,在一个小时的退火保温时间内,能完成再结 晶的最低温度(T再).对纯金属T再=0.4T熔 再结晶速度:V再 若T再低,V再快,则再结晶易进行. 影响再结晶的因素如下: 1.加热温度(退火温度) : 退火温度越高,原子扩散越容易进行,V再↑,完成再结晶时间越短. 2.预先变形量 变形度越大,则T再越低 ∵储存能大,再结晶驱动力大.
回复和再结晶

回复和再结晶经范性形变的金属或合金在不同温度加热后,会发生结构、组织和性能的变化。
在较低温度发生回复;温度较高时发生基体的再结晶和晶粒长大。
通过回复和再结晶,金属或合金从热力学上不稳定的冷变形状态转变为热力学上较稳定的新的组织状态。
回复经范性形变的金属或合金在室温或不太高的温度下退火时,金属或合金的显微组织几乎没有变化,然而性能却有程度不同的改变,使之趋近于范性形变之前的数值,这一现象称为回复。
由于加热温度比较低,回复时原子或点缺陷(见晶体缺陷)只在微小的距离内发生迁移。
回复后的光学显微组织中,晶粒仍保持冷变形后的形状,但电子显微镜显示其精细结构已有变化;由范性形变所造成的形变亚结构中,位错密度有所降低,同时,胞状组织逐渐消失,出现清晰的亚晶界和较完整的亚晶。
回复时形成亚结构主要借助于点缺陷间彼此复合或抵销,点缺陷在位错或晶界处的湮没,位错偶极子湮没和位错攀移运动,使位错排列成稳定组态,如排列成位错墙而构成小角度亚晶界(见界面)此即所谓“多边形化”。
回复过程的驱动力来自变形时留于金属或合金中的贮能。
回复后宏观性能的变化决定于退火温度和时间。
温度一定时,回复速率随退火时间增加而逐渐降低。
力学性能(硬度、强度、塑性等)的回复速率通常要较物理性能(电阻、磁性、内应力等)的回复速率慢(见图1)。
再结晶当退火温度足够高、时间足够长时,在变形金属或合金的显微组织中,产生无应变的新晶粒──再结晶核心。
新晶粒不断长大,直至原来的变形组织完全消失,金属或合金的性能也发生显著变化,这一过程称为再结晶。
过程的驱动力也是来自残存的形变贮能(见图1)。
与金属中的固态相变类似,再结晶也有转变孕育期,但再结晶前后,金属的点阵类型无变化。
再结晶核心一般通过两种形式产生。
其一是原晶界的某一段突然弓出,深入至畸变大的相邻晶粒,在推进的这部分中形变贮能完全消失,形成新晶核。
其二是通过晶界或亚晶界合并,生成一无应变的小区──再结晶核心。
金属学与热处理第七章 金属及合金的回复与再结晶

五、亚晶粒尺寸
在回复阶段的前期,亚晶粒尺寸变化不大,但在 后期,尤其在接近再结晶温度时,亚晶粒尺寸显著增 大。
第二节 回 复
一、退火温度和时间对回复过程的影响
回复是指冷塑性变形的金属在加热时,在光学 显微组织发生改变前(即在再结晶晶粒形成前)所 产生的某些亚结构和性能的变化过程。通常指冷塑 性变形金属在退火处理时,其组织和性能变化的早 期阶段。
回复机制
冷变形后,晶体中同号的刃型位错处在同一滑移 面时它们的应变能是相加的,可能导致晶格弯曲(见 图7-5a);而多边化后,上下相邻的两个同号刃型位 错之间的区域内,上面位错的拉应变场正好与下面位 错的压应变场相叠加,互相部分地抵消,从而降低了 系统的应变能(见图7-5b)。
图7-5 多边化前、后刃型位错的排列情况 a)多边化前 b)多边化后
回复机制
图7-6 刃型位错的攀移和 滑移示意图 图7-7 刃型位错攀移示意图
三、亚结构的变化
金属材料经多滑移变形后形成胞状亚结构,胞内位 错密度较低,胞壁处集中着缠结位错,位错密度很高。 在回复退火阶段,当用光学显微镜观察其显微组织时, 看不到有明显的变化。但当用电子显微镜观察时,则可 看到胞状亚结构发生了显著地变化。图7-8为纯铝多晶 体进行回复退火时亚结构变化的电镜照片。
第七章 金属及合金的回复与再结晶
第一节 形变金属与合金在退火过程 中的变化
第二节 回 复 第三节 再 结 晶 第四节 晶粒长大 第五节 金属的热加工
第一节 程
形变金属与合金在退火过
中的变化
一、显微组织的变化
将塑性变形后的金属材料加热到0.5Tm温度附近,
