天津市和平区中考数学二模模拟题(含解析)【含解析】

合集下载

中考二模测试《数学试题》含答案解析

中考二模测试《数学试题》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上)1. 下列图标,是轴对称图形的是( )A. B.C. D.2. 如图,若A、B分别是实数a、b在数轴上对应的点,则下列式子的值一定是正数的是()A. b+aB. b-aC. a bD. b a3. 关于代数式x+2的结果,下列说法一定正确的是()A. 比2大B. 比2小C. 比x大 D. 比x小4. 如图,二次函数y=ax2+bx+c的图象经过点(1,1)和点(3,0).关于这个二次函数的描述:①a<0,b>0,c<0;②当x=2时,y的值等于1;③当x>3时,y的值小于0.正确的是()A. ①②B. ①③C. ②③D. ①②③5. 计算999-93的结果更接近()A. 999B. 998C. 996D. 9336. 如图,点P是⊙O外任意一点,PM、PN分别是⊙O的切线,M、N是切点.设OP与⊙O交于点K.则点K是△PMN的( )A. 三条高线的交点B. 三条中线的交点C. 三个角的角平分线的交点D. 三条边的垂直平分线的交点二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上)7. 13的相反数是______,13的倒数是______.8. 若△ABC∽△DEF,请写出2个不同类型的正确的结论:______,______.9. 如果﹣2x m y3与xy n是同类项,那么2m﹣n的值是_____.10. 分解因式2x2y-4xy+2y的结果是_____.11. 已知x1、x2是一元二次方程x2+x-3=0的两个根,则x1+x2-x1x2=______.12. 用半径为4的半圆形纸片恰好折叠成一个圆锥侧面,则这个圆锥的底面半径为______.13. 如图,点A在函数y=kx(x>0)的图像上,点B在x轴正半轴上,△OAB是边长为2的等边三角形,则k的值为______.14. 如图,在□ABCD中,E、F分别是AB、CD的中点.当□ABCD满足____时,四边形EHFG是菱形.15. 如图,一次函数y=-43x+8的图像与x轴、y轴分别交于A、B两点.P是x轴上一个动点,若沿BP将△OBP翻折,点O恰好落在直线AB上的点C处,则点P的坐标是______.16. 如图,将一幅三角板的直角顶点重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB 的位置保持不动,将三角板DCE 绕其直角顶点C 顺时针旋转一周.当△DCE 一边与AB 平行时,∠ECB 的度数为_________________________.三、解答题(本大题共11小题,共88分.请在答题..卡指定区域.....内作答,解答时应写出文字说明、证明过程或演算步骤)17. 求不等式3x ≤1+12x -的负整数解. 18. (1)化简:244x --12x -;(2)解方程244x --12x -=12. 19. 小莉妈妈支付宝用来生活缴费和网购.如图是小莉妈妈2017年9月至12月支付宝消费情况的统计图(单位:元).(1)11月支出较多,请你写出一个可能的原因.(2)求这4个月小莉妈妈支付宝平均每月消费多少元.(3)用(2)中求得的平均数来估计小莉妈妈支付宝2018年平均每月消费水平,你认为合理吗?为什么?20. 转转盘和摸球是等可能概率下的经典模型.(1)如图,转盘的白色扇形和黑色扇形的圆心角分别为120°和240°.小莉让转盘自由转动2次,求指针2次都落在黑色区域的概率.(2)小刚在一个不透明的口袋中,放入除颜色外其余都相同的18个小球,其中4个白球,6个红球,8个黄球.搅匀后,随机摸1个球,若事件A的概率与(1)中概率相同,请写出事件A.21. 春天来了,石头城边,秦淮河畔,鸟语花香,柳条飘逸.为给市民提供更好的休闲锻炼环境,决定对一段总长为1800米的外秦淮河沿河步行道出新改造,该任务由甲、乙两工程队先后接力完成.甲工程队每天改造12米,乙工程队每天改造8米,共用时200天.(1)根据题意,小莉、小刚两名同学分别列出尚不完整的方程组如下:小莉:___128_____x yx y+=⎧⎨+=⎩小刚:________128x yx y+=⎧⎪⎨+=⎪⎩根据两名同学所列的方程组,请你分别指出未知数x、y表示的意义,然后在方框中补全小莉、小刚两名同学所列的方程组:小莉:x表示,y表示;小刚:x表示,y表示.(2)求甲、乙两工程队分别出新改造步行道多少米.22. 如图,爸爸和小莉在两处观测气球的仰角分别为α、β,两人的距离(BD)是100 m,如果爸爸的眼睛离地面的距离(AB)为1.6 m,小莉的眼睛离地面的距离(CD)为1.2 m,那么气球的高度(PQ)是多少?(用含α、β的式子表示)23. 南京、上海相距约300 km,快车与慢车速度分别为100 km/ h和50 km/ h,两车同时从南京出发,匀速行驶,快车到达上海后,原路返回南京,慢车到达上海后停止.设两车出发后的时间为x h,快车、慢车行驶过程中离南京的路程为y1、y2 km.(1)求y1、y2与x之间的函数关系式,并在下列平面直角坐标系中画出它们的图像;(2)若镇江、南京相距约80 km,求两车经过镇江的时间间隔;(3)直接写出出发多长时间,两车相距100 km.24. 如图,△ABC中,AD⊥BC,垂足是D.小莉说:当AB+BD=AC+CD时,则△ABC是等腰三角形.她说法正确吗,如正确,请证明;如不正确,请举反例说明.25. 某景区内有一块矩形油菜花田地(数据如图示,单位:m.)现在其中修建一条观花道(图中阴影部分)供游人赏花.设改造后剩余油菜花地所占面积为ym2.(1)求y与x的函数表达式;(2)若改造后观花道的面积为13m2,求x的值;(3)若要求0.5≤ x ≤1,求改造后剩余油菜花地所占面积的最大值.26. 如图1,点O为正方形ABCD 的中心,E为AB 边上一点,F为BC边上一点,△EBF的周长等于BC 的长.(1)求∠EOF 的度数.(2)连接OA、OC(如图2).求证:△AOE∽△CFO.(3)若OE=52OF,求AECF的值.27. 在解决数学问题时,我们常常从特殊入手,猜想结论,并尝试发现解决问题的策略与方法.【问题提出】求证:如果一个定圆内接四边形对角线互相垂直,那么这个四边形的对边的平方和是一个定值.从特殊入手】我们不妨设定圆O的半径是R,⊙O的内接四边形ABCD中,AC⊥BD.请你在图①中补全特殊殊位置时的图形,并借助于所画图形探究问题的结论.【问题解决】已知:如图②,定圆⊙O的半径是R,四边形ABCD是⊙O的内接四边形,AC⊥BD.求证:.证明:答案与解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1. 下列图标,是轴对称图形的是( ) A. B. C. D.【答案】D【解析】【分析】根据轴对称图形的定义逐项进行分析判断即可得.【详解】A 、不是轴对称图形,故不符合题意;B 、不是轴对称图形,故不符合题意;C 、不是轴对称图形,故不符合题意;D 、是轴对称图形,故符合题意,故选D.【点睛】本题考查了轴对称图形,熟知轴对称图形是一定要沿某直线折叠后直线两旁的部分互相重合的图形是解题的关键.2. 如图,若A 、B 分别是实数a 、b 在数轴上对应的点,则下列式子的值一定是正数的是( )A. b +aB. b -aC. a bD. b a【答案】B【解析】 分析:根据数轴上数的大小以及各种计算法则即可得出答案.详解:根据数轴可得:a+b <0;b -a >0;0b a;计算b a 时,如果b 为偶数,则结果为正数,b 为奇数时,结果为负数.故本题选B.点睛:本题主要考查的是数轴以及各种计算法则,属于基础题型.理解各种计算法则是解决这个问题的关键.3. 关于代数式x+2结果,下列说法一定正确的是()A. 比2大B. 比2小C. 比x大 D. 比x小【答案】C【解析】【分析】分情况讨论:当x<0时;当x>0时;x取任何值时,就可得出答案.【详解】当x<0时,则x+2比2小,则A不符合题意;当x>0时,则x+2比2大,则B不符合题意;x取任何值时,x+2比x大,则D不符合题意,故选C.【点睛】本题考查了实数大小的比较,正确地分类讨论是解题的关键.4. 如图,二次函数y=ax2+bx+c的图象经过点(1,1)和点(3,0).关于这个二次函数的描述:①a<0,b>0,c<0;②当x=2时,y的值等于1;③当x>3时,y的值小于0.正确的是()A. ①②B. ①③C. ②③D. ①②③【答案】B【解析】分析:根据二次函数的开口方向、对称轴与y轴的交点得出①、根据对称性得出②、根据函数图像得出③.详解:根据图像可得:a<0,b>0,c<0,故正确;∵对称轴大于1.5,∴x=2时的值大于x=1的函数值,故错误;根据图像可得:当x>3时,y的值小于0,故正确;故选B.点睛:本题主要考查的是二次函数的图象与系数之间的关系,属于中等难度的题型.理解函数图像与系数之间的关系是解题的关键.5. 计算999-93的结果更接近()A. 999B. 998C. 996D. 933【答案】A【解析】分析:根据幂的大小进行求值,从而得出答案.详解:根据幂的性质可得:999-93最接近于999,故选A.点睛:本题主要考查的是幂的计算法则,属于中等难度的题型.明白幂的定义是解决这个问题的关键.6. 如图,点P是⊙O外任意一点,PM、PN分别是⊙O的切线,M、N是切点.设OP与⊙O交于点K.则点K是△PMN的( )A. 三条高线的交点B. 三条中线的交点C. 三个角的角平分线的交点D. 三条边的垂直平分线的交点【答案】C【解析】【分析】连接OM、ON,NK,根据切线的性质及角平分线的判定定理,可得出答案.【详解】如图,连接OM、ON,NK,∵PM、PN分别是⊙O的切线,∴ON⊥PN,OM⊥PM,MN⊥OP,∠OPN=∠OPM,∴∠1+∠ONK=90°,∠2+∠OKN=90°,∵OM=ON,∴∠OPN=∠OPM,∠ONK=∠OKN,∴∠1=∠2,∴点K是△PMN的角平分线的交点,故选C.【点睛】本题考查了切线长定理、角平分线定义,熟练掌握切线长定理的内容是解题的关键.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上)7. 13的相反数是______,13的倒数是______.【答案】(1). -13(2). 3【解析】分析:当两数只有符号不同时,则两数互为相反数;当两数的积为1时,则两数互为倒数.根据定义即可得出答案.详解:13的相反数是13-,13的倒数是3.点睛:本题主要考查的是相反数和倒数的定义,属于基础题型.理解定义是解决这个问题的关键.8. 若△ABC∽△DEF,请写出2个不同类型的正确的结论:______,______.【答案】(1). ∠A=∠D (2). ∠B=∠E【解析】分析:相似三角形的对应角相等,对应边成比例.详解:∵△ABC∽△DEF,∴∠A=∠D,∠B=∠E,∠C=∠F,AB AC BC DE DF EF==.点睛:本题主要考查的是相似三角形的性质,属于基础题型.明白相似三角形的性质是解决这个问题的关键.9. 如果﹣2x m y3与xy n是同类项,那么2m﹣n的值是_____.【答案】-1【解析】【分析】同类项是指所含的字母相同,且相同字母的指数相同的单项式.根据定义求出m和n的值,从而得出答案.【详解】根据题意可得:m=1,n=3,∴2m-n=2×1-3=-1.故答案是:-1.【点睛】本题主要考查的是同类项的定义,属于基础题型.理解定义是解决这个问题的关键.10. 分解因式2x 2y -4xy +2y 的结果是_____.【答案】2y(x -1)2【解析】分析:首先提取公因式2y ,然后利用完全平方公式得出答案.详解:原式=2y(22x 1x -+)=()22y x 1-.点睛:本题主要考查的是因式分解,属于基础题型.因式分解的方法有:提取公因式、公式法和十字相乘法等,有公因式我们都需要进行提取公因式.11. 已知x 1、x 2是一元二次方程x 2+x -3=0的两个根,则x 1+x 2-x 1x 2=______.【答案】2【解析】分析:首先根据韦达定理求出两根之和和两根之积,从而得出答案.详解:∵121b x x a +=-=-,123c x x a==-, ∴原式=-1-(-3)=-1+3=2. 点睛:本题主要考查的是一元二次方程的韦达定理,属于基础题型.明白韦达定理的计算公式是解决这个问题的关键.12. 用半径为4的半圆形纸片恰好折叠成一个圆锥侧面,则这个圆锥的底面半径为______.【答案】2【解析】分析:根据圆锥的侧面展开图的圆心角的计算公式即可得出答案.详解:∵设圆锥的半径为r ,母线长为4,∴θ360r l =⨯︒,即1803604r ︒=⨯︒,解得:r=2. 点睛:本题主要考查的是圆锥的侧面展开图,属于中等难度题型.明白展开图的圆心角计算公式即可得出答案.13. 如图,点A 在函数y =k x(x >0)的图像上,点B 在x 轴正半轴上,△OAB 是边长为2的等边三角形,则k 的值为______.【答案】3【解析】【分析】首先过点A作AC⊥OB,根据等边三角形的性质得出点A的坐标,从而得出k的值.【详解】分析:解:过点A作AC⊥OB,∵△OAB为正三角形,边长为2,∴OC=1,AC=3,∴k=1×3=3.故答案为:3【点睛】本题主要考查的是待定系数法求反比例函数解析式以及等边三角形的性质,属于基础题型.得出点A的坐标是解题的关键.14. 如图,在□ABCD中,E、F分别是AB、CD的中点.当□ABCD满足____时,四边形EHFG是菱形.【答案】答案不唯一,如:∠ABC=90°等【解析】分析:首先根据题意得出四边形EHFG为平行四边形,然后根据直角三角形斜中线的性质得出EH=HF,从而得出菱形.详解:∵E、F为AB、CD的中点,∴EG∥HF,EH∥FG,∴四边形EHFG为平行四边形,当∠ABC=90°时,∴BH=EH=HF,∴四边形EHFG为菱形.点睛:本题主要考查的是平行四边形的性质以及菱形的判定定理,属于基础题型.理解菱形的判定定理是解决这个问题的关键.15. 如图,一次函数y =-43x +8图像与x 轴、y 轴分别交于A 、B 两点.P 是x 轴上一个动点,若沿BP 将△OBP 翻折,点O 恰好落在直线AB 上的点C 处,则点P 的坐标是______.【答案】(83,0),(-24,0) 【解析】【分析】根据题意得出OA ,OB 和AB 的长度,然后根据折叠图形的性质分两种情况来进行,即点P 在线段OA 上和点P 在x 轴的负半轴上,然后根据Rt △APC 的勾股定理求出点P 的坐标.【详解】根据题意可得:OA=6,OB=8,则AB=10,①、当点P 在线段OA 上时,设点P 的坐标为(x ,0),则AP=6-x ,BC=OB=8,CP=OP=x ,AC=10-8=2,∴根据勾股定理可得:()22226x x +=-,解得:x=83, ∴点P 的坐标为(83,0);②、当点P 在x 轴的负半轴上时,设OP 的长为x ,则AP=6+x ,BC=8,CP=OP=x ,AC=10+8=18,∴根据勾股定理可得:()222186x x +=+,解得:x=24,∴点P 的坐标为(-24,0);∴综上所述,点P 的坐标为(83,0),(-24,0). 【点睛】本题主要考查的是折叠图形的性质以及直角三角形的勾股定理的应用,属于中等难度的题型.解决这个问题的关键就是根据题意画出图形得出直角三角形.16. 如图,将一幅三角板的直角顶点重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB 的位置保持不动,将三角板DCE 绕其直角顶点C 顺时针旋转一周.当△DCE 一边与AB 平行时,∠ECB 的度数为_________________________.【答案】15°、30°、60°、120°、150°、165° 【解析】分析:根据CD ∥AB ,CE ∥AB 和DE ∥AB 三种情况分别画出图形,然后根据每种情况分别进行计算得出答案,每种情况都会出现锐角和钝角两种情况.详解:①、∵CD ∥AB , ∴∠ACD=∠A=30°, ∵∠ACD+∠ACE=∠DCE=90°, ∠ECB+∠ACE=∠ACB=90°,∴∠ECB=∠ACD=30°;CD ∥AB 时,∠BCD=∠B=60°,∠ECB=∠BCD+∠EDC=60°+90°=150°②如图1,CE ∥AB ,∠ACE=∠A=30°,∠ECB=∠ACB+∠ACE=90°+30°=120°;CE ∥AB 时,∠ECB=∠B=60°.③如图2,DE ∥AB 时,延长CD 交AB 于F , 则∠BFC=∠D=45°,在△BCF 中,∠BCF=180°-∠B-∠BFC ,=180°-60°-45°=75°, ∴ECB=∠BCF+∠ECF=75°+90°=165°或∠ECB=90°-75°=15°.点睛:本题主要考查的是平行线的性质与判定,属于中等难度的题型.解决这个问题的关键就是根据题意得出图形,然后分两种情况得出角的度数.三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17. 求不等式3x ≤1+12x -的负整数解. 【答案】-3、-2、-1.【解析】【分析】 首先根据解不等式的方法求出不等式的解,从而得出不等式的负整数解.【详解】解: 2x≤6+3(x - 1),2x≤6+3x -3,解得:x≥-3.所以这个不等式的负整数解为-3、-2、-1.【点睛】本题主要考查的是解不等式,属于基础题型.在解不等式的时候,如果两边同时乘以或除以一个负数时,不等符号需要改变.18. (1)化简:244x --12x -;(2)解方程244x --12x -=12. 【答案】(1)12x -+;(2)-4. 【解析】分析:(1)、首先将分式进行通分,然后进行减法计算得出答案;(2)、首先进行去分母将其转化为整式方程,从而求出方程的解,最后需要对方程的解进行检验.详解:(1)、解:-= - = = = =- .(2)、去分母可得:8-2(x+2)=(x+2)(x -2), 化简可得:22x 80x +-=,解得:1242x x =-=,,经检验:x=2是方程的增根,x=-4是方程的解.点睛:本题主要考查的是分式的化简以及解分式方程,属于基础题型.解决这个问题的关键就是学会将分式的分子和分母进行因式分解.19. 小莉妈妈的支付宝用来生活缴费和网购.如图是小莉妈妈2017年9月至12月支付宝消费情况的统计图(单位:元).(1)11月支出较多,请你写出一个可能的原因.(2)求这4个月小莉妈妈支付宝平均每月消费多少元.(3)用(2)中求得的平均数来估计小莉妈妈支付宝2018年平均每月消费水平,你认为合理吗?为什么?【答案】(1)见解析;(2)848元;(3)不合理,理由见解析.【解析】分析:(1)、这个只要回答的合情合理即可得出答案;(2)、根据平均数的计算法则得出答案;(3)、11月份出现了极端值,会较大的影响平均每月消费水平.详解:解:(1)、答案不唯一,学生说法只要合理均给分.如双11淘宝购物花费较多等.(2)、这4个月小莉妈妈支付宝每月平均消费为:=×(488.40+360.20+1942.60+600.80)= 848(元).(3)、用这个平均数来估计小莉妈妈支付宝平均每月消费水平不合理.因为这个平均数受极端值(11月数据)影响较大,不能代表平均每月消费水平.点睛:本题主要考查的是平均数的计算法则,属于基础题型.明白计算法则是解决这个问题的关键.20. 转转盘和摸球是等可能概率下的经典模型.(1)如图,转盘的白色扇形和黑色扇形的圆心角分别为120°和240°.小莉让转盘自由转动2次,求指针2次都落在黑色区域的概率.(2)小刚在一个不透明的口袋中,放入除颜色外其余都相同的18个小球,其中4个白球,6个红球,8个黄球.搅匀后,随机摸1个球,若事件A的概率与(1)中概率相同,请写出事件A.【答案】(1)P(指针2次都落在黑色区域)=49;(2)事件A为摸得黄球.【解析】分析:(1)、根据题意列出所有可能出现的情况,然后得出概率;(2)、根据概率的计算法则得出所有情况的概率,然后得出答案.详解:解:(1)如图,把黑色扇形等分为黑1、黑2两个扇形,转盘自由转动2次,指针所指区域的结果如下:(白,白),(白,黑1),(白,黑2),(黑1,白),(黑1,黑1),(黑1,黑2),(黑2,白),(黑2,黑1),(黑2,黑2).所有可能的结果共9种,它们是等可能的,其中指针2次都落在黑色区域的结果有4种.所以P(指针2次都落在黑色区域)=.(2)事件A为摸得黄球.点睛:本题主要考查的是概率的计算法则,属于基础题型.理解概率的计算公式是解题的关键.21. 春天来了,石头城边,秦淮河畔,鸟语花香,柳条飘逸.为给市民提供更好的休闲锻炼环境,决定对一段总长为1800米的外秦淮河沿河步行道出新改造,该任务由甲、乙两工程队先后接力完成.甲工程队每天改造12米,乙工程队每天改造8米,共用时200天.(1)根据题意,小莉、小刚两名同学分别列出尚不完整的方程组如下:小莉:___128_____x yx y+=⎧⎨+=⎩小刚:________128x yx y+=⎧⎪⎨+=⎪⎩根据两名同学所列的方程组,请你分别指出未知数x、y表示的意义,然后在方框中补全小莉、小刚两名同学所列的方程组:小莉:x表示,y表示;小刚:x表示,y表示.(2)求甲、乙两工程队分别出新改造步行道多少米.【答案】(1)见解析;(2)甲、乙两工程队分别出新改造600米、1200米.【解析】分析:(1)、小莉:x表示甲工程队改造的天数,y表示乙工程队改造的天数;小刚:x表示甲工程队改造的长度,y表示乙工程队改造的长度;(2)、根据题意解方程组,从而得出答案.详解:解:(1)、小莉:小刚:小莉:x表示甲工程队改造的天数,y表示乙工程队改造的天数;小刚:x表示甲工程队改造的长度,y表示乙工程队改造的长度.(2)、解小莉方程组得所以12x=600,8y=1200.答:甲、乙两工程队分别出新改造600米、1200米.点睛:本题主要考查的是二元一次方程组的实际应用问题,属于基础题型.解决应用题的关键在于找出等量关系,列出方程组.22. 如图,爸爸和小莉在两处观测气球的仰角分别为α、β,两人的距离(BD)是100 m,如果爸爸的眼睛离地面的距离(AB)为1.6 m,小莉的眼睛离地面的距离(CD)为1.2 m,那么气球的高度(PQ)是多少?(用含α、β的式子表示)【答案】气球高度是100tan tan 1.2tan 1.6tantan tanαβαββα-+-m.【解析】分析:过点A作AE⊥PQ于点E,过点C作CF⊥PQ于点F,设PQ=x m,根据Rt△PEA的三角形函数得出AE的长度,根据Rt△PCF的三角函数得出CF的长度,最后根据BD=AE-CF求出x的值,得出答案.详解:解:过点A作AE⊥PQ于点E,过点C作CF⊥PQ于点F.设PQ=x m,则PE=(x-1.6)m,PF=(x-1.2)m.在△PEA中,∠PEA=90°.则tan∠PAE=.∴ AE=.在△PCF中,∠PFC=90°.则tan∠PCF=.∴ CF=.∵ AE-CF=BD.∴-=100.解得x=.答:气球的高度是m.点睛:本题主要考查的是解直角三角形的实际应用,属于基础题型.解决这个问题的关键在于构造出直角三角形.23. 南京、上海相距约300 km,快车与慢车的速度分别为100 km/ h和50 km/ h,两车同时从南京出发,匀速行驶,快车到达上海后,原路返回南京,慢车到达上海后停止.设两车出发后的时间为x h,快车、慢车行驶过程中离南京的路程为y1、y2 km.(1)求y1、y2与x之间的函数关系式,并在下列平面直角坐标系中画出它们的图像;(2)若镇江、南京相距约80 km,求两车经过镇江的时间间隔;(3)直接写出出发多长时间,两车相距100 km.【答案】(1)画图见解析;(2)两车经过镇江的时间间隔为0.8 h或3.6 h;(3)出发2 h或103h或143h后,两车相距100 km.【解析】分析:(1)、根据待定系数法求出函数解析式,然后再图中画出函数图像;(2)、将y=80代入函数解析式,分别求出x的值,从而得出时间差;(3)、根据函数值相差100列出一元一次方程(分三段来进行解答),从而得出答案.详解:解:(1)当0≤x≤3时,y1=100x,当3≤x≤6时,y1=600-100x;当0≤x≤6时,y2=50x.y1、y2与x的函数图像如下:(2)、当y1=80时,100x=80或600-100x=80.解得x=0.8或5.2;当y2=80时,50x=80.解得x=1.6.所以1.6-0.8=0.8,5.2-1.6=3.6.两车经过镇江的时间间隔为0.8 h或3.6 h.(3)、出发2 h或h或h后,两车相距100 km.点睛:本题主要考查的是一次函数的实际应用,属于中等难度的题型.得出函数解析式是解决这个问题的关键.24. 如图,△ABC中,AD⊥BC,垂足是D.小莉说:当AB+BD=AC+CD时,则△ABC是等腰三角形.她的说法正确吗,如正确,请证明;如不正确,请举反例说明.【答案】小莉说法正确,证明见解析.【解析】分析:延长CB至E,使AB=EB,延长BC至F,使AC=FC,连接AE、AF,然后证明△ADE和△ADF 全等,从而得出∠E=∠F,结合∠E=∠EAB=∠F=∠FAC得出∠ABC=∠ACB,从而得出答案.详解:小莉说法正确.证明:延长CB至E,使AB=EB,延长BC至F,使AC=FC,连接AE、AF.则∠E=∠EAB,∠F=∠FAC.∵ AB+BD=AC+CD,∴ DE=DF.∵ AD⊥BC,∴∠ADE=∠ADF=90°.∵ DE=DF,∠ADE=∠ADF=90°,AD=AD,∴△ADE≌△ADF(SAS).∴∠E=∠F.∴∠E=∠EAB=∠F=∠FAC.∴∠ABC=∠ACB.∴ AB=AC.即△ABC是等腰三角形.点睛:本题主要考查的是等腰三角形的判定与三角形全等,属于基础题型.解决这个问题的关键就是作出辅助线得出三角形全等.25. 某景区内有一块矩形油菜花田地(数据如图示,单位:m.)现在其中修建一条观花道(图中阴影部分)供游人赏花.设改造后剩余油菜花地所占面积为ym2.(1)求y与x的函数表达式;(2)若改造后观花道的面积为13m2,求x的值;(3)若要求0.5≤ x ≤1,求改造后剩余油菜花地所占面积的最大值.【答案】(1)y= x2-14x+48(0<x<6);(2)1;(3)改造后剩余油菜花地所占面积的最大值为41.25m2.【解析】【分析】(1)、利用三角形的面积计算公式得出y与x的函数关系式;(2)、将y=35代入函数解析式求出x的值;(3)、利用配方法将函数配成顶点式,然后根据函数的增减性得出最值.【详解】解:(1)y=(8-x)(6-x)=x2-14x+48.(2)由题意,得x2-14x+48=6×8-13,解得:x1=1,x2=13(舍去).所以x=1.(3)y=x2-14x+48=(x-7)2-1.因为a=1>0,所以函数图像开口向上,当x<7时,y随x增大而减小.所以当x=0.5时,y最大.最大值为41.25.答:改造后油菜花地所占面积的最大值为41.25 m2.【点睛】本题主要考查的是二次函数的实际应用问题,属于中等难度题型.根据题意列出函数解析式是解决这个问题的关键.26. 如图1,点O为正方形ABCD 的中心,E为AB 边上一点,F为BC边上一点,△EBF的周长等于BC 的长.(1)求∠EOF 的度数.(2)连接OA、OC(如图2).求证:△AOE∽△CFO.(3)若OE=52OF,求AECF的值.【答案】(1)45°;(2)证明见解析;(3)5 4【解析】【分析】(1).在BC上取一点G,使得CG=BE,连接OB、OC、OG,然后证明△OBE和△OCG全等,从而得出∠BOE=∠COG,∠BEO=∠CGO,OE=OG,根据三角形的周长得出EF=GF,从而得出△FOE和△GOF 全等,得出∠EOF的度数;(2)、连接OA,根据点O为正方形ABCD的中心得出∠OAE=∠FCO=45°,结合∠BOE=∠COG得出∠AEO=∠COF,从而得出三角形相似;(3)、根据相似得出线段比,根据相似比求出AE和CO的关系,CF和AO的关系,从而得出答案.【详解】解:(1).如图,在BC上取一点G,使得CG=BE,连接OB、OC、OG.∵点O为正方形ABCD的中心,∴ OB=OC,∠BOC=90°,∠OBE=∠OCG=45°.∴△OBE≌△OCG(SAS).∴∠BOE=∠COG,∠BEO=∠CGO,OE=OG.∴∠EOG=90°,∵△BEF的周长等于BC的长,∴ EF=GF.∴△EOF≌△GOF(SSS).∴∠EOF=∠GOF=45°.(2).连接OA.∵点O为正方形ABCD的中心,∴∠OAE=∠FCO=45°.∵∠BOE=∠COG,∠AEO=∠BOE+∠OBE=∠BOE+45°,∠COF=∠COG+∠GOF=∠COG+45°.∴∠AEO=∠COF,且∠OAE=∠FCO.∴△AOE∽△CFO.(3).∵△AOE∽△CFO,∴AOCF=OEFO=AECO.即AE=OEFO×CO,CF=AO÷OEFO.∵OE OF,∴ OEFO.∴AECO,CF.∴AECF=54.点睛:本题主要考查的是正方形的性质、三角形全等的判定与性质、三角形相似的判定与性质,综合性非常强,难度较大.熟练掌握正方形的性质是解决这个问题的关键.27. 在解决数学问题时,我们常常从特殊入手,猜想结论,并尝试发现解决问题的策略与方法.【问题提出】求证:如果一个定圆的内接四边形对角线互相垂直,那么这个四边形的对边的平方和是一个定值.【从特殊入手】我们不妨设定圆O的半径是R,⊙O的内接四边形ABCD中,AC⊥BD.请你在图①中补全特殊殊位置时的图形,并借助于所画图形探究问题的结论.【问题解决】已知:如图②,定圆⊙O的半径是R,四边形ABCD是⊙O的内接四边形,AC⊥BD.求证:.证明:。

