【数学】2016年内地新疆高中班招生数学中考真题(解析版)
2016年中考数学密卷

2016年中考数学密卷(考试时间120分钟 试卷满分150分)第I 卷一、选择题(下列各题的备选答案中,只有一个是正确的。
每小题3分,共30分) 1.21-的倒数是( ) A .21- B .21C .2-D .22. 环境监测中PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物。
如果1微米=0.000 001米,那么数据0.000 000 25用科学记数法可以表示为( ) A .6105.2⨯ B .5105.2-⨯ C .6105.2-⨯ D .7105.2-⨯3. 如图,是由几个小立方体搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方体的个数,那么这个几何体的注视图是( )A B C D4. 下列计算正确的是( )A .532532a a a =+B .236a a a =÷ C .623)(a a =- D .222)(y x y x +=+5. 不等式组⎪⎩⎪⎨⎧<--≤-7)2(30131x x 的解集在数轴上表示正确的是( )3-203-203-203-20A B C D6. 甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%,那么顾客到哪家超市购买这种商品更合算( ) A .甲 B .乙 C .丙 D .一样7.在同一直角坐标系中,一次函数b ax y +=与二次函数b x ax y ++=82图象可能是( )A B C D8.某销售公司有销售人员15人,销售部为了制定某种商品的月销售量定额,统计了这15人某月的销售量,如下表所示:那么这15位销售人员改约销售量的平均数、众数、中位数分别为( ) A .320,210,230 B .320,210,210 C .206,210,210 D .201,210,230 9.如图,在Rt △ABC 中,∠ACB=90°,∠BAC=60°。
2016年中考数学试题(解析版)

2016年北京市高级中等学校招生考试数学试卷一、选择题。
1. 如图所示,用量角器度量∠AOB ,可以读出∠AOB 的度数为 (A ) 45° (B ) 55° (C ) 125° (D ) 135° 答案:B2. 神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28 000公里。
将28 000用科学计数法表示应为(A ) (B ) 28(C )(D )答案:C3. 实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是(A ) a (B )(C )(D )答案:D4. 内角和为540的多边形是答案:c5. 右图是某个几何体的三视图,该几何体是(A ) 圆锥 (B ) 三棱锥 (C ) 圆柱 (D ) 三棱柱 答案:D6. 如果,那么代数2()b aa a a b-- 的值是 (A ) 2 (B )-2 (C ) (D )答案:A7. 甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是答案:D8. 在1-7月份,某种水果的每斤进价与出售价的信息如图所示,则出售该种水果每斤利润最大的月份是(A ) 3月份 (B ) 4月份 (C ) 5月份 (D ) 6月份 答案:B解析:各月每斤利润:3月:7.5-4.5=3元,4月:6-2.5=3.5元,5月:4.5-2=2.5元,6月:3-1.5=1.5元,所以,4月利润最大,选B。
9. 如图,直线,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为(A)(B)(C)(D)答案:A 考点:平面直角坐标系。
解析:因为A点坐标为(-4,2),所以,原点在点A的右边,也在点A的下边2个单位处,从点B来看,B(2,-4),所以,原点在点B的左边,且在点B的上边4个单位处。
如下图,O1符合。
10. 为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价,水价分档递增。
2020年内地新疆高中班招生数学试卷及答案解析(word版)

2020年内地新疆高中班招生数学试卷一、选择题,共9小题,每小题5分,共45分.1.﹣2的绝对值是()A.2 B.﹣2 C.±2 D.2.如图,AB∥CD,CE平分∠BCD,∠B=36°,则∠DCE等于()A.18° B.36° C.45° D.54°3.不等式组的解集是()A.x>4 B.x≤3 C.3≤x<4 D.无解4.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球,3个白球,从布袋中随机摸出一个球,摸出红球的概率是()A.B.C.D.5.一个扇形的圆心角是120°,面积为3πcm2,那么这个扇形的半径是()A.1cm B.3cm C.6cm D.9cm6.小明的父亲从家走了20分钟到一个离家900米的书店,在书店看了10分钟书后,用15分钟返回家,下列图中表示小明的父亲离家的距离与时间的函数图象是()A.B.C.D.7.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.a>0B.c<0C.3是方程ax2+bx+c=0的一个根D.当x<1时,y随x的增大而减小8.轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是()海里.A.25B.25C.50 D.259.两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米,第一组的步行速度是第二组的1.2倍,并且比第二组早15分钟到达乙地.设第二组的步行速度为x千米/小时,根据题意可列方程是()A.﹣=15 B.﹣=C.﹣=15 D.﹣=二、填空题,共小题,每小题5分,共30分.10.计算(1﹣)(x+1)的结果是.11.关于x的一元二次方程x2+2x﹣k=0有两个不相等的实数根,则k的取值范围是.12.某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间(小时) 5 6 7 8人数10 15 20 5则这50名学生这一周在校的平均体育锻炼时间是小时.13.如图所示,△ABC中,E,F分别是边AB,AC上的点,且满足==,则△AEF与△ABC的面积比是.14.如图,测量河宽AB(假设河的两岸平行),在C点测得∠ACB=30°,D 点测得∠ADB=60°,又CD=60m,则河宽AB为m(结果保留根号).15.如图,在▱ABCD中,P是CD边上一点,且AP和BP分别平分∠DAB和∠CBA,若AD=5,AP=8,则△APB的周长是.三、解答题,共8小题,共75分16.计算:()﹣1+|1﹣|﹣tan30°.17.解方程组.18.某学生社团为了解本校学生喜欢球类运动的情况,随机抽取了若干名学生进行问卷调查,要求每位学生只能填写一种自己喜欢的球类运动,并将调查的结果绘制成如下的两幅不完整的统计图.请根据统计图表提供的信息,解答下列问题:(1)参加调查的人数共有人;在扇形图中,m=;将条形图补充完整;(2)如果该校有3500名学生,则估计喜欢“篮球”的学生共有多少人?(3)该社团计划从篮球、足球和乒乓球中,随机抽取两种球类组织比赛,请用树状图或列表法,求抽取到的两种球类恰好是“篮球”和“足球”的概率.19.如图,四边形ABCD中,AD∥BC,AE⊥AD交BD于点E,CF⊥BC交BD于点F,且AE=CF.求证:四边形ABCD是平行四边形.20.周口体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?21.如图,直线y=2x+3与y轴交于A点,与反比例函数y=(x>0)的图象交于点B,过点B作BC⊥x轴于点C,且C点的坐标为(1,0).(1)求反比例函数的解析式;(2)点D(a,1)是反比例函数y=(x>0)图象上的点,在x轴上是否存在点P,使得PB+PD最小?若存在,求出点P的坐标;若不存在,请说明理由.22.如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.(1)求证:直线BF是⊙O的切线;(2)若AB=5,sin∠CBF=,求BC和BF的长.23.如图,对称轴为直线x=的抛物线经过点A(6,0)和B(0,﹣4).(1)求抛物线解析式及顶点坐标;(2)设点E(x,y)是抛物线上一动点,且位于第一象限,四边形OEAF是以OA为对角线的平行四边形,求平行四边形OEAF的面积S与x之间的函数关系式;(3)当(2)中的平行四边形OEAF的面积为24时,请判断平行四边形OEAF 是否为菱形.2020年内地新疆高中班招生数学试卷参考答案与试题解析一、选择题,共9小题,每小题5分,共45分.1.﹣2的绝对值是()A.2 B.﹣2 C.±2 D.【考点】绝对值.【分析】直接利用绝对值的概念:数轴上某个数与原点的距离叫做这个数的绝对值,进而得出答案.【解答】解:﹣2的绝对值是:2.故选:A.2.如图,AB∥CD,CE平分∠BCD,∠B=36°,则∠DCE等于()A.18° B.36° C.45° D.54°【考点】平行线的性质.【分析】根据两直线平行,内错角相等可得∠BCD=∠B,再根据角平分线的定义求出∠DCE,从而求解.【解答】解:∵AB∥CD,∴∠BCD=∠B=36°,∵CE平分∠BCD,∴∠DC=18°故选:A.3.不等式组的解集是()A.x>4 B.x≤3 C.3≤x<4 D.无解【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得:x<4,解②得:x≥3,则不等式的解集是:3≤x<4.故选:C.4.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球,3个白球,从布袋中随机摸出一个球,摸出红球的概率是()A.B.C.D.【考点】概率公式.【分析】让红球的个数除以球的总数即为摸到红球的概率.【解答】解:∵2个红球、3个白球,一共是5个,∴从布袋中随机摸出一个球,摸出红球的概率是.故选:C.5.一个扇形的圆心角是120°,面积为3πcm2,那么这个扇形的半径是()A.1cm B.3cm C.6cm D.9cm【考点】扇形面积的计算.【分析】根据扇形的面积公式:S=代入计算即可解决问题.