常见泵的分类及工作原理

合集下载

液压泵的分类

液压泵的分类

液压泵的分类液压泵是一种将机械能转化为液压能的装置,它是液压系统中最核心的部件之一。

液压泵的分类种类繁多,按照不同的分类标准可以分为多种类型,下面将对常见的液压泵进行分类介绍。

按照工作原理分类1.位移式液压泵位移式液压泵是将机械能转换为压力能和流量的一类液压泵,其工作原理是通过机械运动将液体压缩,并将压缩后的液体通过管道输送到需要的位置。

位移式液压泵主要分为齿轮泵、齿轮泵、柱塞泵、叶片泵、螺杆泵等。

2.动力式液压泵动力式液压泵是利用外部动力源(如电动机、发动机等)来驱动液压泵工作的一类液压泵,它们主要包括液压马达和液压液压泵两种类型。

动力式液压泵的工作原理是通过外部动力源产生的动力来驱动液压泵的转动,从而将液体压缩并输送到需要的位置。

按照压力等级分类1.低压液压泵低压液压泵是指工作压力在10MPa以下的液压泵,主要用于一些较为简单的液压系统,如农业机械、船舶、建筑机械等。

2.中压液压泵中压液压泵是指工作压力在10-31.5MPa的液压泵,主要用于一些要求中等压力的液压系统,如冶金机械、航空机械、军事机械等。

3.高压液压泵高压液压泵是指工作压力在31.5-100MPa的液压泵,主要用于一些要求高压力的液压系统,如工程机械、冶金机械、航空机械等。

按照结构形式分类1.齿轮泵齿轮泵是一种常见的位移式液压泵,其结构简单,易于制造和维修。

齿轮泵主要由外齿轮和内齿轮组成,液体在两个齿轮之间流动,从而实现液体的压缩和输送。

2.柱塞泵柱塞泵是一种高性能的液压泵,其结构复杂,但具有高压力、高流量、高效率等优点。

柱塞泵由柱塞和泵体组成,柱塞在泵体内往复运动,从而实现液体的压缩和输送。

3.叶片泵叶片泵是一种常见的液压泵,其结构简单,功率密度高,适用于中小型液压系统。

叶片泵由叶轮、叶片和泵体组成,液体在叶片的作用下被压缩并输送。

按照用途分类1.液压马达液压马达是一种动力式液压泵,其结构类似于液压泵,但其工作原理是将液体压缩成动力,并通过马达输出动力,从而实现机械的转动。

柱塞泵分类

柱塞泵分类

柱塞泵分类
柱塞泵是一种常见的流体输送设备,也是分类最复杂的泵之一。

由于不同的运行要求,柱塞泵的种类越来越多,被分为多种不同的类别,具体分类如下:
一、根据工作原理分类
1.单柱塞泵
这种泵通过单个柱塞活塞在内筒中运动,使流体从进口被吸入内筒内,再被活塞推向出口,从而实现流体的输送功能。

2.双柱塞泵
这种泵的特点是有两个柱塞活塞,根据活塞的行程顺序不同,能将流体从进口被吸入内筒内,再由另一个活塞推向出口,也可以倒置使用的。

二、根据运动方式分类
1.活塞拉动泵
这种泵的工作原理是由外部动力机械使活塞运动,从而进行吸入和排出。

2.活塞推动泵
这种泵的工作原理是由流体动力将活塞推动,从而实现吸入和排出,具备自吸能力。

三、根据流体性质分类
1.普通柱塞泵
这种泵一般用于轻质非多层流体介质输送,具有较高的效率。

2.耐磨柱塞泵
这种泵具有较优的耐磨性能,适用于多层流体输送,比如油墨、污水、液体煤油等。

四、根据应用领域分类
1.工业柱塞泵
这种泵主要用于工业领域,用于输送液体介质,比如润滑油、车油、火油等。

2.节能柱塞泵
这种泵具有节能的功能,主要用于水处理设备、温度保护、溶质分离等领域。

以上就是柱塞泵的分类情况,可以根据实际应用需求,选择适合自己的柱塞泵来进行工作。

该类泵的应用越来越广泛,也是许多工业设备的关键部件,为了保证设备的正常运行,应定期对柱塞泵进行维护和检查,以便及时发现问题,避免不必要的损失。

化工泵的分类及工作原理

化工泵的分类及工作原理

化工泵的分类及工作原理化工泵按照工作原理、结构分类有容积式泵、其他形式的泵、叶片泵;按化工用途分类有管路输送泵、辅助用途泵、公用工程泵、工艺流程泵;按输送介质分类有油泵、水泵、杂质泵、耐腐蚀泵。

