随机过程的基本概念
随机过程课程第二章 随机过程的基本概念

第一节 随机过程的定义及其分类 第二节 随机过程的分布及其数字特征 第三节 复随机过程 第四节 几种重要的随机过程简介
第一节 随机过程的定义及其分类
一、直观背景及例
例1 电话站在时刻t时以前接到的呼叫次数 一般情况下它是一个随机变数X ,并且依赖 时间t,即随机变数X(t),t[0,24]。
首页
(4)平稳随机过程
平稳过程的统计特性与马氏过程不同,它不 随时间的推移而变化,过程的“过去”可以对 “未来”有不可忽视的影响。
首页
返回
第二节 随机过程的分布及其数字特征
一、随机过程的分布函数
设{ X (t) ,t T }是一个随机过程,
一维
分布 对于固定的t1 T ,X (t1) 是一个随机变量,
F (t1,t2;x1, x2 ) =
x1
x2
f (t1, t2;y1, y2 )dy1dy2
则称 f (t1,t2;x1, x2 ) 为 X (t) 的二维概率密度
n维
n 维随机向量(X (t1 ) ,X (t2 ) ,…, X (tn ) )
分布 函数
联合分布函数
F (t1,t2 , ,tn;x1, x2 , , xn )
分布函数
FXY (t1, ,tn ;t1, ,tm ;x1, , xn ; y1, , ym )
P{X (t1) x1, , X (tn ) xn;Y(t1) y1, ,Y(tm ) ym }
称为随机过程和的n + m维联合分布函数
首页
相互 设 X (t) 和Y (t) ,t1,t2 , ,tn ,t1,t2 , ,tm T
首页
2.方差函数
随机过程{ X (t) ,t T }的二阶中心矩
概率论中的随机过程与布朗运动

概率论中的随机过程与布朗运动概率论是数学的一个分支,研究随机现象及其数学模型。
其中,随机过程是概率论中的重要概念之一,而布朗运动是随机过程中的经典模型。
本文将介绍概率论中的随机过程以及布朗运动,并探讨其在不同领域中的应用。
一、随机过程的基本概念随机过程是一种随时间变化的数学对象,它的取值是由概率分布决定的。
随机过程通常表示为X(t),其中t表示时间,X(t)表示在时刻t 的取值。
随机过程可以用离散时间或连续时间来描述,分别称为离散时间随机过程和连续时间随机过程。
在概率论中,随机过程可以由两个要素完全描述:样本空间Ω和映射关系P。
样本空间Ω包含了所有可能的结果,映射关系P则表示随机过程X(t)在不同时刻的取值概率。
随机过程通过概率分布函数或概率密度函数来描述其取值的概率分布。
二、布朗运动的定义与性质布朗运动是一种具有连续时间和连续状态空间的随机过程,它以数学家罗伯特·布朗的名字命名。
布朗运动具有以下性质:1. 随机性:布朗运动中的每个时刻的取值都是随机的,没有明确的趋势或方向。
2. 独立增量:布朗运动的增量与时间间隔无关,即前后增量之间是相互独立的。
3. 连续性:布朗运动在任意时间段上是连续的,不存在跳跃或间断现象。
4. 高斯性:布朗运动的取值是服从正态分布的,具有均值为0和方差为t的特点。
布朗运动在物理学、金融学、工程学等领域中都有广泛的应用。
在物理学中,布朗运动可以用来模拟微粒在水中的扩散过程;在金融学中,布朗运动可以用来建立股票价格的模型;在工程学中,布朗运动可以用来描述噪声的特性。
三、布朗运动的数学模型布朗运动的数学模型可以用随机微分方程来表示。
假设X(t)是一个布朗运动,其满足如下随机微分方程:dX(t) = μ dt + σ dW(t)其中,μ是布朗运动的漂移率,σ是布朗运动的波动率,W(t)是标准布朗运动(也称为Wiener过程)。
上述方程表示布朗运动在微小时间dt内的增量为μ dt + σ dW(t)。
教程:第3章 随机过程

• 角度2:随机过程是随机变量概念的延伸
其一,它是一个时间函数; 其二,在固定的某一观察时刻t1 ,全体样本在t1时 刻的取值ξ(t1)是一个不含t变化的随机变量。