中考二模检测《数学卷》含答案解析

中考二模检测《数学卷》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(每题3分,共24分)1. 全球可被人类利用的淡水总量约占地球上总水量的0.00003,因此珍惜水,保护水是每个公民的责任.其中数字0.00003用科学计数法表示为( ) A 3×10-5B. 3×10-4C. 0.3×10-5D. 0.3×10-42. 一元二次方程x 2-3x=0的解是( ) A. 0B. 3C. 0,3D. 0,-23. 一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( ) A. 108°B. 90°C. 72°D. 60°4. 若不等式组0422x a x x +≥⎧⎨->-⎩有解,则实数的取值范围是( ).A. 2a ≥-B. 2a <-C. 2a ≤-D. 2a >-5. 已知函数y=kx的图像经过点(1,-1),则函数y=kx-2的图像是( ) A. B. C. D.6. 下列调查方式中适合的是( )A. 要了解一批节能灯的使用寿命,采用普查方式B. 调查你所在班级同学身高,采用抽样调查方式C. 环保部门调查长江某段水域的水质情况,采用抽样调查方式D. 调查全市中学生每天的就寝时间,采用普查方式7. 如图,点E ,F 分别在菱形ABCD 的边AB ,AD 上,且AE = DF ,BF 交DE 于G ,延长BF 交CD 的延长线于H ,若2AF DF =,则HFBG的值为( )A.712B.23C.12D.5128. 如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…、则正方形OB2016B2017C2017的顶点B2017的坐标是.A. (21008,0)B. (21008 ,21008)C. (0, 21008)D. (21007, 21007)二.填空题(每题3分,共24分)9. 分解因式:228ax a=_______.10. 在式子212xx++中自变量x 的取值范围是__________11. 若关于x的分式方程7311mxx x+=--无解,则实数m=_______.12. 若小张投掷两次一枚质地均匀的硬币,则两次出现正面朝上的概率是________.13. 一个射击运动员连续射靶5次所得环数分别为8,6,10,7,9,则这个运动员所得环数的方差为______.14 如图,直线a∥b,∠1=45°,∠2=30°,则∠P=_______°.15. 如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1,①b2>4ac;②4a﹣2b+c<0;③不等式ax2+bx+c>0的解集是x>3;④若(﹣2,y1),(5,y2)是抛物线上的两点,则y1<y2.上述判断中,正确的是________.16. 如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点.点E在CD上,且DE=2CE,连接BE.过点C作CF⊥BE,垂足是F,连接OF,则OF的长为.三.解答题(共102分)17. -14+3tan30°-33+(2017+)0+(12)-218 先化简,再求值:(1-32a+)÷22214a aa-+-其中a=(-13)-119. 如图,某大楼的顶部竖有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底仰角为60°,沿坡度为1:3的坡面AB向上行走到B处,测得广告牌顶部C的仰角为45°,又知AB=10m,AE=15m,求广告牌CD 的高度(精确到0.1m,测角仪的高度忽略不计)20. 某商场举行开业酬宾活动,设立了两个可以自由转动的转盘(如图所示,两个转盘均被等分),并规定:顾客购买满188元的商品,即可任选一个转盘转动一次,转盘停止后,指针所指区域内容即为优惠方式;若指针所指区域空白,则无优惠.已知小张在该商场消费300元(1)若他选择转动转盘1,则他能得到优惠的概率为多少?(2)选择转动转盘1和转盘2,哪种方式对于小张更合算,请通过计算加以说明.21. 2008京奥运会后,同学们参与体育锻炼的热情高涨.为了解他们平均每周的锻炼时间,小明同学在校内随机调查了50名同学,统计并制作了如下的频数分布表和扇形统计图.根据上述信息解答下列问题:(1)m=______,n=_________;(2)在扇形统计图中,D组所占圆心角的度数为_____________;(3)全校共有3000名学生,估计该校平均每周体育锻炼时间不少于6小时的学生约有多少名.22. 九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:时间x(天) 1≤x<5050≤x≤90售价(元/件) x+4090每天销量(件) 200-2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元[(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.23. 某市对城区部分路段的人行道地砖、绿化带、排水管等公用设施进行全面更新改造,根据市政建设的需要,需在35天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作,只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.24. 如图在△ABC 中,AB=AC ,以AB 为直径的⊙O 交BC 于点D ,过点D 作DE⊥AC 于E 交AB 的延长线于点F ,(1)求证:EF 是⊙O 的切线; (2)若AE=6,FB=4,求⊙O 的面积.25. 菱形ABCD 中,两条对角线AC ,BD 相交于点O ,∠MON+∠BCD=180°,∠MON 绕点O 旋转,射线OM 交边BC 于点E ,射线ON 交边DC 于点F ,连接EF .(1)如图1,当∠ABC=90°时,△OEF 形状是 ; (2)如图2,当∠ABC=60°时,请判断△OEF 的形状,并说明理由;(3)在(1)的条件下,将∠MON 的顶点移到AO 的中点O′处,∠MO′N 绕点O′旋转,仍满足∠MO′N+∠BCD=180°,射线O′M 交直线BC 于点E ,射线O′N 交直线CD 于点F ,当BC=4,且ΔO'EF 98ABCDS S四边形时,直接写出线段CE 的长.26. 如图,直线y=x+4交于x 轴于点A ,交y 轴于点C ,过A 、C 两点的抛物线F 1交x 轴于另一点B(1,0). (1)求抛物线F 1所表示的二次函数的表达式及顶点Q 的坐标;(2)在抛物线上是否存在点P ,使△BPC 的内心在y 轴上,若存在,求出点P 的坐标,若不存在写出理由; (3)直线y=kx-6与y 轴交于点N,与直线AC 的交点为M,当△MNC 与△AOC 相似时,求点M 坐标.答案与解析一、选择题(每题3分,共24分)1. 全球可被人类利用的淡水总量约占地球上总水量的0.00003,因此珍惜水,保护水是每个公民的责任.其中数字0.00003用科学计数法表示为( )A. 3×10-5B. 3×10-4C. 0.3×10-5D. 0.3×10-4【答案】A【解析】由科学计数法的定义得:0.00003=3×10−5,故选A.2. 一元二次方程x2-3x=0的解是( )A. 0B. 3C. 0,3D. 0,-2【答案】C【解析】原方程变形为:x(x-3)=0,x1=0,x2=3.故答案为x1=0,x2=3.点睛:本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是因式分解法.3. 一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A. 108°B. 90°C. 72°D. 60°【答案】C【解析】分析】首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:3605=72°.故选C.【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°. 4. 若不等式组0422x a x x +≥⎧⎨->-⎩有解,则实数取值范围是( ).A. 2a ≥-B. 2a <-C. 2a ≤-D. 2a >-【答案】D 【解析】【详解】试题解析:0422x a x x +≥⎧⎨->-⎩①②由①得:x a ≥-.由②得:224x x -->--36x ->- 2x <.因不等式组有解:可画图表示为:由图可得使不等式组有解的的取值范围为:2a -<. ∴2a >-. 故选D . 5. 已知函数y=kx的图像经过点(1,-1),则函数y=kx-2的图像是( ) A. B. C. D.【答案】A 【解析】将(1,-1),代人y=kx,得k=-1, 所以一次函数的解析式为y=-x-2.根据k=-1<0,且过点(0,-2),可判断图像经过二、三、四象限. 故选A.6. 下列调查方式中适合的是( )A. 要了解一批节能灯的使用寿命,采用普查方式B. 调查你所在班级同学的身高,采用抽样调查方式C. 环保部门调查长江某段水域的水质情况,采用抽样调查方式D. 调查全市中学生每天的就寝时间,采用普查方式 【答案】C 【解析】 【分析】利用抽样调查,全面普查适用范围直接判断即可【详解】A. 要了解一批节能灯的使用寿命,应采用抽样调查方式,故A 错 B. 调查你所在班级同学的身高,应采用全面普查方式,故B 错C. 环保部门调查沱江某段水域的水质情况,应采用抽样调查方式,故C 对D. 调查全市中学生每天的就寝时间,应采用抽样调查方式,故D 错 【点睛】本题主要全面普查和抽样调查应用范围,基础知识牢固是解题关键7. 如图,点E ,F 分别在菱形ABCD 的边AB ,AD 上,且AE = DF ,BF 交DE 于G ,延长BF 交CD 的延长线于H ,若2AF DF ,则HFBG的值为( )A.712B.23C.12D.512【答案】A 【解析】设DF=a ,则DF=AE=a ,AF=EB=2a ,由△HFD∽△BFA,得===,求出FH ,再由HD∥EB,得△DGH∽△EGB,得===,求出BG 即可解决问题.解:∵四边形ABCD 是菱形, ∴AB=BC=CD=AD,∵AF=2DF,设DF=a ,则DF=AE=a ,AF=EB=2a , ∵HD∥AB,∴△HFD∽△BFA,∴===,∴HD=1.5a,=,∴FH=BH,∵HD∥EB,∴△DGH∽△EGB,∴===,∴=,∴BG=HB,∴.故选A.“点睛”本题考查相似三角形的性质和判定、菱形的性质、比例的选择等知识,解题的关键是利用相似三角形的性质解决问题,学会设参数,属于中考常考题型.8. 如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…、则正方形OB2016B2017C2017的顶点B2017的坐标是.A. (21008,0)B. (21008 ,21008)C. (0, 21008)D. (21007, 21007)【答案】B【解析】观察发现:B1(1,1),B2(0,2),B3(−2,2),B4(−4,0),B5(−4,−4),B6(0,−8),B7(8,−8),B8(16,0),B9(16,16),…,∴B8n+1(24n,24n)(n为自然数).∵2017=8×252+1,∴点B2017的坐标为(21008,21008).故答案为(21008,21008).点睛:本题主要考查正方形的性质和坐标与图形的性质的知识点,解答本题的关键是由点的坐标规律发现每经过8次作图后,点的坐标符号与第一次坐标符号相同.2倍.二.填空题(每题3分,共24分)9. 分解因式:2ax a=_______.28【答案】2(2)(2)a x x +-【解析】【分析】首先提公因式2a ,再利用平方差公式分解即可.【详解】原式=2a (x 2﹣4)=2a (x +2)(x ﹣2).故答案为2a (x +2)(x ﹣2).【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.10. 在式子2x +中自变量x 的取值范围是__________ 【答案】2x ≠-【解析】根据分式的意义和二次根式的意义,列不等式组求解.根据题意得210{20x x +≥+≠,解得x≠-2. 故填:x≠-211. 若关于x 的分式方程7311mx x x +=--无解,则实数m =_______. 【答案】3或7.【解析】解:方程去分母得:7+3(x ﹣1)=mx ,整理得:(m ﹣3)x =4.①当整式方程无解时,m ﹣3=0,m =3; ②当整式方程的解为分式方程的增根时,x =1,∴m ﹣3=4,m =7.综上所述:∴m 的值为3或7.故答案为3或7.12. 若小张投掷两次一枚质地均匀的硬币,则两次出现正面朝上的概率是________. 【答案】14 【解析】随机掷一枚均匀的硬币两次,可能的结果有:正正,正反,反正,反反, ∴两次正面都朝上的概率是14.故填:14.13. 一个射击运动员连续射靶5次所得环数分别为8,6,10,7,9,则这个运动员所得环数的方差为______.【答案】2【解析】数据8,6,10,7,9,的平均数=15(8+6+10+7+9)=8,方差=15[(8−8)2+(6−8)2+(10−8)2+(7−8)2+(9−8)2]=2.故填2.14. 如图,直线a∥b,∠1=45°,∠2=30°,则∠P=_______°.【答案】75.【解析】【详解】解:过P作PM∥直线a,∵直线a∥b,∴直线a∥b∥PM,∵∠1=45°,∠2=30°,∴∠EPM=∠2=30°,∠FPM=∠1=45°,∴∠EPF=∠EPM+∠FPM=30°+45°=75°,故答案为75.【点睛】本题考查平行线的性质,正确添加辅助线是解题关键.15. 如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1,①b2>4ac;②4a﹣2b+c<0;③不等式ax2+bx+c>0的解集是x>3;④若(﹣2,y1),(5,y2)是抛物线上的两点,则y1<y2.上述判断中,正确的是________.【答案】①④【解析】∵抛物线与x轴有2个交点,∴b2−4ac>0,即b2>4ac,所以①正确;∵抛物线的对称轴是直线x=1,但不能确定抛物线与x轴的交点坐标,∴4a−2b+c<0不确定;不等式ax2+bx+c>0的解集x>3错误,所以②③错误;∵点(−2,y1)比点(5,y2)到直线x=1的距离小,而抛物线开口向上,∴y1<y2,所以④正确.故答案为①④.点睛:根据抛物线与x轴的交点个数对①进行判断;由于不能确定抛物线与x轴的交点坐标,于是可对②③进行判断;当抛物线开口向上,抛物线上的点到对称轴的距离越远,对应的函数值越大,由此可对④进行判断.16. 如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点.点E在CD上,且DE=2CE,连接BE.过点C作CF⊥BE,垂足是F,连接OF,则OF的长为.65.【解析】【分析】在BE上截取BG=CF,连接OG,证明△OBG≌△OCF,则OG=OF,∠BOG=∠COF,得出等腰直角三角形GOF,在RT△BCE中,根据射影定理求得GF的长,即可求得OF的长.【详解】如图,在BE上截取BG=CF,连接OG,∵Rt△BCE中,CF⊥BE,∴∠EBC=∠ECF,∵∠OBC=∠OCD=45°,∴∠OBG=∠OCF,∵OB=OC,∴△OBG≌△OCF(SAS),∴OG=OF,∠BOG=∠COF,∴OG⊥OF,在RT△BCE中,BC=DC=6,DE=2EC,∴EC=2,∴222262210+=+=BC CE∵BC2=BF•BE,则62=BF210,解得:BF=105,∴EF=BE﹣BF=105,∵CF2=BF•EF,∴310,∴GF=BF﹣BG=BF﹣CF=105,在等腰直角△OGF中OF2=GF2,∴OF=65.65.三.解答题(共102分)17. -14+3tan30°30+(12)-2【答案】4【解析】试题分析:原式利用乘方、特殊角的三角函数值、零指数幂、负整数指数幂计算即可得到结果.试题解析:原式=-1+33318. 先化简,再求值:(1-32a+)÷22214a aa-+-其中a=(-13)-1【答案】21aa--,54【解析】试题分析:先根据分式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.试题解析:原式=-()()2a2a2a1a2(a1)+--⨯+-=a2a1--,当11a a33-⎛⎫=-=-⎪⎝⎭即时,原式=5419. 如图,某大楼的顶部竖有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底仰角为60°,沿坡度为1:3的坡面AB向上行走到B处,测得广告牌顶部C的仰角为45°,又知AB=10m,AE=15m,求广告牌CD 的高度(精确到0.1m,测角仪的高度忽略不计)【答案】广告牌CD的高度约为2.7米【解析】试题分析:过B作DE的垂线,设垂足为G.分别在Rt△ABH中,通过解直角三角形求出BH、AH,在△ADE 解直角三角形求出DE的长,进而可求出EH即BG的长,在Rt△CBG中,∠CBG=45°,则CG=BG,由此可求出CG的长,然后根据CD=CG+GE-DE即可求出宣传牌的高度.试题解析:过B作BG⊥DE于G,Rt△ABH中,i=tan∠BAH=33∴∠BAH=30°,∴BH=12AB=5;∵BH⊥HE,GE⊥HE,BG⊥DE,∴四边形BHEG 是矩形. ∵BH=5,AH=53, ∴BG=AH+AE=53+15,Rt△BGC 中,∠CBG=45°,∴CG =BG=53+15.Rt△ADE 中,∠DAE=60°,AE=15,∴DE=3AE=153.∴CD=CG+GE −DE=53+15+5−153=20−103≈2.7(m).答:宣传牌CD 高约2.7米.20. 某商场举行开业酬宾活动,设立了两个可以自由转动的转盘(如图所示,两个转盘均被等分),并规定:顾客购买满188元的商品,即可任选一个转盘转动一次,转盘停止后,指针所指区域内容即为优惠方式;若指针所指区域空白,则无优惠.已知小张在该商场消费300元(1)若他选择转动转盘1,则他能得到优惠的概率为多少?(2)选择转动转盘1和转盘2,哪种方式对于小张更合算,请通过计算加以说明.【答案】(1)12;(2)转动转盘1更优惠. 【解析】试题分析:(1)根据转盘1,利用概率公式求得获得优惠的概率即可;(2)分别求得转动两个转盘所获得优惠,然后比较即可得到结论.试题解析:(1)∵整个圆被分成了12个扇形,其中有6个扇形能享受折扣,∴P(得到优惠)=612=12; (2)转盘1能获得的优惠为:0.33000.230020.1300312⨯+⨯⨯+⨯⨯=25元,转盘2能获得的优惠为:40×24=20元,所以选择转动转盘1更优惠.考点:列表法与树状图法.21. 2008京奥运会后,同学们参与体育锻炼的热情高涨.为了解他们平均每周的锻炼时间,小明同学在校内随机调查了50名同学,统计并制作了如下的频数分布表和扇形统计图.根据上述信息解答下列问题:(1)m=______,n=_________;(2)在扇形统计图中,D组所占圆心角的度数为_____________;(3)全校共有3000名学生,估计该校平均每周体育锻炼时间不少于6小时的学生约有多少名.【答案】(1)8,4;(2)1440;(3)2340人.【解析】【分析】(1)利用总数和C所占的百分比即可求出m,进而求出n;(2)求出D组所占的百分比,再求D组所占圆心角的度数即可;(3)利用样本估计总体,先求出该校平均每周体育锻炼时间不少于6小时的学生所占的百分比,即可求出答案.【详解】解:(1)由统计表和扇形图可知:m=50×16%=8人;n=50-8-15-20-1-2=4人;故答案为:8;4;(2)扇形统计图中,D组所占圆心角的度数=360×2050=144度;故答案为:144°;(3)该校平均每周体育锻炼时间不少于6小时的学生站的百分比=20+15+450=78%,则3000名学生,估计该校平均每周体育锻炼时间不少于6小时的学生约有3000×78%=2340人.【点睛】本题考查频数和扇形统计图,解决这类问题的关键是要弄清楚频数的意义,理解频数分布表与扇形统计图的对应关系,还要掌握用样本估计总体的统计思想.22. 九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y 元[(1)求出y 与x 的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.【答案】(1)()()221802000150120120005090x x x y x x ⎧-++≤⎪=⎨-+≤≤⎪⎩<;(2)第45天时,当天销售利润最大,最大利润是6050元;(3)41.【解析】【分析】(1)根据单价乘以数量,可得利润,可得答案.(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案.(3)根据二次函数值大于或等于4800,一次函数值大于或等于4800,可得不等式,根据解不等式组,可得答案.【详解】(1)当1≤x <50时,()()2200240302180200y x x x x =-+-=-++, 当50≤x≤90时,()()2002903012012000y x x =--=-+,综上所述:()()221802000150120120005090x x x y x x ⎧-++≤⎪=⎨-+≤≤⎪⎩<. (2)当1≤x <50时,二次函数开口下,二次函数对称轴为x=45,当x=45时,y 最大=-2×452+180×45+2000=6050, 当50≤x≤90时,y 随x 的增大而减小,当x=50时,y 最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元.(3)解2218020004800x x -++≥,结合函数自变量取值范围解得2050x ≤<,解120120004800x -+≥,结合函数自变量取值范围解得5060x ≤≤所以当20≤x≤60时,即共41天,每天销售利润不低于4800元.【点睛】本题主要考查了1.二次函数和一次函数的应用(销售问题);2.由实际问题列函数关系式;3. 二次函数和一次函数的性质;4.分类思想的应用.23. 某市对城区部分路段的人行道地砖、绿化带、排水管等公用设施进行全面更新改造,根据市政建设的需要,需在35天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作,只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.【答案】(1)甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天;(2)应该选择甲工程队承包该项工程.【解析】【分析】(1)设甲工程队单独完成该工程需x 天,则乙工程队单独完成该工程需2x 天.再根据”甲、乙两队合作完成工程需要10天”,列出方程解决问题;(2)首先根据(1)中的结果,从而可知符合要求的施工方案有三种:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:由甲乙两队合作完成.针对每一种情况,分别计算出所需的工程费用.【详解】(1)设甲工程队单独完成该工程需天,则乙工程队单独完成该工程需2x 天. 根据题意得:101012x x+= 方程两边同乘以2x ,得230x =解得:15x =经检验,15x =是原方程的解.∴当15x =时,230x =.答:甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天.(2)因为甲乙两工程队均能在规定的35天内单独完成,所以有如下三种方案:方案一:由甲工程队单独完成.所需费用为:41560⨯=(万元);方案二:由乙工程队单独完成.所需费用为:2.53075⨯=(万元);方案三:由甲乙两队合作完成.所需费用为:(4 2.5)1065+⨯=(万元).∵756560>>∴应该选择甲工程队承包该项工程.【点睛】本题考查分式方程在工程问题中的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.24. 如图在△ABC 中,AB=AC ,以AB 为直径的⊙O 交BC 于点D ,过点D 作DE⊥AC 于E 交AB 的延长线于点F ,(1)求证:EF 是⊙O 的切线;(2)若AE=6,FB=4,求⊙O 的面积.【答案】(1)证明见解析(2)16π【解析】试题分析:(1)连结AD 、OD ,如图,根据圆周角定理由AB 为⊙O 的直径得到∠ADB=90°,即AD⊥BC,再根据等腰三角形的性质得BD=CD ,则OD 为△ABC 的中位线,所以OD∥AC,加上EF⊥AC,于是OD⊥EF,然后根据切线的判定定理得EF 是⊙O 的切线;(2)设⊙O 的半径为R ,利用OD∥AE 得到△FOD∽△FAE,根据相似比可得 6R =442R R++,解得R=4,然后利用圆的面积公式求解. 试题解析:(1)连结AD 、OD ,如图,∵AB 为⊙O 的直径,∴∠ADB=90°,即AD ⊥BC ,∵AB=AC ,∴BD=CD ,而OA=OB ,∴OD 为△ABC 的中位线,∴OD ∥AC ,∵EF ⊥AC ,∴OD ⊥EF ,∴EF 是⊙O 的切线;(2)设⊙O 的半径为R ,∵OD ∥AE ,∴△FOD ∽△FAE , ∴OD AE =FO DA ,即6R =442R R++, 解得R=4,∴⊙O 的面积=π•42=16π.25.菱形ABCD 中,两条对角线AC ,BD 相交于点O ,∠MON+∠BCD=180°,∠MON 绕点O 旋转,射线OM 交边BC 于点E ,射线ON 交边DC 于点F ,连接EF .(1)如图1,当∠ABC=90°时,△OEF 的形状是 ;(2)如图2,当∠ABC=60°时,请判断△OEF 的形状,并说明理由;(3)在(1)的条件下,将∠MON 的顶点移到AO 的中点O′处,∠MO′N 绕点O′旋转,仍满足∠MO′N+∠BCD=180°,射线O′M 交直线BC 于点E ,射线O′N 交直线CD 于点F ,当BC=4,且ΔO'EF 98ABCD S S =四边形时,直接写出线段CE 的长.【答案】(1)△OEF 是等腰直角三角形;(2)△OEF 是等边三角形;(3)333+333.【解析】试题分析:(1)先证四边形ABCD 是正方形,得出∠EBO=∠FCO=45°,OB=OC ,得出∠BOE=∠COF ,进一步得到△BOE ≌△COF ,从而得到结论;(2)过O 点作OG ⊥BC 于G ,作OH ⊥CD 于H ,根据菱形的性质可得CA 平分∠BCD ,∠ABC+BCD=180°,求得OG=OH ,∠BCD=120°,∠GOH=∠EOF=60°,进一步得出∠EOG=∠FOH ,得出△EOG ≌△FOH ,从而得到结论;(3)过O 点作OG ⊥BC 于G ,作OH ⊥CD 于H ,先求得四边形O′GCH 是正方形,从而求得GC=O′G=3,∠GO′H=90°,得到△EO′G ≌△FO′H 全等,得到△O′EF 是等腰直角三角形,根据已知求得等腰直角三角形的直角边O′E 的长,然后根据勾股定理求得EG ,即可求得CE 的长.试题解析:(1)△OEF 是等腰直角三角形;如图1,∵菱形ABCD 中,∠ABC=90°,∴四边形ABCD 是正方形,∴OB=OC ,∠BOC=90°,∠BCD=90°,∠EBO=∠FCO=45°,∴∠BOE+∠COE=90°,∵∠MON+∠BCD=180°,∴∠MON=90°,∴∠COF+∠COE=90°,∴∠BOE=∠COF ,在△BOE 与△COF 中,∵∠BOE=∠COF ,OB=OC ,∠EBO=∠FCO ,∴△BOE ≌△COF(ASA),∴OE=OF ,∴△OEF 是等腰直角三角形;(2)△OEF 是等边三角形;如图2,过O 点作OG ⊥BC 于G ,作OH ⊥CD 于H ,∴∠OGE=∠OGC=∠OHC=90°,∵四边形ABCD 是菱形,∴CA 平分∠BCD ,∠ABC+BCD=180°,∴OG=OH ,∠BCD=180°﹣60°=120°,∵∠GOH+∠OGC+∠BCD+∠OHC=360°,∴∠GOH+∠BCD=180°,∴∠MON+∠BCD=180°,∴∠GOH=∠EOF=60°,∵∠GOH=∠GOF+∠FOH ,∠EOF=∠GOF+∠EOG ,∴∠EOG=∠FOH ,在△EOG与△FOH 中,∵∠EOG=∠FOH ,OG=OH ,∠EGO=∠FHO ,∴△EOG ≌△FOH(ASA),∴OE=OF ,∴△OEF 是等边三角形;(3)如图3,∵菱形ABCD 中,∠ABC=90°,∴四边形ABCD 是正方形,∴'34O C AC =,过O 点作O′G ⊥BC 于G ,作O′H ⊥CD 于H ,∴∠O′GC=∠O′HC=∠BCD=90°,∴四边形O′GCH 是矩形,∴O′G ∥AB ,O′H ∥AD ,∴'''34O G O H O C AB AD AC ===,∵AB=BC=CD=AD=4,∴O′G=O′H=3,∴四边形O′GCH 是正方形,∴GC=O′G=3,∠GO′H=90°,∵∠MO′N+∠BCD=180°,∴∠EO′F=90°,∴∠EO′F=∠GO′H=90°,∵∠GO′H=∠GO′F+∠FO′H ,∠EO′F=∠GO′F+∠EO′G ,∴∠EO′G=∠FO′H ,在△EO′G 与△FO′H 中,∵∠EO′G=∠FO′H ,O′G= O′H ,∠EG O′=∠FH O′,∴△EO′G ≌△FO′H (ASA),∴O′E=O′F ,∴△O′EF 是等腰直角三角形;∵S 正方形ABCD =4×4=16,ΔO'EF98ABCD S S =四边形,∴S △O′EF =18,∵S △O′EF =21'2O E ,∴O′E=6,在RT △O′EG 中,∴CE=CG+EG=3+∠M′ON′旋转到如图所示位置时,CE′=E′G ﹣CG=3.综上可得,线段CE的长为3+3.考点:1.四边形综合题;2.正方形的判定与性质;3.等边三角形的判定;4.等腰直角三角形;5.分类讨论;6.综合题;7.压轴题.26. 如图,直线y=x+4交于x 轴于点A ,交y 轴于点C ,过A 、C 两点的抛物线F 1交x 轴于另一点B(1,0).(1)求抛物线F 1所表示的二次函数的表达式及顶点Q 的坐标;(2)在抛物线上是否存在点P ,使△BPC 的内心在y 轴上,若存在,求出点P 的坐标,若不存在写出理由;(3)直线y=kx-6与y 轴交于点N,与直线AC 的交点为M,当△MNC 与△AOC 相似时,求点M 坐标.【答案】(1)y=﹣x 2﹣x+4,Q 20(1,)3-(2)(﹣5,﹣16)(3)①2414(,)55M --②15(,6)2M -- 【解析】 试题分析:(1)利用一次函数的解析式求出点A 、C 的坐标,然后再利用B 点坐标即可求出二次函数的解析式;(2)由于M 在抛物线F 1上,所以可设M(a ,-248433a a a -+),然后分别计算S 四边形MAOC 和S △BOC ,过点M 作MP⊥x 轴于点P ,则S 四边形MAOC 的值等于△APM 的面积与梯形POCM 的面积之和.(3)由于没有说明点P 的具体位置,所以需要将点P 的位置进行分类讨论,当点P 在A′的右边时,此情况是不存在;当点P 在A′的左边时,此时∠DA′P=∠CAB′,若以A′、D 、P 为顶点的三角形与△AB′C 相似,则分为以下两种情况进行讨论:①AC A B ''=DA PA '';②AB AC '=DA PA''.试题解析:(1)令y=0代入y=43x+4, ∴x=﹣3,A(﹣3,0),令x=0,代入y=43x+4,∴y=4,∴C(0,4), 设抛物线F 1的解析式为:y=a(x+3)(x ﹣1), 把C(0,4)代入上式得,a=﹣43, ∴y=﹣43x 2﹣83x+4,Q 201,3⎛⎫- ⎪⎝⎭(2)∵点B 的坐标为(1,0),取点B 关于y 轴的对称点B′(﹣1,0),连接CB′,则∠BCO=∠B′CO ,∴△BPC 的内心在y 轴上,直线B′C 的解析式为y=4x+4,联立,2y 4x 448y x x 433{=+=--+∴点P 的坐标为(﹣5,﹣16);N(0,-6),直线AC 的表达式为4y x 43=+, 当△MNC ∽△AOC 时,①∠CMN 为直角设 4M x,x 43⎛⎫+ ⎪⎝⎭,根据勾股定理可得2414M ,55⎛⎫-- ⎪⎝⎭ ②当∠CNM 直角时,MN ∥x 轴,∴15M ,62⎛⎫-- ⎪⎝⎭点睛:本题主要考查对待定系数法求一次函数的解析式,二次函数图象上的点的坐标的特征,函数和坐标轴的交点,二次函数的三种形式,相似三角形的判定,对称性质等知识的连接和掌握,熟练运用性质进行推理是解决此题的关键所在,要注意分类讨论思想的在此题中的运用.。

