南水北调中线工程水量仿真调度模型研究

南水北调中线工程水量仿真调度模型研究
南水北调中线工程水量仿真调度模型研究

南水北调中线工程水量仿真调度模型研究

畅建霞1,黄强1,王义民1,杨房廷2

(1.西安理工大学水利水电工程学院;2.北京仿真中心)

摘要:南水北调中线工程是一个大型复杂调水系统,本文在分析其调水特点的基础上,应用系统科学的方法建立了该系统的水量仿真调度模型,合理地确定了系统网络结构和模型计算原则,并通过加入辨识模块和控制修正模块,使模型能快速找出满意解。通过仿真计算,得出了引汉水给沿线各省市的分配水量。对比分析引汉前后的供水情况,表明引汉水与当地水源的联合调节,可使沿线各省、市各用水部门的供水保证率有较大提高。

关键词:南水北调中线工程;仿真调度;辨识修正;供水效益

中图分类号:TV213.9 文献标识码:A

我国当前最缺水的地区是华北平原,南水北调中线工程即是缓解华北水资源危机的跨世纪工程。该工程先从丹江口水库引水,沿引汉总干渠,自流供水到华北平原西、中部的河南、河北、北京、天津等省(市)。供水区地表水资源量为147.4亿m3,地下水资源量为181.6亿m3,扣除重复水量后,水资源总量为258.3亿m3(不含入境水量)。供水总面积为15.5万km2,总耕地面积859万hm2。随着工农业的发展和人民生活水平的提高,供水区内各地区、各部门的供需矛盾将日趋尖锐。在未来工程运行期间,如何协调各地区、各部门的关系,如何使有限的水资源发挥最大效益,是现阶段规划设计和未来运行管理均需解决的重要问题。

1 南水北调中线工程仿真模型

中线工程是一个十分复杂的水资源大系统,从水量调度的角度来看,中线工程的调水有以下3个特点:(1)多水源联合调度。南水北调中线工程近期引汉,远景引江,输水总干渠横跨四大流域,流域内大、中型水利工程众多,参与水量调配的水库共有41座,总调节库容约71亿m3,而且各流域年来水量丰、平、枯不同,来、用水过程也不协调;另外,由于丹江口水库来水年际变化大,且有防洪、发电等任务,使得水库北调引水过程变化较大,难于适应供水区的需水过程,因此,必须将引汉水与当地水源结合起来,统一调度,互相补充,使水资源得以充分利用。(2)多目标供水。供水目标归纳为四类:生活、工业、农业、其它。生活、工业为均匀用水,农业、其它部门为变动用水,不同的供水目标有不同的供水保证率要求。生活供水保证率要达到95%,工业供水保证率为90%。同时,不同地区供水保证率也不相同。(3)多决策变量求解。中线工程是供、蓄相结合的复杂的水资源系统。需决策的问

题是:为了尽量满足全系统各时段的用水要求,引汉调水量如何分配,即总干渠各分水口门的分水过程,以及当地水源如何供水和蓄水。

对上述水资源系统,无论采用多么复杂的优化模型和优化方法,都难以得到能够直接应用于实际的成果,因此很难应用传统的解析模型定量地描述,需要使用宏观系统仿真模型进行研究。仿真模型是在计算机上逼近系统行为的模型技术,使决策者能在各种可能的输入下对已有的系统或虚拟的系统进行观察了解,这样就保证了成果的实用性、方便性和灵活性[1]。

1.1 仿真系统网络结构南水北调中线工程调水系统在物理上是由各种元素如供水水源、用水户、输水调水工程及它们之间的输水连线等组成,通过调度运行策略,对不确定的天然水资源进行时空调节分配,以实现系统目标,即从南方多水的长江流域引水到干旱缺水的北方地区。上述水资源系统各类物理元素(水库工程、用水户、河渠道交汇点)之间,通过线段(河渠道)的相互联结,形成南水北调水资源仿真系统网络,以反映引汉水与各供水区以及与当地水源之间繁杂的水利联系。而各类元素的物理特征、规则指标反映了该系统的特性。

为使当地水资源得到合理利用,发挥引汉水的关键作用,对供水区按大型水库、中小型水库、大型电站和无水库灌区分片。分片原则是以当地骨干水利工程为主体,适当照顾流域水系及行政区划,根据沿线大、中型水库、拦河闸及大型灌区渠系分布,将供水区划分成100片,每一片概括成一个用水户,其中河南54个,河北44个,北京、天津各一个。据分片结果和各片的地理位置以及各水利工程的相互关系,建立仿真系统网络节点示意图,如图1所示。

图2 南水北调中线工程仿真系统结构示意图1 网络节点示意

1.2 仿真调度计算原则综合考虑中线工程调水的上述3个特点,拟定如下调节计算原则:(1)供水水源分引汉水,当地地表水及地下水。水源使用先后顺序为:天然来水给当地地表水库充库后的余水、引汉水、地表水库蓄水、地下水。水源使用顺序先用天然来水给地表水库充蓄后的余水,这样就可以确保当地水资源的充分

利用,不会明显增加当地水库弃水量。地下水作为后备水源放在引汉水后使用,适当保持地下水的储备,有利于今后经济与社会稳定发展。(2)供水区范围内的水库按其所处位置分为两类:总干渠以西的水库较总干渠高,称为“高库”,总干渠以东的水库称为“低库”。“高库”的水只能对供水区起补偿调节作用,而不考虑引汉水入库调蓄,低库则可调蓄引汉水和高库余水。(3)水源对生活、工业、其它、农业4个用水部门的供水次序为:生活、工业、其它、农业。

1.3 仿真系统框架按照工程实际运行情况,仿真系统包括6个模块,如图2

所示,各模块的计算功能简介如下:

(1)基础数据处理模块。基础数据作为系统的底层支持,通过数据库将直接影响系统行为。模型所需的基本数据信息可以分为3类:和分水片相关的资料、和用水户相关的资料、时间系列资料。和分水片相关的资料包括各分水口门、用水户、水库、地下水的编号和标识名称;和用水户相关的资料包括各用水户的生活、工业、其它、农业需水,以及与其连接的水库特性资料;时间系列资料包括与时段有关的水库来水资料和逐时段丹江口的可调水量等。其中,丹江口可调水量是根据该时段丹江口水库上游来水,在水库增容后满足汉江中、下游防洪、用水要求后得出的丹江口陶岔渠首的可调水量。

(2)初始控制模块。初始控制是人机交互的一个过程,水库供水对不同用户的分水系数w i(当一个水库同时给n个用户供水时,、引汉供水时对不

同用水片的供水权重等,均可根据优先保证首都、省会城市、重要城市用水的原则拟定其初值。

(3)运行调度层的多水源联合仿真调度模块[3]。模块根据水量连续方程、水库调蓄调度方程、反映水资源调配的供水原则以及各种边界约束条件方程,建立多水源联合仿真调度模型。对供水区引汉水、水库供水、地下水进行联合调度仿真计算,得出历年各时段的调水结果。

(4)辨识系统模块。在数据整理与系统网络结构定义的基础上,通过人机交互,运行仿真调度模块,就可得到系统响应。辨识系统是根据自适应控制原理,通过辨识结构,对系统响应进行统计分析,以判别计算结果的合理性和可靠性。辨识结构是一统计过程,主要对长系列计算结果进行分析,计算各用户、各部门的供水保证率、缺水量,并统计丹江口的调水量、当地各水库的供水及弃水,以及地下水的供水情

况等。

(5)控制修正模块。根据辨识系统模块的反馈信息,若用户供水保证率较低,或给其供水的水库弃水过大,则以较小比例提高其w i和m i,自动形成反馈修正量,增加对该用户该部门的供水,并减少水库弃水和丹江口陶岔渠首的弃水,重新进行仿真计算。

