MIDAS_FEA_钢管混凝土柱与钢梁节点分析——侯晓武
钢管混凝土叠合柱-RC_梁空间节点耐火性能分析

2024年3月第40卷第2期㊀沈阳建筑大学学报(自然科学版)JournalofShenyangJianzhuUniversity(NaturalScience)㊀Mar.㊀2024Vol.40ꎬNo.2㊀㊀收稿日期:2023-03-09基金项目:国家自然科学基金项目(51808351)ꎻ沈阳市科学技术计划项目(21-108-9-34)作者简介:张波(1979 )ꎬ男ꎬ教授级高级工程师ꎬ主要从事装配式建筑㊁道路工程及隧道工程等方面研究ꎮ文章编号:2095-1922(2024)02-0259-08doi:10.11717/j.issn:2095-1922.2024.02.08钢管混凝土叠合柱 ̄RC梁空间节点耐火性能分析张㊀波1ꎬ2ꎬ秦笑笑1ꎬ徐光朋3ꎬ任庆新4(1.沈阳建筑大学土木工程学院ꎬ辽宁沈阳110168ꎻ2.辽宁省交通高等专科学校建筑工程系ꎬ辽宁沈阳110122ꎻ3.中国建筑第八工程局有限公司东北分公司ꎬ辽宁大连116021ꎻ4.佛山科学技术学院交通与土木建筑学院ꎬ广东佛山528225)摘㊀要目的研究钢管混凝土叠合柱 ̄RC梁空间节点耐火性能ꎬ为实际工程提供参考ꎮ方法通过ABAQUS有限元分析软件建立ISO ̄834标准火灾下钢管混凝土叠合柱 ̄RC梁空间节点的温度场模型和力学模型ꎻ在试验与有限元模拟相吻合的基础上ꎬ分析此类构件空间节点的温度场分布㊁破坏模态㊁变形和内力分布等工作机理ꎮ结果由于梁板的保护作用ꎬ节点区温度远低于非节点区ꎻ当梁㊁柱火灾荷载比相同ꎬ梁由2根增加至3根㊁4根时ꎬ空间节点耐火极限分别降低了41 58%和43 75%ꎻ高温和轴向荷载的共同作用下ꎬ内部钢管混凝土承担内力从常温的43 27%增加至180min的52 9%ꎮ结论钢管混凝土叠合柱 ̄RC梁空间节点具有较好的耐火性能ꎬ能够满足实际工程中对耐火性能的要求ꎮ关键词钢管混凝土叠合柱ꎻRC梁ꎻ空间节点ꎻ工作机理ꎻ耐火性能中图分类号TU398㊀㊀㊀文献标志码A㊀㊀㊀引用格式:张波ꎬ秦笑笑ꎬ徐光朋ꎬ等.钢管混凝土叠合柱 ̄RC梁空间节点耐火性能分析[J].沈阳建筑大学学报(自然科学版)ꎬ2024ꎬ40(2):259-266.(ZHANGBoꎬQINXiaoxiaoꎬXUGuangpengꎬetal.FireresistanceanalysisofthespacenodesforCFSTRCcolumn ̄RCbeam[J].JournalofShenyangjianzhuuniversity(naturalscience)ꎬ2024ꎬ40(2):259-266.)FireResistanceAnalysisoftheSpaceNodesforCFSTRCColumn ̄RCBeamZHANGBo1ꎬ2ꎬQINXiaoxiao1ꎬXUGuangpeng3ꎬRENQingxin4(1.SchoolofCivilEngineeringꎬShenyangJianzhuUniversityꎬShenyangꎬChinaꎬ110168ꎻ2.DepartmentofStructuralEngineeringꎬLiaoningProvincialCollegeofCommunicationsꎬShenyangꎬChinaꎬ110122ꎻ3.NortheastBranchChinaConstructionEighthEngineeringDivisionCo.Ltd.ꎬDalianꎬChinaꎬ116021ꎻ4.SchoolofTransportationꎬCivilEngineering&ArchitectureꎬFoshanUniversityꎬFoshanꎬChinaꎬ528225)260㊀沈阳建筑大学学报(自然科学版)第40卷Abstract:ToinvestigatethefireresistanceofCFSTRCcolumn ̄RCbeamspacenodesandprovideareferenceforpracticalengineering.TheABAQUSsoftwarewasusedtoestablishtemperatureandmechanicalfieldmodelsofCFSTRCcolumn ̄RCbeamspacenodesunderISO ̄834standardfire.OnthebasisoftheresultsfromtestandFEAareingoodagreementꎬtheworkingmechanismofthetemperaturefielddistributionꎬfailuremodeꎬdeformationandinternalforcedistributionofthesemembers spatialnodeswereanalyzed.TheCFSTRCcolumn ̄RCbeamtemperatureatthebeam ̄columnjointregionsiswellbelowthetemperatureatthenon ̄jointregionsduetotheprotectionofthebeam ̄slab.Thefireresistancelimitofthejointnodesdecreasesby41 58%and43 75%underthesameloadratioofbeamandcolumnwhenthebeamincreasesfrom2to3and4.Thecoreconcretefilledsteeltubewithaxialforceincreasesfrom43 27%roomtemperatureto52 9%at180minunderhightemperatureandaxialcompression.CFSTRCcolumn ̄RCbeamspacenodeshavegoodfireresistanceꎬwhichcanmeetengineeringrequirements.Keywords:CFSTRCcolumnꎻRCbeamꎻspacenodesꎻmechanismꎻfireresistance㊀㊀钢管混凝土叠合柱和钢筋混凝土梁组合而成的框架结构是目前工程中最常见的组合结构形式ꎬ根据梁的根数及平面位置㊁柱所处位置不同ꎬ可将钢管混凝土叠合柱 ̄RC梁空间节点类型分为 L 形㊁ T 形㊁ 十 字形等空间节点ꎮ目前针对钢管混凝土叠合柱 ̄RC梁空间节点的耐火性能研究较少ꎬ实际工程中缺乏该类结构的应用ꎮ国内外学者针对钢管混凝土叠合柱和梁-柱空间节点耐火性能进行了大量研究:徐蕾等[1-2]和侯舒兰等[3]分别对不同受火边界工况下的钢管混凝土叠合柱开展了耐火性能研究ꎬ并对升温阶段和降温阶段进行分析ꎬ研究表明ꎬ钢管混凝土叠合柱耐火性能主要受到受火方式和降温时间比的影响ꎮT.Y.Song[4]采用试验与模拟相结合的方法对CFST ̄钢梁节点耐火性能进行了研究ꎬ研究表明ꎬ由于外围钢筋混凝土和梁板的保护作用ꎬ节点区温度远低于非节点区温度ꎮS.S.Huang等[5]对CFST柱 ̄钢梁节点的力学性能进行试验研究ꎬ结果表明ꎬ该类空间节点具有较好的延性和耐火性ꎮ周侃[6]对轴向荷载和全过程火灾作用下的钢管混凝土叠合柱 ̄RC梁空间节点进行了耐火性能的试验研究与理论分析ꎬ得出了空间节点耐火极限随不同参数的变化规律ꎮ包延红等[7-8]对钢管混凝土叠合柱-钢筋混凝土平面框架开展研究ꎬ结果表明ꎬ梁㊁柱荷载比是影响平面框架耐火性能的主要因素ꎮ宋天诣[9]采用试验与理论相结合的方法对钢-混凝土组合框架节点进行耐火研究ꎬ结果表明ꎬ梁㊁柱荷载比㊁升温时间比等是影响耐火性能的主要因素ꎮ谭清华[10]对型钢混凝土柱-混凝土梁在火灾全过程中的力学性能分析ꎬ结果表明ꎬ节点可能发生梁破坏㊁柱破坏㊁梁和柱均破坏的情况ꎮ丁发兴等[11]考虑混凝土的瞬态热应变和高温徐变 CDP 模型中的非弹性应变的影响ꎬ将其应用于钢-混凝土组合结构平面框架局部火灾的抗火性能分析ꎮ综上所述ꎬ目前针对钢-混凝土组合结构的耐火性能研究主要集中在柱㊁梁柱平面节点和平面框架ꎬ缺乏广泛应用于实际工程的钢管混凝土叠合柱 ̄RC梁空间节点的耐火性能研究ꎮ鉴于此ꎬ笔者考虑实际受火边界工况ꎬ按照节点所处位置设计不同的受火边界工况ꎬ采用ABAQUS有限元分析软件分析了其空间节点在火灾下的温度场㊁耐火性能以及节点破坏模态ꎻ研究表明:钢管混凝土叠合柱 ̄RC梁空间节点具有较好的耐火性能ꎬ能够满足实际工程中对耐火性能的要求ꎮ1㊀有限元模型1.1㊀模型建立基于ABAQUS有限元分析软件ꎬ通过第2期张㊀波等:钢管混凝土叠合柱 ̄RC梁空间节点耐火性能分析261㊀热-力顺序耦合 的方法进行耐火性能的研究ꎮ分析模型中外环板式牛腿㊁钢管和加载端板均选用壳单元ꎬ混凝土选用实体单元ꎬ钢筋选用桁架单元ꎮ钢与混凝土材料的热工参数选用T.T.Lie[12]建议的热工模型计算式ꎮ笔者参考实际梁㊁柱节点所处建筑内部的位置不同ꎬ假设钢管混凝土叠合柱四周以及楼板以下所受火灾作用以建筑构件耐火试验方法[13]为参考ꎮ综合辐射系数取0 5ꎬ热对流系数在受火面取25W/(m2 K)ꎬ在背火面取9W/(m2 K)ꎮ忽略接触面的热阻ꎬ钢管与混凝土采用 Tie 约束ꎬ钢筋 Embed 混凝土中ꎮ钢材选取文献[14]所建议的本构模型ꎬ钢管外围混凝土㊁梁和板混凝土均采用文献[14]所建议的本构关系ꎬ圆钢管内部核心混凝土选用文献[15]建议的本构关系ꎮ对于钢管与混凝土采用面面接触ꎬ在其法向采用 硬接触 ꎬ在其切向采用摩擦系数为0 6的罚摩擦ꎬ外环板与钢管外表面通过 Tie 约束ꎬ牛腿 Embed 混凝土中ꎮ为将有限元模型得到的温度场(ODB)文件正确地导入力学分析模型中ꎬ需要保持两个模型中的网格划分一致ꎮ对于混凝土高温徐变和瞬态热应变ꎬ针对硅质混凝土ꎬ参考文献[6]研究成果ꎬ笔者不考虑高温徐变和瞬态热应变的影响ꎻ参考文献[7ꎬ11]所取得成果ꎬ将过镇海[16]建议的高温徐变和瞬态热应变叠加至 CDP 模型中的非弹性应变ꎮ1.2㊀模型验证由于篇幅有限ꎬ笔者仅展示具有代表性的试验结果与有限元模拟计算结果ꎬ对比温度场具体详见文献[6-7]ꎮ1.2.1㊀钢管混凝土叠合柱对文献[6]中钢管混凝土叠合柱耐火试验进行有限元计算ꎬ其中混凝土为硅质混凝土ꎬ具体参数详见文献[6]ꎮ图1(a)为S0组试件截面温度-时间试验关系曲线与有限元模拟曲线对比ꎬ图1(b)为S0组试件竖向位移-受火时间关系试验曲线与有限元模拟曲线对比ꎮ耐火极限试验结果与模拟结果比值的平均值和方差为0 998和0 008ꎬ可见有限元模拟结果可较好地反映试验结果ꎮ图1㊀温度场和耐火极限对比Fig 1㊀Thecomparisonresultsoftemperaturefieldandfireresistancelimit1.2.2㊀钢管混凝土叠合柱 ̄RC梁板节点选取文献[6]中钢管混凝土叠合柱 ̄RC梁板节点耐火试验进行有限元分析ꎬ其边界条件为板底受火ꎬ板上部外包石棉ꎬ柱端固接ꎮ图1(c)为试件J0 ̄2梁非节点区温度-受火时间关系曲线ꎬ图1(d)为J0组试件竖262㊀沈阳建筑大学学报(自然科学版)第40卷向位移-受火时间关系试验曲线与有限元模拟结果对比ꎮ耐火极限试验结果与模拟结果比值的平均值和方差为1 045和0 05ꎬ可见有限元计算结果吻合度较好ꎮ1.2.3㊀钢管混凝土叠合柱平面框架选取文献[7]所进行的平面框架耐火性能试验进行有限元模拟ꎬ其采用的混凝土为钙质混凝土ꎬ选用文献[11]方法考虑混凝土高温徐变和瞬态热应变ꎮ图1(e)为试件SFRC ̄1梁板跨中处温度-受火时间关系曲线ꎬ图1(f)为SFRC组试件梁跨中挠度-受火时间关系曲线与SFRC ̄1的破坏模态对比ꎮ耐火极限试验结果与有限元模拟结果比值的平均值和方差分别为0 901和0 038ꎬ可见有限元模拟结果与试验值的吻合度较好ꎮ2㊀耐火性能分析2.1㊀模型设计以周侃[6]根据钢管混凝土叠合柱结构技术规程[17]所设计的梁㊁板㊁柱的主要参数为参考ꎬ笔者所设计的钢管混凝土叠合柱空间节点的受火工况及荷载比见表1㊁设计方案见表2ꎮ由于篇幅有限ꎬ空间节点具体的受火工况㊁边界条件和加载方式见图2ꎮ表1㊀空间节点受火工况及荷载比Table1㊀Thefireconditionsandloadratioofspacenodes节点类型部件名称受火工况荷载比 L 形空间节点柱双面0 4㊁0 8梁双面0 5㊁0 2 T 形空间节点柱三面0 4㊁0 8梁三面㊁双面0 5㊁0 2 十 字形空间节点柱四面0 4㊁0 8梁三面0 5㊁0 