因为它丰富的种类,所以化工泵在化工等领域具有霸主的地位。

化工泵具有稳定的工作性能,它的密封性相对其他泵设备更具优势,同时它的造型美观,也能满足现代人的审美需要,检修方便也是它的一大特色。

随着化工泵的发展,它的家族逐渐壮大,那么化工泵分类有哪些呢?化工泵的分类:1、按照工作原理、结构分类:1)容积式泵:利用泵缸体内容积的连续变化输送液体的泵,如往复泵、活塞泵、齿轮泵、螺杆泵。

2)其他形式的泵:有利用电磁输送液态电导体态的电磁泵;利用流体能量来输送液体的泵,如喷射泵、空气升液器等。

3)叶片泵:通过泵轴旋转时带动各种叶轮叶片给液体以离心力或轴向力,输送液体到管道或容器,如离心泵、旋涡泵、混流泵、轴流泵。

2、按化工用途分类:1)管路输送泵:输油管线用泵、装卸车用泵等。

2)辅助用途泵:包括润滑油泵、密封油泵、液压传动用泵等。

3)公用工程泵:包括锅炉用泵、凉水塔泵、消防用泵、水源用深井泵等。

4)工艺流程泵:包括给料泵、回流泵、循环泵、冲洗泵、排污泵、补充泵、输出泵等。

3、按输送介质分类:1)油泵:冷油泵、热油泵、油浆泵、液态烃泵等。

2)水泵:包括清水泵、锅炉给水泵、凝水泵、热水泵。

3)杂质泵:包括浆液泵、砂泵、污水泵、煤粉泵、灰渣泵等。

4)耐腐蚀泵:包括不锈钢泵、高硅铸铁泵、陶瓷耐酸泵、不透性石墨泵、衬硬胶泵、硬聚氯乙烯泵、屏蔽泵、隔膜泵、钛泵等。

通过以上对化工泵分类的介绍,我们可以进一步发现化工泵能在众多领域独占鳌头的原因了。

一类产品如果想保持强大的竞争力,需要衍生各种适合市场需要的产品。

很庆幸的化工泵正朝着这个方向发展。

化工泵的分类

化工泵的分类

化工泵的分类化工泵的分类化工泵是在化工工业中最为常见的一种泵,用于输送各种液体、气体和固体颗粒混合体。

根据用途和工作原理,化工泵可分为多个分类。

本文将从工作原理角度出发,介绍化工泵的分类。

一、离心泵离心泵是化工泵中最为常见和常用的泵之一,它主要由叶轮、泵体、轴和机械密封组成。

它适用于输送混合物中的液体和气体,可以提供高压和高流量。

因此,在制药业、化学工业和石油工业中常被使用。

二、柱塞泵柱塞泵是一种能够有效保持输送流量的泵,因为它的结构可以产生强大的压力。

在填充时,柱塞泵将泵爪插入空气和液体的界面,并压缩气体,使液体得以被吸进泵体,随后在下行路线中形成压力,推动流体通过。

三、螺杆泵螺杆泵适用于输送高黏度的液体和软固体颗粒。

螺杆泵由转子和定子组成,转子被安装在定子的内部,并在其内部形成一个环形液体通道。

在使用过程中,转子在定子内部旋转,将液体从进口处推进到出口处。

螺杆泵通常用于化学工业和制药工业中。

四、减速泵减速泵是一种在输送高压液体和固体颗粒时具有重要作用的泵。

它采用叶轮和叶片,利用风动泵来提供分散、压缩和喷射作用。

相对于其它类型的泵,减速泵的运输能力更高,可以通过某些特殊设计来满足多种应用需求。

五、推进式负压泵推进式负压泵是专门用于输送高黏度液体和含有气体的液体的,其特点是压力大,容易泄漏。

它通常由叶轮、离心轴和驱动部分组成,由电动机来驱动。

当驱动部分开始工作时,叶轮将液体推进高压空气中,并通过管道和输送法来进行输送。