(6)系统输出模块。若多年平均各用户、各部门的供水保证率符合设计保证率要求,各用户缺水总和最小,且当地地表水源的运用较合理,即仿真结果经过辨识后是合理的,则实现结果输出。

1.4 控制修正模块目标函数对于仿真调度模块的计算结果,需要经过控制修正系统进行分析,其分析的标准作为辨识系统模块的目标函数。对于以供水为主要目的的系统,选择供水的净效益最大作为目标函数最为适宜,但由于系统的复杂性和资料的缺乏,将供水缺水量最小作为目标函数,其表达式为:

(

1)

式中:T为调度年限总时段数;t代表第t个时段;N为供水区内用水片数;n 为第n个用水片;w(t,n)为第t个时段第n个用水片的缺水总量。

1.5 仿真模型约束条件

1.5.1 水库约束

(1) 水库水量平衡约束:

V(l,t+1)=V(l,t)+qi(l,t)-q(l,t)-qw(l,t)

( 2)

式中:V(l,t)、V(l,t+1)为第l水库第t时段和t+1时段的库容;qi(l,t)、q(l,t)分别为第t时段第l水库的入库量和供水量;qw(l,t)为水库l给低库的充库水量。

(2) 各供水水库的调蓄能力约束:

V min(l)≤V(l,t)≤V max(l,t)

( 3)

式中:V min(l)、V max(l,t)分别为第l水库的死库容和第t时段的最大允许蓄水库容。

(3)水库供水能力约束:

0≤q(l,t)≤qc(l)

( 4)

式中:qc(l)为第l水库供水渠的最大过流能力。

1.5.2 地下水约束若用户连有地下水,则地下水可开采量约束为:

(

5)

式中:TT为一年中调节计算总时段数,若以旬为计算时段,则TT=36;qund(n,t)为第n个用水户第t时段的地下水供水量;qund max(n)是地下水对第n个用水户的最大供水量。

1.5.3 引汉水约束

0≤qh(n,t)≤qhc(n)

( 6)

式中:qh(n,t)为第t时段引汉给第n个用水户的供水量;qhc(n)为引给用户供水的过流限制。

1.5.4 非负约束,即所有决策变量非负。

2 仿真模型计算主要步骤

由于总干渠穿越四大流域,难以选出能代表各流域丰枯的典型年,故采用1956~1990共35年的长系列进行仿真计算,计算时段为旬,水平年为2010年。供水区需水量根据各省市2010年的发展水平、工业布局、人口增长速度等指标进行预测。

供水区内每一用水户的供水系统由“高库”“低库”、总干渠、地下水当中的一个或几个组成。“高库”“低库”调节库容分为汛期和汛后两个库容,汛期为7~9

月,可调节库容为汛期限制水位对应的库容,汛后可调节库容为正常蓄水位对应的库容。

根据上述仿真模型进行长系列逐时段水量调节计算,主要步骤为:(1)令计算时段t=1,按网络结构图,根据供水部门m=1,2,3,4次序,对各部门依次按以下2~7步进行计算;(2)对每一用水部门,从最后一个用水户北京开始往前递推,n=100,99,…1,根据该用户对计算部门的用水需求,按以下3~7步计算各用水户在该部门的供水情况;(3)地表水库来水充蓄水库,有余水则供用户该部门用水,若m=4,即已满足农业用水后还有余,“高库”可充蓄“低库”,再有则弃;(4)水库余水供水后,用户该部门还缺水,则引用引汉水供水;(5)引汉供水后仍缺水,则用户连接的水库蓄水补充供水不足;(6)仍缺水时,由地下水补充。若地下水供水已达可开采量,则本时段用户该部门有缺水;(7)当计算完所有用户的供水后,即n=0时,比较本时段的引汉水量与丹江口陶岔渠首可调水量,若引汉水大于可调水,则减少各用水片该部门的供水,使引汉水等于可调水;(8)当计算完所有部门所有用户的供水后,即m=4,n=0时,若引汉水小于可调水,则多余水量沿总干渠充蓄低库,超过干渠最大过流量的多余水量为陶岔调水的弃水;(9)令t=t+1,重复上述2~8步。长系列仿真计算完后,运行辨识系统模块,统计各片各部门用水的保证率、水量保证程度、缺水量等指标,若不满足,运行控制修正子模块,自动生成对参数的修正量,如调整水库对各用水户的分水系数等,再按上述步骤重新进行长系列计算,直到结果满意。

3 结果及分析

在现状工程措施的条件下,以2010年为计算水平年,计算了1956~1990年共35

年有引汉和无引汉工程2种方案下各片水资源的供需情况。

3.1 无引汉工程调节计算成果多年平均值表表1为无引汉工程长系列仿真计算多年平均值统计表。没有引汉工程,多数片生活供水保证率在70%以下,有些片几乎年年破坏,工业、其它、农业3个部门的供水保证率都很低,农业保证率一般在0%~10%左右[2]。河南、河北、北京、天津4个部门

表1 无引汉工程调节计算多年平均值 (单位:亿m3)

省市

总净需

水量

总毛用水量总水量

净缺水

地表

地表地下

河南河北北京天津

91.8

60.5

29.9

23.7

41.8

28.7

10.1

8.2

19.7

5.4

3.1

64

36

10.1

9.4

19.3

5

3

41.8

12.1

24.5

10.5

的总缺水量分别占其总需水量的45.5%,20.0%,81.82%和44.1%。

3.2 有引汉工程仿真计算成果表引汉水与地表水、地下水联合运用的仿真计算成果如下。

3.2.1 引汉水量分配对于100个分水片,多年平均4个部门总需水量之和为205.86亿m3,运用3种水源联合调节,总供水188.67亿m3,其中引汉水供水89.09亿m3,地表水供水63.33亿m3,地下水供水36.25亿m3。引汉水占总需水量的43.27%,占总供水量的47.22%。生活、工业、其它、农业4个部门的引汉水分别为28.40亿m3、48.59亿m3、3.23亿m3和8.86亿m3。用水片生活供水保证率为100%,工业供水保证率为90%~99%,其它部门供水保证率为80%~98%,农业供水保证率为60%~95%。

丹江口陶岔渠首多年平均调水量134.7亿m3,其中7.1亿m3为弃水,弃水量占总调水量的5.3%;5.5亿m3水量用于低库充水,扣除水量损失,净充库水量为4.38亿m3;122.1亿m3水量用于给用水片供水,占调水量的90.6%,扣除干渠沿途损失后,89.1亿m3为净供水,水量利用率为72.9%。各省、市分得的净引汉水量如表2。

表2 南水北调中线多年调节引汉水分配 (单位:亿m3)

省、市引汉供水引汉

充库

汉总计

生活

农业总计

河南河北北京天津

10.

12

6.54

9.06

2.68

18.

60

12.31

8.68

9.0

1.36

0.56

1.31

4.04

4.17

0.65

34.1

3

23.02

18.95

13.00

2.24

2.14

36.

36

25.16

18.95

13.00

河南、河北、北京、天津净引汉水分别占陶岔引汉总水量的26.99%、18.68%、14.07%和9.65%。

3.2.2 引汉效益分析长系列多年平均各省、市的供水情况如表3、表4所示。

由上表可看出,通过引汉水与当地水源的联合调节,各省、市供水保证率与无引汉工程相比有了很大提高。其中,生活供水保证程度全部为100%;工业供水保证程度除河北为99%外,其它三个地区为100%;河南、北京、天津的其它部门用水保证程度分别为96.2%、100%和94.4%;河南、河北、北京农业用水的保证程度分别为68.9%、92.1%、100%。

表3 各省市各部门多年平均供、需水 (单

位:亿m3)

省、市

活需

活供

业需

业供

它需

它供

业需

业供

河南

河北北京天津

1 2.97 8.89

12.74 6.33

1 2.97 8.89

12.74 6.33 3

0.78 21.02 11.47 13.76 3

0.17 20.88 11.47 13.76

5 .19 0

1.62 3.6

4

.99

1.62

3.4

4

2.88

30.56

4.05

2

9.44

28.04

4.05

表4 各省市多年平均供水 (单

位:亿m3)

、市

需水

汉供水

库供水

地下

水供水

河北

北京

天津

9

1.82

60.47

29.88

23.69

34

.13

23.02

18.95

13.00

21.

