功率模块封装工艺
功率模块生产工艺流程文件

功率模块生产工艺流程文件下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!功率模块生产工艺流程文件主要包括功率模块的生产工艺流程、生产工艺参数、生产设备、生产人员、质量控制等方面的内容。
功率器件封装工艺详解

功率器件定义与分类
功率器件定义:用于控制和转换电能的电子器件 功率器件分类:按照工作电压、电流、频率等参数进行分类 常见功率器件:二极管、晶体管、晶闸管等 功率器件应用:电机控制、电源转换、逆变器等
封装工艺在功率器件中的作用
提高器件稳定性
增强器件散热性能
确保器件电气性能
方便器件安装与使 用
封装工艺对功率器件性能的影响
机械强度不足导致的故障
故障现象:功率器件封装机械强度不足,可能导致器件损坏或性能下降 原因分析:封装材料选择不当、封装工艺不合理、器件结构不合理等 解决方案:优化封装材料选择,改进封装工艺,加强器件结构设计 预防措施:加强封装工艺控制,提高器件机械强度,定期进行性能检测
电气性能不稳定导致的故障
故障现象:功率器件电气性能不稳定,可能导致电路异常、过热、短路等问题 原因分析:器件老化、制造工艺问题、使用环境恶劣等 解决方案:优化器件设计、加强制造工艺控制、改善使用环境等 预防措施:定期检查、维护、更换功率器件,确保设备正常运行
耐温要求:功率器件封装应能够在高温环境下稳定工作,并承受一定的温 度波动和冲击。
可靠性要求:功率器件封装应具有较高的可靠性和稳定性,能够保证长时 间的正常工作。
机械强度要求
封装结构强度:能够承受机械应力和振动 封装材料强度:具有足够的机械强度和耐久性 封装工艺要求:确保封装结构在制造过程中不受损坏 可靠性测试:通过严格测试确保封装结构在各种环境下的稳定性
可靠性不达标导致的故障
器件老化:由于长 时间使用或高温环 境导致器件性能下 降
封装材料问题:封 装材料选择不当或 质量不佳导致器件 性能不稳定
制造工艺问题:制 造工艺不规范或操 作不当导致器件性 能不达标
功率模块封装类型

功率模块封装类型一、功率模块概述功率模块是电子设备中的一种重要部件,主要负责电能的转换、控制和调节。
它广泛应用于各种电子产品,如家电、通信设备、电动汽车等领域。
功率模块的封装类型对其性能、可靠性以及应用领域具有显著影响。
二、功率模块封装类型的分类1.传统封装类型传统封装类型主要包括TO(Transistor Outline)系列、DIP(Dual In-line Package)系列、SMD(Surface Mount Device)系列等。
这些封装类型在功率模块的制造和使用过程中,具有良好的稳定性和可靠性。
2.先进封装类型先进封装类型主要包括BGA(Ball Grid Array)系列、LGA(Land Grid Array)系列、CSP(Chip Scale Package)系列等。
这些封装类型具有更高的集成度、更小的体积、更好的散热性能和更高的可靠性。
三、各类封装类型特点及应用1.传统封装类型特点及应用传统封装类型的功率模块具有较高的稳定性和可靠性,适用于对成本和性能要求较低的场合。
例如,在家电领域,传统封装类型的功率模块得到了广泛应用。
2.先进封装类型特点及应用先进封装类型的功率模块具有更高的集成度、更小的体积、更好的散热性能和更高的可靠性。
因此,它们广泛应用于通信设备、电动汽车等对性能和可靠性要求较高的领域。
四、我国功率模块封装产业现状与发展趋势近年来,我国功率模块封装产业取得了长足的发展。
在技术创新、产能扩张、市场份额等方面取得了显著成果。
随着我国电子产品市场的不断壮大,功率模块封装产业将继续保持稳定增长态势。
此外,新型封装技术的研究和应用也将成为产业发展的热点。
五、选择适合的功率模块封装类型的注意事项1.性能要求:根据电子设备的性能需求,选择具有相应性能的封装类型。
2.成本考虑:在满足性能要求的基础上,综合考虑成本因素,选择性价比较高的封装类型。