进行保温,随着时间的延长,金属的组织将发生一系 列的变化,这种变化可以分为三个阶段,如图7-1所示。
第五章-材料的形变和再结晶

— 应变角;
扭转变形情况与剪切相似
静载:转矩T;
应变:转角
精选2021版课件
5
拉伸实验 Tensile Test
测试仪器
标准样品
Tensile Strength
(抗拉强度)
Fracture
(断裂)
Necking
(颈缩)
精选2021版课件
6
拉伸实验 Tensile Test
不同而不同。
滑移带观察:试样预先抛光(不腐蚀),进行塑性变形,表面
上出现一个个台阶,即滑移带。
精选2021版课件
35
单晶体滑移特点
• 滑移变形是不均匀的,常集中在一部分晶面上,而
处于各滑移带之间的晶体没有产生滑移。
• 滑移带的发展过程,首先是出现细滑移线,后来才
发展成带,而且,滑移线的数目随应变程度的增大
循环韧性
若交变载荷中的最大应力超过金属的弹性极限,则可
得到塑性滞后环。
金属材料在交变载荷下吸收不可逆变形功的能力,叫
循环韧性。 循环韧性又称为消振性。
循环韧性不好测量,常用振动振幅衰减的自然对数来
表示循环韧性的大小。
循环韧性的应用
减振材料(机床床身、缸体等);
乐器要求循环韧性小。
四、 黏弹性
弹性变形的特征
(1)可逆性:理想的弹性变形是加载时变形,卸载时变形
消失并恢复原状。
弹性变形量比较小,一般不超过0.5%~1%。
(2)在弹性变形范围内,其应力与应变之间保持线性函数
关系,即服从虎克(Hooke)定律:
式中,、分别为正应力和切应力;
、分别为正应变和切应变;
E,G分别为弹性模量和切变模量
回复与再结晶

第一节 冷变形金属在加热时的 组织与性能变化
一、 回复与再结晶的概念 回复:冷变形金属在低温加热时,其光学显微组织无可见变化,但其物 理、力学性能却部分恢复到冷变形以前的过程。 再结晶:冷变形金属被加热到适当温度时,在变形组织内部新的无畸变 的等轴晶粒逐渐取代变形晶粒,而使形变强化效应完全消除的过程。 二 、显微组织变化(示意图) 回复阶段:显微组织仍为变形晶粒(纤维状),形态无可见变化; 再结晶阶段:变形晶粒通过形核长大,逐渐转变为新的无畸变等轴晶粒。 晶粒长大阶段:晶界移动、晶粒粗化,达到相对稳定的形状和尺寸。
二、 回复机制
1.低温回复(T=0.1-0.3Tm) 点缺陷运动:空位迁移至晶界、位错处而消失;空位与间隙原子 结合而消失; 空位聚集(空位群),然后崩塌成位错环而消失。 2.中温回复 (T=0.3-0.35Tm) 位错滑移:异号位错相遇而抵销、缠结位错重新排列,位错密度 降低。 3.高温回复(T>0.35Tm) 位错攀移(+滑移)→位错垂直排列(亚晶界)→多边化(亚晶 粒)→弹性畸变能降低。 多边化的条件:塑性变形使晶体点阵弯曲、滑移面上有塞积的同 号刃型位错、较高的加热温度使刃型位错产生攀移运动。
六、再结晶后晶粒大小及其控制
晶粒大小-变形量关系图
1.变形量:存在临界变形量(一般约为2%-10%);在临界变形量以下, 不发生再结晶,晶粒尺寸不变;在临界变形量处,再结晶后晶粒 特别粗大(峰值),生产中应避免临界变形量;在临界变形量以 上,随变形量增大,再结晶后晶粒逐渐细化。(d∝(G/N)1/2) 2. 退火温度:退火温度提高,晶粒粗化;退火温度越高,临界变 形度越小,晶粒粗大。 3. 原始晶粒尺寸:原始晶粒越细小,再结晶驱动力越大,再结晶 温度越低,且形核位臵越多,使再结晶后晶粒细化。 七、再结晶的应用-再结晶退火 恢复变形能力、改善显微组织、消除各向异性、提高组织稳定性。
8材料科学基础课件-第四章回复与再结晶

ln t 如图:
斜率=Q/R
ln t D Q / RT
或: ln
t1 Q 1 1 ( ) t2 R T1 T2
1 T
由实验斜率可求得Q,据此推算其机制。
返回
一般来讲,激活能Q ln t
不只是一个,常按回复温
度高低分为低温、中温和 高温回复。对应的激活能 为Q1、Q2、Q3。
Q3 Q2
第四章
回复与再结晶
变形金属的热行为