2020 参考2017年天津和平区中考数学二模试卷 含答案

2020 参考2017年天津和平区中考数学二模试卷 含答案

2020 年天津市和平区中考数学二模试卷一、选择题(共12 小题,每小题 3 分,满分36 分)1.(3分)计算(﹣6)+(﹣2)的结果等于()A.8 B.﹣8 C.12 D.﹣122.(3分)cos60°的值是()A.B.C.D.3.(3分)下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.4.(3分)纳米是非常小的长度单位,1纳米=10﹣9米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病毒直径是()A.2.51×10﹣5 米B.25.1×10﹣6 米C.0.251×10﹣4 米D.2.51×10﹣4 米5.(3分)如图,几何体上半部为正三棱柱,下半部为圆柱,其俯视图是()A.B.C.D.6.(3分)估计+1的值,应在()A.1 和2 之间B.2 和3 之间C.3 和4 之间D.4 和5 之间7.(3分)若x、y的值均扩大为原来的2倍,则下列分式的值保持不变的是()A.B.C.D.8.(3分)有一边长为4的正n边形,它的一个内角为120°,则其外接圆的半径为()A.B.4 C.D.29.(3分)已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数的图象上,则y1、y2、y3 的大小关系是()A.y3<y1<y2 B.y1<y2<y3 C.y2<y1<y3 D.y3<y2<y1 10.(3分)若n(n≠0)是关于x的方程x2+mx+2n=0的根,则m+n的值为()A.1 B.2 C.﹣1 D.﹣211.(3分)如图,在菱形ABCD中,∠ABC=60°,AB=1,E为BC的中点,则对角线BD 上的动点P 到E、C 两点的距离之和的最小值为()A.B.C.D.12.(3分)如图,已知抛物线y1=﹣2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2 中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1 时,y1=0,y2=4,y1<y2,此时M=0.下列判断:①当x>0 时,y1>y2;②当x<0 时,x 值越大,M 值越小;③使得M 大于2 的x 值不存在;④使得M=1 的x 值是﹣或.其中正确的个数是()A.1个B.2 个C.3 个D.4 个二、填空题(共6 小题,每小题3 分,满分18 分)13.(3分)计算a4•a的结果等于.14.(3分)如图,AB=AC,点D在AB上,点E在AC上,DC、EB交于点F,△ADC≌△AEB,只需增加一个条件,这个条件可以是.15.(3分)第一盒乒乓球中有4个白球2个黄球,第二盒乒乓球中有3个白球3个黄球,分别从每个盒子中随机地取出1 个球,则取出的两个球都是黄球的概率是.16.(3分)如图,在正方形网格上有6个三角形:①△ABC,②△CDB,③△DEB,④△FBG,⑤△HGF,⑥△EKF.在②~⑥中,与①相似的三角形的个数是.17.(3分)如图,面积为1的正方形ABCD中,M,N分别为AD、BC的中点,将C点折至MN 上,落在P 点的位置,折痕为BQ,连接PQ.以PQ 为边长的正方形的面积等于.18.(3分)如图,在每个小正方形的边长为1的网格中,点A、点B均为格点.(1)AB 的长等于;(2)若点C 是以AB 为底边的等腰直角三角形的顶点,点D 在边AC 上,且满足S△ABD .请在如图所示的网格中,用无刻度的直尺,画出线段BD,并简要说明点D =S△ABC的位置时如何找到的(不要求证明)..三.解答题:19.解不等式组:请结合题意填空,完成本题的解答:(i)解不等式(1),得;(ii)解不等式(2),得;(iii)把不等式(1)和(2)的解集在数轴上表示出来:(iv)原不等式的解集为:.20.某校申报“跳绳特色运动”学校一年后,抽样调查了部分学生的“1 分钟跳绳”成绩,并制成了下面的频数分布直方图(每小组含最小值,不含最大值)和扇形图.(1)补全频数分布直方图,扇形图中m=;(2)若把每组中各个数据用这组数据的中间值代替(如A 组80≤x<100 的中间值是=90次),则这次调查的样本平均数是多少?(3)如果“1 分钟跳绳”成绩大于或等于120 次为优秀,那么该校2100 名学生中“1 分钟跳绳”成绩为优秀的大约有多少人?21.已知△ABC 中,AB=AC,∠BAC=120°,在BC 上取一点O,以O 为圆心、OB 为半径作圆,且⊙O 过A 点.(Ⅰ)如图①,若⊙O 的半径为5,求线段OC 的长;(Ⅱ)如图②,过点A 作AD∥BC 交⊙O 于点D,连接BD,求的值.22.如图,长方形广告牌架在楼房顶部,已知CD=2m,经测量得到∠CAH=37°,∠DBH=60°,AB=10m,求GH的长.(参考数据:tan37°≈0.75,≈1.732,结果精确到0.1m)23.现代互联网技术的广泛应用,催生了快递行业的高速发展,小明计划给朋友快递一部分物品,经了解有甲乙两家快递公司比较合适.甲公司表示:快递物品不超过1 千克的,按每千克22 元收费;超过1 千克,超过的部分按每千克15 元收费.乙公司表示:按每千克16 元收费,另加包装费3 元.设小明快递物品x 千克.(1)根据题意,填写下表:0.5 134…重量(千克)费用(元)甲公司22 67 …乙公司11 51 …(2)请分别写出甲乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(3)小明应选择哪家快递公司更省钱?24.在平面直角坐标系中,O 为原点,边长为2 的正方形OABC 的两顶点A、C 分别在y 轴、x 轴的正半轴上,现将正方形OABC 绕点O 顺时针旋转.。