【解答】解:设扇形的半径为R,由题意:3π=,解得R=±3,∵R>0,∴R=3cm,∴这个扇形的半径为3cm.故选B.6.小明的父亲从家走了20分钟到一个离家900米的书店,在书店看了10分钟书后,用15分钟返回家,下列图中表示小明的父亲离家的距离与时间的函数图象是()A.B.C.D.【考点】函数的图象.【分析】因为在书店里花了10分钟看书,应是一段平行与x轴的线段,B是10分钟,而A是20分钟,依此即可作出判断.【解答】解:根据题意,从20分钟到30分钟在书店里看书,离家距离没有变化,是一条平行于x轴的线段.故选B.7.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.a>0B.c<0C.3是方程ax2+bx+c=0的一个根D.当x<1时,y随x的增大而减小【考点】二次函数的性质.【分析】根据二次函数的图象性质可以做出判断.【解答】解:(A)图象开口向下,所以a<0,故(A)错误;(B)图象与y轴交点在y轴的正半轴,所以C>0,故(B)错误;(C)因为对称轴为x=1,所以(﹣1,0)与(3,0)关于x=1对称,故x=3是ax2+bx+c=0的一个根;故(C)正确;(D)由图象可知:当x<1时,y随x的增大而增大;故(D)错误.故选(C)8.轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是()海里.A.25B.25C.50 D.25【考点】等腰直角三角形;方向角.【分析】根据题中所给信息,求出∠BCA=90°,再求出∠CBA=45°,从而得到△ABC为等腰直角三角形,然后根据解直角三角形的知识解答.【解答】解:根据题意,∠1=∠2=30°,∵∠ACD=60°,∴∠ACB=30°+60°=90°,∴∠CBA=75°﹣30°=45°,∴△ABC为等腰直角三角形,∵BC=50×0.5=25,∴AC=BC=25(海里).故选D.9.两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米,第一组的步行速度是第二组的1.2倍,并且比第二组早15分钟到达乙地.设第二组的步行速度为x千米/小时,根据题意可列方程是()A.﹣=15 B.﹣=C.﹣=15 D.﹣=【考点】由实际问题抽象出分式方程.【分析】根据第二组的速度可得出第一组的速度,依据“时间=路程÷速度”即可找出第一、二组分别到达的时间,再根据第一组比第二组早15分钟(小时)到达乙地即可列出分式方程,由此即可得出结论.【解答】解:设第二组的步行速度为x千米/小时,则第一组的步行速度为1.2x 千米/小时,第一组到达乙地的时间为:7.5÷1.2x;第二组到达乙地的时间为:7.5÷x;∵第一组比第二组早15分钟(小时)到达乙地,∴列出方程为:﹣==.故答案为D.二、填空题,共小题,每小题5分,共30分.10.计算(1﹣)(x+1)的结果是x.【考点】分式的混合运算.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分即可得到结果.【解答】解:原式=•(x+1)=x,故答案为:x11.关于x的一元二次方程x2+2x﹣k=0有两个不相等的实数根,则k的取值范围是k>﹣1.【考点】根的判别式.【分析】根据判别式的意义得到△=22+4k>0,然后解不等式即可.【解答】解:∵关于x的一元二次方程x2+2x﹣k=0有两个不相等的实数根,∴△=22+4k>0,解得k>﹣1.故答案为:k>﹣1.12.某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间(小时) 5 6 7 8人数10 15 20 5则这50名学生这一周在校的平均体育锻炼时间是 6.4小时.【考点】加权平均数.【分析】根据平均数的计算方法是求出所有数据的和,然后除以数据的总个数进行计算.【解答】解:=6.4.故答案为:6.4.13.如图所示,△ABC中,E,F分别是边AB,AC上的点,且满足==,则△AEF与△ABC的面积比是1:9.【考点】相似三角形的判定与性质.【分析】由已知条件易证△AEF∽△ABC,根据相似三角形的性质即可求出△AEF与△ABC的面积比.【解答】解:∵==,∴,又∵∠A=∠A,∴△AEF∽△ABC,∴△AEF与△ABC的面积比=1:9,故答案为:1:9.14.如图,测量河宽AB(假设河的两岸平行),在C点测得∠ACB=30°,D 点测得∠ADB=60°,又CD=60m,则河宽AB为30m(结果保留根号).【考点】解直角三角形的应用;勾股定理的应用.【分析】先根据三角形外角的性质求出∠CAD的度数,判断出△ACD的形状,再由锐角三角函数的定义即可求出AB的值.【解答】解:∵∠ACB=30°,∠ADB=60°,∴∠CAD=30°,∴AD=CD=60m,在Rt△ABD中,AB=AD•sin∠ADB=60×=30(m).故答案为:30.15.如图,在▱ABCD中,P是CD边上一点,且AP和BP分别平分∠DAB和∠CBA,若AD=5,AP=8,则△APB的周长是24.【考点】平行四边形的性质.【分析】根据平行四边形性质得出AD∥CB,AB∥CD,推出∠DAB+∠CBA=180°,求出∠PAB+∠PBA=90°,在△APB中求出∠APB=90°,由勾股定理求出BP,证出AD=DP=5,BC=PC=5,得出DC=10=AB,即可求出答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥CB,AB∥CD,∴∠DAB+∠CBA=180°,又∵AP和BP分别平分∠DAB和∠CBA,∴∠PAB+∠PBA=(∠DAB+∠CBA)=90°,在△APB中,∠APB=180°﹣(∠PAB+∠PBA)=90°;∵AP平分∠DAB,∴∠DAP=∠PAB,∵AB∥CD,∴∠PAB=∠DPA∴∠DAP=∠DPA∴△ADP是等腰三角形,∴AD=DP=5,同理:PC=CB=5,即AB=DC=DP+PC=10,在Rt△APB中,AB=10,AP=8,∴BP==6,∴△APB的周长=6+8+10=24;故答案为:24.三、解答题,共8小题,共75分16.计算:()﹣1+|1﹣|﹣tan30°.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】直接利用负整指数幂的性质以及绝对值的性质和特殊角的三角函数值分别化简求出答案.【解答】解:()﹣1+|1﹣|﹣tan30°=2+﹣1﹣3×=1+﹣3=﹣2.17.解方程组.【考点】解二元一次方程组.【分析】先用加减消元法求出x的值,再用代入消元法求出y的值即可.【解答】解:①+②得,3x=15,解得x=5,把x=5代入①得,10+3y=7,解得y=﹣1.故方程组的解为:.18.某学生社团为了解本校学生喜欢球类运动的情况,随机抽取了若干名学生进行问卷调查,要求每位学生只能填写一种自己喜欢的球类运动,并将调查的结果绘制成如下的两幅不完整的统计图.请根据统计图表提供的信息,解答下列问题:(1)参加调查的人数共有600人;在扇形图中,m=30;将条形图补充完整;(2)如果该校有3500名学生,则估计喜欢“篮球”的学生共有多少人?(3)该社团计划从篮球、足球和乒乓球中,随机抽取两种球类组织比赛,请用树状图或列表法,求抽取到的两种球类恰好是“篮球”和“足球”的概率.【考点】列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.【分析】(1)首先根据条形统计图和扇形统计图,用喜欢篮球的人数除以它占参加调查的人数的百分率,求出参加调查的人数共有多少人;然后在扇形图中,用1减去喜欢篮球、乒乓球和其它球类的学生占的百分率,求出m的值是多少,并将条形图补充完整即可.(2)根据题意,用该校学生的人数乘喜欢“篮球”的学生占的百分率,求出喜欢“篮球”的学生共有多少人即可.(3)应用列表法,求出抽取到的两种球类恰好是“篮球”和“足球”的种数,以及一共有多少种可能,求出抽取到的两种球类恰好是“篮球”和“足球”的概率是多少即可.【解答】解:(1)∵240÷40%=600(人)∴参加调查的人数共有600人;∵1﹣40%﹣20%﹣10%=30%,∴在扇形图中,m=30..(2)3500×40%=1400(人)答:喜欢“篮球”的学生共有1400人.(3)篮球足球乒乓球篮球/ 篮球、足球篮球、乒乓球足球足球、篮球/ 足球、乒乓球乒乓球乒乓球、篮球乒乓球、足球/2÷6=.答:抽取到的两种球类恰好是“篮球”和“足球”的概率是.故答案为:600、30.19.如图,四边形ABCD中,AD∥BC,AE⊥AD交BD于点E,CF⊥BC交BD于点F,且AE=CF.求证:四边形ABCD是平行四边形.【考点】平行四边形的判定;全等三角形的判定与性质.【分析】由垂直得到∠EAD=∠FCB=90°,根据AAS可证明Rt△AED≌Rt△CFB,得到AD=BC,根据平行四边形的判定判断即可.【解答】证明:∵AE⊥AD,CF⊥BC,∴∠EAD=∠FCB=90°,∵AD∥BC,∴∠ADE=∠CBF,在Rt△AED和Rt△CFB中,∵,∴Rt△AED≌Rt△CFB(AAS),∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形.20.周口体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?【考点】一元二次方程的应用.【分析】设要邀请x支球队参加比赛,则比赛的总场数为x(x﹣1)场,与总场数为28场建立方程求出其解即可.【解答】解:设要邀请x支球队参加比赛,由题意,得x(x﹣1)=28,解得:x1=8,x2=﹣7(舍去).答:应邀请8支球队参加比赛.21.如图,直线y=2x+3与y轴交于A点,与反比例函数y=(x>0)的图象交于点B,过点B作BC⊥x轴于点C,且C点的坐标为(1,0).(1)求反比例函数的解析式;(2)点D(a,1)是反比例函数y=(x>0)图象上的点,在x轴上是否存在点P,使得PB+PD最小?若存在,求出点P的坐标;若不存在,请说明理由.【考点】反比例函数与一次函数的交点问题;轴对称-最短路线问题.【分析】(1)先根据直线y=2x+3求出点B坐标,再利用待定系数法可求得反比例函数解析式;(2)先根据反比例函数解析式求出点D 的坐标,若要在x轴上找一点P,使PB+PD最小,可作点D关于x的轴的对称点D′,连接BD′,直线BD′与x 轴的交点即为所求点P.