81

21.26

10.94

9.32

21.6

3

13.53

1.09

河南省引汉供给生活、工业的水量为28.72亿m3,占河南引汉水量的79%,占生活、工业净需水量的65.4%。引汉水与当地水源总净供水为55.94亿m3,占总净需水量的60.9%,引汉供水占总供水量的44%。可见,引汉水在河南省的生活、工业供水中占有很大比重。河南省境内,还有2.24亿m3的引汉水充蓄低库。

河北省引汉供水占总净需水量的38.1%,供生活、工业的水量为18.85亿m3,占两者需水的63.1%。充蓄低库的引汉水量为2.14亿m3,占河北省境内总引汉水的8.5%。当地水库供水为21.26亿m3,占总需水的35.1%,按调度原则,引汉水多时,水库蓄水,当引水不足时,才动用水库的蓄水,实际上水库对引汉水进行了间接调蓄,因此,供水区内的水库对引汉水的调节作用是很强的。

北京、天津是南水北调重要的供水城市。北京市总引汉水量18.95亿m3,占总需水的63.4%。其中,引汉水供生活、工业的水量分别占生活、工业总需水量的73.3%。通过引汉水与当地水源的联合调节,遇华北平原的干旱年(1965年和1972年),以及遇汉江流域枯水年(1966年和1978年)各部门用水都得到了保证。天津市供给生活和工业的引汉水量为11.68亿m3,占它们净需水量的58.1%。

中线供水区,实现引汉水与当地水资源联合运用后,生活保证率均达到100%,工业保证率一般在96%左右,一些供水区,象宝丰供水区、浚县、滑县、濮阳市供水区(3个县市划归为一个用水户)工业需水较大,当地水资源较贫乏,水库调蓄容积小,保证率在96%以下。另外,有引汉时,因为引汉水承担了大部分生活、工业用

水,当地水资源腾出大部分供农业,所以农业保证率比无引汉时,有了很大提高。

4 结论

(1)应用系统仿真方法,研究复杂调水系统——南水北调中线工程的调度方案,并得出仿真结果,其方法和框架可供同类研究参考。(2)在仿真模型中,通过加入辨识模块和控制修正模块,使系统在仿真基础上,快速找出满意解。(3)通过仿真计算,对引汉水进行了空间和部门分配,计算结果合理可行,为工程未来运行提供了依据。(4)从计算结果可看出南水北调中线是解决黄、淮、海平原缺水的根本措施,它与当地水源几乎各自承担一半向各部门供水的任务,并主要保证城市生活、工业用水。(5)本次计算没有将丹江口水库纳入丰枯调节,导致丹江口调水有弃水,若在一定条件下,将丹江口水库与调水区实现联合调节,将使调节计算工作更趋于完善,使供水区的供需更匹配,北调水量将得以更充分的利用。

参考文献:

[1] 钱学森,等.开放的复杂巨系统及其方法论 [J].自然杂志,1990,13(1).

[2] 长江水利委员会.南水北调中线工程论证报告及附件 [R].1995.

[3] Grawley P P, Dandy G C. Optimal operation of multi-reservoir system [J]. Water Resources plan and management, 1992,118(4).

城市供水调度系统设计方案概述

城市供水调度系统设计方案 1给水系统控制和优化调度软硬件模式 1.1概述 为了满足城市快速发展的需要,城市供水企业近年来不断采用新的技术、新的工艺,用以提高城市的供水能力和服务质量。其中自来水厂监控系统在全国大多数城市得到广泛应用,还有一些城市的供水企业正在逐步采用GIS技术管理供水管网信息、用计算机实现收费营业电算化。这些先进的信息、计算机、通讯和自动控制等先进技术的应用,的确为供水企业的现代化运营解决了很多的实际问题。但是,我们也应该看到还有很多深层次的问题尚未得到卓有成效的解决,究其原因主要是因为:①供水企业的运营包括从产水、输配水、管理和收费多个环节,仅在某一环节采用新技术并不能解决所有问题;②企业运营的各个环节是密切关联的,分离的系统无法实现整个运营的系统性;③系统运营的很多因素是有统计规律和相关性的,目前的系统无法从这些规律和相关性得到可以辅助决策的信息。因此,要达到自来水企业的最优化运营,就需要系统分析企业的运营模型,找到每个环节的相关性,获取综合的有效信息,综合历史信息,优化企业的运营,提供辅助决策。以产水到用水的整个过程为主线,以企业的管理现代化为辅线,把信息技术在企业集成应用,实现从产水到用水的最大效益,是我们对以上问题的一个有益探索。 随着工业自动化控制技术和现代科技的高速发展,通讯技术、电子技术和计算机技术的有机结合,出现了高性能的PLC系统和SCADA系统,使工业过程控制程序化、模块化、智能化、集成化、网络化,控制过程更加可视化和远程化。给水系统优化控制是工业过程自动化控制的一个部分,下面我们从供水企业的运营模型着手,分析企业的信息模型,提出的大规模给水系统分级控制和优化调度软硬件模式,和基于GIS平台的供水企业信息化应用方案。构筑了给水系统优化控制基本框架。 1.2运营模型 供水企业的运营主要围绕水从水源、水厂经过输配网最终到水用户的生产/消费链而进行的,其模型如图1。生产调度通过实时采集水源和水厂的变电设备、电器开关、加压泵等设备运行参数和流量、出水口压力、余氯等控制参数,以及输配网上压力监测点和水库水位或水源井监测点的控制参数,动态自动控制水源、水厂设备的启停和运行,使整个输配网上的水压保持最佳的分布和平稳状态,从而为用户提供高质量的供水服务,减少输配过程中水的损失,最大限度延长管网的使用寿命,最终提高水厂的运营效益。管网管理主要实现输配水管网信息管理,管网的新建、维护和改造以及水用户的管理。它必须能够保证管网信息的准确、全面和现势,满足管网规划、设计、施工和维护的要求。营业收费完成水用户用水量的验抄、统计,根据水用户性质和收费项目的规定进行计费收费。公司将综合生产调度、管网管理、营业收费的各种信息,结合公司的营业策略,对整个企业的运营进行科学合理的决策,从整体上实现对公司营业的宏观管理。 营业收费的各种信息和财务不属于本次论述的范围。

城市供水系统优化调度 数学模型的建立

城市供水系统优化调度 数学模型的建立 摘要:介绍了城市供水系统优化调度的主要内容以及原则。同时介绍城市供水系统优化调度的研究状况。用水量预测研究是优化调度的基础和前提。用水量预测模型是在分析城市用水量序列数据模式的基础上, 综合利用多种方法建立的数学表达式。给水管网数学模型是建立水厂出厂压力和流量与管网测压点之间的经验数学表达式, 它反映了给水系统的运行工况。优化调度模型的建立和求解是优化调度的核心。 关键词:城市供水系统;优化调度模型;用水量预测 Optimal Operation of Urban Water Distribution System Wei Sheng (Beijing University of Civil Engineering and Architecture,School of Environment and Energy Engineering,Beijing,100044) Abstract:Primary coverage of urban water distribution system and its principles are introduced. At the same time introduce the situation of the urban water distribution system. Water consumption forecasting is the bases of optimal dispatching. Water consumption forecasting model is a mathematical representation which is based on the data pattern of urban water consumption series. Water distribution network model reflecting the operating mode of water distribution system, is an empirical equation based on the relation of pressure, water flow and pressure tap's data. Derivation of optimal dispatching model is primary. Key words:urban water supply system; optimal dispatching model; water consumption forecast 1.优化调度原因及概念