天津市和平区2019-2020学年中考第二次适应性考试数学试题含解析

天津市和平区2019-2020学年中考第二次适应性考试数学试题含解析

天津市和平区2019-2020学年中考第二次适应性考试数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知反比例函数y=8k x-的图象位于第一、第三象限,则k 的取值范围是( ) A .k >8B .k≥8C .k≤8D .k <82.如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变,当AB 2=,B 60o ∠=时,AC 等于( )A .2B .2C .6D .223.如图,一段抛物线:y=﹣x (x ﹣5)(0≤x≤5),记为C 1,它与x 轴交于点O ,A 1;将C 1绕点A 1旋转180°得C 2, 交x 轴于点A 2;将C 2绕点A 2旋转180°得C 3, 交x 轴于点A 3;…如此进行下去,得到一“波浪线”,若点P (2018,m )在此“波浪线”上,则m 的值为( )A .4B .﹣4C .﹣6D .64.下表是某校合唱团成员的年龄分布. 年龄/岁 13 14 15 16频数515x10x -对于不同的x ,下列关于年龄的统计量不会发生改变的是( ) A .众数、中位数B .平均数、中位数C .平均数、方差D .中位数、方差5.欧几里得的《原本》记载,形如22x ax b +=的方程的图解法是:画Rt ABC ∆,使90ACB ∠=o ,2aBC =,AC b =,再在斜边AB 上截取2aBD =.则该方程的一个正根是( )A .AC 的长B .AD 的长C .BC 的长D .CD 的长6.已知A 样本的数据如下:72,73,76,76,77,78,78,78,B 样本的数据恰好是A 样本数据每个都加2,则A ,B 两个样本的下列统计量对应相同的是( ) A .平均数B .标准差C .中位数D .众数7.某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是()A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10 %8.下列事件中,必然事件是()A.抛掷一枚硬币,正面朝上B.打开电视,正在播放广告C.体育课上,小刚跑完1000米所用时间为1分钟D.袋中只有4个球,且都是红球,任意摸出一球是红球9.若点P(﹣3,y1)和点Q(﹣1,y2)在正比例函数y=﹣k2x(k≠0)图象上,则y1与y2的大小关系为()A.y1>y2B.y1≥y2C.y1<y2D.y1≤y210.小华和小红到同一家鲜花店购买百合花与玫瑰花,他们购买的数量如下表所示,小华一共花的钱比小红少8元,下列说法正确的是()百合花玫瑰花小华6支5支小红8支3支A.2支百合花比2支玫瑰花多8元B.2支百合花比2支玫瑰花少8元C.14支百合花比8支玫瑰花多8元D.14支百合花比8支玫瑰花少8元11.将抛物线y=x2先向左平移2个单位,再向下平移3个单位后所得抛物线的解析式为()A.y=(x﹣2)2+3 B.y=(x﹣2)2﹣3 C.y=(x+2)2+3 D.y=(x+2)2﹣3127+1的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图所示,在△ABC中,∠C=90°,∠CAB=50°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB,AC于点E,F;②分别以点E,F为圆心,大于12EF的长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D.则∠ADC的度数为.14.若方程x2+2(1+a)x+3a2+4ab+4b2+2=0有实根,则ba=_____.15.如图,在每个小正方形边长为1的网格中,ABC△的顶点A,B,C均在格点上,D为AC边上的一点.线段AC的值为______________;在如图所示的网格中,AM是ABC△的角平分线,在AM上求一点P,使CP DP的值最小,请用无刻度的直尺,画出AM和点P,并简要说明AM和点P的位置是如何找到的(不要求证明)___________.16.因式分解:9a2﹣12a+4=______.17.如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为_______.18.已知关于x的一元二次方程(k﹣5)x2﹣2x+2=0有实根,则k的取值范围为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)观察下列等式:22﹣2×1=12+1①32﹣2×2=22+1②42﹣2×3=32+1③…第④个等式为;根据上面等式的规律,猜想第n个等式(用含n的式子表示,n是正整数),并说明你猜想的等式正确性.20.(6分)如图,是5×5正方形网格,每个小正方形的边长为1,请按要求画出下列图形,所画图形的各个顶点均在所给小正方形的顶点上.(1)在图(1)中画出一个等腰△ABE ,使其面积为3.5;(2)在图(2)中画出一个直角△CDF ,使其面积为5,并直接写出DF 的长.21.(6分)如图,抛物线l :y=(x ﹣h )2﹣2与x 轴交于A ,B 两点(点A 在点B 的左侧),将抛物线ι在x 轴下方部分沿轴翻折,x 轴上方的图象保持不变,就组成了函数ƒ的图象. (1)若点A 的坐标为(1,0).①求抛物线l 的表达式,并直接写出当x 为何值时,函数ƒ的值y 随x 的增大而增大;②如图2,若过A 点的直线交函数ƒ的图象于另外两点P ,Q ,且S △ABQ =2S △ABP ,求点P 的坐标; (2)当2<x <3时,若函数f 的值随x 的增大而增大,直接写出h 的取值范围.22.(8分)如图,Rt △ABC ,CA ⊥BC ,AC =4,在AB 边上取一点D ,使AD =BC ,作AD 的垂直平分线,交AC 边于点F ,交以AB 为直径的⊙O 于G ,H ,设BC =x . (1)求证:四边形AGDH 为菱形; (2)若EF =y ,求y 关于x 的函数关系式; (3)连结OF ,CG .①若△AOF 为等腰三角形,求⊙O 的面积;②若BC =3,则30CG+9=______.(直接写出答案).23.(8分)抛物线23yax bx a =+-经过A (-1,0)、C (0,-3)两点,与x 轴交于另一点B .求此抛物线的解析式;已知点D(m,-m-1)在第四象限的抛物线上,求点D关于直线BC对称的点D’的坐标;在(2)的条件下,连结BD,问在x轴上是否存在点P,使PCB CBD∠=∠,若存在,请求出P点的坐标;若不存在,请说明理由.24.(10分)小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:?1322x x+=--.她把这个数“?”猜成5,请你帮小华解这个分式方程;小华的妈妈说:“我看到标准答案是:方程的增根是2x=,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?25.(10分)赵亮同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,则学校旗杆的高度为________米.26.(12分)如图,小巷左石两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7米,梯子顶端到地面的距离AC为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A′D为1.5米,求小巷有多宽.27.(12分)如图,直角坐标系中,直线12y x=-与反比例函数kyx=的图象交于A,B两点,已知A点的纵坐标是2.(1)求反比例函数的解析式.(2)将直线12y x=-沿x轴向右平移6个单位后,与反比例函数在第二象限内交于点C.动点P在y轴正半轴上运动,当线段PA与线段PC之差达到最大时,求点P的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】本题考查反比例函数的图象和性质,由k-8>0即可解得答案.【详解】∵反比例函数y=8kx-的图象位于第一、第三象限,∴k-8>0,解得k>8,故选A.【点睛】本题考查了反比例函数的图象和性质:①、当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②、当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.2.B【解析】【分析】首先连接AC,由将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,AB=1,B60o∠=,易得△ABC是等边三角形,即可得到答案.【详解】连接AC,∵将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,∴AB=BC , ∵B 60o ∠=,∴△ABC 是等边三角形, ∴AC=AB=1. 故选:B .【点睛】本题考点:菱形的性质. 3.C 【解析】分析:根据图象的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m 的值,由2017÷5=403…2,可知点P (2018,m )在此“波浪线”上C 404段上,求出C 404的解析式,然后把P (2018,m )代入即可.详解:当y=0时,﹣x (x ﹣5)=0,解得x 1=0,x 2=5,则A 1(5,0), ∴OA 1=5,∵将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A 2旋转180°得C 3,交x 轴于点A 3;…;如此进行下去,得到一“波浪线”, ∴A 1A 2=A 2A 3=…=OA 1=5,∴抛物线C 404的解析式为y=(x ﹣5×403)(x ﹣5×404),即y=(x ﹣2015)(x ﹣2020), 当x=2018时,y=(2018﹣2015)(2018﹣2020)=﹣1, 即m=﹣1. 故选C .点睛:此题主要考查了二次函数的平移规律,根据已知得出二次函数旋转后解析式是解题关键. 4.A 【解析】 【分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案. 【详解】由题中表格可知,年龄为15岁与年龄为16岁的频数和为1010x x +-=,则总人数为3151030++=,故该组数据的众数为14岁,中位数为1414142+=(岁),所以对于不同的x ,关于年龄的统计量不会发生改变的是众数和中位数,故选A. 【点睛】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键. 5.B 【解析】【分析】可以利用求根公式求出方程的根,根据勾股定理求出AB 的长,进而求得AD 的长,即可发现结论.【解答】用求根公式求得:12x x ==∵90,2aC BC AC b ∠=︒==,,∴AB =∴2a AD ==AD 的长就是方程的正根. 故选B.【点评】考查解一元二次方程已经勾股定理等,熟练掌握公式法解一元二次方程是解题的关键. 6.B 【解析】试题分析:根据样本A ,B 中数据之间的关系,结合众数,平均数,中位数和标准差的定义即可得到结论: 设样本A 中的数据为x i ,则样本B 中的数据为y i =x i +2,则样本数据B 中的众数和平均数以及中位数和A 中的众数,平均数,中位数相差2,只有标准差没有发生变化. 故选B.考点:统计量的选择. 7.C 【解析】【分析】观察直方图,根据直方图中提供的数据逐项进行分析即可得. 【详解】观察直方图,由图可知:A. 最喜欢足球的人数最多,故A 选项错误;B. 最喜欢羽毛球的人数是最喜欢田径人数的两倍,故B 选项错误;C. 全班共有12+20+8+4+6=50名学生,故C 选项正确;D. 最喜欢田径的人数占总人数的4100%50=8 %,故D选项错误,故选C.【点睛】本题考查了频数分布直方图,从直方图中得到必要的信息进行解题是关键.8.D【解析】试题解析:A. 是可能发生也可能不发生的事件,属于不确定事件,不符合题意;B. 是可能发生也可能不发生的事件,属于不确定事件,不符合题意;C. 是可能发生也可能不发生的事件,属于不确定事件,不符合题意;D. 袋中只有4个球,且都是红球,任意摸出一球是红球,是必然事件,符合题意.故选D.点睛:事件分为确定事件和不确定事件.必然事件和不可能事件叫做确定事件.9.A【解析】【分析】分别将点P(﹣3,y1)和点Q(﹣1,y2)代入正比例函数y=﹣k2x,求出y1与y2的值比较大小即可. 【详解】∵点P(﹣3,y1)和点Q(﹣1,y2)在正比例函数y=﹣k2x(k≠0)图象上,∴y1=﹣k2×(-3)=3k2,y2=﹣k2×(-1)=k2,∵k≠0,∴y1>y2.故答案选A.【点睛】本题考查了正比例函数,解题的关键是熟练的掌握正比例函数的知识点.10.A【解析】【分析】设每支百合花x元,每支玫瑰花y元,根据总价=单价×购买数量结合小华一共花的钱比小红少8元,即可得出关于x、y的二元一次方程,整理后即可得出结论.【详解】设每支百合花x元,每支玫瑰花y元,根据题意得:8x+3y﹣(6x+5y)=8,整理得:2x﹣2y=8,∴2支百合花比2支玫瑰花多8元.故选:A.【点睛】考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.11.D【解析】【分析】先得到抛物线y=x2的顶点坐标(0,0),再根据点平移的规律得到点(0,0)平移后的对应点的坐标为(-2,-1),然后根据顶点式写出平移后的抛物线解析式.【详解】解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)先向左平移2个单位,再向下平移1个单位得到对应点的坐标为(-2,-1),所以平移后的抛物线解析式为y=(x+2)2-1.故选:D.【点睛】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.12.B【解析】分析:直接利用2<3,进而得出答案.详解:∵2<3,∴3+1<4,故选B.的取值范围是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.65°【解析】【分析】根据已知条件中的作图步骤知,AG是∠CAB的平分线,根据角平分线的性质解答即可.【详解】根据已知条件中的作图步骤知,AG是∠CAB的平分线,∵∠CAB=50°,∴∠CAD=25°;在△ADC中,∠C=90°,∠CAD=25°,∴∠ADC=65°(直角三角形中的两个锐角互余);故答案是:65°.14.1 2 -【解析】【分析】因为方程有实根,所以△≥0,配方整理得(a+2b)2+(a﹣1)2≤0,再利用非负性求出a,b的值即可. 【详解】∵方程有实根,∴△≥0,即△=4(1+a)2﹣4(3a2+4ab+4b2+2)≥0,化简得:2a2+4ab+4b2﹣2a+1≤0,∴(a+2b)2+(a﹣1)2≤0,而(a+2b)2+(a﹣1)2≥0,∴a+2b=0,a﹣1=0,解得a=1,b=﹣12,∴ba=﹣12.故答案为﹣1 2 .15.(Ⅰ)5(Ⅱ)如图,取格点E、F,连接AE与BC交于点M,连接DF与AM交于点P. 【解析】【分析】(Ⅰ)根据勾股定理进行计算即可.(Ⅱ)根据菱形的每一条对角线平分每一组对角,构造边长为1的菱形ABEC,连接AE交BC于M,即可得出AM是ABCV的角平分线,再取点F使AF=1,则根据等腰三角形的性质得出点C与F关于AM 对称,连接DF交AM于点P,此时CP DP+的值最小.【详解】(Ⅰ)根据勾股定理得5=;故答案为:1.(Ⅱ)如图,如图,取格点E、F,连接AE与BC交于点M,连接DF与AM交于点P,则点P即为所求.V的角平分线,在AB 说明:构造边长为1的菱形ABEC,连接AE交BC于M,则AM即为所求的ABC上取点F,使AF=AC=1,则AM垂直平分CF,点C与F关于AM对称,连接DF交AM于点P,则点P即为所求.【点睛】本题考查作图-应用与设计,涉及勾股定理、菱形的判定和性质、几何变换轴对称—最短距离等知识,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想解决问题.16.(3a﹣1)1【解析】【分析】直接利用完全平方公式分解因式得出答案.【详解】9a1-11a+4=(3a-1)1.故答案是:(3a﹣1)1.【点睛】考查了公式法分解因式,正确运用公式是解题关键.17.5.【解析】【详解】试题解析:过E作EM⊥AB于M,∵四边形ABCD是正方形,∴AD=BC=CD=AB,∴EM=AD,BM=CE,∵△ABE的面积为8,∴12×AB×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:=考点:1.正方形的性质;2.三角形的面积;3.勾股定理.18.1152k k≤≠且【解析】【分析】若一元二次方程有实根,则根的判别式△=b2-4ac≥0,且k-1≠0,建立关于k的不等式组,求出k的取值范围.【详解】解:∵方程有两个实数根,∴△=b2-4ac=(-2)2-4×2×(k-1)=44-8k≥0,且k-1≠0,解得:k≤112且k≠1,故答案为k≤112且k≠1.【点睛】此题考查根的判别式问题,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)52﹣2×4=42+1;(2)(n+1)2﹣2n=n2+1,证明详见解析.【解析】【分析】(1)根据①②③的规律即可得出第④个等式;(2)第n个等式为(n+1)2﹣2n=n2+1,把等式左边的完全平方公式展开后再合并同类项即可得出右边.【详解】(1)∵22﹣2×1=12+1①32﹣2×2=22+1②42﹣2×3=32+1③∴第④个等式为52﹣2×4=42+1,故答案为:52﹣2×4=42+1,(2)第n个等式为(n+1)2﹣2n=n2+1.(n+1)2﹣2n=n2+2n+1﹣2n=n2+1.【点睛】本题主要考查了整式的运算,熟练掌握完全平方公式是解答本题的关键.20.(1)见解析;(2)DF=10【解析】【分析】(1)直接利用等腰三角形的定义结合勾股定理得出答案;(2)利用直角三角的定义结合勾股定理得出符合题意的答案.【详解】(1)如图(1)所示:△ABE,即为所求;(2)如图(2)所示:△CDF即为所求,DF=10.【点睛】此题主要考查了等腰三角形的定义以及三角形面积求法,正确应用网格分析是解题关键.21.(1)①当1<x<3或x>5时,函数ƒ的值y随x的增大而增大,②P(,);(2)当3≤h≤4或h≤0时,函数f的值随x的增大而增大.【解析】试题分析:(1)①利用待定系数法求抛物线的解析式,由对称性求点B的坐标,根据图象写出函数ƒ的值y随x的增大而增大(即呈上升趋势)的x的取值;②如图2,作辅助线,构建对称点F和直角角三角形AQE,根据S△ABQ=2S△ABP,得QE=2PD,证明△PAD∽△QAE,则,得AE=2AD,设AD=a,根据QE=2FD列方程可求得a的值,并计算P 的坐标;(2)先令y=0求抛物线与x轴的两个交点坐标,根据图象中呈上升趋势的部分,有两部分:分别讨论,并列不等式或不等式组可得h的取值.试题解析:(1)①把A(1,0)代入抛物线y=(x﹣h)2﹣2中得:(x﹣h)2﹣2=0,解得:h=3或h=﹣1,∵点A在点B的左侧,∴h>0,∴h=3,∴抛物线l的表达式为:y=(x﹣3)2﹣2,∴抛物线的对称轴是:直线x=3,由对称性得:B(5,0),由图象可知:当1<x<3或x>5时,函数ƒ的值y随x的增大而增大;②如图2,作PD⊥x轴于点D,延长PD交抛物线l于点F,作QE⊥x轴于E,则PD∥QE,由对称性得:DF=PD,∵S△ABQ=2S△ABP,∴AB•QE=2×AB•PD,∴QE=2PD,∵PD∥QE,∴△PAD∽△QAE,∴,∴AE=2AD,设AD=a,则OD=1+a,OE=1+2a,P(1+a,﹣[(1+a﹣3)2﹣2]),∵点F、Q在抛物线l上,∴PD=DF=﹣[(1+a﹣3)2﹣2],QE=(1+2a﹣3)2﹣2,∴(1+2a﹣3)2﹣2=﹣2[(1+a﹣3)2﹣2],解得:a=或a=0(舍),∴P(,);(2)当y=0时,(x﹣h)2﹣2=0,解得:x=h+2或h﹣2,∵点A在点B的左侧,且h>0,∴A(h﹣2,0),B(h+2,0),如图3,作抛物线的对称轴交抛物线于点C,分两种情况:①由图象可知:图象f在AC段时,函数f的值随x的增大而增大,则,∴3≤h≤4,②由图象可知:图象f点B的右侧时,函数f的值随x的增大而增大,即:h+2≤2,h≤0,综上所述,当3≤h≤4或h≤0时,函数f的值随x的增大而增大.考点:待定系数法求二次函数的解析式;二次函数的增减性问题、三角形相似的性质和判定;一元二次方程;一元一次不等式组.22.(1)证明见解析;(2)y=18x2(x>0);(3)①163π或8π或(17+2)π;②21【解析】【分析】(1)根据线段的垂直平分线的性质以及垂径定理证明AG=DG=DH=AH即可;(2)只要证明△AEF∽△ACB,可得AE EFAC BC解决问题;(3)①分三种情形分别求解即可解决问题;②只要证明△CFG∽△HFA,可得GFAF=CGAH,求出相应的线段即可解决问题;【详解】(1)证明:∵GH垂直平分线段AD,∴HA=HD,GA=GD,∵AB是直径,AB⊥GH,∴EG=EH,∴DG=DH,∴AG=DG=DH=AH,∴四边形AGDH是菱形.(2)解:∵AB是直径,∴∠ACB=90°,∵AE⊥EF,∴∠AEF=∠ACB=90°,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴AE EFAC BC=,∴124x yx=,∴y=18x2(x>0).(3)①解:如图1中,连接DF.∵GH垂直平分线段AD,∴FA=FD,∴当点D与O重合时,△AOF是等腰三角形,此时AB=2BC,∠CAB=30°,∴AB=83,∴⊙O的面积为163π.如图2中,当AF=AO时,∵AB22AC BC+216x+∴OA216x+,∵AF22EF AE+2221182x⎛⎫⎛⎫+⎪ ⎪⎝⎭⎝⎭∴2162x+=2221182x⎛⎫⎛⎫+⎪ ⎪⎝⎭⎝⎭,解得x=4(负根已经舍弃),∴AB=42,∴⊙O的面积为8π.如图2﹣1中,当点C与点F重合时,设AE=x,则BC=AD=2x,AB=2164x+,∵△ACE∽△ABC,∴AC2=AE•AB,∴16=x•2164x+,解得x2=217﹣2(负根已经舍弃),∴AB2=16+4x2=817+8,∴⊙O的面积=π•14•AB2=(217+2)π综上所述,满足条件的⊙O的面积为163π或8π或(217+2)π;②如图3中,连接CG.∵AC=4,BC=3,∠ACB=90°,∴AB=5,∴OH=OA=52,∴AE =32, ∴OE =OA ﹣AE =1,∴EG =EH2, ∵EF =18x 2=98, ∴FG=2﹣98,AF158,AH2, ∵∠CFG =∠AFH ,∠FCG =∠AHF ,∴△CFG ∽△HFA , ∴GF CG AF AH=,∴928158=, ∴CG﹣10,=故答案为.【点睛】本题考查圆综合题、相似三角形的判定和性质、垂径定理、线段的垂直平分线的性质、菱形的判定和性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用分类讨论的思想思考问题.23.(1)2y x 2x 3=--(2)(0,-1)(3)(1,0)(9,0)【解析】【分析】(1)将A (−1,0)、C (0,−3)两点坐标代入抛物线y =ax 2+bx−3a 中,列方程组求a 、b 的值即可; (2)将点D (m ,−m−1)代入(1)中的抛物线解析式,求m 的值,再根据对称性求点D 关于直线BC 对称的点D'的坐标;(3)分两种情形①过点C 作CP ∥BD ,交x 轴于P ,则∠PCB =∠CBD ,②连接BD′,过点C 作CP′∥BD′,交x 轴于P′,分别求出直线CP 和直线CP′的解析式即可解决问题.【详解】解:(1)将A(−1,0)、C(0,−3)代入抛物线y=ax2+bx−3a中,得3033a b aa--=⎧⎨-=-⎩,解得12 ab=⎧⎨=-⎩∴y=x2−2x−3;(2)将点D(m,−m−1)代入y=x2−2x−3中,得m2−2m−3=−m−1,解得m=2或−1,∵点D(m,−m−1)在第四象限,∴D(2,−3),∵直线BC解析式为y=x−3,∴∠BCD=∠BCO=45°,CD′=CD=2,OD′=3−2=1,∴点D关于直线BC对称的点D'(0,−1);(3)存在.满足条件的点P有两个.①过点C作CP∥BD,交x轴于P,则∠PCB=∠CBD,∵直线BD解析式为y=3x−9,∵直线CP过点C,∴直线CP的解析式为y=3x−3,∴点P坐标(1,0),②连接BD′,过点C作CP′∥BD′,交x轴于P′,∴∠P′CB=∠D′BC,根据对称性可知∠D′BC=∠CBD,∴∠P′CB=∠CBD,∵直线BD′的解析式为113y x=-∵直线CP′过点C,∴直线CP′解析式为133y x=-,∴P′坐标为(9,0),综上所述,满足条件的点P坐标为(1,0)或(9,0).【点睛】本题考查了二次函数的综合运用.关键是由已知条件求抛物线解析式,根据抛物线的对称性,直线BC的特殊性求点的坐标,学会分类讨论,不能漏解.x=;(2)原分式方程中“?”代表的数是-1.24.(1)0【解析】【分析】(1)“?”当成5,解分式方程即可,(2)方程有增根是去分母时产生的,故先去分母,再将x=2代入即可解答.【详解】x-得(1)方程两边同时乘以()2()5321+-=-xx=解得0x=是原分式方程的解.经检验,0(2)设?为m,x-得方程两边同时乘以()2()+-=-321m xx=是原分式方程的增根,由于2x=代入上面的等式得所以把2()m+-=-3221m=-1所以,原分式方程中“?”代表的数是-1.【点睛】本题考查了分式方程解法和增根的定义及应用.增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.25.10【解析】试题分析:根据相似的性质可得:1:1.2=x :9.6,则x=8,则旗杆的高度为8+2=10米.考点:相似的应用26.2.7米.【解析】【分析】先根据勾股定理求出AB 的长,同理可得出BD 的长,进而可得出结论.【详解】在Rt △ACB 中,∵∠ACB =90°,BC =0.7米,AC =2.2米,∴AB 2=0.72+2.22=6.1.在Rt △A′BD 中,∵∠A′DB =90°,A′D =1.5米,BD 2+A′D 2=A′B′2,∴BD 2+1.52=6.1,∴BD 2=2.∵BD >0,∴BD =2米.∴CD =BC+BD =0.7+2=2.7米.答:小巷的宽度CD 为2.7米.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.27.(1)8y x=-;(2)P (0,6) 【解析】试题分析:(1)先求得点A 的坐标,再利用待定系数法求得反比例函数的解析式即可;(2)连接AC ,根据三角形两边之差小于第三边知:当A 、C 、P 不共线时,PA-PC<AC ;当A 、C 、P 不共线时,PA-PC=AC ;因此,当点P 在直线AC 与y 轴的交点时,PA-PC 取得最大值.先求得平移后直线的解析式,再求得平移后直线与反比例函数的图象的交点坐标,最后求直线AC 的解析式,即可求得点P 的坐标.试题解析: ()1令一次函数12y x =-中2y =,则122x =-, 解得:4x =-,即点A 的坐标为(-4,2).∵点A (-4,2)在反比例函数k y x=的图象上, ∴k=-4×2=-8,∴反比例函数的表达式为8y x=-. ()2连接AC ,根据三角形两边之差小于第三边知:当A 、C 、P 不共线时,PA-PC<AC ;当A 、C 、P 不共线时,PA-PC=AC ;因此,当点P 在直线AC 与y 轴的交点时,PA-PC 取得最大值.设平移后直线于x 轴交于点F ,则F (6,0) 设平移后的直线解析式为12y x b =-+, 将F (6,0)代入12y x b =-+得:b=3 ∴直线CF 解析式:132y x =-+ 令12x -+3=8x-,解得:128(2x x ==-舍去),, ∴C (-2,4)∵A 、C 两点坐标分别为A (-4,2)、C (-2,4)∴直线AC 的表达式为6y x =+,此时,P 点坐标为P (0,6).点睛:本题是一次函数与反比例函数的综合题,主要考查了用待定系数法求函数的解析式、一次函数与反比例函数的交点坐标,熟练运用一次函数及反比例函数的性质是解题的关键.。

2023年天津市部分区中考二模数学试卷(含答案解析)

2023年天津市部分区中考二模数学试卷(含答案解析)

2023年天津市部分区中考二模数学试卷学校:___________姓名:___________班级:___________考号:___________.....如图是一个由个相同的正方体组成的立体图形,它的主视图是()A....4和5之间A.()3,2B.9.计算322x x yx y x y+---的结果是A.1B.A.AB AD=12.如图是抛物线y ax=A.0B.1C.2D.3二、填空题三、解答题18.如图,在每个小正方形的边长为1的网格中,圆上的点A,B,C均在格点上,点D在 BC上.(1)AB的长为.(2)点P在圆上,满足ADP∠+画出点P,并简要说明点P的位置是如何找到19.解不等式组22415 xx x≥-⎧⎨-≤+⎩①②(4)原不等式组的解集为______.请根据相关信息,解答下列问题:(1)本次接受调查的学生人数为______,图①中m的值为______.(1)如图①,若D 为AC 的中点,130ADC ∠=︒,求CAB ∠和DAB ∠的大小;(2)如图②,过点D 作O 的切线,与BC 的延长线交于点E ,∥OD BC 交AC 于点F ,若O 的半径为5,6BC =,求DE 的长.22.如图,海中有一个小岛P ,一艘渔船跟踪鱼群由西向东航行,在A 点测得小岛P 在北偏东57°方向上,航行40km 到达B 处,这时测得小岛P 在北偏东35︒方向上.求小岛P 到航线AB 的距离.(结果取整数)参考数据:tan57 1.54︒≈,tan350.70︒≈.23.在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.大熊猫被誉为“中国国宝”,属于国家一级保护动物.为了更好地保护大熊猫,四川栗子坪自然保护区工作人员给大熊猫淘淘佩戴GPS 颈圈监测它的活动规律.观测点A ,B ,C 依次分布在一条直线上,观测点B 距离A 处150m ,观测点C 距离A 处300m .监测人员发现淘淘某段时间内一直在A ,B ,C 三个观测点之间活动,从A 处匀速走到B 处,停留4min 后,继续匀速走到C 处,停留6min 后,从C 处匀速返回A 处.给出的图象反映了淘淘在这段时间内离观测点A 的距离m y 与离开观测点A 的时间min x 之间的对应关系.请根据相关信息,解答下列问题:(1)填表:∠'的大小和点C'的坐标;(1)如图①,当点F与原点O重合时,求C OA(2)如图②,点C'落在矩形OABC内部(不含边界)时,EF,C F'分别与△与矩形OABC重叠部分是四边形MNC E'时,求重叠部分的面积M,N,若C FE't的函数关系式,并写出t的取值范围;△与矩形OABC重叠部分的面积为33时,则t的值可以是______ (3)当C FE'两个不同的值即可).参考答案:故选:D.【点睛】本题考查了小立方块堆砌图形的三视图,即可证明BAD CAE ∠=∠,可得出50CAE ∠=︒,故选项C 不正确;由三角形外角的性质可得ADB DAC ACB ∠=∠+∠,所以ADB ACB ∠>∠,即ABC ACB ∠>∠,由全等可知ACB AED ∠=∠,可证明ABC AED ∠>∠,故选项D 不正确.【详解】解:∵由旋转可知:ABC ADE △≌△,∴AB AD =,故选项A 正确;∵ABC ADE △≌△,∴BC DE =,又∵BC AC >,∴DE AC >,故选项B 不正确;∵AB AD =,∴65ABC ADB ∠=∠=︒,∴18050BAD ABC ADB ∠=︒-∠-∠=︒,∵ABC ADE △≌△,∴BAC DAE ∠=∠,∴BAC CAD DAE CAD ∠-∠=∠-∠,即BAD CAE ∠=∠,∴50CAE ∠=︒,故选项C 不正确;∵ADB DAC ACB ∠=∠+∠,∴ADB ACB ∠>∠,∴ABC ACB ∠>∠,∵ABC ADE △≌△,∴ACB AED ∠=∠,∴ABC AED ∠>∠,故选项D 不正确;故选:A .【点睛】本题考查了全等三角形的性质、等腰三角形的性质、三角形外角的性质,熟知旋转前后的图形全等是解答本题的关键.12.D【分析】根据对称性可知抛物线与x 轴的另一个交点,从而判断①是否正确;根据抛物线与直线4y =只有一个公共点,可以判断②是否正确;根据顶点()1,4A 可知当1x =时y 有最大值可以判断③是否正确.∵ABC 是等边三角形,10AB =【点睛】本题考查了勾股定理的应用,圆周角定理,圆的对称性,等腰三角形的判定,证得=并利用对称性找点PAD APx≥-19.(1)1x≤(2)2.(4)解:原不等式组的解集为12x -≤≤,(2)由(1)知,ACB ∠在Rt ACB △中,AC =∵∥OD BC ,∴90AFO ACB ∠=∠=︒∴14FC FA AC ===,根据轴对称可知,C OE COE ∠=∠'∴90C OA C OE COE ∠=-∠-∠︒''在Rt C OH '△中,122C H OC '='=有222332OH OC C H ⎛'=-=- ⎝'根据轴对称可知,C FE CFE ∠=∠'∴260OFN CFE ∠=∠=︒,∠ONF ∴30MNF NFM ︒∠=∠=∴MN FM=∵CE t=y(3)在(2)的条件下S33=时,解得23t=当23t=时,如图(3)解:由(2)可知,A 由(2412y ax ax a a x =+-=+得顶点()2,16D a --,将原点O 沿CA 方向平移到点∴此时,四边形O A C O '''为平行四边形,7⎝⎭【点睛】本题考查了二次函数与几何图形的综合题型,待定系数法求直线的表达式、平行四边形的判定及性质及勾股定理等,解答(利用a、m表示出PQ,然后求出PQ最大时a的值,解答(最小值时点A'的位置.。