可见,随机过程具有随机变量和时间函数的特点。 因此,我们又可以把随机过程看成依赖时间参
数的一族随机变量。这个角度更适合对随机过程 理论进行精确的数学描述。
– 相关函数和协方差函数之间的关系
B(t1,t2 ) R(t1, t2 ) a(t1) a(t2 )
若a(t1) = a(t2),则B(t1, t2) = R(t1, t2)
14
互相关函数
• 互相关函数 R (t1 , t2 ) E[ (t1 )(t2 )]
式中(t)和(t)分别表示两个随机过程。
f (t) fT (t)
T
0
T
2
2
t
28
– 对于平稳随机过程 (t) ,可以把f (t)当作是(t)的一个样本;
某一样本的功率谱密度不能作为过程的功率谱密度。过程的功
率谱密度应看作是对所有样本的功率谱的统计平均,故 (t)
的功率谱密度可以定义为
P ( f )
E
Pf
(f)
lim E FT ( f ) 2
30
• 在维纳-辛钦关系基础上,我们可以得到以下结论:
– 对功率谱密度进行积分,可得平稳过程的总功率:
R(0) P ( f )df
上式从频域的角度给出了过程平均功率的计算法。
– 各态历经过程的任一样本函数的功率谱密度等于过程 的功率谱密度。也就是说,每一样本函数的谱特性都能很好
地表现整个过程的的谱特性。
31
– 功率谱密度P ( f )具有非负性和实偶性,即有
第2章随机过程的基本概念

F ?? { F ?t1 , t2 ,? , tn ; x 1 , x 2 ,? , x n ?:
ti ? T , x i ? Ri , i ? 1,2, ? , n , n ? 0} 称F为XT 的有限维分布函数族. 定义3 过程 { X(t), t的? nT维} 特征函数定义为
φ?t1 , t2 ,? , tn;?1 ,θ 2 ,? ,θ n ?
? E{e i[θ 1 X (t1 )? ? } ?θ n X (tn )]
称 {φ(t1, t2 ,? , tn;θ 1 ,θ 2 ,? ,θ n ) : t1 , t2 ,? , tn ? T, n ? 1}
为XT 的有限维特征函数族. 特征函数和分布函数是相互唯一确定.
定义2 过程 { X(t),对t ?任T给} 的
t1 , t2 ,? , tn ? T ,
随机向量
?X (t1 ), X (t2 ),? , X (tn )?
的联合分布函数
F (t1 , t2 ,? , tn; x1 , x2 ,? , xn ) ?
P{ X (t1 ) ? x1 , X (t2 ) ? x2 ,? , X (tn ) ? xn }
X(t1,ω)
X(t2,ω)
t1
t2
X(t,ω1) X(t,ω2) X(t,ω3) tn
定义 对每一固定 ω?,Ω称 { X(t, ? ), t的? 一T}个样本函数.
X是t ?随ω?机过程
也称轨道, 路径,现实.
Ex.5 利用抛硬币的试验定义一个随机过程,
X(t)
?
?cos? t, ?
?2t
出现正面; 出现反面. t ? R.
过程识别
通信原理课件第3章 随机过程

(2)自相关函数只与时间间隔有关。
14
第3章 随机过程
数字特征:
E (t) x1 f1 (x1 )dx1 a R(t1,t2 ) E[ (t1) (t1 )]
x1x2 f2 (x1, x2 ; )dx1dx2 R( )
可见,(1)其均值与t 无关,为常数a ;
随机过程 (t)的二维概率密度函数:
f2 (x1,
x2 ; t1, t2
)
2F2 (x1, x2;t1,t2 x1 x2
)
若上式中的偏导存在的话。
随机过程 (t) 的n维分布函数:
Fn (x1, x2 , , xn ;t1, t2 , tn )
P (t1 ) x1, (t2 ) x2 , , (tn ) xn
f1 (x1,t1 ) f1 (x1 )
而二维分布函数只与时间间隔 = t2 – t1有关:
f2 (x1, x2 ;t1,t2 ) f2 (x1, x2 ; )