水务管理信息系统

前言 水务管理信息系统是随着水处理行业自动化水平的提升和应用需求的不断扩展应运而生的,其定位处于监控系统SCADA之上,但在企业资源管理系统ERP和同类商业系统之下,承担着承上启下的作用。 水处理行业是典型的流程行业,以往的将自动化为中心的系统往往只关注于具体的生产流程和设备控制,其计算机软件系统的建立也是围绕现场控制进行的。随着对设备管理、生产分析的需求逐步增多,同时,对于大型的水务集团来说,其生产地-水厂分散并越来越多,管网也越来越复杂,面临着上层管理难度加大,需求提升;另一方面,水行业也正处在一个集团化、集约化、规模经营的发展势态中。这一切决定了对于水务集团,需要在原有的监控系统为主的软件平台之上建立一个全企业的、具备良好扩展能力的应用信息管理平台,并能随时面对生产规模的扩大和上层商业系统集成的需要。 综上所述,水务集团的信息管理系统将成为整个集团生产管理的核心,其要完成的主要任务包括:建立生产管理的核心平台,通过模型化的工厂对象信息表述来实时获取管理层所需的信息并为底层的SCADA系统和其它相关系统提供深层次的应用分析能力 整合过程控制、SCADA系统和商业业务管理系统,如ERP、设备资产管理系统、客户管理系统、信息管理系统等,打通信息链,更好地通过实时数据和多种数据源的整合,最大限度地发挥已有系统的功能作为对业务扩展的支持系统,提供各种标准的工业接口和可扩展的网络架构,为持续发展提供可能,并能支持多地域的统一运营模式 水务生产管理系统对于确保企业生产能够长期稳定运行,提高企业数字化以及自动化管理水平意义重大。

水务生产信息管理系统 在整个水务生产管理信息系统中,一般由调度中心级、分中心(分公司)级以及现场站(净水厂、污水厂、加压泵站、管网监控站等)级控制三层架构来组织系统,同时可以建一座异地实时备份中心。 本系统的涉及范围将包括不同生产系统的整合,如目前的管网、水厂和污水处理厂三个部分,同时也将集成各相关的外部商业系统信息以及各辅助系统的生产信息。系统从结构上支持所有主流的水处理行业监控系统的集成,并支持大型集团的扩展能力。 系统的功能与架构: 实时监控(SCADA)系统 完成对水务管理信息系统各个远程站的数据采集和监控管理任务,将各远程站传送的数据进行处理、分析、存档,并向各远程站发送调度及控制命令。从而实现运行数据的采集、监测、保存、输出以及设备控制;运行状态的模拟显示、状态检测、报警等;最终实现调度优化、节能降耗。 水质监测系统: 实现对供水水质的远程自动监测,一旦发现水质出现异常情况,能够通过现场站控制系统进行输水控制,同时向相关用户通报情况。 客户管理(CIS)系统: 实现大用户信息管理(如用水户的用水性质、水表口径、用水计划等)、实时用水量管理、用户报修信息管理等,以便能够更好地为用户服务。 供水管网地理信息(GIS)系统: 提供管网规划、电子图档、管网设施管理、日常维护等,辅助完成管网的巡线、检漏、维护、应急抢修、阀门检修、管网改造等业务,使生产管理能够上一个新台阶;可以根据需要, GIS系统可以包含GPS 系统,用于跟踪配置了GPS设备的人员及车辆。 应急抢修系统: 提供故障定位、事故区域显示、管网设施、用户影响汇总等情况,并提供故障隔离操作流程,还包括

2017年水库联合调度演练计划

二0一七年钟前、白石水库联合调度演练 计划 为提高钟前、白石两水库管理站对突发性事件的防范与应急处理能力,进一步建立统一、快速、协调、高效的预警和应急处置机制。强调“以人为本、预防为主、协调一致、可操作性”的原则,结合水库管理人员岗位技能学习组织本次水库防汛应急演练。 一、背景 1、钟前水库自2016年开始创建水库工程标准化管理,同年6月份由钟前水电站组织水库管理人员自行编写了水库管理手册,经市水利电力总站审核批准后于7月1日开始试用。手册将水库的所有的管理事项进行了梳理,并针对每个管理事项设定岗位人员,对每个事项制定了操作流程。经过一年的使用大部分管理流程与实际管理工作能相对应,具有较强的可操作性。但在这一年的时间里钟前水电站管辖的几座水库均没有出现洪水过程,洪水调度工作没有进行实际操作演练。白石水库今年也被列入标准化管理创建单位,在今年的3月份编写了标准化管理手册并于4月份经市水利电力总站审核批准后开始试用。洪水调度流程没经过演练。 2、按照规定每年的汛前需要对机电设备进行一次试运行,检验设备的可靠性。 3、各岗位人员的执行能力需要考核和提高,对整个防汛应

急流程是否合理需要用演练来检验流程的合理性,特别是放水预警、备用柴油发电机组运行操作、闸门启闭操作、洪水调度计算等流程和台账是否合理、下游行洪通道人员撤离工作、通讯设备是否可靠以及管理平台操作是否熟练等。 二、目的 通过演练牢固树立参演人员安全责任意识;有效提高职工岗位操作技能和对突发性事件的应急处理能力,提高相关人员应急反应能力和组织协调能力,明确岗位职责和调度权限。整体提高对突发性事件的防范与应急处理能力,做到有计划、有步骤、有准备地防御洪水,迅速、及时和有效控制险情,保证水利工程及下游人民群众生命财产安全。 三、参演人员:全体水库管理人员、钟前水电站班子成员、 水电总站领导。 四、内容及步骤: 事件与险情:时间7月 X日,受XXX台风影响,水电总站启动X级防台应急响应,相关人员进岗到位。从7月 X日 X 时开始连续降雨,黄坦坑水库已经溢流;钟前水库水库水位升至120米,接近汛控水位。根据气象部门的雨情预测未来5小时内有特大暴雨,此时接防汛办放水泄洪调度令。受台风影响电力线路因故障而停电。 步骤: 1、操作指令签发;