2表2㊀空间节点设计方案Table2㊀Thedesignschemeofspacenodes部件各部件截面尺寸/mm抗压强度/MPa纵筋型号箍筋型号屈服强度/MPa柱BCˑBCˑH(600ˑ600ˑ6000)50+8016Φ25Φ10@100400梁BLˑHLˑL(400ˑ600ˑ4000)508Φ25+4Φ22Φ8@100/200400板Bˑt(8600ˑ120)50 双层Φ10@150300钢管DSˑtS(300ˑ10) 345牛腿BnˑHnˑtn(500ˑ225ˑ10)345㊀㊀注:BC㊁H分别为柱的方形柱的截面边长㊁柱高ꎻBL㊁HL㊁L分别为梁的宽㊁高㊁长ꎻB㊁t分别为楼板宽和厚ꎻDS㊁tS分别为钢管直径㊁厚度ꎻBn㊁Hnn分别为牛腿的高㊁宽㊁厚ꎮ图2㊀火灾工况及加载条件Fig 2㊀Theon ̄fireconditionsandloadingconditions第2期张㊀波等:钢管混凝土叠合柱 ̄RC梁空间节点耐火性能分析263㊀2.2㊀计算结果分析2.2.1㊀空间节点温度场图3为构件截面温度-时间(T-t)关系曲线ꎬ其中图3(a)为钢管混凝土叠合柱温度-时间关系曲线ꎮ升温240min时ꎬ非节点区测点1处温度610ħ远高于节点区温度420ħꎬ这是由于节点区受到外围钢筋混凝土和梁板的保护作用ꎬ其测点温度普遍低于非节点区的温度ꎮ图3(b)为梁跨中截面温度-时间关系曲线ꎮ由于梁底部处于均匀受火的边界条件ꎬ升温240min时ꎬ测点1处的温度为918ħꎬ而测点4处的温度还不足300ħꎮ混凝土具有较好的吸热性能ꎬ随着测点距离梁下表面越近ꎬ其温度越高ꎬ越远离梁下表面ꎬ温度越低ꎮ图3㊀构件截面温度(T)-时间(t)关系曲线Fig 3㊀ThecurvesofsectionaltemperatureT-timet2.2.2㊀空间节点变形图4为钢管混凝土叠合柱 ̄RC梁板空间节点在不同梁㊁柱荷载比作用下ꎬ空间典型节点的竖向位移(Δ)-受火时间(t)关系曲线ꎮ试件编号中L表示梁ꎬ其后数字分别表示梁的根数和梁荷载比ꎻZ表示柱ꎬ其后数字表示柱荷载比ꎮ如试件编号(a)L2 ̄Z04 ̄L05表示为空间节点有2根梁㊁柱荷载比为0 4㊁梁荷载比为05ꎮ图4㊀竖向位移-受火时间关系曲线Fig 4㊀Thecurvesofverticaldisplacement ̄firetime264㊀沈阳建筑大学学报(自然科学版)第40卷㊀㊀由图4可见ꎬ空间节点的主要破坏形式有梁破坏㊁梁与柱先后破坏㊁柱破坏三种形式ꎮ(1)对于柱的耐火极限大于梁时的空间节点ꎬ其梁端竖向位移-受火时间关系曲线可能会呈现 Z 字形ꎮ这是由于梁挠曲变形增大后ꎬ梁上部受压钢筋转变为受拉钢筋ꎬ进而抑制梁的挠曲变形ꎬ随着受火时间的增加ꎬ梁会出现 二次破坏 的情况ꎮ但由于忽略梁在大变形下产生的裂缝ꎬ其耐火极限计算值可能偏高ꎮ(2)对于 T 形空间节点ꎬ虽然边(东西)梁处于双面受火㊁中(北)梁处于三面受火ꎬ但边(东西)梁的竖向位移在 一次破坏 后的竖向位移要远大于中(北)梁的竖向位移ꎮ(3)在相同的梁㊁柱荷载比下ꎬ当梁根数由2增加到3和4时ꎬ空间节点的耐火极限分别降低了41 58%和43 75%ꎬ空间节点的耐火极限随着梁根数的增加而减少ꎮ2.2.3㊀空间节点破坏模态图5为钢管混凝土叠合柱 ̄RC梁空间节点在不同的梁㊁柱荷载比和受火工况作用下ꎬ空间典型节点的等效塑性应变云图ꎬ可见牛腿区域存在较大的塑性变形ꎮ图5㊀空间节点等效塑性应变云图Fig 5㊀Theequivalentplasticstraincloudmapofspacenodes㊀㊀(1)对于 L 形空间节点ꎮ由于梁均处于双面受火ꎬ因温度场分布不呈单轴对称和材料在不同温度下的劣化程度不同ꎬ梁会出现不均匀的内力重分布ꎬ导致梁会出现一定程度的扭转变形ꎻ由于柱处于双面受火和双向压弯的共同作用ꎬ破坏时呈现典型的 双向压弯 破坏特征ꎮ(2)对于 T 形空间节点ꎮ由于边(东㊁西)梁处于双面受火㊁中(北)梁处于三面受火㊁柱处于三面受火的工况ꎮ虽然梁上的荷载一样ꎬ但由于南侧无梁布置ꎬ可能导致双面受火的边(东㊁西)梁在 一次破坏 后的竖向位移远大于三面受火的中(北)梁ꎻ由于柱处于三面受火㊁单向偏压的工况下ꎬ柱在破坏时呈现典型 压弯 破坏特征ꎮ(3)对于 十 字形空间节点ꎮ由于梁均处于三面受火ꎬ当梁的耐火极限小于柱时ꎬ各梁的破坏模态与耐火极限均相同ꎻ当柱的耐火极限小于梁时ꎬ由于初始缺陷的存在ꎬ可见柱呈现典型的 压弯 破坏特征ꎮ第2期张㊀波等:钢管混凝土叠合柱 ̄RC梁空间节点耐火性能分析265㊀2.2.4㊀空间节点内力图6为钢管混凝土叠合柱轴力-时间关系曲线ꎮ在火灾作用下ꎬ构件受热膨胀ꎬ钢管混凝土叠合柱在高温和外部轴向荷载的作用下引起截面内力重分布ꎮ受火初期:核心钢管混凝土和外围钢筋混凝土分别承担轴向荷载的43 27%和56 73%ꎻ火灾发展阶段:外围钢筋混凝土材料由于持续高温发生严重的劣化现象ꎬ承载能力减弱ꎬ不足以承担大量外部轴向荷载ꎬ外部荷载逐渐向内传递ꎬ核心钢管混凝土承担大部分内力ꎬ并逐渐趋于平缓ꎬ截面内力出现重分布的现象ꎮ此时核心钢管混凝土和钢筋混凝土分别承担轴向荷载的52 9%和47 1%ꎮ图6㊀轴力-时间关系曲线Fig 6㊀Theaxialforce ̄timecurves㊀㊀图7为梁跨中截面弯矩-时间关系曲线ꎮ在火灾全过程中ꎬRC梁跨中截面由于火灾和荷载作用下发生了弯矩重分布的现图7㊀梁跨中弯矩-时间关系曲线Fig 7㊀Themoment ̄timecurvesofbeam象ꎮ常温加载后ꎬRC梁底部受拉ꎻ受火作用阶段ꎬ由于叠合柱的约束作用ꎬRC梁底部受火发生膨胀ꎬ此时在一定程度上削弱了梁底部的弯矩大小ꎻ随着受火作用的持续ꎬ梁底部出现负弯矩ꎬ此时拉弯矩为300kN mꎬꎻ随着持续高温ꎬ发生材料劣化ꎬ负弯矩逐渐减小ꎬ直至180min时弯矩为170kN mꎮ3㊀结㊀论(1)钢管混凝土叠合柱 ̄RC梁空间节点由于其受火工况㊁构造形式和梁㊁柱荷载比等条件的复杂性ꎬ进而导致 L 形㊁ T 形㊁ 十 字形空间节点的ꎬ破坏主要形式有梁破坏㊁梁和柱先后破坏㊁柱破坏ꎮ(2)当梁㊁柱火灾荷载比相同时ꎬ梁由2根增加至3根㊁4根时ꎬ空间节点耐火极限分别降低了41 58%和43 75%ꎻ空间节点耐火极限随着梁根数的增加而减低ꎮ(3)当柱的耐火极限远大于梁时ꎬ随受火时间的增加ꎬ梁会出现 二次破坏 的情况ꎻ由于梁竖向变形增大后ꎬ梁上部受压钢筋转变为受拉ꎬ进而抑制梁的竖向位移ꎬ其梁端竖向位移-受火时间关系曲线呈现 Z字形ꎮ(4)由于高温和轴向荷载的共同作用ꎬ空间节点内力出现重分布的现象ꎬ外围钢筋混凝土和核心钢管混凝土分别由56 73%和43 27%重分布为47 1%和52 9%ꎬ在受火后期ꎬ外部荷载主要转移至内部钢管混凝土ꎮ参考文献[1]㊀徐蕾ꎬ王明涛ꎬ王文达.