3.可靠性:确保所选封装类型在实际应用中具有较高的可靠性和稳定性。
功率器件封装工艺流程

功率器件封装工艺流程摘要功率器件封装工艺是将功率器件芯片封装在外部保护层中,以保护器件免受环境因素影响。
本文将介绍功率器件封装工艺的流程及相关技术细节。
引言功率器件是电子设备中重要组成部分,其封装过程对器件的性能和稳定性起着重要作用。
功率器件封装工艺包括多个环节,从芯片封装到外部保护层的封装,每个环节都需要精确控制。
工艺流程1. 良品检查在封装工艺开始之前,需要对功率器件芯片进行检查,确保其质量符合要求。
2. 芯片封装首先,芯片被放置在封装座上,然后通过焊接或其他固定方式固定在座上。
接着,通过导线连接芯片的引脚,并在其周围加入封装材料。
3. 铸包封装材料会通过铸包的方式将芯片包裹在内,确保芯片受到良好的保护。
4. 温度固化将封装好的器件放置在固化烤箱中,通过加热使封装材料固化,并确保其与芯片牢固结合。
5. 修边封装完成后,需要对器件进行修边,消除封装过程中可能产生的不平整或刺边,保证器件外观整洁。
6. 老化测试封装完成的功率器件需要进行老化测试,模拟长期使用情况,检测器件稳定性和性能表现。
7. 包装最后,封装好的功率器件被放置在专门的包装盒中,可以是塑料盒或泡沫盒,以保护器件在运输和存储过程中不受损坏。
技术细节•焊接技术:通常采用金属焊接技术将导线连接到芯片引脚上。
•封装材料:常见的封装材料包括环氧树脂、有机硅胶等,具有良好的绝缘和导热性能。
•铸包方法:铸包可以采用注塑成型或模塑成型,确保封装材料均匀包裹芯片。
•固化温度:固化温度根据封装材料的特性而定,需要根据具体要求进行调整。
•老化测试条件:老化测试一般在高温高湿的环境下进行,以模拟器件长时间使用的情况。
结论功率器件封装工艺流程是保证功率器件性能和稳定性的重要环节,通过严格控制每个步骤,可以确保封装的功率器件具有良好的品质和可靠性。
同时,随着科技的发展,封装技术也在不断创新和改进,以满足不断变化的市场需求。
致谢本文参考了相关文献和资料,特此感谢。
ipm模块封装工艺

ipm模块封装工艺
IPM (Intelligent Power Module) 是一种集成多种功能的电源模块,用于驱动电机、进行电源转换和电流控制等应用。
封装工艺是指将IPM模块的内部电路和元器件封装在一个外壳中,
以保护电路并方便安装和使用。
封装工艺通常包括以下步骤:
1. 设计封装:根据IPM模块的功能和特性,设计合适的封装
结构和尺寸,确保内部电路的可靠性和稳定性。
2. 制作模具:根据设计要求,制作用于封装的模具,通常使用硅胶或塑料材料。
3. 印刷电路板(PCB)的制造:制作适合封装需要的PCB板,将电路布局在板上,并进行焊接等制造步骤。
4. 元器件安装:将封装好的IPM模块所需的各种元器件,如
晶体管、二极管和电容等,安装在PCB板上。
5. 封装封装:将PCB板放入模具中,然后使用特殊的封装材
料(如塑料封装或硅胶封装)将模具封装起来,以保护电路并提供机械支撑。
6. 测试和质量控制:对封装好的IPM模块进行测试和质量控制,确保其符合设计要求和性能指标。
通过封装工艺,IPM模块可以达到更高的稳定性、可靠性和耐用性,并方便用户使用和安装。
封装工艺的设计和实施需要考虑电路的工作环境、使用条件和应用需求,以确保IPM模块能够正常工作并满足用户的需求。
功率器件封装工艺流程

功率器件封装工艺流程1. 材料准备:首先需要准备封装所需的材料,包括基板、封装胶、金属线等。
2. 基板处理:将基板进行清洗、腐蚀处理和表面处理,以确保封装胶能够牢固粘附在其上。
3. 封装胶涂覆:将封装胶均匀涂覆在基板上,并将器件放置在适当位置。
4. 热压封装:使用恰当的温度和压力,对封装胶进行热压,使其粘结在基板和器件上。
5. 金属线焊接:使用焊接工艺,将金属线连接到器件上,以实现电气连接。
6. 封装测试:对封装完的器件进行测试,包括外观检查、性能测试、耐压测试等。