一种环境感知的仿真服务调度模型

———————————— 基金项目基金项目::国家自然科学基金资助项目(61163009, 61163010)。 作者简介作者简介::张学军(1977-),男,讲师、博士研究生,主研方向:服务计算,服务仿真;闫光辉、胡晓辉,教授。 收稿日期收稿日期::2013-05-29 修回日期修回日期::2013-07-21 E-mail :zxjly1_new@https://www.360docs.net/doc/d66265051.html, 一种环境感知的一种环境感知的仿真服务调度模型仿真服务调度模型 张学军张学军,,闫光辉闫光辉,,胡晓辉 (兰州交通大学电子与信息工程学院,兰州 730070) 摘 要:针对传统分布式仿真框架HLA/RTI 中动态调度负载平衡较差、执行可靠性较低的问题,提出一种基于环境感知的仿真服务调度模型C3SM 。C3SM 模型包含总体结构、调度策略和服务部署。总体结构规定各个模块的功能与交互接口,调度策略采用改进的蚁群算法进行仿真服务的动态调度,服务部署采用重叠覆盖部署策略以保证较好的服务可用性和较低的资源消耗。仿真实验结果表明,与传统分布式仿真框架HLA/RTI 相比,C3SM 模型通过实时获取执行环境的上下文信息,能够获得较优的负载平衡度,且重叠覆盖的仿真服务部署策略使得仿真运行系统的可靠性明显提高。 关键词关键词::环境感知;高层体系结构;分布式仿真;Web 服务;蚁群算法;仿真服务调度 A Context-aware Simulation Service Scheduling Model ZHANG Xue-jun, YAN Guang-hui, HU Xiao-hui (School of Electronics and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China) 【Abstract 】In order to address the problem of traditional distribution simulation framework HLA/RTI with respect to poor load balancing performance in service dynamic scheduling and low reliability of service execution, this paper proposes a Context-aware Simulation Service Scheduling Model(C3SM), which includes general framework, scheduling strategy and service deployment. The framework provides the functions and interaction interfaces of each module. For the scheduling scheme, a modified ant colony algorithm is used to achieve optimum load balancing and system reliability. Moreover, the overlapped coverage deployment strategy is adopted to obtain the high service availability and low resource consumption in the service deployment. Experiments are carried out on performance comparisons between the traditional HLA/RTI and C3SM in the scheduling strategy and the reliability of service performing, the results show that C3SM can obtain good load balance with the real-time context information of the execution environment, and the overlapped coverage simulation service deployment scheme greatly improves the reliability of the simulation execution system. 【Key words 】context-aware; High Level Architecture(HLA); distributed simulation; Web service; ant colony algorithm; simulation service scheduling DOI: 10.3969/j.issn.1000-3428.2014.03.019 计 算 机 工 程 Computer Engineering 第40卷 第3期 V ol.40 No.3 2014年3月 March 2014 ·体系结构与软件技术体系结构与软件技术·· 文章编号文章编号::1000-3428(2014)03-0093-06 文献标识码文献标识码::A 中图分类号中图分类号::TP391.9 1 概述 随着计算机与信息技术的飞速发展,计算机仿真技术在智能交通、航空航天、生物、通信等领域得到了广泛的应用和研究。由于计算机仿真所涉及的问题越来越复杂,仅靠单个仿真系统已无法满足实际仿真需求。目前多种智能手持设备快速发展,具备了较强的计算能和通信能力,可以将多种手持设备与传统的服务器或PC 一起构成一个分布式、异构的智能仿真建模和运行环境。 高层体系结构(High Level Architecture, HLA)是分布式仿真领域的一个软件架构标准,它解决了仿真应用之间可交互性和模型在不同领域重用性的关键问题[1] 。但是,HLA 在应用中存在许多不足:(1)由于存在多个运行时基础设施(Runtime Infrastructure, RTI)厂商,不同厂商的RTI 基于特定的计算机平台与编程语言,互操作性和跨平台能力有限;(2)RTI 在运行时会受到防火墙的限制,使仿真任务无法正常运行;(3)RTI 对系统的容错性支持不足,单一联邦的失效会导致整个仿真任务的失败。 Web 服务(Web service)是一种面向服务的分布式计算模式,具有良好的平台异构性和语言独立性特点,可以与其他分布式计算技术相结合,且其请求和响应不受防火墙限制。因此,可以考虑将Web 服务和HLA 进行结合,克服HLA 的不足,进而构建一个具备一定冗余度的可靠分布式仿真系统。

自来水生产调度系统

自来水生产调度系统 第一章系统特点及优势 利用计算机信息处理技术,现代通信技术以及自动控制技术对整个供水管网的主要运行参数、设备运行状况进行动态监测、实时调度和自动化控制 1.稳定高效的数据采集传输,为后台数据处理提供了坚实的基础。 2.数据采集传输使用业内成熟的C/S架构,监控与统计分析采用应用广泛的B/S架构,保证稳定性与成熟性,同时应用多项先进的应用程序开发技术。 3.支持监控站点及传感器在线维护,传感器参数配置方便简捷,可将几个传感器组合为一个虚拟传感器。 4.系统支持多种通迅方式,包括:数传电台,GPRS,SOCKET,短消息等。 5.强大灵活的报警功能,可灵活设置报警条件和方式,报警级别可分为三级越界报警 6. 7. 8.系统操作及报警支持语音提示 系统采用及时通讯的技术发送数据超限或站点故障信息。 数据实时监控方式多种多样 分类型监控实时数据 分区域监控实时数据 设置虚拟站点、重要站点进行监控

实时曲线监控 9.强大的统计分析功能 对同一传感器不同时间的对比分析 对同一时间不同传感器的对比分析 提供各种图形和表格的数据分析 各种样式的统计报表 第二章软件模块划分 实时数据监控子系统:该子系统主要应用者为所有用户,负责实时数据的显示报警与数据的分析及打印。 1、数据查看 1.1日况显示: (1)按站点查询某一天的历史监测数据,设定某一站点某一天,显示当天该站点所有在线监测点的监测值。 (2)分类(在线监测点类别)查询历史监测值,可以显示同一类的所有在线监测点的监测值,如选择所有压力点,把某一天的所有压力点的值显示出来,并统计该天最高压力值、最低压力值及平均压力值,最高与最低要分别显示出现的时间,时间应精确到分,也可以选择个别压力点进行查询。 2、统计分析 2.1历史监测数据的统计与分析:

南水北调东线工程山东段调度运行管理系统建设

南水北调东线工程山东段调度运行管理系统建设 一、系统背景 南水北调东线工程是缓解我国中东部地区的水资源供需矛盾、支撑该地区国民经济与社会可持续发展的一项跨流域、长距离的特大型、综合性调水工程。南水北调东线工程山东段供水范围共涉及14个市,共107个县、市、区。供水区面积11.3万km2,覆盖了山东主要的经济发达区和大部分重点城市,占全省国土面积的73.7%。 南水北调东线一期山东段工程主干线自苏鲁省界进入山东省韩庄运河,经台儿庄、万年闸、韩庄三级泵站提水进入南四湖的下级湖,经下级湖湖内航道及东股引河至南四湖二级坝,由二级坝泵站提水进入南四湖上级湖,经湖内航道进入梁济运河,由长沟、邓楼两级泵站提水进入柳长河,再由八里湾泵站提水入东平湖(老湖区),经东平湖后,分两路分别向黄河以北和胶东地区供水。向黄河北供水线路,经穿黄隧洞过黄河,自流进入小运河至临清,一期工程向北经七一、六五河进入大屯水库;二期工程自临清向西经穿卫枢纽工程进入河北,向河北省、天津市供水。向胶东地区供水线路,由东平湖渠首闸引水,经胶东输水干渠输水,向济南市及其以东的胶东地区供水。南水北调东线工程在山东境内分为南北、东西两大输水干线,形成“T”字形输水大动脉,干线长1191.81km。 二、项目建设目标与主要内容 南水北调东线山东段调度运行管理系统建设的总体目标是以山东干线调水业务为核心,以全线自动控制为重点,在应用支撑平台和数据资源管理平台的基础上,运用先进的信息采集技术、自动监控技术、通信和计算机网络技术、数据管理技术、信息应用与管理技术,构建面向东线工程山东段干线公司、管理局和管理处三级的具有个性化水量调度系统、综合会商、信息监测与管理系统和工程管理系统。以现代化的管理观念和工作方式,通过“调度方案最优化、调水过程自动化、远程监控可视化、运维管理信息化、应用系统集成化、数据传输网络化、企业管理现代化、安全保护全面化、应急响应预案化”,实现安全调水、精细配水、准确量水。全面提升各级管理部门的综合信息处理能力,为科学调度、管理和保护水资源,提供科学依据和技术支持。 南水北调东线山东段调度运行管理系统主要建设内容包括水量调度系统、信息监测与管理系统、工程管理系统、综合会商系统、闸(泵)站监控系统等五大部分,其关系图如下图所示: 其中,水量调度业务和闸(泵)站监控系统是核心业务,信息采集系统、信息监测与管理系统、综合会商系统和工程管理系统是辅助性业务。水量调度业务分为日常水量调度业务和应急水量调度业务,日常水量调度业主主要包括年、月、旬及实时调度业务,应急调度业务主要由于用水计划的临时调整或由于沿线水库等当地来水量的临时变化,需要调整调水计划,满足应急供水或农业与生态相机补水的要求。 信息采集系统为信息监测与管理系统、水量调度系统提供数据来源。信息监测与管理系统对工程安全、水质、水情的实时信息进行监测与分析,为水量调度系统、综合会商系统和工程管理系统提供告警异常、评价信息。工程管理系统接收信息监测与管理系统的工程安全评估信息,并将重大突发事件、重大维修养护方案上报至综合会商系统。综合会商系统接收工程管理系统、信息监测与管理系统及其他单位的告警信息,经分析、评价、会商制定处置方案,由水量调度、工程管理、综合办公等系统执行处理。水量调度系统则可接收综合会商决策方案,形成调度指令,由闸(泵)站监控系统执行。 三、应用系统架构 同方股份有限公司作为南水北调东线一期工程山东段调度运行管理水量调度、综合会