2022-2023学年天津市和平区中考数学专项突破仿真模拟卷(二模三模)含解析

2022-2023学年天津市和平区中考数学专项突破仿真模拟卷(二模三模)含解析

2022-2023学年天津市和平区中考数学专项突破仿真模拟卷(二模)一、选一选(本大题共16小题,共42分。

1-10题小题各3分;11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列各数中,比-1小的数是( )A. 0B. 0.5C. -0.5D. -22. 如图,“中国天眼”即500米口径球面射电望远镜(FAST ),是具有我国自主知识产权、世界单口径、最灵敏的射电望远镜,由4600个反射单元组成一个球面,把4600表示成(其中,1≤a <10,n 为整数)的形式,则n 为( )10n a ⨯A. -1B. 2C. 3D. 43. 如图,若∠1=50°,则∠2的度数为A. 30°B. 40°C. 50°D. 90°4. 下列运算中,正确的是( )A. B. C. D. 2222a a a =g 339()a a =2a a a -=-22()ab ab =5. 如图,在中,,则的中线的长为( Rt ABC ∆90,6,8ACB AC BC ∠=︒==Rt ABC ∆CD )A. 5B. 6C. 8D. 106. 已知面积为8的正方形边长是,则关于的结论中,正确的是()x x A. 是有理数B. 没有能在数轴上表示C. 是方程的解D. 是8的算x x x 48x =x 术平方根7. 如图,△ABC 中,∠BCD =∠A ,DE ∥BC ,与△ABC 相似的三角形(△ABC 自身除外)的个数是()A. 1个B. 2个C. 3个D. 4个8. 用配方法解一元二次方程2x 2-4x-2=1的过程中,变形正确的是( )A. 2(x-1)2=1B. 2(x-1)2=5C. (x-1)2=D. (x-2)2=52529. 已知□ABCD ,根据图中尺规作图的痕迹,判断下列结论中没有一定成立的是()A. ∠DAE =∠BAE B. ∠DEA = ∠DAB C. DE =BE D. BC =DE1210. 某工厂计划生产1500个零件,但是在实际生产时,……,求实际每天生产零件的个数,在这个题目中,若设实际每天生产零件x 个,可得方程,则题目中用“……”150********x x -=-表示的条件应是( )A. 每天比原计划多生产5个,结果延期10天完成B. 每天比原计划多生产5个,结果提前10天完成C. 每天比原计划少生产5个,结果延期10天完成D. 每天比原计划少生产5个,结果提前10天完成11. 由7个大小相同的正方体搭成的几何体如图所示,则以下结论:①主视图既是轴对称图形,又是对称图形;②俯视图是对称图形;③左视图没有是对称图形;④俯视图和左视图都没有是轴对称图形,其中正确结论是( )A. ①③B. ①④C. ②③D. ②④12. 如图,在半径为4的⊙O 中,弦AB ∥OC ,∠BOC =30°,则AB 的长为( )A. 2B.C. 4D. 13. 在一个没有透明的袋子里装有2个红球1个黄球,这3个小球除了颜色没有同外,其它都相同,贝贝同学摸出一个球后放回口袋再摸一个;莹莹同学摸2个球,两人分别记录下小球的颜色,关于两个摸到1个红球1个黄球和2个红球的概率的描述中,正确的是()A.B. (11)(11)=P P 贝贝摸到红黄莹莹摸到红黄(11)(11)>P P 贝贝摸到红黄莹莹摸到红黄C . D. (2)(2)=P P 贝贝摸到红莹莹摸到红(2)(2)>P P 贝贝摸到红莹莹摸到红14. 如图,在平面直角坐标系中,A (1,2),B (1,-1),C (2,2),抛物线y =ax 2(a ≠0)△ABC 区域(包括边界),则a 的取值范围是( )A. 或 1a ≤-2a ≥B. 或 10a -≤<02a <≤C. 或10a -≤<112a <≤D.122a ≤≤15. 如图,R t △ABC 中,∠ACB =90°,∠BAC =30°,∠BAC 的平分线交BC 于点D ,过点D 作DE ⊥AB ,垂足为E ,连接CE 交AD 于点F ,则以下结论:①AB =2CE ;②AC =4CD ;③CE ⊥AD ; ④△DBE 与△ABC 的面积比是:1:()其中正确结论是(7+)A. ①②B. ②③C. ③④D. ①④16. 一个数学游戏,正六边形被平均分为6格(其中1格涂有阴影),规则如下:若个正六边形下面标的数字为a (a 为正整数),则先绕正六边形的顺时针旋转a 格;再沿某条边所在的直线l 翻折,得到第二个图形.例如:若个正六边形下面标的数字为2,如图,则先绕其顺时针旋转2格;再沿直线l 翻折,得到第二个图形.若个正六边形下面标的数字为4,如图,按照游戏规则,得到第二个图形应是() A. B.C.D.二、填 空 题(本大题共3小题,共10分。

天津市和平区汇文中学2024届中考数学仿真试卷含解析

天津市和平区汇文中学2024学年中考数学仿真试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.下列四个几何体,正视图与其它三个不同的几何体是()A.B.C.D.2.下列图形中,既是中心对称图形又是轴对称图形的是()A.正五边形B.平行四边形C.矩形D.等边三角形3.如图,扇形AOB 中,半径OA=2,∠AOB=120°,C 是弧AB的中点,连接AC、BC,则图中阴影部分面积是( )A.4233π-B.2233π-C.433πD.233π-4.小明解方程121xx x--=的过程如下,他的解答过程中从第()步开始出现错误.解:去分母,得1﹣(x﹣2)=1①去括号,得1﹣x+2=1②合并同类项,得﹣x+3=1③移项,得﹣x=﹣2④系数化为1,得x=2⑤A.①B.②C.③D.④5.若一元二次方程x2﹣2x+m=0有两个不相同的实数根,则实数m的取值范围是()A.m≥1B.m≤1C.m>1 D.m<16.2017年,全国参加汉语考试的人数约为6500000,将6500000用科学记数法表示为( )A .6.5×105B .6.5×106C .6.5×107D .65×1057.一辆慢车和一辆快车沿相同的路线从A 地到B 地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有( )①快车追上慢车需6小时;②慢车比快车早出发2小时;③快车速度为46km/h ;④慢车速度为46km/h ; ⑤A 、B 两地相距828km ;⑥快车从A 地出发到B 地用了14小时A .2个B .3个C .4个D .5个8.学校小组5名同学的身高(单位:cm )分别为:147,156,151,152,159,则这组数据的中位数是( ).A .147B .151C .152D .1569.用半径为8的半圆围成一个圆锥的侧面,则圆锥的底面半径等于( )A .4B .6C .16πD .810.一元二次方程x 2+2x ﹣15=0的两个根为( )A .x 1=﹣3,x 2=﹣5B .x 1=3,x 2=5C .x 1=3,x 2=﹣5D .x 1=﹣3,x 2=5二、填空题(共7小题,每小题3分,满分21分)11.完全相同的3个小球上面分别标有数-2、-1、1,将其放入一个不透明的盒子中后摇匀,再从中随机摸球两次(第一次摸出球后放回摇匀),两次摸到的球上数之和是负数的概率是________.12.若不等式组 的解集是x <4,则m 的取值范围是_____.13.已知点A (x 1, y 1)、B(x 2, y 2)在直线y=kx+b 上,且直线经过第一、二、四象限,当x 1<x 2时,y 1与y 2的大小关系为________.14.如图,O 的半径为3,点A ,B ,C ,D 都在O 上,30AOB ∠=︒,将扇形AOB 绕点O 顺时针旋转120︒后恰好与扇形COD 重合,则AD 的长为_____.(结果保留π)15.已知边长为2的正六边形ABCDEF 在平面直角坐标系中的位置如图所示,点B 在原点,把正六边形ABCDEF 沿x 轴正半轴作无滑动的连续翻转,每次翻转60°,经过2018次翻转之后,点B 的坐标是______.16.按照神舟号飞船环境控制与生命保障分系统的设计指标,“神舟”五号飞船返回舱的温度为21℃±4℃.该返回舱的最高温度为________℃.17.如图,正方形ABCD 的边长为6,E ,F 是对角线BD 上的两个动点,且EF =12x x ,连接CE ,CF ,则△CEF 周长的最小值为_____.三、解答题(共7小题,满分69分)18.(10分)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.甲、乙两工程队每天能改造道路的长度分别是多少米?若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?19.(5分)在如图的正方形网格中,每一个小正方形的边长均为 1.格点三角形 ABC (顶点是网格线交点的三角形)的顶点 A 、C 的坐标分别是(﹣2,0),(﹣3,3).(1)请在图中的网格平面内建立平面直角坐标系,写出点 B 的坐标;(2)把△ABC 绕坐标原点 O 顺时针旋转 90°得到△A 1B 1C 1,画出△A 1B 1C 1,写出点B 1的坐标;(3)以坐标原点 O 为位似中心,相似比为 2,把△A1B1C1 放大为原来的 2 倍,得到△A 2B 2C 2 画出△A 2B 2C 2,使它与△AB1C1在位似中心的同侧;请在x 轴上求作一点P,使△PBB1 的周长最小,并写出点P 的坐标.20.(8分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.21.(10分)先化简,再求值:22()11x x xxx x+÷-++,其中2.22.(10分) (y ﹣z)1+(x ﹣y)1+(z ﹣x)1=(y+z ﹣1x)1+(z+x ﹣1y)1+(x+y ﹣1z)1. 求222(1)(1)(1)(1)(1)(1)yz zx xy x y z ++++++的值. 23.(12分)在下列的网格图中.每个小正方形的边长均为1个单位,在Rt △ABC 中,∠C=90°,AC=3,BC=4.(1)试在图中作出△ABC 以A 为旋转中心,沿顺时针方向旋转90°后的图形△AB 1C 1;(2)若点B 的坐标为(-3,5),试在图中画出直角坐标系,并标出A 、C 两点的坐标;(3)根据(2)中的坐标系作出与△ABC 关于原点对称的图形△A 2B 2C 2,并标出B 2、C 2两点的坐标.24.(14分) “六一”儿童节前夕,某县教育局准备给留守儿童赠送一批学习用品,先对红星小学的留守儿童人数进行抽样统计,发现各班留守儿童人数分别为6名,7名,8名,10名,12名这五种情形,并绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)该校有_____个班级,补全条形统计图;(2)求该校各班留守儿童人数数据的平均数,众数与中位数;(3)若该镇所有小学共有60个教学班,请根据样本数据,估计该镇小学生中,共有多少名留守儿童.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解题分析】根据几何体的三视图画法先画出物体的正视图再解答.【题目详解】解:A 、B 、D 三个几何体的主视图是由左上一个正方形、下方两个正方形构成的,而C 选项的几何体是由上方2个正方形、下方2个正方形构成的,故选:C .【题目点拨】此题重点考查学生对几何体三视图的理解,掌握几何体的主视图是解题的关键.2、C【解题分析】分析:根据中心对称图形和轴对称图形对各选项分析判断即可得解.详解:A. 正五边形,不是中心对称图形,是轴对称图形,故本选项错误.B. 平行四边形,是中心对称图形,不是轴对称图形,故本选项错误.C. 矩形,既是中心对称图形又是轴对称图形,故本选项正确.D. 等边三角形,不是中心对称图形,是轴对称图形,故本选项错误.故选C.点睛:本题考查了对中心对称图形和轴对称图形的判断,我们要熟练掌握一些常见图形属于哪一类图形,这样在实际解题时,可以加快解题速度,也可以提高正确率.3、A【解题分析】试题分析:连接AB 、OC ,AB ⊥OC ,所以可将四边形AOBC 分成三角形ABC 、和三角形AOB ,进行求面积,求得四边形面积是S=13πr 2= 43π,所以阴影部分面积是扇形面积减去四边形面积即43π-故选A. 4、A【解题分析】根据解分式方程的方法可以判断哪一步是错误的,从而可以解答本题.【题目详解】12x x x--=1, 去分母,得1-(x-2)=x ,故①错误,故选A .【题目点拨】本题考查解分式方程,解答本题的关键是明确解分式方程的方法.5、D【解题分析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.详解:∵方程2x 2x m 0-+=有两个不相同的实数根,∴()2240m =-->,解得:m <1.故选D .点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.6、B【解题分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【题目详解】将6500000用科学记数法表示为:6.5×106. 故答案选B.【题目点拨】本题考查了科学计数法,解题的关键是熟练的掌握科学计数法的表示形式.7、B【解题分析】根据图形给出的信息求出两车的出发时间,速度等即可解答.【题目详解】解:①两车在276km 处相遇,此时快车行驶了4个小时,故错误.②慢车0时出发,快车2时出发,故正确.③快车4个小时走了276km ,可求出速度为69km/h ,错误.④慢车6个小时走了276km ,可求出速度为46km/h ,正确.⑤慢车走了18个小时,速度为46km/h,可得A,B距离为828km,正确.⑥快车2时出发,14时到达,用了12小时,错误.故答案选B.【题目点拨】本题考查了看图手机信息的能力,注意快车并非0时刻出发是解题关键.8、C【解题分析】根据中位数的定义进行解答【题目详解】将5名同学的身高按从高到矮的顺序排列:159、156、152、151、147,因此这组数据的中位数是152.故选C.【题目点拨】本题主要考查中位数,解题的关键是熟练掌握中位数的定义:一组数据按从小到大(或从大到小)的顺序依次排列,处在中间位置的一个数(或最中间两个数据的平均数)称为中位数.9、A【解题分析】由于半圆的弧长=圆锥的底面周长,那么圆锥的底面周长为8π,底面半径=8π÷2π.【题目详解】解:由题意知:底面周长=8π,∴底面半径=8π÷2π=1.故选A.【题目点拨】此题主要考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长,解决本题的关键是应用半圆的弧长=圆锥的底面周长.10、C【解题分析】运用配方法解方程即可.【题目详解】解:x2+2x﹣15= x2+2x+1-16=(x+1)2-16=0,即(x+1)2=16,解得,x1=3,x2=-5.故选择C.【题目点拨】本题考查了解一元二次方程,选择合适的解方程方法是解题关键.二、填空题(共7小题,每小题3分,满分21分)11、2 3【解题分析】画树状图列出所有等可能结果,从中找到能两次摸到的球上数之和是负数的结果,根据概率公式计算可得.【题目详解】解:画树状图如下:由树状图可知共有9种等可能结果,其中两次摸到的球上数之和是负数的有6种结果,所以两次摸到的球上数之和是负数的概率为62 93 =,故答案为:23.【题目点拨】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.12、m≥1.【解题分析】∵不等式组的解集是x<1,∴m≥1,故答案为m≥1.13、y1>y1【解题分析】分析:直接利用一次函数的性质分析得出答案.详解:∵直线经过第一、二、四象限,∴y随x的增大而减小,∵x1<x1,∴y1与y1的大小关系为:y1>y1.故答案为:>.点睛:此题主要考查了一次函数图象上点的坐标特征,正确掌握一次函数增减性是解题关键.14、52π.【解题分析】根据题意先利用旋转的性质得到∠BOD=120°,则∠AOD=150°,然后根据弧长公式计算即可.【题目详解】解:∵扇形AOB 绕点O 顺时针旋转120°后恰好与扇形COD 重合,∴∠BOD=120°,∴∠AOD=∠AOB+∠BOD=30°+120°=150°,∴AD 的长=150351802ππ⋅⋅=. 故答案为:52π.【题目点拨】本题考查了弧长的计算及旋转的性质,掌握弧长公式l=180n R π⋅⋅(弧长为l ,圆心角度数为n ,圆的半径为R )是解题的关键.15、(4033【解题分析】根据正六边形的特点,每6次翻转为一个循环组循环,用2018除以6,根据商和余数的情况确定出点B 的位置,经过第2017次翻转之后,点B 的位置不变,仍在x 轴上,由A (﹣2,0),可得AB=2,即可求得点B 离原点的距离为4032,所以经过2017次翻转之后,点B 的坐标是(4032,0),经过2018次翻转之后,点B 在B′位置(如图所示),则△BB′C为等边三角形,可求得BN=NC=1,,由此即可求得经过2018次翻转之后点B 的坐标.然后求出翻转前进的距离,过点C 作CG ⊥x 于G ,求出∠CBG=60°,然后求出CG 、BG ,再求出OG ,然后写出点C 的坐标即可.【题目详解】设2018次翻转之后,在B′点位置,∵正六边形ABCDEF 沿x 轴正半轴作无滑动的连续翻转,每次翻转60°,∴每6次翻转为一个循环组,∵2018÷6=336余2,∴经过2016次翻转为第336个循环,点B 在初始状态时的位置,而第2017次翻转之后,点B 的位置不变,仍在x 轴上,∵A (﹣2,0),∴AB=2,∴点B 离原点的距离=2×2016=4032,∴经过2017次翻转之后,点B的坐标是(4032,0),经过2018次翻转之后,点B在B′位置,则△BB′C为等边三角形,此时BN=NC=1,B′N=3,故经过2018次翻转之后,点B的坐标是:(4033,3).故答案为(4033,3).【题目点拨】本题考查的是正多边形和圆,涉及到坐标与图形变化-旋转,正六边形的性质,确定出最后点B所在的位置是解题的关键.16、17℃.【解题分析】根据返回舱的温度为21℃±4℃,可知最高温度为21℃+4℃;最低温度为21℃-4℃.【题目详解】解:返回舱的最高温度为:21+4=25℃;返回舱的最低温度为:21-4=17℃;故答案为:17℃.【题目点拨】本题考查正数和负数的意义.±4℃指的是比21℃高于4℃或低于4℃.17、25【解题分析】如图作CH∥BD,使得CH=EF=2,连接AH交BD由F,则△CEF的周长最小.【题目详解】如图作CH∥BD,使得CH=EF=2,连接AH交BD由F,则△CEF的周长最小.∵CH=EF,CH∥EF,∴四边形EFHC是平行四边形,∴EC=FH,∵FA=FC,∴EC+CF=FH+AF=AH,∵四边形ABCD是正方形,∴AC⊥BD,∵CH∥DB,∴AC⊥CH,∴∠ACH=90°,在Rt△ACH中,AH=22AC CH+=45,∴△EFC的周长的最小值=22+45,故答案为:22+45.【题目点拨】本题考查轴对称﹣最短问题,正方形的性质、勾股定理、平行四边形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题.三、解答题(共7小题,满分69分)18、(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.【解题分析】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为32x米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m天,则安排乙队工作12006040m-天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【题目详解】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为32x米,根据题意得:360360332x x -=, 解得:x=40,经检验,x=40是原分式方程的解,且符合题意,∴32x=32×40=60, 答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米;(2)设安排甲队工作m 天,则安排乙队工作12006040m -天, 根据题意得:7m+5×12006040m -≤145, 解得:m≥10,答:至少安排甲队工作10天.【题目点拨】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.19、(1)(﹣4,1);(2)(1,4);(3)见解析;(4)P (﹣3,0).【解题分析】(1)先建立平面直角坐标系,再确定B 的坐标;(2)根据旋转要求画出△A 1B 1C 1,再写出点B 1的坐标;(3)根据位似的要求,作出△A 2B 2C 2;(4)作点B 关于x 轴的对称点B',连接B'B 1,交x 轴于点P ,则点P 即为所求.【题目详解】解:(1)如图所示,点B 的坐标为(﹣4,1);(2)如图,△A 1B 1C 1即为所求,点B 1的坐标(1,4);(3)如图,△A 2B 2C 2即为所求;(4)如图,作点B 关于x 轴的对称点B',连接B'B 1,交x 轴于点P ,则点P 即为所求,P (﹣3,0).【题目点拨】本题考核知识点:位似,轴对称,旋转. 解题关键点:理解位似,轴对称,旋转的意义.20、(1)2000;(2)28.8°;(3)补图见解析;(4)36万人.【解题分析】分析:(1)将A 选项人数除以总人数即可得;(2)用360°乘以E 选项人数所占比例可得;(3)用总人数乘以D 选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中C 选项人数所占百分比可得.详解:(1)本次接受调查的市民人数为300÷15%=2000人, (2)扇形统计图中,扇形E 的圆心角度数是360°×1602000=28.8°, (3)D 选项的人数为2000×25%=500, 补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为90×40%=36(万人).点睛:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小. 21、2【解题分析】先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可.【题目详解】解:原式()22,111x x x x x x x x +⎛⎫+=÷- ⎪+++⎝⎭()22,11x x x x x +=÷++()221,1x x x x x ++=⋅+ 2.x x+=当x =原式1=+ 【题目点拨】考查分式的混合运算,掌握运算顺序是解题的关键.22、1【解题分析】通过已知等式化简得到未知量的关系,代入目标式子求值.【题目详解】∵(y ﹣z )1+(x ﹣y )1+(z ﹣x )1=(y+z ﹣1x )1+(z+x ﹣1y )1+(x+y ﹣1z )1.∴(y ﹣z )1﹣(y+z ﹣1x )1+(x ﹣y )1﹣(x+y ﹣1z )1+(z ﹣x )1﹣(z+x ﹣1y )1=2,∴(y ﹣z+y+z ﹣1x )(y ﹣z ﹣y ﹣z +1x )+(x ﹣y+x+y ﹣1z )(x ﹣y ﹣x ﹣y +1z )+(z ﹣x+z+x ﹣1y )(z ﹣x ﹣z ﹣x +1y )=2, ∴1x 1+1y 1+1z 1﹣1xy ﹣1xz ﹣1yz =2,∴(x ﹣y )1+(x ﹣z )1+(y ﹣z )1=2.∵x ,y ,z 均为实数,∴x=y=z .∴()()()()()2221)11 1.111yz zx xy x y z +++=+++(23、(1)作图见解析;(2)如图所示,点A 的坐标为(0,1),点C 的坐标为(-3,1);(3)如图所示,点B 2的坐标为(3,-5),点C 2的坐标为(3,-1).【解题分析】(1)分别作出点B 个点C 旋转后的点,然后顺次连接可以得到;(2)根据点B 的坐标画出平面直角坐标系;(3)分别作出点A 、点B 、点C 关于原点对称的点,然后顺次连接可以得到.【题目详解】(1)△A 11B C 如图所示;(2)如图所示,A (0,1),C (﹣3,1);(3)△222A B C 如图所示,2B (3,﹣5),(3,﹣1).24、(1)16;(2)平均数是3,众数是10,中位数是3;(3)1.【解题分析】(1)根据有7名留守儿童班级有2个,所占的百分比是2.5%,即可求得班级的总个数,再求出有8名留守儿童班级的个数,进而补全条形统计图;(2)将这组数据按照从小到大排列即可求得统计的这组留守儿童人数数据的平均数、众数和中位数;(3)利用班级数60乘以(2)中求得的平均数即可.【题目详解】解:(1)该校的班级数是:2÷2.5%=16(个).则人数是8名的班级数是:16﹣1﹣2﹣6﹣2=5(个).条形统计图补充如下图所示:故答案为16;(2)每班的留守儿童的平均数是:(1×6+2×7+5×8+6×10+2×2)÷16=3 将这组数据按照从小到大排列是:6,7,7,8,8,8,8,8,10,10,10,10,10,10,2,2.故这组数据的众数是10,中位数是(8+10)÷2=3. 即统计的这组留守儿童人数数据的平均数是3,众数是10,中位数是3;(3)该镇小学生中,共有留守儿童60×3=1(名).答:该镇小学生中共有留守儿童1名.【题目点拨】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了平均数、中位数和众数以及用样本估计总体.。

2018-2020年天津中考数学复习各地区模拟试题分类(10)——圆(含答案)