【解答】解:(1)∵BC⊥x轴于点C,且C点的坐标为(1,0),∴在直线y=2x+3中,当x=1时,y=2+3=5,∴点B的坐标为(1,5),又∵点B(1,5)在反比例函数y=上,∴k=1×5=5,∴反比例函数的解析式为:y=;(2)将点D(a,1)代入y=,得:a=5,∴点D坐标为(5,1)设点D(5,1)关于x轴的对称点为D′(5,﹣1),过点B(1,5)、点D′(5,﹣1)的直线解析式为:y=kx+b,可得:,解得:,∴直线BD′的解析式为:y=﹣x+,根据题意知,直线BD′与x轴的交点即为所求点P,当y=0时,得:﹣x+=0,解得:x=,故点P的坐标为(,0).22.如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.(1)求证:直线BF是⊙O的切线;(2)若AB=5,sin∠CBF=,求BC和BF的长.【考点】切线的判定与性质;勾股定理;圆周角定理;相似三角形的判定与性质;解直角三角形.【分析】(1)连接AE,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相等得到直角,从而证明∠ABF=90°.(2)利用已知条件证得△AGC∽△ABF,利用比例式求得线段的长即可.【解答】(1)证明:连接AE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠1+∠2=90°.∵AB=AC,∴∠1=∠CAB.∵∠CBF=∠CAB,∴∠1=∠CBF∴∠CBF+∠2=90°即∠ABF=90°∵AB是⊙O的直径,∴直线BF是⊙O的切线.(2)解:过点C作CG⊥AB于G.∵sin∠CBF=,∠1=∠CBF,∴sin∠1=,∵在Rt△AEB中,∠AEB=90°,AB=5,∴BE=AB•sin∠1=,∵AB=AC,∠AEB=90°,∴BC=2BE=2,在Rt△ABE中,由勾股定理得AE==2,∴sin∠2===,cos∠2===,在Rt△CBG中,可求得GC=4,GB=2,∴AG=3,∵GC∥BF,∴△AGC∽△ABF,∴∴BF==23.如图,对称轴为直线x=的抛物线经过点A(6,0)和B(0,﹣4).(1)求抛物线解析式及顶点坐标;(2)设点E(x,y)是抛物线上一动点,且位于第一象限,四边形OEAF是以OA为对角线的平行四边形,求平行四边形OEAF的面积S与x之间的函数关系式;(3)当(2)中的平行四边形OEAF的面积为24时,请判断平行四边形OEAF 是否为菱形.【考点】二次函数综合题.【分析】(1)根据对称轴、A、B点的坐标,可得方程,根据解方程,可得答案;(2)根据平行四边形的面积公式,可得函数解析式;(3)根据函数值,可得E点坐标,根据菱形的判定,可得答案.【解答】解:(1)设抛物线的解析式为y=ax2+bx+c,将A、B点的坐标代入函数解析式,得,解得,抛物线的解析式为y=﹣x2+x﹣4,配方,得y=﹣(x﹣)2+,顶点坐标为(,);(2)E点坐标为(x,﹣x2+x﹣4),S=2×OA•y E=3(﹣x2+x﹣4)即S=﹣2x2+14x﹣12;(3)平行四边形OEAF的面积为24时,平行四边形OEAF不能为菱形,理由如下:当平行四边形OEAF的面积为24时,即﹣2x2+14x﹣12=24,化简,得x2﹣7x+18=0,△=b2﹣4ac=(﹣7)2﹣4×18=﹣23<0,方程无解,E点不存在,平行四边形OEAF的面积为24时,平行四边形OEAF不能为菱形.2020年6月30日。
2016年中考真题精品解析 数学(甘肃武威卷)精编word版(原卷版)

2016年中考真题精品解析 数学(甘肃武威卷)精编word 版一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列图形中,是中心对称图形的是( )A .B .C .D .2.(3分)在1,﹣2,0,35这四个数中,最大的数是( ) A .﹣2 B .0 C .35D .1 3.(3分)在数轴上表示不等式x ﹣1<0的解集,正确的是( ) A .B .C .D .4.(3分)下列根式中是最简二次根式的是( ) A .32B .2C .9D .12 5.(3分)已知点P (0,m )在y 轴的负半轴上,则点M (﹣m ,﹣m+1)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6.(3分)如图,AB ∥CD ,DE ⊥CE ,∠1=34°,则∠DCE 的度数为( )A .34°B .54°C .66°D .56°7.(3分)如果两个相似三角形的面积比是1:4,那么它们的周长比是( ) A .1:16B .1:4C .1:6D .1:28.(3分)某工厂现在平均每天比原计划多生产50台机器,现在生产800台所需时间与原计划生产600台机器所需时间相同.设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是( ) A .x x 60050800=+ B .x x 60050800=- C .50600800+=x x D .50600800-=x x9.(3分)若x 2+4x ﹣4=0,则3(x ﹣2)2﹣6(x+1)(x ﹣1)的值为( )A .﹣6B .6C .18D .3010.(3分)如图,△ABC 是等腰直角三角形,∠A=90°,BC=4,点P 是△ABC 边上一动点,沿B →A →C 的路径移动,过点P 作PD ⊥BC 于点D ,设BD=x ,△BDP 的面积为y ,则下列能大致反映y 与x 函数关系的图象是( )A .B .C .D .二、填空题(共8小题,每小题4分,满分32分)11.(4分)因式分解:2a 2﹣8= .12.(4分)计算:(﹣5a 4)•(﹣8ab 2)= .13.(4分)如图,点A (3,t )在第一象限,OA 与x 轴所夹的锐角为α,tan α=32,则t 的值是 .14.(4分)如果单项式2x m+2n y n﹣2m+2与x 5y 7是同类项,那么n m 的值是 .15.(4分)三角形的两边长分别是3和4,第三边长是方程x 2﹣13x+40=0的根,则该三角形的周长为 .16.(4分)如图,在⊙O 中,弦AC=23,点B 是圆上一点,且∠ABC=45°,则⊙O 的半径R= .17.(4分)将一张矩形纸片折叠成如图所示的图形,若AB=6cm ,则AC= cm .18.(4分)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x 1,第二个三角形数记为x 2,…第n 个三角形数记为x n ,则x n +x n+1= .三、解答题(共5小题,满分38分)19.(6分)计算:()23160sin 23121--+︒++--⎪⎪⎭⎫ ⎝⎛-.20.(6分)如图,在平面直角坐标系中,△ABC 的顶点A (0,1),B (3,2),C (1,4)均在正方形网格的格点上.(1)画出△ABC 关于x 轴的对称图形△A 1B 1C 1;(2)将△A 1B 1C 1沿x 轴方向向左平移3个单位后得到△A 2B 2C 2,写出顶点A 2,B 2,C 2的坐标.21.(8分)已知关于x 的方程x 2+mx+m ﹣2=0. (1)若此方程的一个根为1,求m 的值;(2)求证:不论m 取何实数,此方程都有两个不相等的实数根.22.(8分)图①是小明在健身器材上进行仰卧起坐锻炼时的情景,图②是小明锻炼时上半身由ON 位置运动到与地面垂直的OM 位置时的示意图.已知AC=0.66米,BD=0.26米,α=20°.(参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364) (1)求AB 的长(精确到0.01米);(2)若测得ON=0.8米,试计算小明头顶由N 点运动到M 点的路径的长度.(结果保留π)23.(10分)在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字0,1,2;乙袋中的小球上分别标有数字﹣1,﹣2,0.现从甲袋中任意摸出一个小球,记其标有的数字为x,再从乙袋中任意摸出一个小球,记其标有的数字为y,以此确定点M的坐标(x,y).(1)请你用画树状图或列表的方法,写出点M所有可能的坐标;(2)求点M(x,y)在函数y=﹣2x的图象上的概率.四、解答题(共5小题,满分50分)24.(8分)2016年《政府工作报告》中提出了十大新词汇,为了解同学们对新词汇的关注度,某数学兴趣小组选取其中的A:“互联网+政务服务”,B:“工匠精神”,C:“光网城市”,D:“大众旅游时代”四个热词在全校学生中进行了抽样调查,要求被调查的每位同学只能从中选择一个我最关注的热词.根据调查结果,该小组绘制了如下的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了多少名同学?(2)条形统计图中,m=,n=;(3)扇形统计图中,热词B所在扇形的圆心角是多少度?25.(10分)如图,函数y1=﹣x+4的图象与函数y2=kx(x>0)的图象交于A(m,1),B(1,n)两点.(1)求k,m,n的值;(2)利用图象写出当x≥1时,y1和y2的大小关系.26.(10分)如图,已知EC∥AB,∠EDA=∠ABF.(1)求证:四边形ABCD是平行四边形;(2)求证:OA2=OE•OF.27.(10分)如图,在△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O 经过A,B,D三点.(1)求证:AB是⊙O的直径;(2)判断DE与⊙O的位置关系,并加以证明;(3)若⊙O的半径为3,∠BAC=60°,求DE的长.28.(12分)如图,已知抛物线y=﹣x2+bx+c经过A(3,0),B(0,3)两点.(1)求此抛物线的解析式和直线AB的解析式;(2)如图①,动点E从O点出发,沿着OA方向以1个单位/秒的速度向终点A匀速运动,同时,动点F 从A点出发,沿着AB方向以个单位/秒的速度向终点B匀速运动,当E,F中任意一点到达终点时另一点也随之停止运动,连接EF,设运动时间为t秒,当t为何值时,△AEF为直角三角形?(3)如图②,取一根橡皮筋,两端点分别固定在A,B处,用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P与A,B两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P的坐标;如果不存在,请简要说明理由.。
2016年中考真题精品解析 数学(海南卷)精编word版(原卷版)

42
....