7. 包装:符合要求的器件进行包装封装,以便运输和保护。
值得注意的是,不同类型的功率器件可能有不同的封装工艺流程,其中的一些步骤可能会有所变化。
此外,每一步骤中的具体工艺要求也会有所不同,需要根据实际情况进行调整。
在进行功率器件封装工艺时,需要严格按照相关要求和标准进行操作,以确保封装质量和产品性能。
功率器件封装工艺对于电子设备的性能和稳定性具有重要影响,因此在整个封装过程中,需要严格控制每一个环节,以确保封装质量和产品性能。
以下是对功率器件封装工艺流程的更详细的描述:1. 材料准备:在进行功率器件封装之前,需要先准备封装所需的材料,其中包括基板、封装胶、金属线、封装框架等。
这些材料需要符合相关的规范和标准,以确保封装后的器件能够满足性能和可靠性要求。
2. 基板处理:在进行封装之前,需要对基板进行清洗、腐蚀处理和表面处理。
清洗能够去除基板表面的污物和杂质,腐蚀处理能够增强基板表面的粗糙度,从而改善封装胶的粘结性能,表面处理可以提高基板的表面粗糙度和粘附性。
3. 封装胶涂覆:将封装胶均匀地涂覆在基板上,以确保封装胶能够完全覆盖器件。
这个步骤需要严格控制涂覆厚度和均匀性,以保证器件封装后的外观和性能。
4. 热压封装:在封装胶涂覆完成后,接下来是热压封装的步骤。
通过加热和施加一定的压力,使封装胶在基板和器件上形成良好的粘结,以确保器件在使用中不会出现脱落或漏胶等问题。
SiC功率模块封装技术及展望

摘要SiC MOSFET器件的集成化、高频化和高效化需求,对功率模块封装形式和工艺提出了更高的要求。
本文中总结了近年来封装形式的结构优化和技术创新,包括键合式功率模块的金属键合线长度、宽度和并联数量对寄生电感的影响,直接覆铜(DBC)的陶瓷基板中陶瓷层的面积和高度对寄生电容的影响,以及采用叠层换流技术优化寄生参数等成果;综述了双面散热结构的缓冲层厚度和形状对散热指标和应力与形变的影响;汇总了功率模块常见失效机理和解决措施,为模块的安全使用提供参考。
最后探讨了先进烧结银技术的要求和关键问题,并展望了烧结封装技术和材料的发展方向。
前言近几十年来,以新发展起来的第3代宽禁带功率半导体材料碳化硅(SiC)为基础的功率半导体器件,凭借其优异的性能备受人们关注。
SiC与第1代半导体材料硅(Si)、锗(Ge)和第2代半导体材料砷化镓(GaAs)、磷化镓(GaP)、GaAsAl、GaAsP 等化合物相比,其禁带宽度更宽,耐高温特性更强,开关频率更高,损耗更低,稳定性更好,被广泛应用于替代硅基材料或硅基材料难以适应的应用场合。
(1)禁带宽度更宽:SiC 的禁带宽度比Si高3倍以上,使其能耐受的击穿场强更高(临界击穿场强是Si基的10倍以上),故器件能承受的峰值电压更高、能输出的功率更大。
相同电压等级下,SiC功率半导体器件的漂移区可以做得更薄,可使整体功率模块的尺寸更小,极大地提高了整个功率模块的功率密度。
另外,导通电阻R on 与击穿场强的三次方成反比例关系,耐击穿场强的能力高,导通电阻小,减小了器件开关过程中的导通损耗,提升了功率模块的效率。
(2)耐温更高:可以广泛地应用于温度超过600 ℃的高温工况下,而Si基器件在600 ℃左右时,由于超过其耐热能力而失去阻断作用。
碳化硅极大提高了功率器件的耐高温特性。
(3)热导率更高:SiC器件的热导率比Si高3倍以上,高导热率提升了器件和功率模块的散热能力,减低了对散热系统的要求,有利于提高功率模块的功率密度。
(最新整理)功率模块封装结构及其技术

(完整)功率模块封装结构及其技术编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)功率模块封装结构及其技术)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)功率模块封装结构及其技术的全部内容。
功率模块封装结构及其技术摘要:本文从封装角度评估功率电子系统集成的重要性。
文中概述了多种功率模块的封装结构形式及主要研发内容。