返回
章目录:
4.1 4.2 4.3 4.4 冷变形金属在加热时的变化 回 复
再结晶 再结晶后的晶粒长大
4.5
4.6 4.7
再结晶退火及其组织
金属的热变形 超塑性加工
返回
经冷变形的金属具有如下特点:
• 机械性能和理化性能发生明显变化。强度、硬度升高,塑性韧性下降。
迁移的大角度晶界,成为核心。
• 特点:
(高层错能材料Al,Ni等)
位错易于攀移,位错重排成稳定的亚晶界,胞内位错密度低。
返回
② 亚晶生长
通过亚晶界移动生长,成为大角度晶界。
(低层错能材料,位错难以重组,胞内位错密度高。如 Co、Ag、Cu、Au变量较小时)
A • 作ΔP — T℃曲线如图,能量释放 峰对应于新晶粒的出现 — 再结 0 A — 纯金属,B — 合金
返回
B
T℃
晶,在此之前为回复。
三、性能的变化
经冷变形的金属
缓慢加热,测其性能
的变化,如图所示。
性能急变区对应于新
晶粒的出现,再结晶
之前为回复,之后为
晶粒长大。
返回
总之:由以上变化说明,冷变形金属在加热时要 经历三个阶段:回复、再结晶和晶粒长大。
冷变形度与再结晶退火后晶粒大小的关系_概述说明
冷变形度与再结晶退火后晶粒大小的关系概述说明1. 引言1.1 概述本文旨在研究冷变形度与再结晶退火后晶粒大小之间的关系。
冷变形度是指金属材料在室温下受到外力作用导致其形状和尺寸发生改变的程度。
而晶粒大小则是指金属材料中晶界之间的距离以及各个晶粒的尺寸。
通过对冷变形度与晶粒大小之间的相关性进行研究,我们可以深入理解冷加工过程对材料微观结构的影响机制。
同时,了解再结晶退火对晶粒大小的影响机理和规律也具有重要意义。
这些研究结果有助于提高材料制备、工艺参数选择以及材料性能优化等方面的实践应用。
1.2 文章结构本文将按照以下结构展开:引言部分将介绍文章的背景和目标;接着在第二部分,我们将详细探讨冷变形度的定义及其影响因素,以及冷变形度与晶粒大小之间的相关性研究;第三部分将介绍实验方法和结果分析,包括实验设计、样品制备、冷变形度测量方法和数据收集,以及再结晶退火实验及晶粒大小测量方法;在第四部分,我们将对结果进行分析与讨论,并进一步探讨影响冷变形度和再结晶退火后晶粒大小的其他因素;最后一部分是文章的结论与展望,总结主要研究结果,并提出未来进一步研究的方向。
1.3 目的本文的目的旨在通过实验和理论分析,探索冷变形度与再结晶退火后晶粒大小之间的关系。
具体而言,我们将回答以下几个问题:1) 冷变形度如何定义?有哪些主要影响因素?2) 冷变形度与晶粒大小之间是否存在相关性?如果存在,其相关性如何?3) 再结晶退火对晶粒大小的影响机理是什么?4) 除了冷变形度和再结晶退火外,还有哪些因素可能会影响到材料的晶粒大小?通过解答这些问题,我们希望能够深入了解冷加工过程对材料微观结构的影响规律,并且为进一步优化金属材料制备和处理工艺提供科学依据和理论支持。
2. 冷变形度与再结晶退火后晶粒大小的关系2.1 冷变形度的定义和影响因素冷变形度是指在室温下,材料在受到外力作用下所发生的塑性变形程度。
冷变形度一般通过冷加工量来表示,可以使用应变量、应力量或者压缩率等不同参数进行描述。
天然产物提取名词解释 结晶和再结晶
天然产物提取名词解释结晶和再结晶
再结晶当退火温度足够高、时间足够长时,在变形金属或合金的显微组织中,产生无应变的新晶粒——再结晶核心。
新晶粒不断长大,直至原来的变形组织完全消失,金属或合金的性能也发生显著变化,这一过程称为再结晶。
过程的驱动力也是来自残存的形变贮能。
再结晶也有转变孕育期,但再结晶前后,金属的点阵类型无变化。
再结晶核心一般通过两种形式产生。
其一是原晶界的某一段突然弓出,深入至畸变大的相邻晶粒,在推进的这部分中形变贮能完全消失,形成新晶核。
其二是通过晶界或亚晶界合并,生成一无应变的小区——再结晶核心。
四周则由大角度边界将它与形变且已回复了的基体分开。
大角度边界迁移时,核心长大。
核心朝取向差大的形变晶粒长大,故再结晶过程具有方向性特征。