数字特征:
E (t) x1 f1 (x1 )dx1 a R(t1,t2 ) E[ (t1) (t1 )]
x1x2 f2 (x1, x2 ; )dx1dx2 R( )
换句话说,随机过程在任意时刻的值是一个随机变量。 因此,我们又可以把随机过程看作是在时间进程中处于不同
时刻的随机变量的集合。 这个角度更适合对随机过程理论进行精确的数学描述。
5
第3章 随机过程
3.1.1随机过程的分布函数
设 (t)表示一个随机过程,则它在任意时刻t1的值 (t1)
是一个随机变量,其统计特性可以用分布函数或概率密 度函数来描述。
【解】(1)先求(t)的统计平均值:
随机过程 概率论

随机过程概率论
随机过程是指在一定的条件下,某一物理过程或现象可以用概率分布函数描述的数学
模型。
随机过程是概率论中的重要分支之一,应用广泛,涉及到信号处理、经济、金融、
自然科学等领域。
随机过程的基本概念包括样本函数、状态空间、状态变量、状态转移概率等。
其中,
样本函数是指随机过程在某一时间点的取值,状态空间是指所有可能的取值的集合,状态
变量是指样本函数随时间变化的值,状态转移概率是指随机过程从当前状态转移到下一状
态的概率。
随机过程可以分为离散时间随机过程和连续时间随机过程两类。
离散时间随机过程指
在离散的时间点上,随机变量的取值存在随机性;连续时间随机过程指在持续的时间段内,随机变量的取值存在随机性。
对于随机过程的分析和研究,人们通常使用统计和概率论的工具和方法,如概率密度
函数、条件概率、矩、协方差等。
通过这些方法,可以从数学上描述和分析随机过程的发
展趋势、周期性、稳定性等特征。
随机过程在实际应用中有着广泛的应用,例如在通信领域,随机过程可以用来描述传
输信道的噪声和干扰;在金融领域,随机过程可以用来建立期权定价模型;在自然科学领域,随机过程可以用来研究生态系统的演化、气候变化等复杂问题。
总之,随机过程作为概率论的重要分支,在各个领域都有着重要的应用,对物理学、
数学、经济学等学科的发展起到了推动作用。
使我们能够更好地理解和应对复杂的随机事
件和现象。
随机过程基本概念
T {1, 2, 3, }
实时记录证券交易所的股指,用X(t)表示 一天中t时刻上证综合指数,则{X(t),t≥0} 表示一随机过程。
S (0, )
T (0 , )
{N(t),t [0,)} 是一个随机过程
由定义得 (1)对任意给定的 t1 T , X (t1) X (e,t1) ห้องสมุดไป่ตู้一个随机变量, 称为随机过程在t = t1时的状态变量, 简称状态.
(2)对于 Ω 中的每一 e0 , X (e0 ,t) x(t)是仅依赖于 t 的函数, 称为随机过程的样本函数,它是随机过 程的一次物理实现, 或对应于 e0 的轨道.
随机过程定义: 给定参数集 T (,) 如果对于每个 t T 都对应有随机变量 X (t) X (e,t) 则称随机变量族 {X (t),t T} 为随机过程.
例1 以N(t)表示某电话交换台在时段 [0,t) 内接到的呼叫次数, 那么,对于固定的 t , N(t) 是一个随 机变量.
对于一切 t [0,)
S {0, 1, 2, ,} T {1, 2, }
例3 设X(e)与Y(e)是相互独立 的标准正态变量.
Z (e,t) X 2 (e) Y 2 (e) t t 0
则二元函数 Z(e,t) 就是一个随机过程. 简记为 Z(t) (X 2 Y 2 )t
S (0 , ) T (0 , )
例4 设X(t)表示一年内第t天的降雨量.
则X(t) ,t=1、2、……365即为 一随机过程。
S (0 , )
T {1, 2, , 365}
随机过程分类: 通常有两种分类法. 一种是按随机过程的参数集和状态空间来分类
(1)参数T离散,状态Ω离散; (2)参数T离散,状态Ω连续; (3)参数T连续,状态Ω离散; (4)参数T连续,状态Ω连续.