另外还讨论了模块封装技术的一些新进展以及在功率电子系统集成中的地位和作用。
1 引言功率(电源或电力)半导体器件现有两大集成系列,其一是单片功率或高压集成电路,英文缩略语为PIC或HIVC,电流、电压分别小于10A、700V的智能功率器件/电路采用单片集成的产品日益增多,但受功率高压大电流器件结构及制作工艺的特殊性,弹片集成的功率/高压电路产品能够处理的功率尚不足够大,一般适用于数十瓦的电子电路的集成;另一类是将功率器件、控制电路、驱动电路、接口电路、保护电路等芯片封装一体化,内部引线键合互连形成部分或完整功能的功率模块或系统功率集成,其结构包括多芯片混合IC封装以及智能功率模块IPM、功率电子模块PEBb、集成功率电子模块等。
功率模块以为电子、功率电子、封装等技术为基础,按照最优化电路拓扑与系统结构原则,形成可以组合和更换的标准单元,解决模块的封装结构、模块内部芯片及其与基板的互连方式、各类封装(导热、填充、绝缘)的选择、植被的工艺流程的国内许多问题,使系统中各种元器件之间互连所产生的不利寄生参数少到最小,功率点楼的热量更易于向外散发,其间更能耐受环境应力的冲击,具有更大的电流承载能力,产品的整体性能、可能性、功率密度得到提高,满足功率管理、电源管理、功率控制系统应用的需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
功率模块封装工艺摘要:本文从封装角度评估功率电子系统集成的重要性。
文中概述了多种功率模块的封装结构形式及主要研发内容。
另外还讨论了模块封装技术的一些新进展以及在功率电子系统集成中的地位和作用。
1 引言功率(电源或电力)半导体器件现有两大集成系列,其一是单片功率或高压集成电路,英文缩略语为PIC或HIVC,电流、电压分别小于10A、700V的智能功率器件/电路采用单片集成的产品日益增多,但受功率高压大电流器件结构及制作工艺的特殊性,弹片集成的功率/高压电路产品能够处理的功率尚不足够大,一般适用于数十瓦的电子电路的集成;另一类是将功率器件、控制电路、驱动电路、接口电路、保护电路等芯片封装一体化,内部引线键合互连形成部分或完整功能的功率模块或系统功率集成,其结构包括多芯片混合IC封装以及智能功率模块IPM、功率电子模块PEBb、集成功率电子模块等。
功率模块以为电子、功率电子、封装等技术为基础,按照最优化电路拓扑与系统结构原则,形成可以组合和更换的标准单元,解决模块的封装结构、模块内部芯片及其与基板的互连方式、各类封装(导热、填充、绝缘)的选择、植被的工艺流程的国内许多问题,使系统中各种元器件之间互连所产生的不利寄生参数少到最小,功率点楼的热量更易于向外散发,其间更能耐受环境应力的冲击,具有更大的电流承载能力,产品的整体性能、可能性、功率密度得到提高,满足功率管理、电源管理、功率控制系统应用的需求。
2 功率模块封装结构功率模块的封装外形各式各样,新的封装形式日新月异,一般按管芯或芯片的组装工艺及安装固定方法的不同,主要分为压接结构、焊接结构、直接敷铜DBC基板结构,所采用的封装形式多为平面型以及,存在难以将功率芯片、控制芯片等多个不同工艺芯片平面型安装在同一基板上的问题。
为开发高性能的产品,以混合IC封装技术为基础的多芯片模块MCM封装成为目前主流发展趋势,即重视工艺技术研究,更关注产品类型开发,不仅可将几个各类芯片安装在同一基板上,而且采用埋置、有源基板、叠层、嵌入式封装,在三维空间内将多个不同工艺的芯片互连,构成完整功能的模块。
压接式结构延用平板型或螺栓型封装的管芯压接互连技术,点接触靠内外部施加压力实现,解决热疲劳稳定性问题,可制作大电流、高集成度的功率模块,但对管芯、压块、底板等零部件平整度要求很高,否则不仅将增大模块的接触热阻,而且会损伤芯片,严重时芯片会撕裂,结构复杂、成本高、比较笨重,多用于晶闸管功率模块。
焊接结构采用引线键合技术为主导的互连工艺,包括焊料凸点互连、金属柱互连平行板方式、凹陷阵列互连、沉积金属膜互连等技术,解决寄生参数、散热、可靠性问题,目前已提出多种实用技术方案。