这组数据的众数是( )
3和
(单位:公顷
.该村人均耕地面积随总人口的增多而增多
AB C
分别在直线a
45° C
ay= .
.某工厂去年的产值是
A D
(﹣3
图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总
50%
番茄挂果数量统计表
55≤x<65
所对应扇形的圆心角度数为 ]
宇番<65”
24
物线上的动点
交直线
....
+a2
而关于原点中心对称点的横纵坐标互为相反数,
分别在直线a
∵四边形ABCD
3=30°,
试题分析:今年产值考点:列代数式
.
分)
求这两本书的标价各多少元.
《汉语成语大词典》的标价为
在太空种子种植体验实践活动中”番茄并绘制如下不完整的统计图表:
所对应扇形的圆心角度数为
<65
(3
BD、
来源
2,3)
轴的平行线交交直线
A C 面积可求出
考点:1二次函数综合题。
2平行线分线段成比例。
3相似三角形。
4一元二次方程.。
2016年河南省普通高中招生考试试卷数学(含答案)word版

2016年河南省普通高中招生考试试卷数学一、选择题:(每小题3分,共24分)1.31-的相反数是( )A .31- B .31 C .-3 D .32.某种细胞的直径是0.00000095米,将0。
00000095用科学记数法表示为( ) A .9.5×10-7 B .9。
5×10-8 C .0.95×10-7 D .95×10-5 3.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是( )A .B .C .D .4.下列计算正确的是( )A .228=-B .(-3)2=6C .3a 4-2a 2=a 2D .(-a 3)2=a 5 5.如图,过反比例函数)0(>=x xky 的图像上一点A 作AB ⊥x 轴于点B ,连接AO ,若S △AOB =2,则k 的值为( )A .2B .3C .4D .56.如图,在△ABC 中,∠ACB =90°,AC =8,AB =10.DE 垂直平分AC 交AB 于点E ,则DE 的长为( )A .6B .5C .4D .37.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm) 185 180 185 180方差 3.6 3.6 7。
4 8。
1根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择() A.甲B.乙C.丙D.丁8.如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为()A.(1,-1)B.(-1,-1) C.(2,0) D.(0,-2)二、填空题(每小题3分,共21分)9.计算:(-2)0-38=.10.如图,在□ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数是.11.若关于x的一元二次方程x2+3x-k=0有两个不相等的实数根,则k的取值范围.12.在“阳光体育”活动期间,班主任将全班同学随机分成了4组进行活动,则该班小明和小亮被分在同一组的概率是.13.已知A(0,3),B(2,3)是抛物线y=-x2+bx+c上两点,该抛物线的顶点坐标是.14.如图,在扇形AOB中,∠AOB=90°,以点A为圆心,OA的长为半径作弧OC交弧AB 于点C.若OA=2,则阴影部分的面积为.15.如图,已知AD //BC ,AB ⊥BC ,AB =3.点E 为射线BC 上一个动点,连接AE ,将△ABE沿AE 折叠,点B 落在点B ′处,过点B ′作AD 的垂线,分别交AD ,BC 于点M 、N .当点B ′为线段MN 的三等分点时,BE 的长为 .三、解答题:(本大题共8个小题,满分75分) 16.(8分)先化简,再求值:121)1(222++-÷-+x x x x x x ,其中x 的值从不等式组⎩⎨⎧<-≤-4121x x 的整数解中选取. 17.(9分)在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走的步数,记录如下:5640 6430 6520 6798 7325 8430 8215 7453 7446 6754 7638 6834 7326 6830 8648 8753 9450 9865 7290 7850对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:步数分组统计表请根据以上信息解答下列问题: (1)填空:m = ,n = ; (2)补全频数统计图;(3)这20名“健步走运动”团队成员一天步行步数的中位数落在 组; (4)若该团队共有120人,请估计其中一天行走步数不少于7500步的人数.18.(9分)如图,在Rt △ABC 中,∠ABC =90°,点M 是AC 的中点,以AB 为直径作⊙O 分组别 步数分组 频数 A 5500≤x <6500 2 B 6500≤x <7500 10C 7500≤x <8500 m D8500≤x <95003E 9500≤x <10500 n别交AC、BM于点D、E.(1)求证:MD=ME;(2)填空:①若AB=6,当AD=2DM时,DE=;②连接OD、OE,当∠A的度数为时,四边形ODME是菱形.19.(9分)如图,小东在教学楼距地面9米高的窗口C处,测得正前方旗杆顶部A点的仰角为37°,旗杆底部B点的俯角为45°.升旗时,国旗上端悬挂在距地面2。
2016数学中考试卷及答案
2016年河南省普通高中招生数学试题及答案解析一、选择题(每小题3分,共24分)1.-13的相反数是()A. -13B.13C.-3D.32.某种细胞的直径是0.00000095米,将0.00000095用科学计数法表示为()A.9.5×10-7B. 9.5×10-8C.0.95×10-7D. 95×10-83.下面几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是()DCBA4.下列计算正确的是()A.8-2=2B.(-3)2=6C.3a4-2a2=a2D.(-a3)2=a55.如图,过反比例函数y=kx(x>0)的图像上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为()A. 2B.3C.4D.56.如图,在△ABC中,∠ACB=900,AC=8,AB=10,DE垂直平分AC交AB于点E,则DE的长是()A.6B.5C.4D.3第5题O BAyx第6题EDCAB7.下面记录了甲、乙、丙、丁四名跳高运动员最好几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( )A.甲B.乙C.丙D.丁8.如图,已知菱形OABC 的顶点是O (0,0),B (2,2),若菱形绕点O 逆时针旋转,每秒旋转450,则第60秒时,菱形的对角线交点D 的坐标为( )A.(1,-1)B.(-1,-1)C.(2,0)D.(0,-2) 二、填空题(每小题3分,共21分) 9.计算:(-2)0-38= 。
10.如图,在ABCD 中,BE ⊥AB 交对角线AC 于点E,若∠1=200,则∠2的度数为 。
11.若关于x 的一元二次方程x 2+3x-k=0有两个不相等的实数根,则k 的取值范围是 。
12.在“阳光体育”活动时间,班主任将全班同学随机分成了四组进行活动,该班小明和小亮同学被分在同一组的概率是 。
2016年全国各地中考试题分类解析汇编(第1辑)第6章实数
2016年全国各地中考数学试题分类解析汇编(第一辑)第6章实数一.选择题(共20小题)1.(2016?永州)我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:指数运算21=2 22=4 23=8 (3)1=3 32=9 33=27 …新运算log22=1 log24=2 log28=3 …log33=1 log39=2 log327=3 …根据上表规律,某同学写出了三个式子:①log216=4,②log525=5,③log2=﹣1.其中正确的是()A.①② B.①③ C.②③ D.①②③2.(2016?天津)估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间3.(2016?资阳)的运算结果应在哪两个连续整数之间()A.2和 3 B.3和 4 C.4和 5 D.5和 64.(2016?衢州)在,﹣1,﹣3,0这四个实数中,最小的是()A.B.﹣1 C.﹣3 D.05.(2016?达州)下列各数中最小的是()A.0 B.﹣3 C.﹣D.16.(2016?桂林)下列实数中小于0的数是()A.2016 B.﹣2016 C.D.7.(2016?聊城)在实数﹣,﹣2,0,中,最小的实数是()A.﹣2 B.0 C.﹣D.8.(2016?重庆)在实数﹣2,2,0,﹣1中,最小的数是()A.﹣2 B.2 C.0 D.﹣19.(2016?贵州)估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间10.(2016?台湾)若一正方形的面积为20平方公分,周长为x公分,则x的值介于下列哪两个整数之间?()A.16,17 B.17,18 C.18,19 D.19,2011.(2016?台湾)判断2﹣1之值介于下列哪两个整数之间?()A.3,4 B.4,5 C.5,6 D.6,712.(2016?淮安)估计+1的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间13.(2016?海南)面积为2的正方形的边长在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间。
2016年全国中考数学真题分类 一元一次不等式(组)(习题解析)