六、压力泵压力泵可用于输送各种含有气体、液体和固体颗粒混合物,它是一种具有较高压力和流量的泵。

压力泵通常由柱塞、活塞、阀门和弹簧组成,并可用于多种工业场合,如化工、造纸、制药等。

总之,化工泵是化学工业和制药工业中最为常见的一种泵,其分类很多,每种泵都有其独特的特点和优势。

在选择化工泵时,需根据介质性质、工作条件、造价差异等方面进行综合考虑,选择最适合自身需求的泵。

简述液压泵的工作原理和分类

简述液压泵的工作原理和分类

简述液压泵的工作原理和分类
《液压泵的工作原理和分类》
液压泵是将机械能转化为液压能的装置,广泛应用于各个行业中。

液压泵工作原理基于液体不可压缩的特性,通过机械装置将驱动力传递到液体,从而产生流体压力,推动液体流动。

液压泵的工作原理主要包括两个关键部分:驱动装置和泵腔。

驱动装置可以是电机、发动机或其他能提供机械能的设备,通过输入轴带动泵腔内部的柱塞、齿轮或叶片等部件来实现液体的压力输出。

泵腔内部有一个压缩腔和一个吸入腔,当泵腔内部的驱动装置带动部件运动时,液体被压入压缩腔,增加了液体的压力,然后从排液口输出,产生了液压能。

液压泵根据其结构和工作原理的不同可以分为多种类型。

常见的液压泵包括齿轮泵、柱塞泵和叶片泵等。

齿轮泵是最简单的液压泵之一,由驱动齿轮和从动齿轮组成。

当驱动齿轮转动时,从动齿轮也会跟随转动,从而实现液体的压力输出。

柱塞泵是利用柱塞在柱塞套内往复运动来实现液体压力输出的液压泵。

柱塞泵具有高压、高流量的特点,适用于一些对液压系统要求较高的场合。

叶片泵是利用叶片在内壁上往复运动来实现液体的压力输出。

叶片泵结构简单、紧凑,具有体积小、重量轻的特点,广泛应用于工程机械等领域。

除了以上几种常见的液压泵外,还有其他类型的液压泵,如回转齿轮泵、螺杆泵等,每种类型的泵根据其特点和应用场景不同,都能满足不同需求的液压系统。

总之,液压泵是利用机械装置将机械能转化成液压能的装置。

根据其工作原理和结构的不同,液压泵可以分为齿轮泵、柱塞泵、叶片泵等多种类型。

不同类型的泵适用于不同的场合,广泛应用于各个行业中,推动了工程技术的发展。

液压泵的种类和分类原理

液压泵的种类和分类原理

液压泵的种类和分类原理液压泵的种类和工作原理液压泵是为液压传动提供加压液体的一种液压元件,是泵的一种。

它的功能是把动力机(如电动机和内燃机等)的机械能转换成液体的压力能。

输出流量可以根据需要来调节的称为变量泵,流量不能调节的称为定量泵。

液压系统中常用的泵有齿轮泵、叶片泵和柱塞泵 3种。

一. Gear pump齿轮泵:体积较小,结构较简单,对油的清洁度要求不严,价格较便宜;但泵轴受不平衡力,磨损严重,泄漏较大。

电动机带动油泵齿轮旋转时,由于一对齿轮脱开,使泵体吸油腔容积逐渐增大,形成局部真空油液在大气压力的作用下经油管、泵体进入吸油腔。

进入吸油腔的油液在密封的工作窨中随齿轮转动沿泵体内进入排油腔,在排油腔充满油液的齿间由于齿啮合,使该腔的容积逐渐减少,把齿间的油液挤压出去,在外载荷的作用下形成油压,随着齿轮的连续旋转,油泵便不断地吸油和排油。