例如,合理结构和电路设计二次组装已封装元器件构成模块;或者功率电路采用芯片,控制、驱动电路采用已封装器件,构成高性能模块;多芯片组件构成功率智能模块。
DBC基板结构便于将微电子控制芯片与高压大电流执行芯片密封在同一模块之中,可缩短或减少内部引线,具备更好的热疲劳稳定性和很高的封装集成度,DBC通道、整体引脚技术的应用有助于MCM的封装,整体引脚无需额外进行引脚焊接,基板上有更大的有效面积、更高的载流能力,整体引脚可在基板的所有四边实现,成为MCM功率半导体器件封装的重要手段,并为模块智能化创造了工艺条件。
MCM封装解决两种或多种不同工艺所生产的芯片安装、大电流布线、电热隔离等技术问题,对生产工艺和设备的要求很高。
MCM外形有侧向引脚封装、向上引脚封装、向下引脚封装等方案。
简而言之,侧向引脚封装基本结构为DBC多层架构,DBC板带有通道与整体引脚,可阀框架焊于其上,引线键合后,焊上金属盖完成封装。
向上引脚封装基本结构也采用多层DBC,上层DBC 边缘留有开孔,引脚直接键合在下层DBC板上,可阀框架焊于其上,引线键合后,焊上金属盖完成封装。
向下引脚封装为单层DBC结构,铜引脚通过DBC基板预留通孔,直接键合在上层导体铜箔的背面,可阀框架焊于其上,引线键合、焊上金属盖完成封装。
综观功率模块研发动态,早已突破最初定义是将两个或两个以上的功率半导体芯片(各类晶闸管、整流二极管、功率复合晶体管、功率MOSFET、绝缘栅双极型晶体管等),按一定电路互连,用弹性硅凝胶、环氧树脂等保护材料密封在一个绝缘外壳内,并与导热底板绝缘的概念,迈向将器件芯片与控制、驱动、过压过流及过热与欠压保护等电路芯片相结合,密封在同一绝缘外壳内的智能化功率模块时代。
3 智能功率模块IPMIPM是一种有代表性的混合IC封装,将包含功率器件、驱动、保护和控制电路的多个芯片,通过焊丝或铜带连接,封装在同一外壳内构成具有部分或完整功能的、相对独立的功率模块。
用IGBT单元构成的功率模块在智能化方面发展最为迅速,又称为IGBT-IPM,KW级小功率IPM可采用多层环氧树脂粘合绝缘PCB技术,大中功率IPM则采用DBC多芯片技术,IGBT和续流二极管反并联组成基本单元并联,也可以是两个基本单元组成的二单元以及多单元并联,典型组合方式还有六单元或七单元结构,内部引线键合互连,实现轻、小、超薄型IPM、内表面绝缘智能功率模块I2PM、程控绝缘智能功率模块PI-IPM,品种系列丰富,应用设计简洁。
此外,开发出将晶闸管主电路与移相触发系统以及保护电路共同封装在一个塑料外壳内构成的智能晶闸管模块ITPM。
4 功率电子模块PEBBPEBB是一种针对分布式电源系列进行划分和构造的新的模块化概念,根据系统层面对电路合理细化,抽取出具有相同功能或相似特征的部分,制成通用模块PEBB,作为功率电子系统的基础部件,系统中全部或大部分的功率变换功能可用相同的PEBB完成。
PEBB采用多层叠装三维立体封装与表面贴装技术,所有待封装器件均以芯片形式进入模块,模块在系统架构下标准化,最底层为散热器,其次是3个相同的PEBB相桥臂组成的三相整流桥,再上面是驱动电路,顶层是传感器信号调节电路。
PEBB的应用方便灵活,可靠性高,维护性好。
5 集成功率电子模块IPEMIPEM研发的主要内容涉及适用于模块内部的,具有通用性的主电路、控制、驱动、保护、电源等电路及无源元件技术,通过多层互连和高集成度混合IC封装,全部电路和元器件一体化封装,形成通用性标准化的IPEM,易于构成各种不同的应用系统。
在IPEM制造中,采用陶瓷基板多芯片模块MCM-C技术,将信息传输、控制与功率器件等多层面进行互连,所有的无源元件都是以埋层方面掩埋在基板中,完全取消常规模块封装中的铝丝键合互连工艺,采用三维立体组装,增加散热。
IPEM克服了IPM内部因各功率器件与控制电路用焊丝连接不同芯片造成的焊丝引入的线电感与焊丝焊点的可靠性限制IPM进一步发展的瓶颈。