2016年全国中考数学真题分类一元一次不等式(组)一、选择题8.(2016•广东茂名,8,3分)不等式组的解集在数轴上表示为()A.B.C.D.【思路分析】分别求出各选项的解集,并做出判断.不等式组的解集为﹣1<x≤1,A:数轴表示解集为无解,故选项A错误;B:数轴表示解集为﹣1<x≤1,故选项B正确;C:数轴表示解集为x≤﹣1,故选项C错误;D:数轴表示解集为x≥1,故选项D错误;故选B.【答案】B.5.(2016辽宁大连,5,3分)不等式组的解集是()A.x>﹣2 B.x<1 C.﹣1<x<2 D.﹣2<x<1【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得x>﹣2,解②得x<1,则不等式组的解集是:﹣2<x<1.故选D.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.19.(2016台湾,19)表为小洁打算在某电信公司购买一支MAT手机与搭配一个门号的两种方案.此公司每个月收取通话费与月租费的方式如下:若通话费超过月租费,只收通话费;若通话费不超过月租费,只收月租费.若小洁每个月的通话费均为x元,x为400到600之间的整数,则在不考虑其他费用并使用两年的情况下,x至少为多少才会使得选择乙方案的总花费比甲方案便宜?()甲方案乙方案门号的月租费(元)400 600MAT手机价格(元)15000 13000注意事项:以上方案两年内不可变更月租费A.500 B.516 C.517 D.600【考点】一元一次不等式的应用;一次函数的应用.【分析】由x的取值范围,结合题意找出甲、乙两种方案下两年的总花费各是多少,再由乙方案比甲方案便宜得出关于x的一元一次不等式,解不等式即可得出结论.【答案】解:∵x为400到600之间的整数,∴若小洁选择甲方案,需以通话费计算,若小洁选择乙方案,需以月租费计算,甲方案使用两年总花费=24x+15000;乙方案使用两年总花费=24×600+13000=27400.由已知得:24x+15000>27400,解得:x>516,即x至少为517.故选C.二、填空题11.(2016陕西11,3分)不等式0321<+-x 的解集是6x >。
2016年全国中考数学真题黑龙江省齐齐哈尔市中考试题(解析版-精品文档)
2016年黑龙江省齐齐哈尔市中考数学试卷一、单项选择题:每小题3分,共30分1.(3分)(2016•齐齐哈尔)﹣1是1的()A.倒数B.相反数C.绝对值D.立方根2.(3分)(2016•齐齐哈尔)下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.3.(3分)(2016•齐齐哈尔)九年级一班和二班每班选8名同学进行投篮比赛,每名同学投篮10次,对每名同学投中的次数进行统计,甲说:“一班同学投中次数为6个的最多”乙说:“二班同学投中次数最多与最少的相差6个.”上面两名同学的议论能反映出的统计量是()A.平均数和众数B.众数和极差 C.众数和方差 D.中位数和极差4.(3分)(2016•齐齐哈尔)下列算式①=±3;②=9;③26÷23=4;④=2016;⑤a+a=a2.运算结果正确的概率是()A.B.C.D.5.(3分)(2016•齐齐哈尔)下列命题中,真命题的个数是()①同位角相等②经过一点有且只有一条直线与这条直线平行③长度相等的弧是等弧④顺次连接菱形各边中点得到的四边形是矩形.A.1个B.2个C.3个D.4个6.(3分)(2016•齐齐哈尔)点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0).设△OPA的面积为S,则下列图象中,能正确反映面积S与x之间的函数关系式的图象是()A. B. C. D.7.(3分)(2016•齐齐哈尔)若关于x的分式方程=2﹣的解为正数,则满足条件的正整数m的值为()A.1,2,3 B.1,2 C.1,3 D.2,38.(3分)(2016•齐齐哈尔)足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进行了6场比赛,得了12分,该队获胜的场数可能是()A.1或2 B.2或3 C.3或4 D.4或59.(3分)(2016•齐齐哈尔)如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最少是()A.5个B.6个C.7个D.8个10.(3分)(2016•齐齐哈尔)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0④当y>0时,x的取值范围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个B.3个C.2个D.1个二、填空题:每小题3分,共27分11.(3分)(2016•齐齐哈尔)某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示为.12.(3分)(2016•齐齐哈尔)在函数y=中,自变量x的取值范围是.13.(3分)(2016•齐齐哈尔)如图,平行四边形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件使其成为菱形(只填一个即可).14.(3分)(2016•齐齐哈尔)一个侧面积为16πcm2的圆锥,其主视图为等腰直角三角形,则这个圆锥的高为cm.15.(3分)(2016•齐齐哈尔)如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C= 度.16.(3分)(2016•齐齐哈尔)如图,已知点P(6,3),过点P作PM⊥x轴于点M,PN⊥y轴于点N,反比例函数y=的图象交PM于点A,交PN于点B.若四边形OAPB的面积为12,则k= .17.(3分)(2016•齐齐哈尔)有一面积为5的等腰三角形,它的一个内角是30°,则以它的腰长为边的正方形的面积为.18.(3分)(2016•齐齐哈尔)如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,连接MC,将菱形ABCD翻折,使点A落在线段CM上的点E处,折痕交AB于点N,则线段EC的长为.19.(3分)(2016•齐齐哈尔)如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形AnOCnBn的对角线交点的坐标为.三、解答题:共63分20.(7分)(2016•齐齐哈尔)先化简,再求值:(1﹣)÷﹣,其中x2+2x﹣15=0.21.(8分)(2016•齐齐哈尔)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣1,3),B(﹣4,0),C (0,0)(1)画出将△ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△A1B1C1;(2)画出将△ABC绕原点O顺时针方向旋转90°得到△A2B2 O;(3)在x轴上存在一点P,满足点P到A1与点A2距离之和最小,请直接写出P点的坐标.22.(8分)(2016•齐齐哈尔)如图,对称轴为直线x=2的抛物线y=x2+bx+c与x 轴交于点A和点B,与y轴交于点C,且点A的坐标为(﹣1,0)(1)求抛物线的解析式;(2)直接写出B、C两点的坐标;(3)求过O,B,C三点的圆的面积.(结果用含π的代数式表示)注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)23.(8分)(2016•齐齐哈尔)如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D,E,AD与BE相交于点F.(1)求证:△ACD∽△BFD;(2)当tan∠ABD=1,AC=3时,求BF的长.24.(10分)(2016•齐齐哈尔)为增强学生体质,各学校普遍开展了阳光体育活动,某校为了解全校1000名学生每周课外体育活动时间的情况,随机调查了其中的50名学生,对这50名学生每周课外体育活动时间x(单位:小时)进行了统计.根据所得数据绘制了一幅不完整的统计图,并知道每周课外体育活动时间在6≤x<8小时的学生人数占24%.根据以上信息及统计图解答下列问题:(1)本次调查属于调查,样本容量是;(2)请补全频数分布直方图中空缺的部分;(3)求这50名学生每周课外体育活动时间的平均数;(4)估计全校学生每周课外体育活动时间不少于6小时的人数.25.(10分)(2016•齐齐哈尔)有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B 两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:(1)A、B两点之间的距离是米,甲机器人前2分钟的速度为米/分;(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;(3)若线段FG∥x轴,则此段时间,甲机器人的速度为米/分;(4)求A、C两点之间的距离;(5)直接写出两机器人出发多长时间相距28米.26.(12分)(2016•齐齐哈尔)如图所示,在平面直角坐标系中,过点A(﹣,0)的两条直线分别交y轴于B、C两点,且B、C两点的纵坐标分别是一元二次方程x2﹣2x﹣3=0的两个根(1)求线段BC的长度;(2)试问:直线AC与直线AB是否垂直?请说明理由;(3)若点D在直线AC上,且DB=DC,求点D的坐标;(4)在(3)的条件下,直线BD上是否存在点P,使以A、B、P三点为顶点的三角形是等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.2016年黑龙江省齐齐哈尔市中考数学试卷参考答案与试题解析一、单项选择题:每小题3分,共30分1.(3分)(2016•齐齐哈尔)﹣1是1的()A.倒数B.相反数C.绝对值D.立方根【分析】根据相反数的定义:只有符号不同的两个数叫互为相反数.即a的相反数是﹣a.【解答】解:﹣1是1的相反数.故选B.【点评】主要考查相反数的概念:只有符号不同的两个数互为相反数,0的相反数是0.同时涉及倒数的定义,绝对值的性质,立方根的定义的知识点.2.(3分)(2016•齐齐哈尔)下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;B、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;C、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;D、是轴对称图形,又是中心对称图形.