钢管混凝土叠合柱非均匀受火性能研究[J].自然灾害学报ꎬ2014ꎬ23(4):263-269.㊀(XULeiꎬWANGMingtaoꎬWANGWenda.Researchonthenon ̄uniformfireperformanceofconcretefilledsteeltubereinforcedconcrete(CFSTRC)column[J].Journalofnaturaldisastersꎬ2014ꎬ23(4):263-269.)[2]㊀徐蕾ꎬ刘玉彬.钢管混凝土叠合柱耐火性能研究[J].建筑结构学报ꎬ2014ꎬ35(6):33-41.266㊀沈阳建筑大学学报(自然科学版)第40卷㊀(XULeiꎬLIUYubin.ResearchonfireresistanceofSFSTRCcolumnssubjectedtofire[J].Journalofbuildingstructuresꎬ2014ꎬ35(6):33-41.) [3]㊀侯舒兰.均匀受火下钢管混凝土叠合柱耐火性能研究[D].北京:清华大学ꎬ2014.㊀(HOUShulan.Researchonfireresistanceofconcrete ̄encasedCFSTcolumnonallsides[D].Beijing:TsinghuaUniversityꎬ2014.) [4]㊀SONGTYꎬHANLHꎬUYB.PerformanceofCFSTcolumntosteelbeamjointssubjectedtosimulatedfireincludingthecoolingphase[J].Journalofconstructionalsteelresearchꎬ2010ꎬ66(4):591-604.[5]㊀HUANGSSꎬDAVISONBꎬBURGESSIW.Experimentsonreverse ̄channelconnectionsatelevatedtemperatures[J].Engineeringstructuresꎬ2013ꎬ49:973-982. [6]㊀周侃.钢管混凝土叠合柱 ̄RC梁节点耐火性能研究[D].北京:清华大学ꎬ2017.㊀(ZHOUKan.Fireperformanceofconcrete ̄encasedconcretefilledsteeltubularcolumn ̄RCbeamjoints[D].Beijing:TsinghuaUniversityꎬ2017.)[7]㊀包延红.钢管混凝土叠合柱平面框架结构耐火性能研究[D].兰州:兰州理工大学ꎬ2018.㊀(BAOYanhong.Researchonbehaviorofconcretefilledsteeltubereinforcedconcreteplaneframessubjectedtofire[D].Lanzhou:LanzhouUniversityofTechnologyꎬ2018.) [8]㊀包延红ꎬ孙建刚ꎬ王文达ꎬ等.钢管混凝土叠合柱-钢筋混凝土梁平面框架耐火性能有限元分析[J].建筑结构学报ꎬ2015ꎬ36(增刊1):47-53.㊀(BAOYanhongꎬSUNJiangangꎬWANGWendaꎬetal.FEAonCFSTRCcolumn ̄reinforcedconcretebeamplaneframessubjectedtofire[J].Journalofbuildingstructuresꎬ2015ꎬ36(S1):47-53.)[9]㊀宋天诣.火灾后钢-混凝土组合框架梁-柱节点的力学性能研究[D].北京:清华大学ꎬ2010.㊀(SONGTianyi.Researchonpost ̄fireperformanceofsteel ̄concretecompositebeam ̄columnjoints[D].Beijing:TsinghuaUniversityꎬ2010.) [10]谭清华.火灾后型钢混凝土柱㊁平面框架力学性能研究[D].北京:清华大学ꎬ2012.㊀(TANQinghua.Performanceofsteelreinforcedconcrete(SRC)columnandportalframeafterexposuretofire[D].Beijing:TsinghuaUniversityꎬ2012.)[11]丁发兴ꎬ周政ꎬ王海波ꎬ等.局部火灾下多层钢-混凝土组合平面框架抗火性能分析[J].建筑结构学报ꎬ2014ꎬ35(6):23-32.㊀(DINGFaxingꎬZHOUZhengꎬWANGHaiboꎬetal.Fireperformanceanalysisofmulti ̄storysteel ̄concretecompositeplaneframeunderlocalfire[J].Journalofbuildingstructuresꎬ2014ꎬ35(6):23-32.)[12]LIETT.Fireresistanceofcircularsteelcolumnsfilledwithbar ̄reinforcedconcrete[J].Journalofstructuralengineeringꎬ1994ꎬ120(5):1489-1509.[13]中华人民共和国国家质量监督检验总局ꎬ中国国家标准化管理委员会.建筑构件耐火试验方法:第1部分:通用要求:GB/T9978.1 2008[S].北京:中国标准出版社ꎬ2008.