多台电梯调度算法设计及仿真

多台电梯调度算法设计及仿真 (安庆师范学院物理与电气工程学院安徽安庆 246011) 摘要:根据电梯群控系统的非线性,随机性,不确定性和离散动态性特点,采用面向对象的分析与设计方法和基于事件扫描的数字仿真方法,设计一个多台电梯调度算法,采用 Visual C++技术编程和OpenGL 可视化技术,并通过对电梯群的运行状态进行实时监测与分析,实现高层建筑电梯群调度和载客的活动仿真情况,评价电梯群的服务质量和运行效能。 关键词:电梯群控制系统,多台电梯调度算法,面向对象,数字仿真 1. 引言 电梯是现代立体交通的重要组成部分,随着高层建筑在世界范围内得以迅猛发展,极大地促使了电梯技术的改良和革新。近半个世纪以来,电梯技术已经从原始模型升降机发展到高级智能化电梯。而智能化要求电梯系统服务质量和服务效率能尽量提高建筑的有效利用率和性能。在建筑设计中,同常将多台电梯配置在一起,构成电梯群,集中为大楼提供服务,这就是电梯群控系统(EGCS, Elevator Group Controlystem)【1】。电梯群控系统是一个实时性非常强的系统,需要不断收集梯群的状态信息和厅外的召唤信号,采取一定的派梯策略,选择最合适的电梯去应答厅外召唤。为了节约开发成本,一个成功的电梯群控系统在应用到实际控制系统之前,往往都在计算机系统上进行仿真研究,调试参数,在仿真研究完成以后,在应用到电梯试验塔做实验,检验控制策略的有效性和有关的性能指标。电梯群控系统是通过对电梯群运行状态进行实时监测与分析,再根据不同的实际情况对电梯进行优化调度和合理分配,进而改善和提高电梯系统服务质量和服务效率【2】。 随着智能控制技术在电梯群控系统(EGCS)中的广泛应用,电梯交通系统设计的关键是满足乘客生理上和心理上的承受力,有效地解决高层建筑复杂的楼内垂直交通。一个设计良好的电梯群控系统必须具备在客流高峰时确保乘客在较短的侯梯时间和乘梯时间内到达目的地,在空闲时使电梯群运行消耗能量最低。我国电梯配置和电梯系统特征的研究与国外相比还处于落后的状态,虽然国内与1990年对电梯系统的动态特性进行了研究,但在电梯群控方面,仍有许多理论及技术问题亟待解决,因此开展电梯群控算法研究具有重要的理论和实际意义,这对电梯群控系统性能(安全性,舒适性等)是十分必要的,同时也可以改变我国目前电梯技术主要依赖于进口的不利局面【3】。 用计算机仿真研究电梯群的服务质量和运行效能,大楼的层高不要超过25层,电梯的总台数不要超过八台。设某办公大楼楼层为20层,有载客电梯5部(用电梯1—电梯5标识)。利用Visual C++技术编程和OpenGL可视化技术实现高层建筑电梯群调度和载客的活动仿真情况。 2.设计方案 2.1 设计规则: 为了实现电梯群调度和载客的活动仿真情况,采用两种方式对其仿真:(1)人工控制方式;(2)自动控制方式。 2.1.1人工控制方式: 这种方式是完全仿真真实电梯群情况,乘客自己决定到达电梯时候和选择需要到达的楼层以及电梯的开关门。这种方式通过可视化技术可以直观的观察乘客发送电梯请求后,电梯群的调度情况和各电梯的当前状态,包括电梯内人数,电梯运行趋势,电梯开关门状态和电梯所在楼层。这种方式下电梯群调度遵循的规则为:

供水调度岗位责任制度范本

内部管理制度系列 供水调度岗位责任制(标准、完整、实用、可修改)

编号:FS-QG-20912供水调度岗位责任制 Water dispatching post responsibility system 说明:为规范化、制度化和统一化作业行为,使人员管理工作有章可循,提高工作效率和责任感、归属感,特此编写。 1、负责供水厂各系统供水生产的运行调度和整个系统安全运行和连续供水。 2、通过水位仪监视水厂水位情况,合理调度机泵开、停。 3、制定供水方案计划,合理供水,在安全的前提下是供水系统在比较经济的方式下运行。 4、掌握净水系统的工艺流程与设备容量。掌握水厂工艺流程的主要运行参数及主要设备运行情况,掌握整个供水管网压力分布动态变化。 5、负责发布调度指令,做到及时、准确、简洁。发布调度口令后,各运转班组值班员应重复口令内容,以免发生误操作,值班员对调度命令执行完毕后,需及时给调度员回令。 6、调度员在发布调度机泵启动或停止命令时,正常情况下,全供水系统泵车、泵房为两用、两备;太平供水系统为一

用一备。每台泵的启动或停止的间隔时间不少于15分钟,特殊情况启停间隔时间不小于10分钟。 7、掌握管网结构,熟悉水厂所有供水机泵的名牌特性。 8、及时向领导汇报各系统运行情况及设备故障,通知各维修班组处理设备故障。 9、当出现水质、设备事故时及时向领导反映,并根据具体情况进行停、换进出、水泵操作,以配合制水工艺,保证水质合格率及设备运行安全等。 10、严格交接班制度,做好调度运行记录。 请输入您公司的名字 Foonshion Design Co., Ltd