2(1)输油泵是卧式回转泵,主要有泵体、前后盖、主从动齿轮、安全阀体、轴承、轴承座及密封装置等零件组成,具体结构见附图。

(2)泵体、前后盖、轴承座为灰口铸体件,齿轮用优质碳素钢制作,也可根据用户特殊需要,用铜材或不锈钢材料制作。

(3) 2CY1.1-5型油泵的轴承座内装有轴向密封,采用三个耐油橡胶圈和一个挡圈组成的橡胶圈密封,调节压紧盖上的两只螺栓可调节密封的松紧程度,滑动轴承采用粉末冶金。

2CY12-60油泵的盖内装有机械密封,轴承采用单系列向心球轴承或圆柱滚子轴承,靠输送的油液自动润滑。

(4)泵体内均装有安全阀,当排油管道阀门关闭或油路系统发生鼓掌,油压超过泵的排出压力时,安全阀门便自动开启,使油液部分或全部地回流至油腔,对泵和管道安全起保护作用。

(5)油泵通过弹性联轴器与电机联接,并安装在公共底版上。

二Vane pump叶片泵:分为双作用叶片泵和单作用叶片泵。

这种泵流量均匀,运转平稳,噪音小,工作压力和容积效率比齿轮泵高,结构比齿轮泵复杂。

工作原理:叶片泵的工作原理及结构(一)双叶片泵的工作原理1.定子(内腔型线):(转子和定子一般是针对电机等原动机来说的。

泵 的分类

泵 的分类

泵的分类泵是利用各种机械设备实现流体输送或压缩的设备。

泵的种类繁多,按其原理分类分为多种类型。

根据驱动方式、结构形式、使用场合及流体性质等方面的不同,泵也可以分为许多不同的类别。

下面就是泵的主要分类。

一、按工作原理分类(一)容积泵容积泵也称为位移泵,是由一个或多个容积不断变化的腔室构成,通过这些容积变化,将流体从吸入端吸入,到排出端排出的一种泵。

按其容积变化的形式不同,可分为柱塞泵、液压隔膜泵、旋转齿轮泵、螺杆泵、滑片泵、推动式泵等。

(二)离心泵离心泵是利用离心力将液体送至出口的泵,其主要工作原理是通过离心叶轮的旋转,使液体沿轴线方向进入泵内,然后受到离心力的作用,从泵的中心位置向外偏移,最终流出泵口。