2018-2020年天津中考数学复习各地区模拟试题分类(10)——圆一.选择题(共2小题)1.(2020•南开区二模)如图,五边形ABCDE 是⊙O 的内接正五边形,AF 是⊙O 的直径,则∠BDF 的度数是( )A .18°B .36°C .54°D .72°2.(2019•滨海新区模拟)一个圆的内接正六边形的边长为4,则该圆的内接正方形的边长为( )A .2√2B .4√2C .4√3D .8二.填空题(共2小题)3.(2020•天津一模)如图所示,平行四边形内有两个全等的正六边形,若阴影部分的面积记为S 1,平行四边形的面积记为S 2,则S 1S 2的值为 .4.(2018•红桥区模拟)如图,AB ,AC 分别为⊙O 的内接正六边形,内接正方形的一边,BC 是圆内接n 边形的一边,则n 等于 .三.解答题(共33小题)5.(2020•北辰区一模)已知四边形ABCD 是平行四边形,且以AB 为直径的⊙O 经过点D .(Ⅰ)如图(1),若∠BAD=45°,求证:CD与⊙O相切;(Ⅱ)如图(2),若AD=6,AB=10,⊙O交CD边于点F,交CB边延长线于点E,求BE,DF的长.6.(2020•天津模拟)如图,已知AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点D,过点B作BE⊥PD,交PD的延长线于点C,连接AD并延长,交BE于点E.(1)求证:AB=BE;(2)连结OC,如果PD=2√3,∠ABC=60°,求OC的长.7.(2019•滨海新区一模)如图,Rt△ACB中,∠ACB=90°,O为AB上一点.⊙O经过点A,与AC交于点E,与AB交于点F,连接EF.(Ⅰ)如图1,若∠B=30°,AE=2,求AF的长;(Ⅱ)如图2,DA平分∠CAB,交CB于点D,⊙O经过点D;①求证:BC为⊙O的切线:②若AE=3,CD=2,求AF的长.8.(2019•和平区二模)如图,已知⊙O的直径为10,点A、B、C在⊙O上,∠CAB的平分线交⊙O于点D.(1)图①,当BC为⊙O的直径时,求BD的长.(2)图②,当BD=5时,求∠CDB的度数.9.(2018•西青区二模)已知OA,OB是⊙O的半径,且OA⊥OB,垂足为O,P是射线OA 上的一点(点A除外),直线BP交⊙O于点Q,过Q作⊙O的切线交射线OA于点E.(I)如图①,点P在线段OA上,若∠OBQ=15°,求∠AQE的大小;(Ⅱ)如图②,点P在OA的延长线上,若∠OBQ=65°,求∠AQE的大小.10.(2018•东丽区二模)如图,AB是⊙O的直径,D为⊙O上一点,过弧BD上一点T作⊙O的切线TC,且TC⊥AD于点C.(1)若∠DAB=50°,求∠ATC的度数;(Ⅱ)若⊙O半径为2,TC=√3,求AD的长.11.(2018•河西区一模)如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E是AB延长线上的一点,CE交⊙O于点F,连接OC,AC,若∠DAO=105°,∠E=30°.(Ⅰ)求∠OCE的度数;(Ⅱ)若⊙O的半径为2√2,求线段EF的长.12.(2020•红桥区三模)在⊙O中,AB为直径,C为⊙O上一点.(Ⅰ)如图①,过点C作⊙O的切线,与AB的延长线相交于点P,若∠CAB=27°,求∠P的大小;̂上一点,连接DC并延长,与AB的延长线相交于点P,连接AD,(Ⅱ)如图②,D为AC若AD=CD,∠P=30°,求∠CAP的大小.13.(2020•和平区三模)已知在△ABC中,BC⊥AB.AB是⊙O的弦,AC交⊙O于点D,且D为AC的中点,延长CB交⊙O于点E,连接AE.(I)如图①,若∠E=50°,求∠EAC的大小;(1)如图②,过点E作⊙O的切线,交AC的延长线于点F.若CF=2CD,求∠CAB的大小.14.(2020•滨海新区二模)如图①,在⊙O中,AB为直径,C为⊙O上一点,∠A=30°,过点C作⊙O的切线,与AB的延长线相交于点P.(Ⅰ)求∠P的大小;(Ⅱ)如图②,过点B作CP的垂线,垂足为点E,与AC的延长线交于点F,①求∠F的大小;②若⊙O的半径为2,求AF的长.15.(2020•西青区二模)已知⊙O是△ABC的外接圆,过点A作⊙O的切线,与CO的延长线交于点P,CP与⊙O交于点D.(I)如图①,若△ABC为等边三角形,求∠P的大小;(II)如图②,连接AD,若PD=AD,求∠ABC的大小.16.(2020•红桥区二模)已知AB是⊙O的直径,弦CD与AB相交于点E,∠BAC=52°.̂的中点,求∠ABC和∠ABD的大小;(Ⅰ)如图①,若D为AB(Ⅱ)如图②,过点D作⊙O的切线,与AB的延长线交于点P,若AE=AC,求∠P的大小.17.(2020•南开区二模)如图1,AB是⊙O的直径,弦CD⊥AB于G,过C点的切线与射线DO相交于点E,直线DB与CE交于点H,OG=BG,BH=1.(Ⅰ)求⊙O的半径;(Ⅱ)将射线DO绕D点逆时针旋转,得射线DM(如图2),DM与AB交于点M,与⊙O及切线CF分别相交于点N,F,当GM=GD时,求切线CF的长.18.(2020•滨海新区一模)如图,△ABC内接于⊙O.(Ⅰ)如图①,连接OA,OC,若∠B=28°,求∠OAC的度数;(Ⅱ)如图②,直径CD的延长线与过点A的切线相交于点P.若∠B=60°,⊙O的半径为2,求AD,PD的长.19.(2020•和平区一模)已知AB是⊙O的直径,点C在⊙O上.(Ⅰ)如图①,点D在⊙O上,且AC=CD,若∠CDA=20°,求∠BOD的大小;(Ⅱ)如图②,过点C作⊙O的切线,交BA的延长线于点E,若⊙O的直径为2√3,AC=√3,求EA的长.20.(2020•河北区模拟)已知AB是⊙O的直径,C为⊙O上一点,∠OAC=58°.(Ⅰ)如图①,过点C作⊙O的切线,与BA的延长线交于点P,求∠P的大小;(Ⅱ)如图②,P为AB上一点,CP延长线与⊙O交于点Q.若AQ=CQ,求∠APC的大小.21.(2020•和平区模拟)已知,AB为⊙O的直径,C,D为⊙O上两点,过点D的直线EF 与⊙O相切,分别交BA,BC的延长线于点E,F,BF⊥EF(I)如图①,若∠ABC=50°,求∠DBC的大小;(Ⅱ)如图②,若BC=2,AB=4,求DE的长.22.(2019•北辰区二模)已知AB是⊙O的直径,C,D是⊙O上AB同侧的两点,∠BAC =25°(Ⅰ)如图①,若OD⊥AB,求∠ABC和∠ODC的大小;(Ⅱ)如图②,过点C作⊙O的切线,交AB延长线于点E,若OD∥EC,求∠ACD的大小.23.(2019•津南区二模)已知△ABC内接于⊙O,AB=AC,∠ABC=75°,D是⊙O上的点.(Ⅰ)如图①,求∠ADC和∠BDC的大小;(Ⅱ)如图②,OD⊥AC,垂足为E,求∠ODC的大小.24.(2019•红桥区二模)已知△ABC内接于⊙O,AB为⊙O的直径,过点O作AB的垂线,与AC相交于点E,与过点C的⊙O的切线相交于点D.(Ⅰ)如图①,若∠ABC=67°,求∠D的大小;(Ⅱ)如图②,若EO=EC,AB=2,求CD的长.25.(2019•西青区二模)已知AB是⊙O的直径,C为⊙O上一点,OC=4,∠OAC=60°.(Ⅰ)如图①,过点C作⊙O的切线,与BA的延长线交于点P,求∠P的大小及P A的长;(Ⅱ)如图②,P为AB上一点,CP延长线与⊙O交于点Q.若AQ=CQ,求∠APC的大小及P A的长.26.(2019•滨海新区二模)已知AB是⊙O的直径,点C,D在⊙O上,CD与AB交于点E,连接BD.(Ⅰ)如图1,若点D是弧AB的中点,求∠C的大小;(Ⅱ)如图2,过点C作⊙O的切线与AB的延长线交于点P,若AC=CP,求∠D的大小.27.(2019•河北区二模)已知,⊙O的半径为1,直线CD经过圆心O,交⊙O与C、D两点,直径AB⊥CD,点M是直线CD上异于C、D、O的一个动点,直线AM交⊙O于点N,点P是直线CD上另一点,且PM=PN.(Ⅰ)如图1,点M在⊙O的内部,求证:PN是⊙O的切线;(Ⅱ)如图2,点M在⊙O的外部,且∠AMO=30°,求OP的长.28.(2019•和平区一模)已知AB是⊙O的直径,点C,D是⊙O上的点,∠A=50°,∠B =70°,连接DO,CO,DC(1)如图①,求∠OCD的大小:(2)如图②,分别过点C,D作OC,OD的垂线,相交于点P,连接OP,交CD于点M已知⊙O的半径为2,求OM及OP的长.29.(2019•河西区模拟)如图,BE是⊙O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点C(Ⅰ)若∠ADE=25°,求∠C的度数(Ⅱ)若AB=AC,求∠D的度数.30.(2018•河西区二模)已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.(I)如图①,若BC为⊙O的直径,求BD、CD的长;(II)如图②,若∠CAB=60°,求BD、BC的长.31.(2018•津南区一模)已知P A与⊙O相切于点A,B、C是⊙O上的两点.(Ⅰ)如图①,PB与⊙O相切于点B,AC是⊙O的直径,若∠BAC=25°;求∠P的大小;(Ⅱ)如图②,PB与⊙O相交于点D,且PD=DB,若∠ACB=90°,求∠P的大小.32.(2018•滨海新区一模)如图,AB为⊙O的直径,C为⊙O上一点.(Ⅰ)如图①,若C为半圆的中点,求∠CAB的度数.(Ⅱ)如图②,若∠CAB=20°,D为AC的中点,连接OD并延长交⊙O于点E,过点C的切线CF与AE的延长线交于点F,求∠ECF的度数.33.(2018•西青区一模)已知△ABC中,点D是BC边上一点,以AD为直径的⊙O与BC 相切于点D,与AB、AC分别交于点E、F(Ⅰ)如图①,若∠AEF=52°,求∠C的度数.(Ⅱ)如图②,若EF经过点O,且∠AEF=35°,求∠B的度数.34.(2018•河北区一模)已知AB是⊙O的直径,点P是AB延长线上的一点.(I)如图1,过P作⊙O的切线PC,切点为C.作AD⊥PC于点D,求证:∠P AC=∠DAC;(II)如图2,过P作⊙O的割线,交点为M、N,作AD⊥PN于点D,求证:∠P AM=∠DAN.35.(2018•红桥区模拟)如图,AB是⊙O的直径,OD垂直于弦AC交于点E,交⊙O于点D,F是BA延长线上一点,若∠CDB=∠F.(Ⅰ)求证:FD与⊙O的相切;(Ⅱ)若AB=10,AC=8,求FD的长.36.(2018•和平区模拟)已知,△ABC中,∠A=68°,以AB为直径的⊙O与AC,BC的交点分别为D,E(Ⅰ)如图①,求∠CED的大小;(Ⅱ)如图②,当DE=BE时,求∠C的大小.37.(2018•河北区二模)如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C.(1)求证:∠ACD=∠B;(2)如图2,∠BDC的平分线分别交AC,BC于点E,F,求∠CEF的度数.2018-2020年天津中考数学复习各地区模拟试题分类(10)——圆参考答案与试题解析一.选择题(共2小题)1.【解答】解:∵AF 是⊙O 的直径,五边形ABCDE 是⊙O 的内接正五边形,∴CF̂=DF ̂,BC ̂=DE ̂,∠BAE =108°, ∴BF̂=EF ̂, ∴∠BAF =12∠BAE =54°,∴∠BDF =∠BAF =54°,故选:C .2.【解答】解:∵圆内接正六边形的边长是4,∴圆的半径为4.那么直径为8.圆的内接正方形的对角线长为圆的直径,等于8.∴圆的内接正方形的边长是4√2.故选:B .二.填空题(共2小题)3.【解答】解:如图,则S 阴影=2(S △BEF +S 四边形FGMN ),设正六边形的边长为a ,由于正六边形的存在,所以∠BEF =60°,则可得BE =EF =2a ,BC =4a ,AB =3a ,则在Rt △BEF 中可得其高EP =√3a ,同理可得FQ =√32a ,∴S 1=2(S △BEF +S FGMN )=2(12•BF •EP +FG •FQ ) =2(12•2a •√3a +√32a •a ) =3√3a 2,而S 2=BC •h =4a •3√32a =6√3a 2, ∴S 1S 2=12, 故答案为:12.4.【解答】解:连接AO ,BO ,CO .∵AB 、AC 分别为⊙O 的内接正六边形、内接正方形的一边, ∴∠AOB =360°6=60°,∠AOC =360°4=90°,∴∠BOC =30°,∴n =360°30°=12,故答案为:12三.解答题(共33小题)5.【解答】(Ⅰ)证明:连接OD .∵∠A =45°,OA =OD ,∴∠A =∠ADO =45°,∴∠BOD =90°.∵四边形ABCD 是平行四边形,∴AB ∥CD .∴∠CDO +∠BOD =180°.∴∠CDO =∠BOD =90°.∴OD ⊥DC ,∴CD 与⊙O 相切.(Ⅱ)如图2中,连接DE ,EF ,BD .∵AB是⊙O直径,∴∠ADB=90°.∵AD∥BC,∴∠ADB=∠EBD=90°.∴DE是⊙O直径.∴DE=AB=CD=10.∴BE=BC=AD=6.在Rt△DEF和Rt△CEF中,EF2=DE2﹣DF2,EF2=CE2﹣CF2∴DE2﹣DF2=CE2﹣CF2.设DF=x,则CF=10﹣x.∴102﹣x2=122﹣(10﹣x)2.解得x=145.即DF=145.6.【解答】(1)证明:连接OD,∵PD切⊙O于点D,∴OD⊥PD,∵BE⊥PC,∴OD∥BE,∴ADO=∠E,∵OA=OD,∴∠OAD=∠ADO,∴AB =BE ;(2)解:∵OD ∥BE ,∠ABC =60°, ∴∠DOP =∠ABC =60°,∵PD ⊥OD ,∴tan ∠DOP =DP OD , ∴2√3OD =√3,∴OD =2,∴OP =4,∴PB =6,∴sin ∠ABC =PC PB ,∴√32=PC 6, ∴PC =3√3,∴DC =√3,∴DC 2+OD 2=OC 2,∴(√3)2+22=OC 2,∴OC =√7.7.【解答】(Ⅰ)解:∵AF 是⊙O 的直径, ∴∠AEF =90°,∵∠ACB =90°,∴∠AEF =∠ACB ,∴EF ∥AB ,∴∠AFE =∠B =30°,(Ⅱ)①证明:连接OD,如图2所示:∵DA平分∠CAB,∴∠DAC=∠DAO,∵OA=OD,∴∠DAO=∠ADO,∴∠DAC=∠ADO,∴OD∥AC,∴∠ODB=∠ACB=90°,∴BD⊥OD,∵⊙O经过点D,∴BC为⊙O的切线;②解:连接DE,如图3所示:∵BC为⊙O的切线,∴∠CDE=∠CAD,∵∠C=∠C,∴△CDE∽△CAD,∴CD:CA=CE:CD,∴CD2=CE×CA,即22=CE(CE+3),解得:CE=1,或CE=﹣4(舍去),∴CA=4,设⊙O的半径为r,∵EF∥BC,∴AFBF =AECE=31=3,∴AF=3BF=2r,∴BF=23r,∵OD∥AC,∴△BOD∽△BAC,∴OD AC =OB AB,即r 4=r+23r 2r+23r , 解得:r =52,∴AF =2r =5.8.【解答】解:(1)如图1中,连接CD . ∵BC 为⊙O 直径,∴∠CDB =90°,∴∠CAB =90°,∵AD 是∠CAB 的角平分线,∴∠DAB =12∠CAB =45°,∴∠DCB =∠DAB =45°∴△CDB 为等腰直角三角形,∵BC =10,∴BD =5√2.(2)连接OD 、OB ,∵⊙O 直径为10,∴OB =OD =5,∴BD =5,∴OB =OD =BD ,∴△OBD是等边三角形,∴∠BOD=60°,∵CD̂=DB̂,∴∠ACD=∠BAD=30°,∴∠BAC=60°,∵四边形CABD是圆内接四边形,∴∠CDB+∠BAC=180°,∴∠CDB=120°.9.【解答】解:(I)如图①中,连接OQ.∵EQ是切线,∴OQ⊥EQ,∴∠OQE=90°,∵OA⊥OB,∴∠AOB=90°,∴∠AQB=12∠AOB=45°,∵OB=OQ,∴∠OBQ=∠OQB=15°,∴∠AQE=90°﹣15°﹣45°=30°.(Ⅱ)如图②中,连接OQ.∵OB=OQ,∴∠B=∠OQB=65°,∴∠BOQ=50°,∵∠AOB=90°,∴∠AOQ=40°,∵OQ=OA,∴∠OQA=∠OAQ=70°,∵EQ是切线,∴∠OQE=90°,∴∠AQE=90°﹣70°=20°.10.【解答】解:(Ⅰ)连接OT,如图1:∵TC⊥AD,⊙O的切线TC,∴∠ACT=∠OTC=90°,∴∠CAT+∠CTA=∠CTA+∠ATO,∴∠CAT=∠ATO,∵OA=OT,∴∠OAT=∠ATO,∴∠DAB=2∠CAT=50°,∴∠CAT=25°,∴∠ATC=90°﹣25°=65°;(Ⅱ)过O作OE⊥AC于E,连接OT、OD,如图2:∵AC⊥CT,CT切⊙O于T,∴∠OEC=∠ECT=∠OTC=90°,∴四边形OECT是矩形,∴OT=CE=OD=2,∵OE⊥AC,OE过圆心O,∴AE=DE=12AD,∵CT=OE=√3,在Rt△OED中,由勾股定理得:ED=2−OE2=√22−(√3)2=1,∴AD=2.11.【解答】解:(Ⅰ)∵CD是⊙O的切线,∴OC⊥CD,又AD⊥CD,∴AD∥OC,∴∠COE=∠DAO=105°,∴∠OCE=180°﹣∠COE﹣∠E=45°;(Ⅱ)作OM⊥CE于M,则CM=MF,∵∠OCE=45°,∴OM=CM=2=MF,在Rt△MOE中,ME=OMtanE=2√3,∴EF=ME﹣MF=2√3−2.12.【解答】解:(Ⅰ)如图①,连接OC,∵⊙O与PC相切于点C,∴OC⊥PC,即∠OCP=90°,∵∠CAB=27°,∴∠COB=2∠CAB=54°,在Rt△AOE中,∠P+∠COP=90°,∴∠P=90°﹣∠COP=36°;(Ⅱ)连接OC,OD,∵AD=CD,∴∠AOD=∠COD,∵OA=OD=OC,∴∠OAD=∠ADO=∠ODC=∠DCO,∵∠P=30°,∴∠P AD+∠ADP=150°,∴∠COP=∠DCO﹣∠P=20°,∵∠CAP=12∠COP,∴∠CAP=10°.13.【解答】解:(1)连接ED,如图1,∵△ABC是直角三角形,∴∠ABC=90°,∴∠ABE=90°,∴AE是⊙O的直径,∴ED⊥AC,∵AD=DC,∴AE=CE,∴∠AED=∠CED=12∠AEC=12×50°=25°,∴∠EAC=90°﹣∠AED=90°﹣25°=65°;(2)连接ED,如图2,∵D为AC的中点,∴∠ABE=90°,∴AE是直径,∵EF是⊙OO的切线,∴∠AEF=90°,∵D为AC的中点,∴AC=2CD,∵CF=2CD,∴AC=CF,∴CE=12AF=AC,由(1)得AE=CE,∴AE=CE=AC,∴∠EAC=60°,∵AB⊥EC,∴∠CAB=12∠EAC=30°14.【解答】解:(Ⅰ)如图①中,连接OC.∵⊙O与PC相切于点C,∴OC⊥PC,即∠OCP=90°,∵∠A=30°,∴∠BOC=2∠A=60°,在Rt△OPC中,∠POC+∠P=90°,∴∠P=90°﹣60°=30°.(Ⅱ)如图②中,①由(Ⅰ)∠OCP=90°,又∵BF⊥PC,即∠PEB=90°,∴OC∥BF,∴∠F=∠ACO=∠A=30°,②由①∠F=∠A,∴AB=BF,连接BC,则∠BCA=90°,即BC⊥AF,∴AC=CF,∵∠BOC=60°,OC=OB,∴△OBC是正三角形,∴BC=OC=2,∴AC=√AB2−BC2=√42−22=2√3,∴AF=4√3.15.【解答】解:(Ⅰ)如图①,连接AO,∵△ABC为等边三角形,∴∠ABC=60°,∴∠AOC=2∠ABC=120°,∵∠AOC+∠AOF=180°,∴∠AOP=60°,∵P A是⊙O的切线,∴P A⊥AO,∴∠P AO=90°,∴∠P+∠AOP=90°,∴∠P=90°﹣∠AOP=90°﹣60°=30°;(Ⅱ)如图②,∵PD=AD,∴∠P=∠P AD,∵OA=OD,∴∠ADO=∠OAD,∵∠ADO=∠P+∠P AD=2∠P AD,∴∠OAD=2∠P AD,∵P A是⊙O的切线,∴P A⊥AO,∴∠P AO=90°,∴∠P AD+∠OAD=90°,∴∠P AD+2∠P AD=90°,∴∠P AD=30°,∴∠ADO=2∠P AD=60°,∴∠ADC=60°,∴∠ABC=∠ADC=60°.16.【解答】解:(1)∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC+∠ABC=90°,∵∠BAC=52°,∴∠ABC=90°﹣52°=38°,∵D为AB̂的中点,∴AD̂=BD̂,∴∠ACD=∠BCD=12∠ACB=45°,∴∠ABD=∠ACD=45°;(2)如图,连接OD,OC,∵AE=AC,∴∠ACE=∠AEC=64°,∵OA=OC,∴∠ACO=∠CAO=52°,∴∠OCD=∠ACE﹣ACO=12°,∵OC=OD,∴∠ODC=∠OCD=12°,∴∠POD=∠AEC﹣∠ODC=52°,∵DP是⊙O的切线,∴OD⊥DP,∴∠ODP=90°,∴∠P=90°﹣∠POD=38°.17.【解答】解:(Ⅰ)如图1,连接OC,∵OG=BG,且OB⊥CG,∴OC=BC,又∵OC=OB,∴△OBC是等边三角形,∴∠1=∠2=∠3=∠BCH=30°,∠4=60°,∴∠H=90°,∵BH=1,∴OC=BC=2BH=2,即圆O的半径为2;(Ⅱ)如图2,过点F作FE⊥DC.交DC延长线于点E,∴∠CFE+∠FCE=90°,∵OC⊥FC,∴∠OCG+∠FCE=90°,∴∠CFE=∠OCG,∴tan∠CFE=tan∠OCG,即CEEF=√33,设CE=x,则EF=√3x,∵GM=GD,MG⊥CD,∴∠MDG=45°,∵FE⊥ED,∴∠DFE=90°﹣∠MDG=45°=∠MDG,∴EF=ED=EC+CD,又∵CD=2CG=2×√22−12=2√3,∴√3x=x+2√3,解得x=3+√3,∴FC=2EC=6+2√3.18.【解答】解:(Ⅰ)∵∠AOC=2∠ABC,∠B=28°,∴∠AOC=56°,∵OA=OC,∴∠OAC=∠OCA,∴∠OAC=180°−56°2=62°;(Ⅱ)如图②,连接OA.∵P A与⊙O相切于点A,∴P A⊥OA,∵∠AOC=2∠ABC,∠B=60°,∴∠AOC=120°.∴∠POA=60°,又OA=OD,∴△AOD是等边三角形,∴AD=OA=2,∵∠P AO=90°,∴∠P=30°.在Rt△P AO中,PO=2OA=4,∴PD=PO﹣OD=2.19.【解答】解:(Ⅰ)如图①,连接OC,∵AC=CD,∠CDA=20°,̂=CD̂,∴∠CAD=∠CDA=20°,AC∴∠COD=∠AOC=2×20°=40°,∴∠AOD=80°,∴∠BOD=180°﹣80°=100°;(Ⅱ)如图②,连接OC,BC,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=2√3AC=√3,∴∠B=30°,∴∠CAB=60°,∵OC=OA,∴∠ACO=∠CAO=60°,∵CE是⊙O的切线,∴∠OCE=90°,∴∠ECA=30°,∴∠E=∠CAO﹣∠ACE=30°,∴∠E=∠ACE,∴AE=AC=√3.20.【解答】解:(I)如图①,∵OA=OC,∠OAC=58°,∴∠OCA=58°∴∠COA=180°﹣2×58°=64°∵PC是⊙O的切线,∴∠OCP=90°,∴∠P=90°﹣64°=26°;(II)∵∠AOC=64°,∴∠Q=12∠AOC=32°,∵AQ=CQ,∴∠QAC=∠QCA=74°,∵∠OCA=58°,∴∠PCO=74°﹣58°=16°,∵∠AOC=∠QCO+∠APC,∴∠APC=64°﹣16°=48°.21.【解答】解(1)如图1,连接OD,BD,∵EF与⊙O相切,∴OD⊥EF,∵BF⊥EF,∴OD∥BF,∴∠AOD=∠B=50°,∵OD=OB,∴∠OBD=∠ODB=12∠AOD=25°;(2)如图2,连接AC,OD,∵AB为⊙O的直径,∴∠ACB=90°,∵BC=2,AB=4,∴∠CAB=30°,∴AC=AB•cos30°=4×√32=2√3,∵∠ODF=∠F=∠HCO=90°,∴∠DHC=90°,∴AH=AO•cos30°=2×√32=√3,∵∠HAO=30°,∴OH=12OA=12OD,∵AC∥EF,∴DE=2AH=2√3.22.【解答】解:(Ⅰ)连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=25°,∴∠ABC=65°,∵OD⊥AB,∴∠AOD=90°,∴∠ACD=12∠AOD=12×90°=45°,∵OA=OC,∴∠OAC=∠OCA=25°,∴∠OCD=∠OCA+∠ACD=70°,∵OD=OC,∴∠ODC=∠OCD=70°;(Ⅱ)连接OC,∵EC是⊙O的切线,∴OC⊥EC,∴∠OCE=90°,∵∠BAC=25°,∴∠COE=2∠BAC=50°,∴∠OEC=40°,∵OD∥CE,∴∠AOD=∠COE=40°,∴∠ACD=12∠AOD=20°.23.【解答】解:(Ⅰ)∵四边形ABCD是圆内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=75°,∴∠ADC=105°,∵AB=AC,∴∠ABC=∠ACB=75°,∴∠BAC=30°,∴∠BDC=∠BAC=30°;(Ⅱ)如图②,连接BD,∵OD⊥AC,∴AD̂=CD̂,∴∠ABD=∠CBD=12×75°=37.5°,∴∠ACD=∠ABD=37.5°,∵∠DEC=90°,∴∠ODC=90°﹣37.5°=52.5°.24.【解答】解:(Ⅰ)连接OC,∵CD是⊙O的切线,∴∠OCD=90°,∵OC=OB,∴∠OCB=∠ABC=67°,∴∠BOC=46°,∵OD⊥AB,∴∠BOD=90°,∴∠DOC=44°,∴∠D=90°﹣44°=46°;(Ⅱ)连接OC,如图所示:∵OA=OC,∴∠1=∠A,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∴∠2+∠CDE=90°,∵OD⊥AB,∴∠2+∠3=90°,∴∠3=∠CDE,∵∠3=∠A+∠1=2∠A,∴∠CDE=2∠A,∵EO=EC,∴∠1=∠2,∴∠D=∠DCE,∵∠DCE+∠1=∠BCO+∠1=90°,∴∠DCE=∠BCO=∠ABC=∠D,∵∠A+∠ABC=90°,∴∠A=30°,∴∠1=∠2=30°,∵AB=2,∴OA=1,∴OE=√3 2,∴OD=√3,∴CD=√3 3.25.【解答】解:(1)∵OA=OC,∠OAC=60°,∴△AOC是等边三角形,∴AC=OC=4,∠AOC=60°,∵过点C作⊙O的切线,与BA的延长线交于点P,∴∠OCP=90°,∴∠P=∠ACP=30°,∴P A=AC=4;(2)作CD⊥AB于D,∵∠AOC=60°,∴∠Q=30°,∵AQ=CQ,∴∠QAC=∠QCA=75°,∵∠OAC=∠OCA=60°,∴∠QAO=∠QCO=15°,∵∠AOC=∠POC+∠APC,∴∠APC=60°﹣15°=45°,∴△PCD是等腰直角三角形,∴PD=CD,∵CD=√32AC=2√3,AD=12AC=2,∴PD=2√3∴P A=AD+PD=2+2√3.26.【解答】解:(Ⅰ)如图1,连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∵D是弧AB的中点,̂=BD̂,∴AD∴AD=BD,∴△ABD是等腰直角三角形,∴∠ABD=45°,又∵∠C=∠ABD,∴∠C=45°;(Ⅱ)如图2,连接OC,∵CP是⊙O的切线,∴∠OCP=90°,∵AC=CP,∴∠A=∠P,∵∠COP=2∠A,∴∠COP=2∠P,∴在Rt△OPC中,∠COP+∠P=90°,∴2∠P+∠P=90°,∴∠P=30°,∴∠A=30°,∴∠D=∠A=30°.27.【解答】(Ⅰ)证明:连接ON,如图1,则∠ONA=∠OAN,∵PM=PN,∴∠PNM=∠PMN,∵∠AMO=∠PMN,∴∠PNM=∠AMO,∴∠PNO=∠PNM+∠ONA=∠AMO+∠ONA=90°,即PN与⊙O相切.(Ⅱ)解:连接ON,如图2,∵∠AMO=30°,PM=PN,∴∠PNM=∠AMO=30°,∠OAN=60°,∴∠NPO=60°,∴OA=ON,∴△AON是等边三角形,∴∠AON=60°,∴∠NOP=30°,∴∠PNO=90°,∴OP=ONcos30°=132=2√33.28.【解答】解:(1)∵OA=OD,OB=OC,∴∠A=∠ODA=50°,∠B=∠OCB=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=180°﹣∠AOD﹣∠BOC=60°,∵OD=OC,∴△COD是等边三角形,∴∠OCD=60°;(2)∵PD⊥OD,PC⊥OC,∴∠PDO=∠PCO=90°,∴∠PDC=∠PCD=30°,∴PD=PC,∵OD=OC,∴OP垂直平分CD,∴∠DOP=30°,∵OD=2,∴OM=√32OD=√3,OP=4√33.29.【解答】解:(Ⅰ)连接OA,∵∠ADE=25°,∴由圆周角定理得:∠AOC=2∠ADE=50°,∵AC切⊙O于A,∴∠OAC=90°,∴∠C=180°﹣∠AOC﹣∠OAC=180°﹣50°﹣90°=40°;(Ⅱ)∵AB=AC,∴∠B=∠C.∵AÊ=AÊ,∴∠AOC=2∠B.∴∠AOC=2∠C.∵∠OAC=90°,∴∠AOC+∠C=90°.∴3∠C=90°.∴∠AOC=2∠C=60°.∴∠D=12∠AOC=30°.30.【解答】解:(1)如图①,∵BC是⊙O的直径,∴∠CAB=∠BDC=90°.∵AD平分∠CAB,∴DĈ=BD̂,∴CD=BD.在直角△BDC中,BC=10,CD2+BD2=BC2,∴BD=CD=5√2,(2)如图②,连接OB,OD,OC.∵AD平分∠CAB,且∠CAB=60°,∴∠DAB=12∠CAB=30°,∴∠DOB=2∠DAB=60°.又∵OB=OD,∴△OBD是等边三角形,∴BD=OB=OD.∵⊙O的直径为10,则OB=5,∴BD=5,∵AD平分∠CAB,∴DĈ=BD̂,∴OD⊥BC,设垂足为E,∴BE=EC=OB•sin60°=5√3 2,∴BC=5√3.31.【解答】解:(Ⅰ)连接OB,∵P A,PB与⊙O相切于点A,B,∴P A=PB,∠P AO=∠PBO=90°,∴∠P AB=∠PBA,∵∠BAC=25°,∴∠PBA=90°﹣∠BAC=65°,∴∠P=180°﹣65°×2=50°;(Ⅱ)连接AB、AD,∵∠ACB=90°,∴AB为⊙O的直径,∴∠ADB=90°,∵PD=DB,∵P A与⊙O相切于点A,∴BA⊥AP,∴∠P=∠ABP=45°.32.【解答】解:(Ⅰ)如图①,∵C为半圆的中点,∴AĈ=BĈ,∴AC=BC,而AB为⊙O的直径,∴∠ACB=90°,∴△ACB为等腰直角三角形,∴∠CAB=45°;(Ⅱ)如图②,∵D为AC的中点,∴OE⊥AC,而OA=OC,∴OD平分∠AOC,∴∠COD=∠AOD=90°﹣20°=70°,∵OC=OD,∴∠OCE=∠OEC=12(180°﹣70°)=55°,∴OC⊥CF,∴∠OCF=90°,∴∠ECF=90°﹣55°=35°.33.【解答】解:(I)如图①,连接DF,∵BC是⊙O的切线,∴BC⊥AD,∴∠ADC=90°,∴∠F AD+∠C=90°,∵AD是⊙O的直径,∴∠AFD=90°,∴∠F AD+∠ADF=90°,∴∠C=∠ADF,∵∠AEF=∠ADF,∴∠C=∠AEF=52°;(II)如图②,∵AD和AF都是直径,∴OA=OE,∴∠OAE=∠AEF=35°,∵BC与⊙O相切于点D,∴BC⊥AD,∴∠ADB=90°,∴∠B=90°﹣∠OAE=90°﹣35°=55°.34.【解答】证明:(Ⅰ)如图1,连接OC,∵OA=OC,∴∠1=∠2,∵PC是⊙O的切线,∴OC⊥PC,∵AD⊥PC,∴AD∥OC,∴∠2=∠3,∴∠1=∠3,即∠P AM=∠DAN;(Ⅱ)如图2,连接BM,∵AB是⊙O的直径,∴∠1+∠2=90°,∵AD⊥PN,∴∠AND+∠3=90°,∵ABMN时⊙O的内接四边形,∴∠AND=∠2,∴∠1=∠3,即∠P AM=∠DAN.35.【解答】(Ⅰ)证明:∵∠CDB=∠CAB,∠CDB=∠BFD,∴∠CAB=∠BFD,∴FD∥AC(同位角相等,两直线平行),∵∠AEO=90°,∴∠FDO=90°,∴FD是⊙O的一条切线;(Ⅱ)由垂径定理可知,E是弦AC的中点,∵AB是直径,∴∠ACB =90°,∴BC =√102−82=6,∵OA =OB ,∴OE =12BC =3,∵AE ∥DF ,∴AE DF =OE OD , ∴4DF =35,∴DF =20336.【解答】解:(Ⅰ)∵四边形ABED 圆内接四边形, ∴∠A +∠DEB =180°,∵∠CED +∠DEB =180°,∴∠CED =∠A ,∵∠A =68°,∴∠CED =68°.(Ⅱ)连接AE .∵DE =BE ,∴DE ̂=BE ,̂∴∠DAE =∠EAB =12∠CAB =34°,∵AB 是直径,∴∠AEB =90°,∴∠AEC =90°,∴∠C =90°﹣∠DAE =90°﹣34°=56°37.【解答】(1)证明:如图1中,连接OC.∵OA=OC,∴∠1=∠2,∵CD是⊙O切线,∴OC⊥CD,∴∠DCO=90°,∴∠3+∠2=90°,∵AB是直径,∴∠1+∠B=90°,∴∠3=∠B.(2)解:①∵∠CEF=∠ECD+∠CDE,∠CFE=∠B+∠FDB,∵∠CDE=∠FDB,∠ECD=∠B,∴∠CEF=∠CFE,∵∠ECF=90°,∴∠CEF=∠CFE=45°.。