水污染控制课程论文

课程论文 学号: XX13020300XX 姓名: XXX 专业:水利水电工程指导老师:朱亮老师 任课老师:朱亮老师

水质水量联合调度研究现状和发展趋势 XXX (河海大学水利水电工程学院,江苏南京210098) 摘要:水资源短缺和水质恶化等问题是当前制约我国社会经济发展的重要因素之一,可通过水质水量联合调度 方式解决我国当前水资源问题。介绍了水质水量联合调度的概念和重要性,简析了国内外水质水量联合调度的 研究现状。针对现有的调度模型进行了分析,提出了水质水量联合调度中存在的水质水量相互影响考虑不足缺 少统一有效的模型空间分配模型欠缺等问题,并对我国水质水量联合调度研究工作进行了展望。 关键词:水质水量;联合配置;研究进展;调度模型 1 引言 水资源短缺是制约经济社会可持续发展的主要因素之一,缺水很大程度上是由于资源得不到科学分配和合理利用所造成,因此加强水资源的管理调度是提高水资源利用效率的重要方向。水量调度管理是一个逐渐发展的过程,从最初的用水量控制为主到总量与用水效率并重。随着社会生活水平和工业化程度的提高,水质恶化逐渐成为缺水的重要原因,频繁发生的水污染事件使得环境质量降低,生态系统退化。从水务一体化管理的发展趋势来看,水量和水质的联合调度是未来水量调配和水污染控制的主要决策技术。 从配置的角度分析,水量和水质是水资源的二重属性,二者相互影响不可分割,不同用水对水量水质的要求不同,需要结合水质要求对水量进行分配。从污染控制的角度考虑,水资源开发利用影响水循环,进而影响到水污染的治理,因此污染控制应和水资源开发利用统一考虑才能实现流域水环境质量的根本改善,通过水质水量联合模拟的模型和方法,实现对区域水量和水质的联合调度,达到水资源利用与区域环境保护的双重目标。实现水质水量统一合理的配置,必将有利于水环境与生态的改善和保护,最终实现水资源开发利用的良性循环。 本文联系最新发展动态归纳总结了水质水量联合调度的具体概念,通过对国内外水质水量联合调度的研究现状发现现有的问题。并针对现有的调度模型进行分析,从而提出我国水量水质联合调度过程中存在的问题和急需改进之处。 2 水质水量联合调度研究概况 水质水量联合调度的基本思路是:根据水资源管理的需求,水量水质联合调控的目标包括污染控制、水量配置和水生态保护。根据不同目标给出相应的控制方案,最后进行水量水质联合配置,形成总量控制方案,并进行方案后评估分析。 2.1 国外研究概况 水质水量联合调度是指按照流域水资源综合管理的理念,以防洪安全保证为前提,以流域水生态功能目标需求为导向,依托各种水利工程或非水利工程调度措施,优化调整径流的时空分配特征,从而实现水资源的经济、社会和生态环境综合效益最大化的一种水资源开发利用模式。按照调度目标指向可以分为以提高水环境容量改善水质状况为目标的水质调度和以保障环境流量为目标的生态调度,按照调度所依托的水工程类型可以分为水库(群)调度、闸坝(群)调度及流域综合调度,按照时段划分可以分为常规调度和应急调度。 国外对于水质水量联合调度的研究较早。从20世纪80年代后期,随着水资源研究中量与质统一管理理论研究的不断深入,国际上从单纯的水配置研究发展到水量、水质统一配置模型研究,从追求流域经济最优到追求流域总体效益最优为目标的合理配置研究,更加重视生态环境与社会经济的协调发展。 Afzal Javaid等人于1992年提出了针对某个地区的灌溉系统建立了线性规划模型,对不同水质的水量使用问题进行优化该模型能得到一定时期内最优的作物耕种面积和地下水开采量等成果,在一定程度上体现了水质水量联合调度的思想[1]。Lind.Owen.T等人,在2002年对查帕拉湖进行水质分析时,发现水质问题明显取决于水量,这就决定了水质水量问题必须统一协调考虑[2]。Gines.Munoz.J,2006提出将水质水量协调统一的方法用于解决水质有问题的大坝,建立系统评价模型决定大坝下泄水量等数据,该实例详细描

城市供水总调度系统

城市供水总调度系统 建议方案 唐山平升电子技术开发有限公司 网址:https://www.360docs.net/doc/d66265051.html,

目录 目录 (2) 一、项目需求概述 (3) 二、总体方案设计 (3) 1、系统组成 (3) 2、供水总调度系统拓扑图 (4) 三、监控中心 (5) 1、计算机硬件配置要求 (5) 2、系统软件配置要求 (5) 3、供水远程监控系统软件功能 (5) 四、水厂监测终端功能特点 (7) 1、监测终端功能说明 (8) 2、监测终端的主要配置(以某水厂内8台泵为例) (8) 3、监测终端工作原理示意图 (8) 五、管网压力监测终端 (9) 1、监测终端功能说明 (9) 2、监测终端结构 (10) 3、监测点的设备配置及安装方式 (10) 六、水质监测监测终端 (13) 1、监测终端功能说明 (13) 2、监测终端的主要配置 (13) 3、监测终端工作原理示意图 (14) 七、计量测量设备 (14) 1、电磁流量计 (14) 2、投入式水位计 (15) 3、压力变送器 (16) 4、余氯在线分析仪 (16)

一、项目需求概述 水务集团计划建设一套城市供水总调度系统,将集团管辖下的自来水厂、管网及水质监测点监测数据远程传送回调度中心。调度中心通过监测点回传的数据可全面了解整个城市供水的状况,从宏观上对供水工作进行指挥和调度。系统具体监测要求如下: 水厂监测要求: 进出水口流量监测,蓄水池水位监测,出水压力监测,机组开启状态,保护状态;预留水质监测接口。 管网压力监测要求: 监测地下管网压力监测点的压力数据,监测点不具备市电供电条件。 水质监测要求: 监测管网末端水质监测点的水质数据,主要对末端的余氯含量进行在线监测。 二、总体方案设计 1、系统组成 针对客户系统建设需求,结合我公司的产品特点和技术优势,我公司提出如下建议方案,系统主要有以下四部分组成: 监测中心: 1)硬件设备:中心服务器(监测中心具备可上网的固定IP)。 2)软件:操作系统软件、数据库软件、城市供水总调度系统软件。 通信平台:GPRS、INTERNET网络。 现场监测设备:水厂监测终端、压力监测终端、水质监测终端。 计量测量设备:水位计、压力变送器、电磁流量计、余氯在线分析仪等。

三峡水库水文泥沙信息分析管理系统设计

三峡水库水文泥沙信息分析管理系统设计 何文社1,戴会超2,曹叔尤3,袁 杰2 (11兰州交通大学,兰州 730070;21中国长江三峡工程开发总公司,宜昌 443002; 31四川大学高速水力学国家重点实验室,成都 610065) 摘 要:应用Visual C ++应用程序、Oracle9i 数据库开发了三峡水库水文泥沙信息分析管理系统。系统能使用户快捷地 查询到所需的水文泥沙数据及分析资料,对库区泥沙淤积状况快速做出分析处理,实时分析显示水库调度运行对泥沙冲 淤演变的影响,为及时调整水库运行方式提供依据,实现水库信息数字化管理,加强数据空间分析处理能力,对原始测量 数据成果进行分析处理,对所有的整编成果建立相关的索引表,提供水文泥沙查询、检索及表格输出等功能。 关键词:三峡水库;水文分析;泥沙分析;信息分析系统;设计与开发 中图分类号:P338+15文献标识码:A Preliminary design and development of hydrologic and sediment inform ation analysis for the Three G orges reservoir HE Wenshe 1,2,DAI Huichao 2,C AO Shuy ou 3,Y UAN Jie 2 (11Lanzhou Jiaotong Univer sity ,Lanzhou 730070;21China Three Gorges Project Corporation ,Yichang 443002; 31State K ey Hydraulics Laboratory o f High Speed Flows ,Sichuan Univer sity ,Chengdu 610065) Abstract :A in formation processing system of hydrologic and sediment data of Three G orges reserv oir is developed by use of Visual C ++application program and Oracle9i database.The system can make users convenient to inquire and analyze the sediment data ,deal in speediness with the sediment deposit condition of reserv oir area and in time analyze the scouring and silt ev olved in fluence of sediment caused by reserv oir dispatching operation.The system can provide foundation for reserv oir dispatching operation and realize the reserv oir in formation digital management. Using the system ,it can establish the interrelated data index table ,provide the hydrologic and sediment data inquiry and data table output function. K ey w ords :Three G orges reserv oir ;hydrological analysis ;sediment analysis ;in formation analysis system ;design and development 收稿日期:2005205219 基金项目:国家自然科学基金项目(50279024)及兰州交通大学青蓝工程基金资助 作者简介:何文社,1966年生,男,教授,博士 1 系统研制目的 三峡工程是治理和开发长江的关键性骨干工程,工程以其巨大的防洪、发电、航运等综合效益闻名于世。三峡水库蓄水运用后,水沙因子的变化将导致水沙特性变化,必然产生水库泥沙淤积。泥沙淤积涉及到水库使用寿命、库区淹没、库尾航道和港区的演变、坝区船闸、电站的防沙排沙、枢纽下游河床冲刷以及河道演变对防洪和航运产生的影响等一系列复杂的技术问题。在这种环境下,如何确保三峡工程防洪、发电、航运等效益目标的实现,对三峡工程的调度管理提出了很高的要求。三峡工程在设计建设过程中进行了大量的科学研究、模型试验和原型观测,积累了大量的水文泥沙历史资料。但由于参与三峡工程水文泥沙观测、研究及管理的部门多,加上各部门的出发点不同,对水文泥沙的观测资料缺乏系统性和有效的管理手段,很难为水库实时调度发挥作用。另外,三峡工程泥沙专家组牵头制定的由长江水利委员会具体实施的《2002~2009年泥沙原型观测和新增项目的观测计划》也正在实施之中。如何管理好这些资料,使之充分应用与指导三峡水利枢纽的调度工作,建立一套先进的 第24卷第6期 2005年12月水 力 发 电 学 报JOURNA L OF HY DROE LECTRIC E NGI NEERI NG V ol.24 N o.6Dec.,2005