㊀(GeneralAdministrationofQualitySupervisionꎬInspectionandQuarantineofthePeopleᶄsRepublicofChinaꎬStandardizationAdministrationofthePeopleᶄsRepublicofChina.Fire ̄resistancetests ̄elementsofbuildingconstruction ̄part1:generalrequirements:GB/T9978.1 2008[S].Beijing:StandardsPressofChinaꎬ2008.) [14]LIETTꎬCHABOTM.Amethodtopredictthefireresistanceofcircularconcretefilledhollowsteelcolumns[J].Journaloffireprotectionengineeringꎬ1990ꎬ2(4):111-124. [15]韩林海.钢管混凝土结构-理论与实践[M].北京:科学出版社ꎬ2007.㊀(HANLinhai.Concretefilledsteeltubularstructures ̄theoryandpractice[M].Beijing:SciencePressꎬ2012.)[16]过镇海ꎬ时旭东.钢筋混凝土的高温性能及其计算[M].北京:清华大学出版社ꎬ2003.㊀(GUOZhenhaiꎬSHIXudong.Behaviorofreinforcedconcreteatelevatedtemperatureanditscalculation[M].Beijing:TsinghuaUniversityPressꎬ2003.)[17]清华大学.钢管混凝土叠合柱结构技术规程:T/CECS188 2019[S].北京:中国建筑工业出版社ꎬ2020.㊀(TsinghuaUniversity.Technicalspecificationforsteeltube ̄reinforcedconcretecolumnstructure:T/CECS188 2019[S].Beijing:ChinaArchitecture&BuildingPressꎬ2020.)(责任编辑:刘春光㊀英文审校:范丽婷)。
异形钢管混凝土柱-钢梁节点研究

Ab ta t Thsp prdsr e he y e ftejitad ma eacmp rt eaayi a o ttec retjit sr c  ̄ i a e eci stretp so h n n k o aai nlss b u h urn on, b o v
c r yi tegh n ek ess l i s rn tsadw a n se.Asars l o it cnn t eue ,ads mejit u e a o — a f ts eut me ons a o sdi i n o ns sdcnn t ,s j b nt o a
点 , 由于耐 火能力 较差 , 能很 好 的发挥 钢结 构 的性 能 。钢 管混 凝 土 异形 柱 很 好 的解 决 了这 一 问题 , 得 但 不 值
进行 深入 的研 究 。
1 异 形 钢 管 混 凝 土 柱一 梁 节 点 连 接 形 式 分 类 钢
早期节点的连接形式较为单一 , 其主要原因还是在于对其构件的受力特性不太清楚 , 随着各 国学者不断
关 键词 : 异形钢管混凝土柱; 钢梁; 节点
Re e r h fCo ne to t e S ca— h p d Co c e e s a c o n c insBewe n pe i ls a e n r t Fild Ste beCo u n a d S e lBe m le e lTu l m n t e a
从 以往 的试 验结 果来 看 , 种节 点都 具有较 高 的承载 能力 和耗 能能力 。对 于异 形钢 管 混凝 土 柱一 梁 的 各 钢 连接 形式 , 考虑 到异 形柱 的截 面尺寸 及施 工方便 , 首先 就 可 以排 除 内部 加劲 式连 接 。 内部 加劲适 用 于尺 寸较 大 的柱截 面 , 截面尺 寸太 小会 给施工 带来 不便 , 而且 内隔板 与柱 壁板 焊 接 困难 , 易保 证 焊 缝 质量 。外部 加 不 劲式 节点 有利 于管 内混凝 土 的浇筑 , 施工 也相对 容 易 , 节点用 钢量 较大 , 内柱子 角部 有 凸出 , 响室 内美 但 室 影 观, 这就违 背 了异形 柱 的最初 目的 。穿 芯式节 点没 有现场 焊接 , 且钢 管 内仅 有 螺栓杆 、 铰线 或钢筋 , 工方 钢 施
运用Midas Gen设计地下车站结构时梁柱节点的处理

计常用的一款结构计算软件 , 本文分析 Mi d a s G e n 在框架节点刚域方面的技术细节, 并通过 实际的算例比
较分析考虑刚域与削峰处理对节点内力值选取的影响, 为地铁车站结构设计 中合理选取 内力值提供借鉴。
【 关键 词 】 框 架节 点 Mi d a s Ge n 结构 分析 刚域 削峰
1 . 2 . 2梁构 件
图 5 车站 结 构 图
2 . 1 构件尺 寸 顶板 厚度 : 9 0 0 mm; 站厅层 板 厚度 : 4 0 0 mm; 设 备层 板厚 度 : 4 0 0 mm; 底 板厚 度 :1 1 0 0 mm;侧 墙 :
8 0 0 mm; 框 架柱 : 8 0 0 mm X 1 2 0 0 mm; 顶 纵梁 : 1 2 0 0
处计 算 内力进 行修 正 。
《 混 凝 土 结 构 设 计 规 范》 ( G B 5 0 0 1 0 2 0 0 2 ) 5 . 2 . 6条 规定 “ 对 与支 撑构 件整 体浇 筑 的粱端 , 可取 支 座或 节 点边缘 截面 的 内力值 进行 设计 。 ” 《 混 凝 土 结 构 设 计 规 范》 ( G B 5 0 0 1 0 — 2 0 1 0 ) 5 . 2 . 2 第 四条规 定 : “ 梁、 柱 等杆件 问连接 部分 的刚度 远 大 于杆件 中 间截 面 的刚度 时 , 在计 算模 型 中可作 为刚域 处理 。 ” 《 高层建筑混凝 土结构技术规 程》 ( J G J 3 — 2 0 1 0 ) 5 . 3 . 4条规定 : “ 在结构 整体计算 中, 宜考 虑框架 或壁 式框 架梁 、 柱 节点 区 的刚域 ( 图2 ) 影 响 。粱端 截面 弯矩 可 取 刚域 端截 面 的 弯矩 设计 值 。刚域 的 长度
钢管混凝土柱与钢梁节点性能研究