离心泵使用广泛,常见于水处理、石油化工、航空航天等领域。

按输送介质不同,离心泵还可分为清水泵、烟气净化泵、磁力泵、热水泵等。

二、按驱动方式分类电动泵是利用电机作为动力来源,进而实现泵的运转的一种泵。

可以通过不同的电动机选择不同的功率和性能,泵可用于不同的场合和液体运输介质。

一般情况下,电动泵速度均较为稳定,且使用很方便,是一种比较常见的泵类型。

气动泵是一种利用压缩空气或其他气体做动力源的泵。

通过调节压缩空气的出入口,气体驱动泵的活塞或隔膜前后摆动,运送液体。

气动泵具有统一性、应用范围广、比较节能、维修方便等优点。

三、按结构形式分类单级泵是一种由一个叶轮和一个泵体构成的泵类。

由于其结构简单,体积小,通常用于家庭、工业、实验室等一些微型的流体处理工作。

多级泵的结构形式是利用多个叶轮分级分步压缩泵送的介质,提高泵的扬程和流量,可用于长距离输送和高扬程的液体,比如石油、天然气等。

其结构也相对较为复杂,体积较大。

四、按用途分类潜水泵是一种利用电机驱动,能够下潜到介质中直接将介质抽到地面或者抽掉介质底层的泵。

潜水泵主要适用于清水、污水、海水、油、酸碱等各种液体的输送,常用于工矿企业、市政工程、建筑等行业。

磁力泵是一种采用永磁体和同步旋转器构成的磁阻转子,无需配合接触,从而使产品无泄漏的泵,广泛应用于化工、石油、制药和食品等行业。

常见泵的分类、性能、用途及优缺点分析

常见泵的分类、性能、用途及优缺点分析
由于其本身的特殊性,与单级离心泵相比,多级离心泵在设计、使 用和维护维修等方面,有着不同、更高的技术要求。往往是人们在一些 细节上的疏忽或者考虑不周,使得多级离心泵投用后频繁发生异常磨损、 振动、抱轴等故障,亦致停机。
常见泵的识别、用途及优缺点
4.螺杆泵 双螺杆泵与齿轮泵十分相似,一个螺杆转动,带动另一
泵的分类
基本分类方式: 1、按工作原理分 2、按驱动方法分 3、按结构分 4、按用途分 5、按输送液体的性质分 6、按照有无轴结构分 7、按泵轴位置分 8、按产生压力分 9、按吸口数目分 10、按驱动泵的原动机分
泵的分类:按工作原理分
1.容积式泵 靠工作部件的运动造成工作容积周期性地增大和
缩小而吸排液体,并靠工作部件的挤压而直接使液体 的压力能增加。
常见泵的识别、用途及优缺点
2.离心泵 1)工作原理 驱动机通过泵轴带动叶轮旋转产生离心力,在离心力作用下, 液体沿叶片流道被甩向叶轮出口,液体经蜗壳收集送入排出管。 液体从叶轮获得能量,使压力能和速度能均增加,并依靠此能 量将液体输送到工作地点。
在液体被甩向叶轮出口的同时,叶轮入口中心处形成了低 压,•在吸液罐和叶轮中心处的液体之间就产生了压差,吸液罐 中的液体在这个压差作用下,不断地经吸入管路及泵的吸入室 进入叶轮中。

离心泵扬程的大小,取决于泵的结构(如叶轮直径
大小、叶片的弯曲情况等)、转速及流量。

常用H表示,单位J/kg、m液柱。 (J=N·m)

泵的主要参数
• 汽蚀余量
汽蚀现象:泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因 为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽 化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的 高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充 空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面,冲击应力可达几 百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常见泵的分类及工作原理(总35页)

-CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除 第十六章 常见泵的分类和工作原理 泵是输送液体或使液体增压的机械。它将原动机的机械能或其他外部能量传送给液体,使液体能量增加,主要用来输送液体包括水、油、酸碱液、乳化液、悬乳液和液态金属等,也可输送液体、气体混合物以及含悬浮固体物的液体。水泵性能的技术参数有流量、吸程、扬程、轴功率、水功率、效率等;根据不同的工作原理可分为容积水泵、叶片泵等类型。容积泵是利用其工作室容积的变化来传递能量;叶片泵是利用回转叶片与水的相互作用来传递能量,有离心泵、轴流泵和混流泵等类型。 第一节 泵的分类及在电厂中的应用 一、泵的分类 (一)按照泵的工作原理来分类,泵可分为以下几类 1、容积式泵 容积式泵是指靠工作部件的运动造成工作容积周期性地增大和缩小而吸排液体,并靠工作部件的挤压而直接使液体的压力能增加。 容积泵根据运动部件运动方式的不同又分为:往复泵和回转泵两类。 按运动部件结构不同有:活塞泵和柱塞泵,有齿轮泵、螺杆泵、叶片泵和水环泵。 2、叶轮式泵 叶轮式泵是靠叶轮带动液体高速回转而把机械能传递给所输送的液体。 根据泵的叶轮和流道结构特点的不同,叶轮式泵又可分为: 离心泵(centrifugal pump) 轴流泵(axial pump) 混流泵(mixed-flow pump) 旋涡泵(peripheral pump) 喷射式泵(jet pump) (二)其它分类 1、泵还可以按泵轴位置分为: (1)立式泵(vertical pump) (2)卧式泵(horizontal pump) 2、按吸口数目分为: (1)单吸泵 (single suction pump) (2)双吸泵 (double suction pump) 3、按驱动泵的原动机来分: (1)电动泵(motor pump ) (2)汽轮机泵(steam turbine pump) (3)柴油机泵(diesel pump) (4)气动隔膜泵(diaphragm pump 如图16-1 为泵的分类 图16-1 泵的分类 二、各种类型泵在电厂中的典型应用 离心泵 凝结水泵、给水泵、闭式水泵、凝补水泵、定子冷却水泵、定排水泵、炉水循环泵 轴流泵 循环水泵 往复泵 EH油泵 齿轮泵 送风机液压油泵、磨煤机液压油泵、引风机电机润滑油泵 螺杆泵 空预器导向轴承油泵、空预器支撑轴承油泵、空侧交流密封油泵 喷射泵 主机润滑油系统射油器、射水抽气器 水环式真空泵 水环式真空泵