【中考冲刺】2021年天津市和平区中考数学模拟试卷(附答案)

14.如图,在 中, 是 边上的一点, 为 的中点,联结 并延长交 于点 ,则 __________
15.如图,AB是⊙O的直径,点C,D在⊙O上,若∠ABD=55°,则∠BCD的度数___.
16.已知圆锥的底面周长是 分米,母线长为1分米,则圆锥的侧面积是__________平方分米.
17.如图,AB,BC是⊙O的弦,∠B=60°,点O在∠B内,点D为 上的动点,点M,N,P分别是AD,DC,CB的中点.若⊙O的半径为4,则PN+MN的长度的最大值是______.
绝密★启用前
2021年天津市和平区中考数学模拟试卷(附答案)
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
一、单选题
1.下列图案中,是轴对称图形,但不是中心对称图形的是( )
A. B. C. D.
2.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出1个球,恰好是红球的概率为()
5.A
【分析】
利用位似图形的性质结合对应点坐标与位似比的关系得出C点坐标.
【详解】
∵以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,
∴A点与C点是对应点,
∵C点的对应点A的坐标为(2,2),位似比为1:2,
∴点C的坐标为:(4,4)
故选A.
【点睛】
本题考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键.
【详解】
①∵二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为
∴函数的对称轴为x=
∴根据二次函数的对称性,当x=-2和x=4时,y的值相等
∴当x=-2时,y=4a﹣2b+c>0

天津市和平区中考数学模拟(月)试卷(含解析)

3.图中所示几何体的俯视图是(2019年天津市和平区中考数学模拟试卷(3月份)、选择题(本大题共 12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是 符合题目要求的) 1. sin45。