钢管混凝土柱与钢梁节点性能研究张燕1,李政2(1.河套学院,内蒙古巴彦淖尔015000;2.杭锦后旗自然资源局,内蒙古鄂尔多斯015400)一、引言随着我国高层、超高层建筑技术的迅速发展,钢管混凝土结构因其承载力高、塑性和韧性好、制作和施工方便、耐火性能较强、经济效果较好而发展迅速[1]。
由于梁柱节点是各种力的交汇之处,节点受力模式较一般构件更为复杂,特别是在地震的作用下,节点的受力更为复杂,而且节点联系着多个构件,故其失效的后果更为严重,因此,节点受力是否合理直接关系到结构的安全可靠性。
本文本着这一目的进行了试验研究。
二、试验概况(一)试验方法本试验采用拟静力试验方法对矩形钢管混凝土柱与钢梁外加强环式节点进行抗震性能研究。
进行结构的拟静力试验,主要目的是,在考虑地震的作用时,确定结构构件的恢复力计算模型,通过试验测得滞回曲线,由滞回曲线所包围的面积求得结构的等效阻尼比,从而可以衡量结构的耗能能力,同时在分析计算中还可得到骨架曲线,由上面的数据可以判断和鉴定结构的抗震性能。
(二)试件设计与制作试验选取框架中的边中柱节点,钢梁和钢管混凝土柱的长度都取到其反弯点处,再按一定的比例缩放,比例取为1∶3。
四个试件的节点都采用外加强环式节点[3],试件参数见表1。
(三)试验装置和加载制度本试验采用拟静力试验方法进行加载。
根据《建筑抗震试验方法规程》[6](JGJ101-96),采用控制位移和控制力的混合加载法。
试验进行时,将竖向荷载逐级加到预定值,之后保持竖向荷载不变,水平荷载采用荷载———位移混合控制的加载制度。
三、试验结果及分析(一)骨架曲线骨架曲线能够反映结构的强度、变形性能,它是取荷载———位移曲线每一加载级第一循环峰值点连成的曲线[3]。
图1所示为SJ1、SJ2、SJ3及SJ4的骨架曲线。
由图可以看出,当荷载达到极限荷载后,我们发现试件仍然有良好的延性和后期变形能力。
(二)耗能性能耗能能力是衡量结构抗震性能的重要指标,常用等效粘滞阻尼系数h e 衡量结构的能量耗散能力[8]。
midas FEA特色功能介绍

实体和钢筋自动耦合
midas FEA 特色功能
特色3:钢筋模拟
按形状分:点、钢筋线、钢筋网
按阶次分:一阶直线、二阶曲线
按类型分:普通钢筋、预应力钢筋 适用的单元:所有单元
双跨双T型 预应力混凝土梁
钢筋单元的应力
midas FEA 特色功能
特色4:土木专业化功能
施工阶段模拟
第一施工阶段
裂缝模型
总应变裂缝(极限承载 力) 离散裂缝模型 (界面非线性)
结果
裂缝模式 (裂缝应力/应变) 单元状态
开裂: 部分/完全开裂、闭合、未开裂 塑性: 初始塑性、弹性、塑性、临界塑性 界面: 无接触、滑移、粘结
• 高斯点标志 • 圆片法向: 开裂方向 • 圆片颜色 : 开裂程度 • 线: 剪切方向
梯度播种生成 的映射网格
自适应播种
midas FEA 特色功能
特色2:网格划分的高效性
自动网格划分
映射网格划分
导入的 DXF模型 (173 区域)
自动定义的区域和生成的网格
midas FEA 特色功能
特色2:网格划分的高效性
自动生成实体网格
FEA的四面体网格生成器自动生成尺寸平稳变化的四面体实体网格 (200,000 单元/每分 钟) FEA在自动生成实体网格时可包含洞口、曲线和点
矩形压力 (2D、3D)
圆形压力 (2D、3D)
空间变化压力 (以函数施加)
midas FEA 特色功能
特色4:土木专业化功能
线性静力分析 多种荷载工况 结果组合和转化 模态分析 兰佐斯法 子空间迭代法 线性屈曲分析 临界屈曲模态 屈曲模态 荷载组合 动力时程分析 直接积分法 振型叠加法 时程荷载函数库 (内置54 种地震加速度波记录) 非线性分析 边界非线性分析 (阻尼器、粘性边界等) 反应谱分析 SRSS、CQC、ABS 设计反应谱库
Midas结构帮1

MIDAS结构帮2012年第一期北京迈达斯技术有限公司目录★midas Building性能设计--------------------------------------------------------------------------桂满树PKPM多塔模型导入到midas Building时的注意事项-----------------------------赵继(3)如何将.acc格式地震波导入midas Building----------------------------------侯晓武(11) 结构大师自定义快捷键的设置和导入--------------------------------------------赵继(17) 加虚梁后振型参与质量无法达到90%-----------------------------------------侯晓武(19) 梁构件偏心--------------------------------------------------------------------梁丽聘(22)★midas Gen位移比结果计算书中,无偶然偏心数据----------------------------------------侯晓武(24) 分析时为何会自动解除自由度约束--------------------------------------------侯晓武(27) 次梁不建模时考虑次梁重量---------------------------------------------------侯晓武(29) 梁、柱、墙等构件的配筋问题-------------------------------------------------梁丽聘(33)PKPM多塔模型导入到midas Building时的注意事项赵继目前的PKPM版本中的多塔模型导入到midas Building后,会出现以下几种情况:情况一导入后,原先在PKPM中定义的多塔信息消失,原塔块都属于Base塔,造成不能分塔计算风荷载作用、地震作用等。
midasfea

midas FEA Technique Data Series技术资料–裂缝模型说明1. 裂缝模型介绍在钢筋混凝土结构的有限元分析中,常用的裂缝模型有以下几种:1)弥散(分布)裂缝模型;2)离散裂缝模型;3)断裂力学模型。
除此之外,还有其他一些形式的模型。