故此选项正确.故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)(2016•齐齐哈尔)九年级一班和二班每班选8名同学进行投篮比赛,每名同学投篮10次,对每名同学投中的次数进行统计,甲说:“一班同学投中次数为6个的最多”乙说:“二班同学投中次数最多与最少的相差6个.”上面两名同学的议论能反映出的统计量是()A.平均数和众数B.众数和极差 C.众数和方差 D.中位数和极差【分析】根据众数和极差的概念进行判断即可.【解答】解:一班同学投中次数为6个的最多反映出的统计量是众数,二班同学投中次数最多与最少的相差6个能反映出的统计量极差,故选:B.【点评】本题考查的是统计量的选择,平均数、众数、中位数和极差、方差在描述数据时的区别:①数据的平均数、众数、中位数是描述一组数据集中趋势的特征量,极差、方差是衡量一组数据偏离其平均数的大小(即波动大小)的特征数,描述了数据的离散程度.②极差和方差的不同点:极差表示一组数据波动范围的大小,一组数据极差越大,则它的波动范围越大.4.(3分)(2016•齐齐哈尔)下列算式①=±3;②=9;③26÷23=4;④=2016;⑤a+a=a2.运算结果正确的概率是()A.B.C.D.【分析】分别利用二次根式的性质以及负整数指数幂的性质、同底数幂的除法运算法则、合并同类项法则进行判断,再利用概率公式求出答案.【解答】解:①=3,故此选项错误;②==9,正确;③26÷23=23=8,故此选项错误;④=2016,错误;⑤a+a=2a,故此选项错误,故运算结果正确的概率是:,故选:A.【点评】此题主要考查了二次根式的性质以及负整数指数幂的性质、同底数幂的除法运算、合并同类项、概率公式等知识,正确掌握相关运算法则是解题关键.5.(3分)(2016•齐齐哈尔)下列命题中,真命题的个数是()①同位角相等②经过一点有且只有一条直线与这条直线平行③长度相等的弧是等弧④顺次连接菱形各边中点得到的四边形是矩形.A.1个B.2个C.3个D.4个【分析】根据平行线的性质对①进行判断;根据平行公理对②进行判断;根据等弧的定义对③进行判断;根据中点四边的判定方法可判断顺次连接菱形各边中点得到的四边形为平行四边形,加上菱形的对角线垂直可判断中点四边形为矩形.【解答】解:两直线平行,同位角相等,所以①错误;经过直线外一点有且只有一条直线与这条直线平行,所以②错误;在同圆或等圆中,长度相等的弧是等弧,所以③选项错误;顺次连接菱形各边中点得到的四边形是矩形,所以④正确.故选A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.(3分)(2016•齐齐哈尔)点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0).设△OPA的面积为S,则下列图象中,能正确反映面积S与x之间的函数关系式的图象是()A. B. C. D.【分析】先用x表示出y,再利用三角形的面积公式即可得出结论.【解答】解:∵点P(x,y)在第一象限内,且x+y=6,∴y=6﹣x(0<x<6,0<y<6).∵点A的坐标为(4,0),∴S=×4×(6﹣x)=12﹣2x(0<x<6),∴C符合.故选C.【点评】本题考查的是一次函数的图象,在解答此题时要注意x,y的取值范围.7.(3分)(2016•齐齐哈尔)若关于x的分式方程=2﹣的解为正数,则满足条件的正整数m的值为()A.1,2,3 B.1,2 C.1,3 D.2,3【分析】根据等式的性质,可得整式方程,根据解整式方程,可得答案.【解答】解:等式的两边都乘以(x﹣2),得x=2(x﹣2)+m,解得x=4﹣m,x=4﹣m≠2,由关于x的分式方程=2﹣的解为正数,得m=1,m=3,故选:C.【点评】本题考查了分式方程的解,利用等式的性质得出整式方程是解题关键,注意要检验分式方程的根.8.(3分)(2016•齐齐哈尔)足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进行了6场比赛,得了12分,该队获胜的场数可能是()A.1或2 B.2或3 C.3或4 D.4或5【分析】设该队胜x场,平y场,则负(6﹣x﹣y)场,根据:胜场得分+平场得分+负场得分=最终得分,列出二元一次方程,根据x、y的范围可得x的可能取值.【解答】解:设该队胜x场,平y场,则负(6﹣x﹣y)场,根据题意,得:3x+y=12,即:x=,∵x、y均为非负整数,且x+y≤6,∴当y=0时,x=4;当y=3时,x=3;即该队获胜的场数可能是3场或4场,故选:C.【点评】本题主要考查二元一次方程的实际应用,根据相等关系列出方程是解题的关键,要熟练根据未知数的范围确定方程的解.9.(3分)(2016•齐齐哈尔)如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最少是()A.5个B.6个C.7个D.8个【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【解答】解:由题中所给出的主视图知物体共2列,且都是最高两层;由左视图知共行,所以小正方体的个数最少的几何体为:第一列第一行1个小正方体,第一列第二行2个小正方体,第二列第三行2个小正方体,其余位置没有小正方体.即组成这个几何体的小正方体的个数最少为:1+2+2=5个.故选A.【点评】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.10.(3分)(2016•齐齐哈尔)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0④当y>0时,x的取值范围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个B.3个C.2个D.1个【分析】利用抛物线与x轴的交点个数可对①进行判断;利用抛物线的对称性得到抛物线与x轴的一个交点坐标为(3,0),则可对②进行判断;由对称轴方程得到b=﹣2a,然后根据x=﹣1时函数值为0可得到3a+c=0,则可对③进行判断;根据抛物线在x轴上方所对应的自变量的范围可对④进行判断;根据二次函数的性质对⑤进行判断.【解答】解:∵抛物线与x轴有2个交点,∴b2﹣4ac>0,所以①正确;∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax2+bx+c=0的两个根是x1=﹣1,x2=3,所以②正确;∵x=﹣=1,即b=﹣2a,而x=﹣1时,y=0,即a﹣b+c=0,∴a+2a+c=0,所以③错误;∵抛物线与x轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x<3时,y>0,所以④错误;∵抛物线的对称轴为直线x=1,∴当x<1时,y随x增大而增大,所以⑤正确.故选B.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a ≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x 轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题:每小题3分,共27分11.(3分)(2016•齐齐哈尔)某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示为 6.9×10﹣7.【分析】对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000069=6.9×10﹣7.故答案为:6.9×10﹣7.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(3分)(2016•齐齐哈尔)在函数y=中,自变量x的取值范围是x≥﹣,且x≠2 .【分析】根据被开方数是非负数,分母不能为零,可得答案.【解答】解:由题意,得3x+1≥0且x﹣2≠0,解得x≥﹣,且x≠2,故答案为:x≥﹣,且x≠2.【点评】本题考查了函数自变量的取值范围,利用被开方数是非负数,分母不能为零得出不等式是解题关键.13.(3分)(2016•齐齐哈尔)如图,平行四边形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件AC⊥BD或∠AOB=90°或AB=BC 使其成为菱形(只填一个即可).【分析】利用菱形的判定方法确定出适当的条件即可.【解答】解:如图,平行四边形ABCD的对角线AC,BD相交于点O,添加一个适当的条件为:AC⊥BD或∠AOB=90°或AB=BC使其成为菱形.故答案为:AC⊥BD或∠AOB=90°或AB=BC【点评】此题考查了菱形的判定,以及平行四边形的性质,熟练掌握菱形的判定方法是解本题的关键.14.(3分)(2016•齐齐哈尔)一个侧面积为16πcm2的圆锥,其主视图为等腰直角三角形,则这个圆锥的高为 4 cm.【分析】设底面半径为r,母线为l,由轴截面是等腰直角三角形,得出2r=l,代入S=πrl,求出r,l,从而求得圆锥的高.侧【解答】解:设底面半径为r,母线为l,∵主视图为等腰直角三角形,∴2r=l,=πrl=πr2=16πcm2,∴侧面积S侧解得 r=4,l=4,∴圆锥的高h=4cm,故答案为:4.【点评】本题考查了圆锥的计算,解题的关键是能够熟练掌握有关的计算公式,难度不大.15.(3分)(2016•齐齐哈尔)如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C= 45 度.【分析】连接OD,只要证明△AOD是等腰直角三角形即可推出∠A=45°,再根据平行四边形的对角相等即可解决问题.【解答】解;连接OD.∵CD是⊙O切线,∴OD⊥CD,∵四边形ABCD是平行四边形,∴AB∥CD,∴AB⊥OD,∴∠AOD=90°,∵OA=OD,∴∠A=∠ADO=45°,∴∠C=∠A=45°.故答案为45.【点评】本题考查平行四边形的性质、切线的性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.16.(3分)(2016•齐齐哈尔)如图,已知点P(6,3),过点P作PM⊥x轴于点M,PN⊥y轴于点N,反比例函数y=的图象交PM于点A,交PN于点B.