第3章-通信原理-随机过程
第3章随机过程3.1 随机过程基本概念自然界中事物的变化过程可以大致分成为两类:(1) 确定性过程:其变化过程具有确定的形式,数学上可以用一个或几个时间t的确定函数来描述。
(2) 随机过程:没有确定的变化形式。
每次对它的测量结果没有一个确定的变化规律。
数学上,这类事物变化的过程不可能用一个或几个时间t的确定函数来描述。
随机信号和噪声统称为随机过程。
1. 随机过程的分布函数随机过程定义:设S k(k=1, 2, …)是随机试验。
每一次试验都有一条时间波形(称为样本函数),记作x i(t),所有可能出现的结果的总体{x1(t), x2(t),…, x n(t),…}构成一随机过程,记作ξ(t)。
无穷多个样本函数的总体叫做随机过程。
随机过程具有随机变量和时间函数的特点。
在进行观测前是无法预知是空间中哪一个样本。
在一个固定时刻t1,不同样本的取值x i(t1)是一个随机变量。
随机过程是处于不同时刻的随机变量的集合。
设ξ(t)表示一个随机过程,在任意给定的时刻t1其取值ξ(t1)是一个一维随机变量。
随机变量的统计特性可以用分布函数或概率密度函数来描述。
把随机变量ξ(t1)小于或等于某一数值x1的概率记为F1(x1, t1),即如果F1对x1的导数存在,即ξ (t)样本函数的总体(随机过程)11{()}P t xξ≤11111(,){()}F x t P t xξ=≤称为ξ(t)的一维概率密度函数。
同理,任给t 1, t 2, …, t n ∈T, 则ξ(t)的n 维分布函数被定义为为ξ(t)的n 维概率密度函数。
2. 随机过程的数字特征用数字特征来描述随机过程的统计特性,更简单直观。
数字特征是指均值、方差和相关系数。
是从随机变量的数字特征推广而来的。
(1) 数学期望(均值)表示随机过程的n 个样本函数曲线的摆动中心,即均值。
积分是对x 进行的,表示t 时刻各个样本的均值,不同时刻t 的均值构成摆动中心。
第3章 随机过程
A2 cos c 2 比较统计平均与时间平均,有
a a, R( ) R ( )
14
因此,随机相位余弦波是各态历经的。
3.2.3 平稳过程的自相关函数
实平稳过程的自相关函数: R( ) E[ (t ) (t )] 性质:
R(0) E[ 2 (t )]
f 2 ( x1 , x2 ; t1 , t 2 ) f 2 ( x1 , x2 ; )
广义平稳
均值与时间 t 无关: 相关函数仅与 τ有关:
a(t ) a R(t1 , t1 ) R( )
注意:
必 广义平稳 狭义平稳 未必
3.2.2 各态历经性(遍历性)
通信原理
第3章 随机过程
本章内容:
随机过程的基本概念
第3章 随机过程
平稳、高斯、窄带过程的统计特性 正弦波加窄带高斯过程的统§3.1 随机过程的基本概念
随机过程是一类随时间作随机变化的 过程,它不能用确切的时间函数描述。
① 所有样本函数 ② 随机变量
12
例题:
自相关函数:
E[ A cos( c t1 ) A cos( c t 2 )] A2 E{cos c ( t 2 t1 ) cos[ c ( t 2 t1 ) 2 ]} 2 A2 A 2 2 1 cos c ( t 2 t1 ) cos[ ( t t ) 2 ] d c 2 1 0 2 2 2 2 A cos c ( t 2 t1 ) 0 2
erfc( x) 2 erfc( x)
B(t1 , t2 ) R(t1 , t2 ) a(t1 ) a(t 2 )
数学中的随机过程
数学中的随机过程一、引言在数学领域中,随机过程是研究随机事件随时间的演变规律的数学模型。
它既具有随机性,又具有确定性,广泛应用于概率论、统计学和其他相关领域。
本文将介绍随机过程的基本概念、分类及其在现实生活中的应用。
二、随机过程的定义随机过程是一类随机变量的集合,表示随机事件随时间变化的模型。
随机过程通常用X(t)表示,其中t是时间参数,X(t)是在某一时刻t的取值。
随机过程可以分为离散和连续两种类型。
三、离散时间随机过程离散时间随机过程是指在一系列离散时间点上定义的随机变量序列。
常见的离散时间随机过程有伯努利过程、泊松过程等。
1. 伯努利过程伯努利过程是最简单的离散时间随机过程,它是一种只有两个取值的随机过程。
以掷硬币为例,假设正面出现的概率为p,反面出现的概率为1-p,掷硬币的结果序列就是伯努利过程。
2. 泊松过程泊松过程描述了随机事件在时间上的独立出现,并且满足平稳性和无记忆性。
在实际应用中,泊松过程可以用来模拟各种随机事件的发生,如电话呼叫到达、交通事故发生等。
四、连续时间随机过程连续时间随机过程是指在连续时间区间上定义的随机变量。
其中最常见的连续时间随机过程是布朗运动和随机行走。
1. 布朗运动布朗运动是一种连续的、无界变差的随机过程,其特点是随机变量在任意时间间隔上的累积值符合正态分布。
布朗运动经常用来模拟金融市场的波动、温度变化等。
2. 随机行走随机行走是一种描述随机变量在空间上随机移动的随机过程。
它的最简单形式是一维随机行走,即随机变量只能在一维空间上左右移动。
随机行走在金融市场中的应用较广,可以用来模拟股票价格的变化。
五、随机过程的应用随机过程在现实生活中有着广泛的应用,以下两个领域是典型的例子。
1. 通信网络随机过程在通信网络中扮演着重要的角色。
例如,通过对网络中的数据流量建模,可以使用随机过程来优化网络的传输效率和资源分配。
2. 金融领域在金融领域中,随机过程被广泛应用于期权定价、风险管理和投资组合优化等方面。