那么,如何在种类繁多的开裂数学模型中选用合适的模型用于实际结构分析呢,这取决于有限元分析的对象以及需要得出哪些数据。
如果需要获得结构的荷载位移特性曲线,而不需要裂缝的实际分布图形及局部应力状况,那么,就可以选择所谓“弥散裂缝模型”。
如果研究的兴趣在于结构局部特性的细节,那么采用离散裂缝模型更为适合。
对于某些特殊类型的问题,采用基于断裂力学原理的开裂模型也许更为方便。
弥散裂缝模型也被称为分布裂缝模型,其实质是将实际的混凝土裂缝“弥散”到整个单元中,将混凝土材料处理为各向异性树料,利用混凝土的材料本构模型来模拟裂缝的影响。
这样,当混凝土某一单元的应力超过了开裂应力,则只需将材料本构矩阵加以调整,无需改变单元形式或重新划分单元网格,易于有限元程序的实现,因此得到了非常广泛的应用。
Baza等提出的钝带裂缝模型则进一步发展了传统的弥散裂缝模型,通过引入裂缝带、断裂能等概念,使弥散裂缝模型和断裂力学相结合,减小了单元尺寸的影响。
现在的大型商用非线性有限元程序包里面基本都集成了弥散裂缝模型,用于模拟混凝土、岩石等材料的开裂。
离散裂缝模型是最早提出的模拟混凝土开裂的裂缝模型,其基本思想是:将裂缝处理为单元边界,一旦出现裂缝就调整节点位置或增加新的节点,并重新划分单元网格,使裂缝处于单元边界与边界之间。
这样,由裂缝引起的非连续性可以很自然的得到描述,裂缝的位置、形状、宽度也可以得到较清晰的表达。
由于离散裂缝模型是使用单元边界来模拟裂缝,因此随着裂缝的发生和发展,需要不断调整单元网格。
这是—项非常复杂的工作,需要消耗大量的计算机时,也是妨碍分离裂缝模型发展的主要原因。
方钢管混凝土柱-钢梁外加强环节点承载力与变形的有限元分析

方钢管混凝土柱-钢梁外加强环节点承载力与变形的有限元分析摘要:目的研究方钢管混凝土柱-钢梁外加强环式节点在单调荷载作用下的破坏机理和受力性能.方法通过有限元软件ANSYS对梁柱节点进行非线性有限元分析,分析了轴压比、套箍指标等参数对节点承载力与变形的影响.结果构件最后破坏时,节点区的钢管壁产生了严重的扭曲变形,模型的实体单元遭到严重破坏.结论方钢管混凝土柱—钢梁外加强环式节点具有优良的刚度及耗能能力,且加强环的设置有效地降低了节点区的应力集中。
关键词:梁柱节点;钢管混凝土;有限元;非线性Abstract: Objective To study the CFRT column - steel beams outside to strengthen the ring node failure mechanism under monotonic loading and mechanical properties of the beam-column joints by finite element software ANSYS nonlinear finite element analysis, analysis of the axis pressure ratio, sets the hoop indicators and other parameters to the bearing capacity and deformation of the final destruction of the results of component, the nodes of the steel pipe wall to produce a serious distortion of the solid elements of the model have been seriously damaged. conclusion CFRT column -the outer steel beams to strengthen the ring node with excellent stiffness and energy dissipation capacity, and the strengthening ring setting effectively reduces the stress concentration of the node area.Keywords: beam-column joints; concrete filled steel tube; finite element; nonlinear钢管混凝土结构的基本原理是借助方钢管对核心混凝土的套箍约束作用,使核心混凝土处于三向受压状态,从而使核心混凝土具有更高的抗压强度和压缩变形能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21
•
荷载与边界问题
根据圣维南原理,边界约束会影响到分析的精度。所以通常希望将边界设置在远离分析区域, 根据经验,边界与分析区域的距离大于2倍于节点构造尺寸为宜。 • 节点上的荷载: (1)真实荷载:即作用在节点上的实际外荷载,均布荷载需要转换为节点力施加在相应有限元的 节点上。 (2)相对荷载:即与节点相连构件的内力。与节点相连的各构件中,有些可能会被设置成约束, 而有些则可能需要将其内力模拟成外荷载施加在模型上。 • 被设置成内力的构件需要保留一定的长度以消除应力集中对目标区域的影响。有时候为了消除 施加外荷载部位的应力集中对分析区域的影响,会在模型中人为地增加一块“垫板”。 • 在实际应用中,相对边界与相对荷载的位置选取是相互联系的,但总的选择原则是方便荷载或 约束的施加,在真实模拟节点受力特征的条件下使问题简单化,利于分析的顺利进行。
点击【确认】键;
5
4
5
12
1 1 2 3
几何->布尔运算->差集
操作步骤
选择钢梁为主形状; 选择外隔板为辅助形状; 不勾选【删除辅助形状】
1 2 3
4
点击【预览】键进行查看;
点击【确认】键;
5
4
5
13
1 1 2 3
几何->转换->旋转
操作步骤
选择钢梁及外隔板; 选择整体坐标系Z轴为旋转轴; 选择【等间距复制】; 2