再结晶后的显微组织呈等轴状晶粒,以保持较低的界面能。
开始生成新晶粒的温度称为开始再结晶温度,显微组织全部被新晶粒所占据的温度称为终了再结晶温度或完全再结晶温度。
再结晶过程所占温度范围受合金成分、形变程度、原始晶粒度、退火温度等因素的影响。
实际应用中,常用开始再结晶温度和终了再结晶温度的算术平均值作为衡量金属或合金性能热稳定水平的参量,称为再结晶温度。
结晶是液体溶液通过蒸发水分或改变压强,温度使溶液达到过饱和,溶质析出形成小晶粒,小晶粒结合形成大晶粒而形成有明显的晶粒结构的固体颗粒。
材料的形变和再结晶(1)
假设晶界扫过地方的储存能 全部释放,则由Ⅰ到Ⅱ时的 自由能变化为
弓出形核示意图
GEs dA
dV
晶界弓出形核模型
20
材 料 科 学 与工 程 系
对于任意曲面可以定义两个主曲率半径r1、r2,当曲面 移动时有
dA 2 dV r
若该曲面为一球面,则r1、r2=r,而
G Es 2 r
材 料 科 学 与工 程 系
4.再结晶后的晶粒大小
由于晶粒大小对材料性能将产生重要影响,因此,调 整再结晶退火参数,控制再结晶的晶粒尺寸,在生产 中具有一定的实际意义 运用约翰逊一梅厄方程,可以证明再结晶后晶粒尺寸d与
1
和长大速率 d常数(G)4 之间存在着下列关系: N
0
材 料 科 学 与工 程 系
(2)电阻:变形金属的电阻在回复阶段已表现明显的下降趋势。
因为电阻率与晶体点阵中的点缺陷(如空位、间隙原子等)密切相 关。点缺陷所引起的点阵畸变会使传导电子产生散射,提高电阻率。 它的散射作用比位错所引起的更为强烈。因此,在回复阶段电阻率 的明显下降就标志着在此阶段点缺陷浓度有明显的减小
材 料 科 学 与工 程 系
材 料 科 学 与工 程 系
2.再结晶动力学
再结晶动力学决定于形核率 和长大速率G的大小
材 料 科 学 与工 程 系
Johnson和 Mehl 方程
和G不随时间而改变的情况下,在恒温下经过t时间后,已经 再结晶的体积分φR可用下式表示
R
1exp(NG3t4)
3
恒温再结晶时的形核率 是随时间的增加而呈指数关系衰减的, 故通常采用Avrami方程进行描述
不同温度下电阻随保温时间的变化/铜 材 料 科 学 与工 程 系
金属学与热处理第七章回复与再结晶
•(e)580ºC保温15分后的金相组织。晶粒已有所长大。 •(f)在700ºC保温10分后晶粒长大的情形。
• 退火时,由于温度升高原子的能动性增加,即原子的扩散能力提
高,而回复阶段只是消除了由于冷加工应变能产生的残余内应力, 大部分应变能仍然存在,变形的晶粒仍未恢复原状。
• 所以,随着保温时间加长,新的晶粒核心便开始形成并长大成小的 等轴晶粒,这就是再结晶(recrystallization)的开始。随着保温时 间的加长或温度的升高,再结晶部分愈来愈多,直到原来的晶粒全 部被新的小晶粒所代替。
恢复再结晶的驱动力:塑性变形后的储存能
7-1 冷变形金属在加热时的组织和性能变 化
随加热温度的提高,冷变形金属发生变化为:回复、再结晶、晶粒长大。 回复(recovery)—在较低加热温度时,变形后金属的光学显微组织
发生改变前,所产生的某些亚结构和性能的变化过程。 再结晶(recrystallization)—经回复后的变形金属,在加热时,纤
一些金属的再结晶温度
(三) 影响再结晶温度的因素
1.变形程度:变形度增大、开始TR下降,等温退火再结晶速度越快; 而大到一定程度,TR趋于稳定。(储存能高)。变形量小到一定程 度不发生再结晶。
2.原始晶粒尺寸:其它条件相同时,金属原始晶粒细小,则TR越低, 同时形核率和长大速度均增加,有利于再结晶。(晶粒越细小,变形
4.变形温度:变形T升高,回复程度越大,变形储存能越低, 晶粒粗化。
5.加热温度、保温时间:加热温度越高、保温时间越长,晶粒 越大。
加热温度与晶粒尺寸
7-4. 晶粒长大
再结晶结束后,材料的晶粒一般比较细小(等轴晶),若继续 升温或延长保温时间,晶粒会继续长大。晶粒长大是一个自 发过程。晶粒长大的驱动力来自总的界面能的降低。