第二节 离心泵的理论基础知识 离心泵主要包括两个部分:1.旋转的叶轮和泵轴(旋转部件)。2.由泵壳、填料函和轴承组成的静止部件。正常运行时,叶轮高速旋转,在惯性力的作用下,位于叶轮中心的流体被甩向外周并获得了能量,使流向叶轮外周的液体的静压强提高,流速增大。液体离开叶轮进入蜗壳内,在蜗壳内液体的部分动能会转换成静压能。于是较高压强的液体从泵的排出口进入排出管路,被输送到所需的管路系统。同时,叶轮中心由于液体的离开而形成真空,如果管路系统合适,则外界的液体会源源不断地吸入叶轮中心,以满足水泵连续运行的要求。 如图16-2所示。 图16-2 离心泵的工作原理 一、离心泵的性能参数

(一)流量 指泵在单位时间内能抽出多少体积或质量的水。体积流量一般用m3/min、m3/h等来表示。 (二)扬程 又称水头,是指被抽送的单位质量液体从水泵进口到出口能量增加的数值,除以重力加速度,用H表示,单位是m。 (三)功率 是指水泵在单位时间(S)内所作功的大小,单位是KW。水泵的功率可分为有效功率和轴功率。 1、有效功率又称输出功率:指泵内水流实际所得到的功率,用符号P0表示。 2、轴功率:轴功率又称输人功率,是指动力机传给泵轴的功率,用符号P表示。 轴功率和有效功率之差为泵内的损失功率,其大小可用泵的效率来计量。 (四) 效率 反映了水泵对动力机传来动力的利用情况。它是衡量水泵工作效能的一个重要经济指标,用符号表示。 (五)转速 指泵轴每分钟旋转的次数,用符号n表示,单位是r/min. (六)汽蚀余量 汽蚀余量是指在泵吸入口处单位重量液体所具有的超过汽化压力的富余能量。单位用m标注,用NPSH表示。 二、离心泵的性能曲线 泵的性能曲线,标志着泵的性能。泵各个性能参数之间的关系和变化规律,可以用一组性能曲线来表达。对每一台泵来讲,当一台泵的转速一定时,通过试验的方法,可以绘制出相应的一组性能曲线,即水泵的基本性能曲线。性能曲线一般以流量为横坐标,用扬程、功率、效率和汽蚀余量为纵坐标来绘制曲线。 (一)流量与扬程曲线 图16-3 离心泵的流量与扬程的曲线 如图16-3所示,水泵作为一种通过管道来提升或移动流体的机械。水泵能提升流体到达垂直管道的A点,即流量为零,泵的作功只是与流体的重力与质量相等。(即流体的势能)因此,A点也被称为关断水头(SHUTOFF-HEAD);如果想象转动出水管从A点到F点,则水管变为水平管,则泵出的流体的势能变为零而流量变为最大值。可以看出,调整出水管道的倾斜角度(即调整出水管道的阻力),即可得到我们想要的流量和扬程。 (二) 流量与效率曲线 如图16-4所示,离心泵效率曲线可以看作是一条弹道曲线,其效率表现为从其最高效率点(BEP)向两侧下降的变化趋势。即泵的效率随流量的增加而增加,到达高效点后,其效率随着流量的增加而减少。 图16-4泵的流量与效率曲线 (三) 流量与功率曲线 一般来讲,离心泵的轴功率随流量的增加而逐渐增加,曲线有上升的特点。(但在一些特殊的泵中,其功率会保持直线甚至会随流量的增加而下降)当流量为零时,轴功率最小。因此,为便于离心泵的启动和防止超载,启动时,应将出水管路上的阀门关闭,启动后再逐渐打开。轴流泵的启动与离心泵相反。如图16-5所示。 图16-5离心泵的流量与功率的曲线 (四) 流量与汽蚀余量曲线 NPSHr(the Net Positive Suction Head required)-即泵的必需汽蚀余量,它代表了泵的最低运行要求,如果泵的入口压力未达到规定的NPSHr,则泵就会发生汽蚀不能运行。 离心泵的汽蚀余量曲线一般设计为:当流量从零和高效区之间变化时,其NPSHr几乎是一条直线或有很小的变化,但是通过高效区的范围后,则其NPSHr会以指数变化剧增。