为了消除应力集中影响,必须让边界和施加荷载的位置离分析目标中心具有一定的距离。 边界条件需要从整体模型推演出来,而荷载则包含作用在节点上的外荷载以及与其相连杆件的 内力。 • 边界设置 (1)真实边界:如果分析的是支座节点,则分析模型中与基础相连的边界就是真实边界。这时, 根据实际的约束情况,施加边界条件即可。 (2)相对边界:如果分析的节点并不靠近结构的支承点,此时它周围并不存在真实的边界。但是 分析模型中,必须提供一定的边界约束使其不可发生刚体位移,此时就必须根据与节点相连各 构件的构造情况假定一个约束条件。一般将与节点相连的刚度较大的杆件端部设置成约束,或 将次要构件的端部设置成边界。
矩形钢管内设隔板,柱外预设短钢梁,钢梁 与短钢梁腹板用高强螺栓连接。
•
(2) 外伸内隔板
隔板贯通钢管壁,与其焊接。钢梁翼缘与 外伸内隔板焊接,钢梁腹板与钢管壁用高 强螺栓连接。
01
• (3) 外隔板
梁柱节点类型介绍
钢梁翼缘与外隔板焊接,钢梁腹板与钢管壁 通过预设连接件用高强螺栓连接。
(4) 内隔板
操作步骤
视图窗口中选择上隔板与钢管壁交界点 相对距离输入:0, 0,-0.5 按【回车键】 1
2
09
1 2 3
几何->生成几何体->扩展
操作步骤
选择过滤器中选择【线】; 视图窗口中选择上一步中定义的直线; 扩展方向选择整体坐标系X轴;
1
4
扩展长度输入1;
点击【预览】键进行查看; 点击【确认】键; 2
视图窗口中选择上一步骤生成的平面 扩展方向选择整体坐标系Z轴 勾选【反向】 1 2
4
扩展长度输入为隔板厚度0.012:
名称输入为【外隔板】 点击【预览】键进行查看 点击【确认】按钮 3 4
5 6
7
5
6
7
因为已经勾选“反向”,因而扩展长度应
输入正值
08
1 2 3
几何->曲线->创建3D->3D 直线
1
4
角度输入90 ;
复制次数输入3; 点击“预览”键进行查看; 点击“确认”键; 3
5
6
7
4 5 6 7
14
1 1 2 3
几何->生成几何体->扩展
操作步骤
选择钢管柱上表面; 选择整体坐标系Z轴为扩展方向; 扩展长度输入为 1; 2
1
4
名称输入钢管柱2;
点击“预览”键进行查看; 点击“确认”键;
5 6
3
4
5 6
10
1 1 2 3
几何->生成几何体->扩展
操作步骤
选择上一步中生成的平面; 扩展方向选择整体坐标系Y轴; 1 扩展长度输入0.005; 2
4
名称输入为【钢梁腹板】
点击【预览】键进行查看; 点击【确认】键;
5
6
3
4 5 6
11
1 1 2 3
几何->生成几何体->扩展
操作步骤
选择外隔板截面; 扩展方向选择整体坐标系X轴; 1 扩展长度输入0.5; 2
5
6
3 4 5 6 7
15
1 1 2 3
几何->布尔运算->并集
操作步骤
选择下部钢管柱为主形状; 选择上部钢管柱为辅助形状; 勾选“删除辅助形状”; 2
1
4
点击【预览】键进行查看;
点击【确认】键;
3
5
4
5
16
1 1 2 3
几何->标准几何体->箱型
操作步骤
输入角点坐标:-0.284,-0.284, 0; 长度:0.568,宽度:0.568,高度:5; 名称输入“混凝土柱”; 2
01
1
分析 >
分析控制
操作步骤
分析类型 : [3D] 1
2
3 4 5
点击[
]键
单位 : [KN, m] 点击[确认] 键 点击[确认] 键 2
5
3
分析控制对话框在新建项目时自动弹出.
4
02
1
几何->标准几何体->箱型
操作步骤
角点坐标: -0.3, 0.3, 0 长度:0.6
1
2 3 4 5
宽度:0.6 高度:4
4
点击【预览】键进行查看;
点击【确认】键;
5
3
4
5
11
1 1 2 3
几何->转换->平移
操作步骤
选择外隔板及钢梁上翼缘; 扩展方向选择整体坐标系Z轴; 1 选择等间距复制; 2
4
间距输入-0.488;
点击【预览】键进行查看; 点击【确认】键;
5
6
3
4
5
6
13
1 1 2 3
几何->转换->镜像
3 1
输入名称:混凝土C40; 4 点击【数据库】按钮; 规范选择GB(RC);
4
材料选择GB(RC)_C40;
关闭对话框; 点击【确认】按钮,退出材料定义; 网格组名称:混凝土柱; 点击【确认】按钮,生成实体网格; 7 按照相同方法,将钢管柱、型钢梁及外 隔板进行网格划分; 8
5
6 7 8
9
2 5 6
18
1 1 2 3
网格->自动网格划分->自动实体网格
操作步骤
1 5
选择实体:混凝土柱; 2 单元尺寸:0.1; 特性编号:1; 4 6
3
4
点击
按钮,定义特性;
5
特性名称:混凝土柱; 点击 按钮,定义材料特性;
6 7
创建3D材料特性;
7
19
1 1 2 3
网格->自动网格划分->自动实体网格
操作步骤
名称输入为【钢管柱】 点击【预览】键 点击【确认】键
2
3 4 5
点击确认键前先预览,如果有错误及时进
行修改。.
03
1 2 3
几何->编辑几何体->脱壳
操作步骤
选择要删除的面
脱壳厚度:-0.016
点击【预览】键
4
点击【确认】键
1
2 3 4
通过脱壳功能,可以快速建立有一定厚度
的面。
04
1 2 3
5
6
7
8
9 10
11
12
输入时注意输入内容为坐标还是相对距离
06
1 2 3
几何->曲面->创建->平面
操作步骤
视图窗口将上一步骤中建立的线段全部选中
点击【预览】按钮,视图窗口中即显示 绿色面。 点击【确认】键; 2 3
单击工具栏中
图标也可全选 1
07
1 2 3
几何->生成几何体->扩展
操作步骤
1
4
点击【预览】键进行查看;
点击【确认】键;
5
3 4 5
17
1 1 2 3
几何->布尔运算->差集
操作步骤
选择主形状:钢管壁; 选择辅助形状:钢梁+外隔板+混凝土柱; 不勾选“删除辅助形状”; 2
1
4
点击【预览】键进行查看;
点击【确认】键;
3
5
4
5
对实体进行布尔差集运算后,能保证后期
网格划分时在接触部分的节点耦合。
几何->工作平面->移动
操作步骤
选择“移动和旋转”分页
移动:Dz:4
点击【预览】键
1
4
点击【确认】键
2
移动工作平面前
3
4
也可以通过在视图窗口上右键,选择“移
动工作平面” 参照坐标系可选择整体坐标系或用户坐标 系,数值正号代表沿坐标系正向移动。
移动工作平面后
05
1 2 3
几何->生成几何体->在工作平面上创建->2D多段线(线框)
操作步骤
1
选择钢梁翼缘; 选择过滤器中选择【面】;并在视图窗 口中选择腹板表面 点击“预览”键进行查看; 点击“确认”键;