的值等于( 1 A -:) V2 B.2 D. 1 2•如图是一个由5个相同的正方体组成的立体图形,它的三视图是( C. D.B .C.4.如图,把一个圆形转盘按 1: 2: 3: 4的比例分成 A B , C, D 四个扇形区域,自由转动转盘,停止后指针落在B 区域的概率为(A. B .5•要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安 排7天,每天安排4场比赛•设比赛组织者应邀请x 个队参赛,则x 满足的关系式为(△ DEF 的周长、面积依次为(7•如图,在?ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,则EF :A. 25 °B. 30 °C. 45° D. 50°込10.如图,正比例函数 y 1= k 1X 和反比例函数y 2 = 的图象交于 A (- 1, 2)、B (1,- 2)两点,x若屮< y 2,贝U x 的取值范围是()A.B.c.1D-1A. x (x +1) = 28B . — x (x - 1 )= 28 C. x ( x +1)= 28D. x ( x - 1 )= 286.在△ ABCFH A DEF 中, AB= 2DE AC= 2DF , / A =Z D,如果△ ABC 勺周长是 16 ,面积是12, 那么A. 8, 3B. 8, 6C. 4, 3D. 4,1&若一个正六边形的边心距为2 -,则该正六边形的周长为(C. 1: 1D. 1:A. 24「B. 24C. 12 :D.9.如图,O O 中,AC 为直径,MA MB 分别切O 0于点A, B , / BAC= 25°,则/ AMB 勺大小为(13.已知反比例函数的图象经过点 A B ,点A 的坐标为(1, 3),点B 的纵坐标为坐标为 14•如图,将矩形ABC 瞬点A 顺时针旋转到矩形 AB C D'的位置,旋转角为a (0C.— 1 v x v 0 或 O v x v 1B . x v — 1 或 0v x v 1 D.— 1 v x v 0或 x > 111.在等边厶ABC 中,D 是边AC 上一点,连接 BD 将厶BCD 绕点B 逆时针旋转60° ,得到△ BAE连接ED 若BC= 5, BD= 4,有下列结论:①AE// BC ②/ ADE=Z BDC ③厶BDE 是等边三角形; ④厶 ADE 勺周长是9.C. 3D. 4212 .已知抛物线 y = ax +bx +c ( a * 0)的对称轴为 x =— 0)之间,其部分图象如图所示,则下列结论:①点(-1,与x 轴的一个交点在(-73―y 1),(屮v y 2< y s ;② 3b +2cv 0:③ t (at +b )w a — b (t 为任意实数)3, 0)和(-2,5,(, y 3)是 ,其中正确结B. 1C. 2D. 3二、填空题(本大题共6小题,每小题3分,共18 分)1,则点B 的横v a v 90°),A. x v — 1 或 x > 1 其中,正确结论的个数是(A. 1B. 2 抛物线上的点,则 )若/ BAD = 70°,贝U a= (度)15•如图,“石头、剪刀、布”是民间广为流传的游戏,游戏时,双方每次任意出“石头”、“剪刀”、“布”这三种手势中的一种,那么双方出现相同手势的概率P= _______ •16 •与直线y = 2x 平行的直线可以是 _________ (写出一个即可).17•如图,点D E F 分别在正三角形 ABC 勺三边上,且△ DEF 也是正三角形,若△ ABC 的边长为a ,△ DEF 的边长为 4则厶AEF 的内切圆半径为 _______ •18.如图,在△ ABC 中, BA= BC= 4,/ A = 30°, D 是 AC 上一动点,(I) AC 的长=三、解答题(本大题共 7小题,共66分,解答应写出文字说明、演算步骤或推理过程) 19.( 8 分)(1)解方程:x (2x - 5)= 4x - 10;(H )已知关于 x 的一元二次方程 x 2+2x +2k - 4= 0有两个不相等的实数根,求 k 的取值范围.20•( 8分)已知抛物线 y = x 2+bx +c 过点(0, 0),( 1, 3),求抛物线的解析式,并求出抛物线 的顶点坐标. 21 •( 10分)已知,AB 为O O 的直径,弦 CDL AB 于点E ,在CD 的延长线上取一点 P, PG 与O O 相 切于点 G 连接 AG 交CD 于点F .Bt>—DC 的最小值是J(I)如图①,若/ A= 20°,求/ GFP和/ AGP勺大小;(n)如图②,若E为半径0A的中点,DG/ AB且OA= 2灵,求PF的长.22.( 10分)如图示一架水平飞行的无人机AB的尾端点A测得正前方的桥的左端点P的俯角为a其中tan a = 2 :,无人机的飞行高度AH为500 :米,桥的长度为1255米.①求点H到桥左端点P的距离;②若无人机前端点B测得正前方的桥的右端点Q的俯角为30 °,求这架无人机的长度AB23.( 10分)某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A, B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:注:载客量指的是每辆客车最多可载该校师生的人数设学校租用A型号客车x辆,租车总费用为y元.(I)求y与x的函数解析式,请直接写出x的取值范围;(n)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案总费用最省?最省的总费用是多少?24.( 10分)如图,四边形AOB是正方形,点C的坐标是(4, ', 0).(H)将正方形 AOBC 绕点O 顺时针旋转45°,点A , B , C 旋转后的对应点为 A , B', C ,求点A'的坐标及旋转后的正方形与原正方形的重叠部分的面积;(川)动点P 从点O 出发,沿折线 OAC 方向以1个单位/秒的速度匀速运动,同时,另一动点 Q从点O 出发,沿折线 OBCAT 向以2个单位/秒的速度匀速运动,运动时间为t 秒,当它们相遇时25. (10分)已知二次函数y = ax 2-2ax +3的最大值为4,且该抛物线与y 轴的交点为C,顶点为D.(I)求该二次函数的解析式及点 C, D 的坐标;(H)点P (t , 0)是x 轴上的动点,① 求| PC- PD 的最大值及对应的点 P 的坐标;② 设Q( 0, 2t )是y 轴上的动点,若线段 PQ 与函数y = a | x |2- 2a | x |+3的图象只有一个公共点, 求t 的取值范围.2019年天津市和平区中考数学模拟试卷(3月份)参考答案与试题解析、选择题(本大题共 12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是 符合题目要求的)1. 【分析】根据特殊角度的三角函数值解答即可.【解答】解:sin45 °=工<2故选:B.【点评】此题比较简单,只要熟记特殊角度的三角函数值即可.2. 【分析】找到从正面、左面、上看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【解答】解:此几何体的主视图有两排,从上往下分别有 1, 3个正方形;左视图有二列,从左往右分别有 2, 1个正方形; 俯视图有三列,从上往下分别有 3, 1个正方形,故选:A.(I)正方形 AOBC 勺边长为,点A 的坐标是t 的值(直接写出结果即可)【点评】本题考查了三视图的知识,关键是掌握三视图所看的位置.3.【分析】找到从上面看所得到的图形即可.【解答】解:从上面看可得到三个矩形左右排在一起,中间的较大,故选D【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.【分析】首先确定在图中B区域的面积在整个面积中占的比例,根据这个比例即可求出指针指向B区域的概率.【解答】解:•一个圆形转盘按 1 : 2:3: 4的比例分成A、B C D四个扇形区域,•••圆被等分成10份,其中B区域占2份,•••落在B区域的概率=故选:C.【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A;然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A发生的概率.5.【分析】关系式为:球队总数X每支球队需赛的场数十2= 4X 7,把相关数值代入即可.【解答】解:每支球队都需要与其他球队赛(X- 1 )场,但2队之间只有1场比赛,所以可列方程为:—x (x- 1) = 4X 7.故选:B.【点评】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.6.【分析】根据已知可证△ AB3A DEF且厶ABMH A DEF的相似比为2,再根据相似三角形周长的比等于相似比,面积的比等于相似比的平方即可求厶DEF的周长、面积.【解答】解:因为在△ ABC^A DEF中,AB= 2DE AC= 2DF,Ab AC•一——2'—2,又•••/ A—— / D,•••△ABC^A DEF 且厶ABC^A DEF的相似比为2 ,•/△ ABC勺周长是16 ,面积是12 ,• △ DEF的周长为16-2——8,面积为12 - 4——3 ,故选:A.【点评】本题难度中等,考查相似三角形的判定和性质,相似三角形周长的比等于相似比,面积的比等于相似比的平方.DE EF7.【分析】根据题意得出△ DE R^ BCF进而得出.——〒,利用点E是边AD的中点得出答案即可.【解答】解:••• ?ABCD故AD/ BCDE〜BCFDE _ EF•——,•••点E是边AD的中点,1• AE= DE=WADEF 1• =:■.故选:D.【点评】此题主要考查了平行四边形的性质以及相似三角形的判定与性质等知识,得出△△ BCF是解题关键.【分析】首先设正六边形的中心是0, —边是AB过0作0G_AB与G在直角△ OAG^ ,根据三DEF R8.角函数即可求得边长AB从而求出周长.【解答】解:如图,在Rt△ AOGh OG= 2 •,/ AOG 30°,2^3OA= OG cos 30 ° =2这个正六边形的周长= 24.故选:B.【点评】本题考查了正多边形的性质,在本题中,注意正六边形的边长等于半径的特点,进行解题.9.【分析】由AM与圆O相切,根据切线的性质得到AM垂直于AC可得出/ MAC为直角,再由/ BAC 的度数,用/ MA G / BAC求出/ MAB勺度数,又MA MB为圆O的切线,根据切线长定理得到MA =MB利用等边对等角可得出/ MA=/ MBA由底角的度数,利用三角形的内角和定理即可求出/ AMB勺度数.【解答】解:I MA切O O于点A,•••/ MA= 90°,又/ BAC= 25 ° ,•••/ MA=/ MA G / BAC= 65°,•/ MA MB分别切O O于点A、B,•MA= MB•/ MA=/ MBA•/ AM= 180°- (/ MAB/ MBA = 50°,故选:D.【点评】此题考查了切线的性质,圆周角定理,等腰三角形的判定与性质,切线长定理以及三角形内角和定理,熟练掌握性质及定理是解本题的关键.10.【分析】根据图象找出直线在双曲线下方的x的取值范围即可.【解答】解:由图象可得,-1< x v0或x> 1时,yy y2.故选:D.【点评】本题考查了反比例函数与一次函数的交点问题,数形结合是解题的关键.11.【分析】根据等边三角形的性质得/ ABC=/ C= 60°, AC= BC= 5,再利用旋转的性质得/ BAE=Z C= 60°, AE= CD则/ BAE=Z ABC于是根据平行线的判定可对①进行判断;由厶BCD绕点B逆时针旋转60°,得到△ BAE得到/ DBE= 60°, BD= BE= 4,则根据边三角形的判定方法得到△ BDE为等边三角形,于是可对③进行判断;根据等边三角形的性质得/ BDE= 60°, DE= DB= 4, 然后说明/ BDC>60°,则/ ADEc 60°,于是可对②进行判断;最后利用AE= CD DE= BD= 4和三角形周长定义可对④进行判断.【解答】解:•••△ ABC为等边三角形,.•./ ABC=Z C= 60°, AC= BC= 5,•••△BCD绕点B逆时针旋转60 °,得到△ BAE•••/ BAE=Z C= 60°, AE= CD•••/ BAE=Z ABC• AE// BC所以①正确;•••△BCD绕点B逆时针旋转60 ° ,得到△ BAE•••/ DBE= 60° , BD= BE= 4 ,•••△BDE为等边三角形,所以③正确,•••/ BDE= 60° , DE= DB= 4 ,在厶BDC中 , •/ BC> BD•••/ BDO Z C,即/ BDO60° ,•••/ AD氏60°,所以②错误;•/ AE= CD DE= BD= 4 ,ADE的周长=ADABDE= At>CDOB= A(+BD= 5+4 = 9,所以④正确.故选:C.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等•也考查了等边三角形的判定与性质.1312.【分析】根据抛物线的对称性找出点(- ,y3)在抛物线上,再结合抛物线对称轴左边的单调性即可得出①错误;由x =- 3时,y v 0 ,即可得出3a+c v 0,结合b= 2a即可得出②正确;由方程at 2+bt +a= 0中厶=b2- 4a?a = 0结合a v 0,即可得出抛物线y= at2+bt +a中y< 0,由此即可得出③正确.综上即可得出结论.5【解答】解:①•••抛物线的对称轴为x =- 1,点(,| , y3)在抛物线上,且抛物线对称轴左边图象y值随x的增大而增大,/• y i < y < y.故①错误;②•••当x=- 3 时,y = 9a-3b+c< 0,且b= 2a,9a - 3 x 2a+c= 3a+c< 0,二6a+2c=3b+2c<0,故②正确;③••• b= 2a,2 2•••方程at +bt+a= 0 中厶=b -4a?a= 0,抛物线y = at 2+bt +a与x轴只有一个交点,•••图中抛物线开口向下,• a< 0,2•- y= at +bt+a< 0,即at2+bt <- a= a - b.故③正确.综上所述,正确的结论有2个.故选:C.【点评】本题考查了二次函数图象与系数的关系、二次函数与不等式以及抛物线与x轴的交点,解题的关键是逐一分析3条结论是否正确.本题属于中档题,难度不大,解决该题型题目时,熟练掌握二次函数的图象是关键.二、填空题(本大题共6小题,每小题3分,共18分)13.【分析】设点B的横坐标为t,禾U用反比例函数图象上点的坐标特征得到t x 1 = i x 3,然后解方程求出t即可.【解答】解:设点B的横坐标为t ,•••反比例函数的图象经过点A, B,t = 3,即点B的横坐标为3.故答案为3.k【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y= ;(k为常数,图象是双曲线,图象上的点(x, y)的横纵坐标的积是定值k,即xy = k.14.【分析】根据旋转的定义,找到旋转角,利用角的和差关系即可求解.【解答】解:根据旋转的定义可知,/ BAB = a ,•••/ BAB +/ BAD = 90 °,• a = 90°- 70°= 20°.故答案为20.【点评】本题主要考查旋转的定义及性质、矩形的性质,解题的关键是找准旋转角.15.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与双方出现相同手势的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:•••共有9种等可能的结果,双方出现相同手势的有3种情况,1•双方出现相同手势的概率P=—故答案为:乙•【点评】此题考查了列表法与树状图法求概率的知识•此题比较简单,注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,注意概率=所求情况数与总情况数之比.16.【分析】两直线平行的条件是k相同,因此满足y= 2x+b的形式,且b M 0即可.【解答】解:•••满足y = 2x+b的形式,且b M 0的所有直线互相平行,•可以是直线y= 2x+1,故答案为:y = 2x+1.【点评】本题考查了一次函数图象的性质,理解k值的含义是解答本题的关键.17.【分析】欲求△ AEF的内切圆半径,可以画出图形,然后利用题中已知条件,挖掘隐含条件求k M 0)的开始解.【解答】解:如图,由于△ ABC △ DEF 都为正三角形,••• AB= BC= CA EF= FD= DE / BAC=Z B=Z C =Z FED=Z EFD=Z EDF= 60 ° ,•••/ 1 + / 2 =Z 2+/3 = 120°,/ 1 = Z 3;在厶 AEFm CFD 中,・ Z1=Z3 ,EF 二 FD• △ AEF^A CFD(AAS ; 同理可证:△ AEF^A CFD^A BDE • BE= AF,即 AEAF = A 巳BE= a . 设 皿是厶AEF 的内心,MHL AE 于H,AH= (AEAF- EF ) = (a -b )••• MA 平分/ BAC• / HAIM= 30°;【点评】本题考查了等边三角形的性质以及全等三角形的判定与性质以及内心的性质,根据已知 得出AH 的长是解题关键.18.【分析】(I )如图,过 B 作BE!AC 于 E,根据等腰三角形的性质和解直角三角形即可得到结 论;1(H )如图,作 BC 的垂直平分线交 AC 于 D 贝U BD= CD 此时BD^jDC 的值最小,解直角三角形 即可得到结论.【解答】解:(I )如图,过 B 作BEL AC 于E, •/ BA= BC= 4,• HM= AH ?ta n30 =..(a - b )? V3_ VI=(a - b )故答案为: —(a -b )6B••• AE= CE•••/ A= 30°,•AE= : AB= 2 ,2•AC= 2AE= 4 :;(H)如图,作BC的垂直平分线交AC于D, 则BD=CD此时BO^DC的值最小,••• BF= CF= 2,V3• BD= CD=——,o1 齐•••••• BD^—DC的最小值=2 ,故答案为:4頁,2讥.【点评】本题考查了等腰三角形的性质,线段垂直平分线的性质,解直角三角形,正确的作出辅助线是解题的关键.三、解答题(本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.【分析】(I)方程变形为x (2x-5)- 2 (2x-5) = 0,然后利用因式分解法解方程;(H)根据判别式的意义得到厶= 22- 4? ( 2k- 4)> 0,然后解关于k的不等式即可.【解答】解:(I) x (2x- 5)- 2 (2x - 5 )= 0,(2x - 5)( x - 2)= 0,2x - 5 = 0 或x - 2= 0,5所以x i= , X2= 2;(□)△= 22- 4? (2k - 4)> 0,5所以kv :..【点评】本题考查了根的判别式:一元二次方程ax2+bx+c= 0 (0)的根与△= b2- 4ac有如下关系:当厶> 0时,方程有两个不相等的两个实数根;当厶= 0时,方程有两个相等的两个实数根;当△< 0时,方程无实数根.20.【分析】将(0, 0),( 1, 3)代入y = x2+bx+c求得b, c的值,得到此函数的解析式;再把一般式转化为顶点式,由顶点式可得顶点的坐标.【解答】解:分别将(0, 0),( 1, 3)代入函数解析式,'c=0 (b=2得出二元一次方程组* 解得l+b+c=3 I c=0所以,该二次函数的解析式为y= X2+2X;该二次函数的解析式y = X2+2X可化为:y =( X+1)2- 1,所以该抛物线的顶点坐标为(- 1,- 1).【点评】本题考查了二次函数解析式的求法,以及二次函数顶点式的应用.21.【分析】(I)连接OG在Rt △ AEF中,/ A= 20°,可得/ GF』/ EFA= 70°,因为OA OG 所以/OG AZ A= 20°,因为PG与O O相切于点G 得/ OG2 90°,可得/ AG』90°- 20° = 70°.;(H)如图,连结BGOGODAD证明△ OA[为等边三角形,得Z AO= 60° ,所以Z AG= 30° , 因为DG/ AB所以Z BAG=Z AG= 30°,在Rt△ AGB中可求得AG= 6,在Rt△ AEF中可求得AF =2,再证明△ GFP为等边三角形,所以PF= FG= AG- AF= 6 - 2= 4.【解答】解:(I)连接OG•/ CDL AB于E,•••Z AEF= 90° ,vZ A= 20° ,•Z EFA= 90°-Z A= 90°- 20°= 70° ,•Z GFP=Z EFA= 70° ,•/ OA= OG•Z OG=Z A= 20° ,•/ PG与O O相切于点G,•Z OG= 90° ,•Z AG=Z OG-Z OG= 90°- 20° = 70°.(n)如图,连结BG OG OD AD••• E为半径OA的中点,CDLAB•OD= AD= OA•△ OA助等边三角形,•Z AO= 60° ,•••/ AGD=* AOD= 30°,••• DG/ AB•••/ BAG=/ AGD= 30°,••• AB为O O的直径,OA= 2 :,•••/ AG申90°, AB= 4 :,••• AG= AB?cos30 ° = 6,.•/ OG= OA•••/ OGA F Z BAG= 30°,•/ PG与O O相切于点G, •••/ OGP= 90°,•••/ FGP= 90°- 30°= 60°,•••/AEF= 90°, AE= ,/ BAG30° ,•AF= 2,/ GFP=Z EFA= 60,GFP为等边三角形,•PF= FG= AG— AF= 6 - 2= 4.【点评】本题考查圆的切线的性质,等边三角形的判定和性质,直角三角形的性质•解题的关键是掌握圆的切线的性质.AH22.【分析】①在Rt △ AHP中,由tan / APH= tan a = .•,即可解决问题;BC②设BCL HQ于C.在Rt △ BCQ中,求出CQ=廿=1500 米,由PQ= 1255 米,可得CP= 245米,再根据AB= HC= PH- PC计算即可;【解答】解:①在Rt△ AH冲,••• AH= 500 :,由tan / APH= tan a = 1..=亠二=2 ,可得PH= 250 米.HP PH•••点H到桥左端点P的距离为250米.②设BCL HQ于C.在Rt△ BCQ中, v BC= AH= 500「,/ BQ= 30°,•-C(= :「= 1500米,•/ PQ 1255 米,•CP= 245 米,•/ HP= 250 米,•AB= HC= 250 - 245= 5 米.答:这架无人机的长度AB为5米.【点评】本题考查解直角三角形-仰角俯角问题,锐角三角函数,矩形判定和性质等知识,解题的关键是灵活应用所学知识解决问题,属于中考常考题型.23.【分析】(I)根据租车总费用= A B两种车的费用之和,列出函数关系式即可;(n)列出不等式,求出自变量x的取值范围,禾U用函数的性质即可解决问题.【解答】解:(I)由题意:y= 380X+280 (62 - x )= 100X+17360.•/ 30X+20 (62 - x)> 1441,•x> 20.1 ,又v x为整数,•x的取值范围为21 < x< 62的整数;(n)由题意100X+17360W 21940, • x w 45.8 ,••• 21 W x W45,•••共有25种租车方案,x= 21时,y有最小值=19460元.即租21辆A型号客车时总费用最省,最省的总费用是19460元.【点评】本题考查一次函数的应用、一元一次不等式的应用等知识,解题的关键是理解题意,学会利用函数的性质解决最值问题.24.【分析】(I)由正方形性质可得AO= AC= OB= BC, AB丄OC 0匚EC, AP BE由勾股定理可求AO AE的长,即可求解;(H)由旋转的性质可得OA= OA = 4, / OAB =Z A= 90°,可求AC的长,由S 重叠部分=S\ OBC -S A A PC可求重叠部分的面积;(川)利用分类讨论思想和等腰三角形的性质可求t的值.AB交OC于点E,•••四边形AOB(是正方形••• AO= AC= OB= BC A吐OC OE= EC AE= BE•••点C的坐标是(4 '' , 0).• OC= 4 '■OE= EC=•/ O A+A C= OC= 32 ,• OA= 4... AE=^上广门厂=2'•正方形边长为4,点A坐标为(2 ' , 2 )故答案为:4 , ( 2 ' , 2 '■)(H)如图,•••旋转 45°,/ AOC 45 •••点A 落在00上,••• OA OA = 4, / OAB =/ A =90°•••点 A ' (4, 0), A ' C = OG OA = 4 '■- 4 •// AC*45°,•••/ A ' PC=Z A CP= 45• A C = A P = 4 讥-4(川)••• t = 4时,点P 与A 重合,点Q 与C 重合,且△ OAC 是等腰三角形 •••当t = 4时,△ OPQ^等腰三角形当点P 在OA 上,点Q 在OB 上时,OP= t , OQ= 2t ,则直角三角形 OPC 不是等腰三角形; 当点P 在OA 上,点Q 在BC 上时,•/△ OPQ1等腰三角形•••点Q 在OP 的垂直平分线上,当点P 在AC 上时,点Q 在AC 上时,O 片O3 PQOPQ5是等腰三角形.8•••当t = 4或.时,△ OPM 等腰三角形.【点评】本题是四边形综合题,正方形的性质,等腰直角三角形的性质,旋转的性质,勾股定理 以及分类讨论思想的运用,熟练运用这些性质进行推理是本题的关键. 25.【分析】(I )可用对称轴公式直接求出y = ax 2- 2ax +3的对称轴,然后写出顶点 D 的坐标,--S 重叠部分 =S ^OBC - S A A PC)2= 16 7-16将顶点坐标代入 y = ax 2 - 2ax +3即可求出点 C 的坐标;(n)①求出直线 CD 的解析式,再求出 CD 与 x 轴交点即可求出 P 点坐标,CD 的长度即为|PC- PD 的最大值;②根据题意画出图形,分别表示出关键点即抛物线与 x 轴交点与点P 重合时的图象,由图象即可看出t 的取值范围.【解答】解:(1)在二次函数 y = ax 2 - 2ax +3中,••• x =-_ = 1,2••• y = ax — 2ax +3 的对称轴为 x = 1,■/ y = ax — 2ax +3的最大值为 4, •抛物线的顶点 D( 1, 4),将 D (1, 4)代入 y = ax 2 — 2ax +3 中, 得 a =— 1,•••该二次函数的解析式为 y =- x 2+2x +3, •C 点坐标为(0, 3) , D 点坐标为(1, 4);(n)①••• | PC- PD <CD•••当P, C, D 三点在一条直线上时,|PC- PD 取得最大值, 如图1,连接DC 并延长交x 轴于点P, 将点 D( 1, 4), C( 0, 3)代入 y = kx +b ,解得 k = 1, b = 3, • y cD = x +3, 当y = 0时,x =— 3,•- P ( 0,— 3), CD =yiJY »'=:, •••I PC- PD 的最大值为 ’,P (— 3, 0);得'fk+b=42②y= a| x| - 2a| x|+3 可化为y='(x>0)Xo)‘将P (t, 0), Q (0, 2t)代入y= kx+b,tk+b=0b=2t '解得:k =- 2, b= 2t,y pQ=- 2x+2t ,情况一:如图2- 1,当线段PQ过点(-3, 0)-/+2笛+3〔只>0)y="| 2门… f /小的图象只有一个公共点,此时t = - 3,,即点P与点(-3, 0)重合时,线段PQ与函数综合图2 - 1,图2-2,所以当t <- 3时,线段PQ与函数y= 1-X2+2X+3(X>0)的图象只情况二:如图 2 - 3,当线段 PQ 过(0, 3),即点 Q 与点C 重合时,线段-X 2+2X +3 (X >0)情况三:如图 2- 5,将 y =- 2x +2t 带入 y =- x 2+2x +3 (x >0),整理,得 x 2- 4x +2t - 3= 0, △ = 16 -4 (2t - 3)= 28 - 8t , 令 28 - 8t = 0,7解得t =..,]_•••当t =「时,线段PQ 与与函数y =PQ 与函数y =(x<0)的图象只有 个公共点,此时如图2 -4,当线段PQ 过点(3, 0),即点P 与点A ( 3, 0)重合时,t = 3,此时线段PQ 与函数-x^+2x+3 k>0)-x ?-2x+3(i< Q) 的图象有两个公共点,3综合图2- 3,图2-4,所以当t v 3时,线段PQ 与函数y =”-x ^+2x4-3-X ?-2X +3(I < 0) 的图象只x^+2x+3 k>0)*»«)的图象只有一个公共点;【点评】本题考查了待定系数法求解析式,三角形两边之差小于第三边,抛物线与直线公共点的个数等,解题关键是要根据题意画出图形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 天津市和平区2016年九年级中考数学二模模拟题 满分:120分 时间:100分钟 姓名: 得分: 一 选择题(每小题3分,共12题,共计36分) 1.﹣6的绝对值的倒数等于( )

A.﹣6 B.6 C.﹣ D. 2.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000 000 076克.将0.000 000 076用科学记数法表示为 ( ) A.87.610 B.90.7610 C.87.610 D.90.7610 3.下列运算正确的是( ) A.﹣5(a-1)=-5a+1 B.a2+a2=a4 C.3a3•2a2=6a6 D.(﹣a2)3=﹣a6 4.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32o,那么∠2的度数是

( ) A.32o B.68o C.58o D.60o 5.下列一元二次方程中,有两个不相等实数根的方程是( ) A.x2+1=0 B.x2﹣3x+1=0 C.x2﹣2x+1=0 D.x2﹣x+1=0 6.正八边形的每个内角的度数是( ) A.144° B.140° C.135° D.120° 7.如图,已知点A,B,C在⊙O上,且∠BAC=25°,则∠OCB的度数是( )

A.70° B.65° C.55° D.50° 8. 如图,已知直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,则关于x的不等式x+b≤kx-1的解集在数轴上表示正确的是( )

A. B. C. D. 9.如图,M,N分别是平行四边形ABCD的对边AD,BC的中点,且AD=2AB,连接AN,BM,交于点P,连接DN,CM,交于点Q,则以下结论错误的是( ) A.AP=PN B.NQ=QD C.四边形PQNM是矩形 D.△ABN是等边三角形 2

第9题图 第10题图 第11题图

10. 如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为( ) A.16 B.17 C.18 D.19

11.二次函数y=ax2+bx+c的图象如图所示,则化简二次根式22)()(cbca结果是( ) A.a+b B.﹣a﹣b C.2b﹣c D.﹣2b+c 12.如图,在矩形ABCD中,点E是CD的中点,AE平分∠BED,PE⊥AE交BC于点P,连接PA,以下四个结论:①

BE平分∠AEC;②PA⊥BE;③AD=AB;④PB=2PC.则正确的个数是( )

A.4个 B.3个 C.2个 D.1个 二 填空题(每小题3分,共6题,共计18分)

13.函数y=中自变量x的取值范围是 . 14.计算:已知a+b=3,ab=1,则a2+b2= . 15.将分别标有数字0,1,2,3的司长卡片背面朝上洗匀后,抽取一张作为十位上的数字,再抽取一张作为个位上的数字,每次抽取都不放回,则所得的两位数恰好是奇数的概率等于 16.如图,矩形ABCD的对角线AC,BD相交于点0,过点O作OE⊥AC交AB于E.若BC=8,△AOE的面积为20,则sin∠BOE的值为 .

第16题图 第17题图 17.如图,在Rt△ABC中,∠ACB=90°,AC=BC,点M在AC边上,且AM=2,MC=6,动点P在AB边上,连接PC,PM,则PC+PM的最小值是 18.如图,已知扇形OAB与扇形OCD是同心圆,OA=R,OC=r. (1)若R=8,r=6,圆心角度数为600,则环形面积为 ; (2)请在原图中以O为圆心,以r’为半径,将环形面积分成面积相等的两个环形,(尺规作图),并将作图步骤进行简单的描述. 3

三 计算推理题(共7题,共计66分)

19(本小题8分)解不等式组,并写出它的非负整数解.

20(本小题8分)实施新课程改革后,学生的自主字习、合作交流能力有很大提高.某学校为了了解学生自主学习、合作交流的具体情况,对部分学生进行了为期半个月的跟踪调査,并将调査结果分类.A:特别好;B:好; C:一般;D:较差.现将调査结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题: (1)本次调查中,一共调査了 名同学,其中C类女生有 名; (2)将下面的条形统计图补充完整; (3)为了共同进步,学校想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男生、一位女生的概率.

21(本小题8分)如图,在Rt△ABC中,∠ACB=90°,BD是∠ABC的平分线,点O在AC上,⊙O经过B,D两点,交BC于点E.

(1)求证:AC是⊙O的切线;(2)若AB=6,sin∠BAC=,求BE的长. 4

22(本小题10分)某商家经销一种绿茶,用于装修门面已投资3000元.已知绿茶成本50元/千克,在第一个月的试销时间内发现,销量w(kg)与销售单价x(元/kg)满足关系式:w=﹣2x+240. (1)设该绿茶的月销售利润为y(元),求y与x之间的函数关系式(不必写出自变量x的取值范围),并求出x为何值时,y的值最大?(销售利润=单价×销售量﹣成本﹣投资) (2)若在第一个月里,按使y获得最大值的销售单价进行销售后,在第二个月里受物价部门干预,销售单价不得高于90元,要想在全部收回投资的基础上使第二个月的利润达到1700元,那么第二个月里应该确定销售单价为多少元?

23(本小题10分)如图,防洪大堤的横断面是梯形,背水坡AB的坡比i=1:(指坡面的铅直高度与水平宽度的比),且AB=20m.身高为1.7m的小明站在大堤A点,测得髙压电线杆顶端点D的仰角为30°.已知地面CB宽30m,求髙压电线杆CD的髙度(结果保留三个有效数字,≈1.732).

24.(本小题10分)如图,矩形OABC在平面直角坐标系中,并且OA、OC的长满足:|OA-2|+(OC-6)2=0. (1)求A、B、C三点的坐标. (2)把△ABC沿AC对折,点B落在点B1处,AB1与x轴交于点D,求直线BB1的解析式. (3)在直线AC上是否存在点P使PB1+PD的值最小?若存在,请找出点P的位置,并求出PB1+PD的最小值;若不存在,请说明理由. (4)在直线AC上是否存在点P使|PD-PB|的值最大?若存在,请找出点P的位置,并求出|PD-PB|最大值. 5

25(本小题10分)如图,抛物线y=ax2+bx+1经过点(2,6),且与直线y=x+1相交于A,B两点,点A在y轴上,过点B作BC⊥x轴,垂足为点C(4,0). (1)求抛物线的解析式; (2)若P是直线AB上方该抛物线上的一个动点,过点P作PD⊥x轴于点D,交AB于点E,求线段PE的最大值; (3)在(2)的条件,设PC与AB相交于点Q,当线段PC与BE相互平分时,请求出点Q的坐标.

答案详解 1.【解答】解:|﹣6|=6,6161故选:D.

1.【解答】解:A 3.【解答】解:A、﹣5(a﹣1)=﹣5a+5,故A错误; B、合并同类项系数相加字母及指数不变,故B错误; 6

C、系数乘系数,同底数幂的乘法底数不变指数相加,故C错误; D、积的乘方等于乘方的积,故D正确;故选:D. 5.【解答】解:A、△=﹣4<0,方程没有实数根; B、△=9﹣4=5>0,方程有两个不相等的实数根; C、△=4﹣4=0,方程有两个相等实数根; D、△=1﹣4=﹣3<0,方程没有实数根.故选:B. 6.【解答】解:∵正八边形的外角和为360°,

∴正八边形的每个外角的度数==45°,∴正八边形的每个内角=180°﹣45°=135°.故选C. 7.【解答】解:连接OB,

∵OB=OC,∠BOC=2∠BAC=2×25°=50°,∴∠OCB=∠OBC=(180°﹣50°)=65°.故选B.

8.【解答】解:根据题意得当x≤﹣1时,y1≤y2,所以不等式x+b≤kx﹣1的解集为x≤﹣1.故选D 9.【解答】解:连接MN,如图所示:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,

∵M,N分别是平行四边形ABCD的对边AD,BC的中点,∴AM=AD,BN=BC,∴AM∥BN,AM=BN, ∴四边形ABNM是平行四边形,∴AP=PN;同理NQ=QD;∴A、B正确; ∵AM∥CN,AM=CN,∴四边形ANCM是平行四边形,∴AN∥MC,同理:BM∥ND, ∴四边形MPNQ是平行四边形,∵AD=2AB,∴AB=AM,∴四边形ABNM是菱形,∴AN⊥BM, ∴∠MPN=90°,∴四边形MPNQ是矩形;∴C正确,D不正确;故选:D.

10.【解答】解:如图,设正方形S1的边长为x,∵△ABC和△CDE都为等腰直角三角形, ∴AB=BC,DE=DC,∠ABC=∠D=90°,

∴sin∠CAB=sin45°==,即AC=BC,同理可得:BC=CE=CD,∴AC=BC=2CD, 又∵AD=AC+CD=6,∴CD==2,∴EC2=22+22,即EC=2;∴S1的面积为EC2=2×2=8; ∵∠MAO=∠MOA=45°,∴AM=MO,∵MO=MN,∴AM=MN,∴M为AN的中点, ∴S2的边长为3,∴S2的面积为3×3=9,∴S1+S2=8+9=17.故选B.

11.【解答】解:由图知,二次函数y=ax2+bx+c的图象的开口向,a<0,与y轴交于y轴的正半轴,c>0,

相关文档
最新文档