如图16-6所示。 图16-6 离心泵的流量与NPSHr的关系 图16-7离心泵的性能曲线 总结:如图16-7为离心泵的性能曲线。 (1) 当泵运行在“A”点时,其对应的流量为“Q”,扬程为“H”;此时泵的效率最高,其能耗也在中间水平,同时其必需汽蚀余量也处于将要剧升的边缘。 (2) 当泵运行到“B”点时,其流量减少而压头升高。泵运行在高效率区的左边,其效率下降损失增加。但其功率相应减少,NPSHr也相应减少。但是,由于效率的下降和流量的减少,泵开始振动并加热泵内的流体。当热量不能被流体带走时,温度就会升高,达到对应的饱和温度后,液体开始汽化,引起泵的振动和损坏。 (3) 当泵运行在“C”点时,其流量增加而压头降低。同时泵的效率也下降。泵的功率会升高甚至会过负荷。而泵的NPSHr迅速增加,离开泵的流量大于进入泵的流量,泵内压力变低,当达到对应压力、温度下的饱和状态时,泵内的液体开始汽化沸腾,泵开始发生汽蚀,引起泵的损坏。如图16-8所示。 图16-8泵的叶轮因汽蚀损坏图 图16-9泵的运行区域图 总之,对于泵的运行来讲,正常运行时泵应运行在“A”区,如图16-9所示。此时泵的效率最高,能耗利用率最好。为了避免泵的损坏,泵的运行要避开“C”“D”区。而可以短时间运行在“B”区。“B”区在“A”区的左边,即在高效区的左边,此时泵的效率较差,损失较多。同时其轴向推力也较大,易造成推力轴承的损坏。所以为了保证泵的运行安全,可以按照泵的相似定律来对泵进行改造或改变泵的转速,以达到在保证泵的安全运行的前提下,满足系统流量和压力的要求。对于运行人员,我们要熟悉泵的运行曲线并熟练地应用它们,只要泵运行在高效区内并很好地作好维护工作,它就能保证安全长期运行。 三、泵在系统中的运行 所有泵的设计都是为了满足系统运行要求的。这个要求即是系统的总动力水头(TDH)(Total Dynamic Head).泵的运行状态随着系统的改变而改变。如系统所需的流量改变,则对应的泵的工作点也会改变,即泵的压头、效率、NPSHr都随着变化。如果变化太大,则就会影响泵的安全经济运行。 (一)系统的总动力水头(TDH)包括以下四个方面: 1.Hs-静压头(the static head)。是指泵送液体的来源和目的地之间的高度差,当泵入口的液体表面位置不同时,其静压头是不同的。 2.Hp-压力水头(the pressure head) 。它表示液体表面的压力之差。

3.Hv-速度水头(the velociyt head)。它表示液体流过系统时的能量消耗。.式中v-液体流经管道时的速度。 g-重力加速度。 4.Hf-摩擦水头(friction head).它表示液化流经系统时的摩擦损失。 (1)对于管道:

(16-1) 式中:Kf-每种材料直径管道每一百米的摩擦常数。(可通过查表获得) L-实际管道的长度 (2)对于阀门和异型件:

(16-2) 式中:K-各种阀门及异型件的摩擦常数。(可通过查表获得) 综上所述:总动力水头(TDH)= Hs+ Hp+ Hv+ Hf (二)泵的工作点 如图16-10所示:当泵在一个系统中正常运行时,泵对液体的耗功与系统对液体的总动力水头(TDH)是相平衡的。但是强调的是,随着系统的变化,如阀门的开闭,由TDH也发生的变化,其平衡就会打破,泵的工作点也就发生了变化。所以在设计之初,我们必须计算好系统的TDH,并选择合适的泵,使总动力水头(TDH)与最高效率点(BEP)相匹配。 图16-10泵的运行曲线 四.泵的相似定律与变转速运行

相关文档
最新文档