地表地下水联合调度

地表地下水联合调度--以豫北灌溉区为例 黄河下游引黄灌区概况 1自然地理 黄河下游自桃花峪至入海口,地跨河南、山东两省,河道长785.6km,横贯华北大平原。黄河下游地区属黄河冲积洪积平原区,地势平坦。由于黄河泥沙的淤积,河床高出地面,形成“二级悬河”,使下游地区具有理想的引输水条件,同时也容易发生决口和洪涝灾害。高出两岸的河床和沙壤土的高透水性,使得河水侧渗比较强烈,历史上涝、碱灾害比较严重,盐碱地、沙荒地和涝洼地分布较广。 黄河下游引黄灌区位于东经113°24’~118°59’,北纬34°12’一38°02’之间,在黄河两岸沿河道走向呈条带状分布。灌区总的地势由西南向东北呈缓缓倾斜之势,地面坡降在1/4000一1/10000之间,到下游河口地区,地面坡降更缓,多在1/10000以下。 由于黄河的历次决口、改道和泛滥,区内遍布古河床、古漫滩和沙丘岗地等,加之现代河流的作用和人类活动的影响,灌区内岗洼交错分布,微地貌复杂。 2气象水文 该区域属于暖温带半湿润半干旱季风气候,春旱多风、夏季多雨、秋旱冬寒、缺雨少雪是这一地区的主要气候特点。区内多年平均降水量600~700mm左右,降水量由东南向西北方向递减;区内蒸发量在1200mm左右,是降水量的2倍。降水的年际变化大,年内分配不均,降水量的70%集中在6~9月份,并多以暴雨形式出现,能为作物有效利用的降雨仅为作物需水量的三分之一左右,因此该地区几乎年年春旱, 夏涝秋又旱,冬寒干燥,旱涝灾害交替出现,而且常常出现连续干旱年或涝灾年。 3水资源及利用现状 3.1水资源概况 (1)降水量 降水是黄河下游地区当地地表水和地下水的主要补给来源,又是对灌区农作物生长有着直接影响的水资源。降水量的大小及时空分配对区域水资源量的多少与时空变化以及灌溉用水量的多少都起着决定性的作用。 (2)地下水 灌区的地下水资源补给来源主要有降水入渗、河道渗漏、灌溉入渗(包括渠系入渗和田间渗漏)、湖泊及闸坝渗漏等,通过地下水开采、潜水蒸发和地下径流等形式排泄。 3.2水资源开发利用现状 黄河下游地区水资源开发利用工程主要包括引河工程(含引黄工程、引用其它河水灌溉工程)、蓄水工程(含水库、坑塘、湖泊等)、机电提灌工程、机电井工程等。 4.以豫北灌溉平原为例 4.1联合调度的必要性 豫北平原第四系浅层地下水天然资源量为35.28×108m3/a,可采资源量为32. 2×108m3/a。据1991~2000年均衡计算,每年采补均衡差为-1. 54×108m3,即开采量大于天然补给量,已超采。同时地下水资源量分布与开采量分布的不吻合性,给地下资源的科学应用带来了诸如濮阳地面沉降等环境问题。有资料表明,到2010年豫北平原年需水量为45. 42×108m3, 2030年为76. 82×108m3,届时水资源问题会更加突出。 由于黄河断流现象逐年加剧,地表水资源保障力减弱,浅层地下水资源的不足在很大程度上意味着将来豫北平原水资源不能满足人类生产生活的需要,因此我们必须想办法增加补给量满足人们的需要。

调度模型

基于LTE的系统级仿真平台设计 许猛 北京邮电大学信息与通信工程学院WCSN实验室,北京(100876) Email: xumengbupt@https://www.360docs.net/doc/d66265051.html, 摘要:在无线通信系统实际部署之前,要对它进行充分的研究与评估,系统级仿真是全面考察系统整体性能的最常用手段。本文主要讨论了系统级仿真的基本方法,介绍了系统级仿真的分类:静态仿真和动态仿真,并对系统级仿真的原理进行了详尽的阐述,给出了系统级仿真与链路级仿真的接口的设计。以LTE系统为例,介绍了系统级仿真的基本流程,给出了系统级仿真的各个模块的基本模型,如小区模型、天线模型、路径损耗模型、调度模型、链路自适应模型等,详细阐述了系统级仿真的整个过程。 关键词:LTE;系统级仿真;调度 中图分类号:TN92 1.引言 近年来,移动通信的发展十分迅速,人们的需求从以简单的语音通话,慢慢向着多媒体方向转变,如数据、图像、传真等。随着用户需求的转变,新的通信系统层出不穷。从第一代的模拟通信系统,发展到第二代的窄带数字移动通信系统,如GSM,CDMA等,再到第三代的宽带移动通信系统(3G),如TD-SCDMA、WCDMA及CDMA2000,以及下一代移动通信系统LTE,每一阶段都极大改善了用户的服务质量,提供了更加丰富的业务。[1] 通信系统部署之前,需要对其进行充分的评估,掌握系统的整体性能,才能更好的部署,提供更好的通信服务。系统级仿真提供了评估系统性能的一个很好的平台。利用系统级仿真平台模拟系统的工作过程,可以得到系统的网络容量、覆盖分析等指标,从而合理的估计网络的规模及投资的规模,控制建设成本。[2] LTE(Long Term Evolution,长期演进)项目是3G的演进,始于2004年3GPP的多伦多会议。LTE并非人们普遍误解的4G技术,而是3G与4G技术之间的一个过渡,是3.9G的全球标准,它改进并增强了3G的空中接入技术,采用OFDM和MIMO作为其无线网络演进的唯一标准。在20MHz频谱带宽下能够提供下行326Mbit/s与上行86Mbit/s的峰值速率。改善了小区边缘用户的性能,提高小区容量和降低系统延迟。本文主要以LTE系统为背景,介绍了系统级仿真的原理与方法。[5] 2 .系统级仿真原理及仿真框架 系统级仿真是对用户和系统行为的拟合,是从整个系统(包含多个小区和用户)的角度分析系统的覆盖、容量和系统的性能,对于系统的参数设置给予定量的分析,为无线网络的规划优化提供依据。[2] 系统级仿真方法有两种,分别为静态仿真(Static Simulations)和动态仿真(Dynamic Simulations)。静态仿真通过需要对快照(Snapshot)的分析来了解网络性能,他需要一定数量的网络快照。动态仿真就是让真实环境中用户和系统采取的主要行为方式在系统级仿真中都得到具体的模仿性体现。比如用户的起呼,掉话,行进,转弯,切换等,在这些动态行为的基础上,用统计的方法计算所要求的参数和结果。[2] 系统级仿真结果要依赖与链路级仿真的结果。链路层接口将系统级结果映射到物理层参数上去,有两种常用的方法:一种是链路级和系统级联合仿真,对系统信息进行实时的处理,

相关文档
最新文档