若四边形OAPB的面积为12,则k= 6 .【分析】根据点P(6,3),可得点A的横坐标为6,点B的纵坐标为3,代入函数解析式分别求出点A的纵坐标和点B的横坐标,然后根据四边形OAPB的面积为12,列出方程求出k的值.【解答】解:∵点P(6,3),∴点A的横坐标为6,点B的纵坐标为3,代入反比例函数y=得,点A的纵坐标为,点B的横坐标为,即AM=,NB=,∵S四边形OAPB=12,即S矩形OMPN ﹣S△OAM﹣S△NBO=12,6×3﹣×6×﹣×3×=12,解得:k=6.故答案为:6.【点评】本题考查了反比例函数系数k的几何意义,解答本题的关键是根据点A、B的纵横坐标,代入解析式表示出其坐标,然后根据面积公式求解.17.(3分)(2016•齐齐哈尔)有一面积为5的等腰三角形,它的一个内角是30°,则以它的腰长为边的正方形的面积为20和20 .【分析】分两种情形讨论①当30度角是等腰三角形的顶角,②当30度角是底角,分别作腰上的高即可.【解答】解:如图1中,当∠A=30°,AB=AC时,设AB=AC=a,作BD⊥AC于D,∵∠A=30°,∴BD=AB=a,∴•a•a=5,∴a2=20,∴△ABC的腰长为边的正方形的面积为20.如图2中,当∠ABC=30°,AB=AC时,作BD⊥CA交CA的延长线于D,设AB=AC=a,∵AB=AC,∴∠ABC=∠C=30°,∴∠BAC=120°,∠BAD=60°,在RT△ABD中,∵∠D=90°,∠BAD=60°,∴BD=a,∴•a•a=5,∴a2=20,∴△ABC的腰长为边的正方形的面积为20.故答案为20或20.【点评】本题考查正方形的性质、等腰三角形的性质等知识,解题的关键是学会分类讨论,学会添加常用辅助线,属于中考常考题型.18.(3分)(2016•齐齐哈尔)如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,连接MC,将菱形ABCD翻折,使点A落在线段CM上的点E处,折痕交AB于点N,则线段EC的长为﹣1 .【分析】过点M作MF⊥DC于点F,根据在边长为2的菱形ABCD中,∠A=60°,M为AD中点,得到2MD=AD=CD=2,从而得到∠FDM=60°,∠FMD=30°,进而利用锐角三角函数关系求出EC的长即可.【解答】解:如图所示:过点M作MF⊥DC于点F,∵在边长为2的菱形ABCD中,∠A=60°,M为AD中点,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°,∴FD=MD=,∴FM=DM×cos30°=,∴MC==,∴EC=MC﹣ME=﹣1.故答案为:﹣1.【点评】此题主要考查了菱形的性质以及锐角三角函数关系等知识,解题的关键是从题目中抽象出直角三角形,难度不大.19.(3分)(2016•齐齐哈尔)如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形AnOCnBn的对角线交点的坐标为(﹣,).【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,即可求得Bn的坐标,然后根据矩形的性质即可求得对角线交点的坐标.【解答】解:∵在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,∴矩形A1OC1B1与矩形AOCB是位似图形,点B与点B1是对应点,∵OA=2,OC=1.∵点B的坐标为(﹣2,1),∴点B1的坐标为(﹣2×,1×),∵将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,∴B2(﹣2××,1××),∴Bn(﹣2×,1×),∵矩形An OCnBn的对角线交点(﹣2××,1××),即(﹣,),故答案为:(﹣,).【点评】本题考查的是矩形的性质、位似变换的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.三、解答题:共63分20.(7分)(2016•齐齐哈尔)先化简,再求值:(1﹣)÷﹣,其中x2+2x﹣15=0.【分析】先算括号里面的,再算除法,最后算减法,根据x2+2x﹣15=0得出x2+2x=15,代入代数式进行计算即可.【解答】解:原式=•﹣=﹣=,∵x2+2x﹣15=0,∴x2+2x=15,∴原式=.【点评】本题考查的是分式的化简求值,此类题型的特点是:利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.21.(8分)(2016•齐齐哈尔)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣1,3),B(﹣4,0),C (0,0)(1)画出将△ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△A1B1C1;(2)画出将△ABC绕原点O顺时针方向旋转90°得到△A2B2 O;(3)在x轴上存在一点P,满足点P到A1与点A2距离之和最小,请直接写出P点的坐标.【分析】(1)分别将点A、B、C向上平移1个单位,再向右平移5个单位,然后顺次连接;(2)根据网格结构找出点A、B、C以点O为旋转中心顺时针旋转90°后的对应点,然后顺次连接即可;(3)利用最短路径问题解决,首先作A1点关于x轴的对称点A3,再连接A2A3与x轴的交点即为所求.【解答】解:(1)如图所示,△A1B1C1为所求做的三角形;(2)如图所示,△A2B2O为所求做的三角形;(3)∵A2坐标为(3,1),A3坐标为(4,﹣4),∴A2A3所在直线的解析式为:y=﹣5x+16,令y=0,则x=,∴P点的坐标(,0).【点评】本题考查了利用旋转和平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.22.(8分)(2016•齐齐哈尔)如图,对称轴为直线x=2的抛物线y=x2+bx+c与x 轴交于点A和点B,与y轴交于点C,且点A的坐标为(﹣1,0)(1)求抛物线的解析式;(2)直接写出B、C两点的坐标;(3)求过O,B,C三点的圆的面积.(结果用含π的代数式表示)注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)【分析】(1)利用对称轴方程可求得b,把点A的坐标代入可求得c,可求得抛物线的解析式;(2)根据A、B关于对称轴对称可求得点B的坐标,利用抛物线的解析式可求得B点坐标;(3)根据B、C坐标可求得BC长度,由条件可知BC为过O、B、C三点的圆的直径,可求得圆的面积.【解答】解:(1)由A(﹣1,0),对称轴为x=2,可得,解得,∴抛物线解析式为y=x2﹣4x﹣5;(2)由A点坐标为(﹣1,0),且对称轴方程为x=2,可知AB=6,∴OB=5,∴B点坐标为(5,0),∵y=x2﹣4x﹣5,∴C点坐标为(0,﹣5);(3)如图,连接BC,则△OBC是直角三角形,∴过O、B、C三点的圆的直径是线段BC的长度,在Rt△OBC中,OB=OC=5,∴BC=5,∴圆的半径为,∴圆的面积为π()2=π.【点评】本题为二次函数的综合应用,涉及知识点有二次函数的性质、待定系数法、勾股定理、圆周角定理等.在(3)中确定出圆的半径是解题的关键.本题属于基础性的题目,难度不大.23.(8分)(2016•齐齐哈尔)如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D,E,AD与BE相交于点F.(1)求证:△ACD∽△BFD;(2)当tan∠ABD=1,AC=3时,求BF的长.【分析】(1)由∠C+∠DBF=90°,∠C+∠DAC=90°,推出∠DBF=∠DAC,由此即可证明.(2)先证明AD=BD,由△ACD∽△BFD,得==1,即可解决问题.【解答】(1)证明:∵AD⊥BC,BE⊥AC,∴∠BDF=∠ADC=∠BEC=90°,∴∠C+∠DBF=90°,∠C+∠DAC=90°,∴∠DBF=∠DAC,∴△ACD∽△BFD.(2)∵tan∠ABD=1,∠ADB=90°∴=1,∴AD=BD,∵△ACD∽△BFD,∴==1,∴BF=AC=3.【点评】本题考查相似三角形的判定和性质、三角函数等知识,解题的关键是熟练掌握相似三角形的判定和性质,属于中考常考题型.24.(10分)(2016•齐齐哈尔)为增强学生体质,各学校普遍开展了阳光体育活动,某校为了解全校1000名学生每周课外体育活动时间的情况,随机调查了其中的50名学生,对这50名学生每周课外体育活动时间x(单位:小时)进行了统计.根据所得数据绘制了一幅不完整的统计图,并知道每周课外体育活动时间在6≤x<8小时的学生人数占24%.根据以上信息及统计图解答下列问题:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年内地新疆高中班招生中考真题 一、选择题,共9小题,每小题5分,共45分. 1.(5分)﹣2的绝对值是( ) A.2 B.﹣2 C.±2 D. 2.(5分)如图,AB∥CD,CE平分∠BCD,∠B=36°,则∠DCE等于( )
A.18° B.36° C.45° D.54° 3.(5分)不等式组的解集是( ) A.>4 B.≤3 C.3≤<4 D.无解 4.(5分)一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球,3个白球,从布袋中随机摸出一个球,摸出红球的概率是( ) A. B. C. D. 5.(5分)一个扇形的圆心角是120°,面积为3πcm2,那么这个扇形的半径是( ) A.1cm B.3cm C.6cm D.9cm 6.(5分)小明的父亲从家走了20分钟到一个离家900米的书店,在书店看了10分钟书后,用15分钟返回家,下列图中表示小明的父亲离家的距离与时间的函数图象是( )
A. B. C. D. 7.(5分)已知二次函数y=a2+b+c(a≠0)的图象如图所示,则下列结论中正确的是( ) A.a>0 B.c<0 C.3是方程a2+b+c=0的一个根 D.当<1时,y随的增大而减小 8.(5分)轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是( )海里.