IPEM不采用焊丝互连,增强其可靠性,大大降低电路接线电感,提高系统效率。
6 i POWIRi POWIR是一种较有代表性的多芯片模块,它将功率器件、控制用IC、脉宽调制IC以及一些无源元件按照电源设计的需求,采用焊球阵列BGA封装技术,组装在同一外壳中,在生产中作为大开关电源形式完成测试。
i POWIR可简化电源设计,减少外围元件数量,压缩占用电路板面积,并在性能上有较大提高,以更低的成本来实现与功能齐备的电源产品相当的可靠性。
例如,一种双路i POWIR可产生每路1.5A的电流输出,其输出组合在一起,便可获得30A的输出,可靠性大为提高。
i POWIR的进一步发展,被认为是DC/DC变换的未来。
开发出一系列专用的i MOTION、i NTERO集成功率模块,用以促进中小功率电机驱动的小型化、集成化、高性能、高可靠、专业化,应用场合包括家电中的冰箱、洗衣机、空调等。
7 功率模块封装技术功率模块的研发在很大程度上取决于功率器件和混合IC封装技术的新进展。
"皮之不存,毛将焉附"。
它既是芯片制造技术的延伸扩展,也是封装生产多元化纵深拓展的新领域,所研发的关键技术包括DBC基板、互连工艺、封装材料、热设计等。
7.1 AIN-DBC封装基板国际上,各种规格的AIN-DBC封装基板可大批量商品化供货,国内小批量供货远无法满足需求。
AIN-DBC具有AIN陶瓷的高热导性,又具备Cu箔的高导电特性,并可像PCB板一样,在其表面刻蚀出所需的各种图形,用于功率器件与模块封装中,表1示出几种封装用陶瓷基板的性能比较。
在AIN-DBC电子封装基板的制备中,有效地控制Cu箔与AIN陶瓷基片界面上Cu-O共晶液相的产生、分布及降温过程的固化是其工艺的重点,这些因素都与体系中的氧成分有着密切的关系,表2示出目前较常用的AIN基片金属化技术及其基板比较,Cu箔、AIN基片在预氧化时都要控制氧化的温度及时间,使其表面形成的A12O3薄层厚度达1μm,两者间过渡层的结构与成分对AIN-DBC基板的导热性及结合强度影响极大,加热敷接过程中温度、时间及气氛的控制都将对最终界面产物的结构及形态产生影响,可将0.125~0.7mm厚的Cu箔覆合在AIN基片上,各类芯片可直接附着在此基板上。
在封装应用中,前后导通可通过敷接Cu箔之前在AIN基片上钻孔实现,或采用微导孔、引脚直接键合针柱通道、金属柱互连等技术,实现密封连接。
AIN基片在基板与封装一体化以及降低封装成本、增加布线密度、提高可靠性等方面均有优势,例如,AIN-DBC基板的焊接式模块与普通焊接模块相比,体积小、重量轻、热疲劳稳定性好、密封功率器件的集成度更高。
7.2 键合互连工艺芯片安装与引线键合互连是封装中的关键工序,功率器件管芯采用共晶键合或合金焊料焊接安装芯片,引线互连多采用铝丝键合技术,工艺简单、成本低,但存在键合点面积小(传热性差)、寄生电感大、铝丝载流量有限、各铝丝问电流分布不均匀、高频电流在引线中形成的机械应力易使其焊点撕裂或脱落等诸多问题,倒装芯片焊球阵列凸点互连的发展改变了这一状态。
焊料凸点互连可省略芯片与基板间的引线,起电连接作用的焊点路径短、接触面积大、寄生电感/电容小、封装密度高,表3示出不同互连工艺下的寄生参数比较。
以沉积金属膜为基础的互连工艺在各类基板或介质中埋置芯片,顶层再贴装表贴元件及芯片来实现三维封装,蒸镀或溅射的金属膜与芯片电极相连,构成电路图形,并连至其他电路,能增大芯片的有效三维散热面积,总体上有薄膜覆盖和嵌入式封装技术方案之分,前者可制作耐压等级高、电流大、高效散热的功率模块;后者可大大缩小模块体积,提高功率密度。
7.3 封装外壳功率模块的封装外壳是根据其所用的不同材料和品种结构形式来研发的,常用散热性好的金属封装外壳、塑料封装外壳,按最终产品的电性能、热性能、应用场合、成本,设计选定其总体布局、封装形式、结构尺寸、材料及生产工艺。
例如,DBC基板侧向、向上、向下引脚封装均采用腔体插入式金属外壳,由浴盆形状框架腔体和金属盖板构成,平行缝焊封接密封封装。