A.25 B.25 C.50 D.25 9.(5分)两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米,第一组的步行速度是第二组的1.2倍,并且比第二组早15分钟到达乙地.设第二组的步行速度为千米/小时,根据题意可列方程是( ) A.﹣=15 B.﹣=
C.﹣=15 D.﹣= 二、填空题,共小题,每小题5分,共30分. 10.(5分)计算(1﹣)(+1)的结果是 . 11.(5分)关于的一元二次方程2+2﹣=0有两个不相等的实数根,则的取值范围是 . 12.(5分)某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示: 时间(小时) 5 6 7 8 人数 10 15 20 5 则这50名学生这一周在校的平均体育锻炼时间是 小时. 13.(5分)如图所示,△ABC中,E,F分别是边AB,AC上的点,且满足==,则△AEF与△ABC的面积比是 . 14.(5分)如图,测量河宽AB(假设河的两岸平行),在C点测得∠ACB=30°,D点测得∠ADB=60°,又CD=60m,则河宽AB为 m(结果保留根号).
15.(5分)如图,在▱ABCD中,P是CD边上一点,且AP和BP分别平分∠DAB和∠CBA,若AD=5,AP=8,则△APB的周长是 .
三、解答题,共8小题,共75分 16.(6分)计算:()﹣1+|1﹣|﹣tan 30°.
17.(7分)解方程组. 18.(10分)某学生社团为了解本校学生喜欢球类运动的情况,随机抽取了若干名学生进行问卷调查,要求每位学生只能填写一种自己喜欢的球类运动,并将调查的结果绘制成如下的两幅不完整的统计图.
请根据统计图表提供的信息,解答下列问题: (1)参加调查的人数共有 人;在扇形图中,m= ;将条形图补充完整; (2)如果该校有3500名学生,则估计喜欢“篮球”的学生共有多少人? (3)该社团计划从篮球、足球和乒乓球中,随机抽取两种球类组织比赛,请用树状图或列表法,求抽取到的两种球类恰好是“篮球”和“足球”的概率.
19.(10分)如图,四边形ABCD中,AD∥BC,AE⊥AD交BD于点E,CF⊥BC交BD于点F,且AE=CF.求证:四边形ABCD是平行四边形. 20.(10分)周口体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?
21.(10分)如图,直线y=2+3与y轴交于A点,与反比例函数y=(>0)的图象交于点B,过点B作BC⊥轴于点C,且C点的坐标为(1,0). (1)求反比例函数的解析式; (2)点D(a,1)是反比例函数y=(>0)图象上的点,在轴上是否存在点P,使得PB+PD最小?若存在,求出点P的坐标;若不存在,请说明理由.
22.(10分)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB. (1)求证:直线BF是⊙O的切线; (2)若AB=5,sin∠CBF=,求BC和BF的长.
23.(12分)如图,对称轴为直线=的抛物线经过点A(6,0)和B(0,﹣4). (1)求抛物线解析式及顶点坐标; (2)设点E(,y)是抛物线上一动点,且位于第一象限,四边形OEAF是以OA为对角线的平行四边形,求平行四边形OEAF的面积S与之间的函数关系式; (3)当(2)中的平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形. 参考答案 一、选择题,共9小题,每小题5分,共45分. 1.A 【解析】﹣2的绝对值是:2. 故选A. 2.A 【解析】∵AB∥CD, ∴∠BCD=∠B=36°, ∵CE平分∠BCD, ∴∠DCE=18°. 故选A. 3.C 【解析】, 解①得:<4, 解②得:≥3, 则不等式的解集是:3≤<4. 故选C. 4.C 【解析】∵2个红球、3个白球,一共是5个, ∴从布袋中随机摸出一个球,摸出红球的概率是. 故选C. 5.B 【解析】设扇形的半径为R, 由题意:3π=,解得R=±3, ∵R>0, ∴R=3cm, ∴这个扇形的半径为3cm. 故选B. 6.B 【解析】根据题意,从20分钟到30分钟在书店里看书,离家距离没有变化,是一条平行于轴的线段.故选B. 7.A 【解析】A、图象开口向下,所以a<0, 故A错误; B、图象与y轴交点在y轴的正半轴,所以C>0, 故B错误; C、因为对称轴为=1,所以(﹣1,0)与(3,0)关于=1对称, 故=3是a2+b+c=0的一个根; 故C正确; D、由图象可知:当<1时,y随的增大而增大; 故D错误. 故选C. 8.D 【解析】根据题意, ∠1=∠2=30°, ∵∠ACD=60°, ∴∠ACB=30°+60°=90°, ∴∠CBA=75°﹣30°=45°, ∴△ABC为等腰直角三角形, ∵BC=50×0.5=25, ∴AC=BC=25(海里). 故选D. 9.D 【解析】设第二组的步行速度为千米/小时,则第一组的步行速度为1.2千米/小时, 第一组到达乙地的时间为:7.5÷1.2; 第二组到达乙地的时间为:7.5÷; ∵第一组比第二组早15分钟(小时)到达乙地,
∴列出方程为:﹣==. 故选D. 二、填空题,共小题,每小题5分,共30分. 10. 【解析】原式=•(+1)=, 故答案为: 11.>﹣1 【解析】∵关于的一元二次方程2+2﹣=0有两个不相等的实数根, ∴△=22+4>0, 解得>﹣1. 故答案为:>﹣1. 12.6.4 【解析】=6.4. 故答案为:6.4. 13.1:9 【解析】 ∵==,
∴, 又∵∠A=∠A, ∴△AEF∽△ABC, ∴△AEF与△ABC的面积比=1:9, 故答案为:1:9. 14.30 【解析】∵∠ACB=30°,∠ADB=60°, ∴∠CAD=30°, ∴AD=CD=60m, 在Rt△ABD中, AB=AD•sin∠ADB=60×=30 (m). 故答案为:30 . 15.24 【解析】∵四边形ABCD是平行四边形, ∴AD∥CB,AB∥CD, ∴∠DAB+∠CBA=180°, 又∵AP和BP分别平分∠DAB和∠CBA, ∴∠PAB+∠PBA=(∠DAB+∠CBA)=90°, 在△APB中,∠APB=180°﹣(∠PAB+∠PBA)=90°; ∵AP平分∠DAB, ∴∠DAP=∠PAB, ∵AB∥CD, ∴∠PAB=∠DPA ∴∠DAP=∠DPA ∴△ADP是等腰三角形, ∴AD=DP=5, 同理:PC=CB=5, 即AB=DC=DP+PC=10, 在Rt△APB中,AB=10,AP=8, ∴BP==6, ∴△APB的周长=6+8+10=24; 故答案为:24. 三、解答题,共8小题,共75分 16.解:()﹣1+|1﹣|﹣tan 30° =2+﹣1﹣3× =1+﹣3 =﹣2. 17.解:①+②得,3=15,解得=5,把=5代入①得,10+3y=7,解得y=﹣1. 故方程组的解为:. 18.解:(1)∵240÷40%=600(人) ∴参加调查的人数共有600人; ∵1﹣40%﹣20%﹣10%=30%, ∴在扇形图中,m=30.
. (2)3500×40%=1400(人) 答:喜欢“篮球”的学生共有1400人. (3) 篮球 足球 乒乓球 篮球 / 篮球、足球 篮球、乒乓球 足球 足球、篮球 / 足球、乒乓球 乒乓球 乒乓球、篮球 乒乓球、足球 / 2÷6=.
答:抽取到的两种球类恰好是“篮球”和“足球”的概率是. 故答案为:600、30. 19.证明:∵AE⊥AD,CF⊥BC, ∴∠EAD=∠FCB=90°, ∵AD∥BC, ∴∠ADE=∠CBF,