2017-2018学年高中数学北师大版选修2-2同步配套教学案:第一章 §1 归纳与类比
数学北师大版选修2-2同步练习 第一章§1归纳与类比 含

高手支招6体验成功 基础巩固1.根据给出的数塔猜测123 456×9+7等于( ) 1×9+2=11 12×9+3=111 123×9+4=1 111 1 234×9+5=11 111 12 345×9+6=111 111A.1 111 110B.1 111 111C.1 111 112D.1 111 113 答案:B思路分析:由数塔猜测应是各位数字都是1的七位数,即1 111 111. 2.在数列{a n }中,a 1=0,a n+1=2a n+2,则a n 是( ) A.2n-221-B.2n -2C.2n-1+1D.2n+1-4 答案:B思路分析:当n=1,2,3时,求得a 2=2,a 3=6,a 4=14,观察知a n =2 n -2. 3.已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12的值是( )A.15B.30C.31D.64 答案:A 思路分析:用等差数列的性质:等差数列中项数之和相等的对应两项的和也相等.a 7+a 9=a 4+a 12,故选A 项. 4.已知322+=232,833+=383,1544+=4154,…,若b a +6=6ba (a,b 均为实数),请推测a=________________,b=________________.答案:6 35思路分析:由前面三个等式,推测归纳被开方数的整数与分数的关系,发现规律.由三个等式知,整数和这个分数的分子相同,而分母是这个分子的平方减1,由此推测ba +6中,a=6,b=62-1=35. 即a=6,b=35. 5.已知f(n)=1+21+31+…+n 1(n ∈N +),经计算:f(2)=23,f(4)>24,f(8)>25,f(16)>3,f(32)>27,推测当n≥2时,有_______________. 答案:f(2n )>22+n 思路分析:对问题进行归纳时,要尽可能将结论的形式统一,这样便于找到共性特征,看出其规律,故本题应将所给的式子写成f(21)=23,f(22)>2,f(23)>25,f(24)>26,f(25)>27,从而归纳出当n≥2时的一般结论为n≥2时,f(2n )>22+n .6.若从点O 所作的两条射线OM 、ON 上分别有点M 1、M 2与点N 1、N 2,则三角形面积之比为:212211OM OM S S N OM N OM =∆∆·21ON ON .若从点O 所作的不在同一个平面内的三条射线OP 、OQ 和OR 上分别有点P 1、P 2与点Q 1、Q 2和R 1、R 2,则类似的结论为:_______________. 答案:21222111OP OP V V R Q P O R Q P O =--=21OQ OQ ·21OR OR 思路分析:在平面中是两三角形的面积之比,凭直觉可猜想在空间应是体积之比,所以有21222111OP OP V V R Q P O R Q P O =--=21OQ OQ ·21OR OR 7.已知数列{a n }的通项公式a n =2)1(1+n (n ∈N +),f(n)=(1-a 1)(1-a 2)…(1-a n ),试通过计算f(1),f(2),f(3)的值,推测出f(n)的值. 答案:(1)f(1)=1-a 1=14341=-,f(2)=(1-a 1)(1-a 2)=f(1)·(191-)=43·98=32=64, f(3)=(1-a 1)(1-a 2)(1-a 3)=f(2)·(1161-)=32·1615=85,由此猜想f(n)=)1(22++n n . 思路分析:利用题目所给的关系式,可以计算出函数值,根据f(1),f(2),f(3)的值,找到共性特征,进而可得f(n)的值.8.已知:sin 230°+sin 290°+sin 2150°=23,sin 25°+sin 265°+sin 2125°=23. 观察上述两等式的规律,请你写出一般性的命题,并证明之. 答案:一般性的命题为sin 2θ+sin 2(60°+θ)+sin 2(120°+θ)=23. 证明如下:sin 2θ+sin 2(60°+θ)+sin 2(120°+θ)=2)2240cos(12)2120cos(122cos 1θθθ+++++++ =2123+[cos2θ+cos(120°+2θ)+cos(240°+2θ)] =2123+[2cos60°cos(60°+2θ)+cos(180°+60°+2θ)] =2123+[cos(60°+2θ)-cos(60°+2θ)]=23. 思路分析:仔细分析两个式子中角的特点,就会发现角的度数成等差数列,从而找到了规律.对角的观察是本题的突破口,若从两个式子中未能找到规律,可将两个式子中的三个角同时变化较小的度数,即可发现角的关系,从而找到式子的规律. 综合应用9.设数列{a n }的首项a 1=a≠41,且a n+1=⎪⎪⎩⎪⎪⎨⎧+.,41,,21为奇数为偶数n a n a n n记b n =a 2n-141-,n =1,2,3,… (1)求a 2,a 3;(2)判断数列{b n }是否为等比数列,并证明你的结论.答案:(1)a 2=a 1+41=a+41,a 3=21a 2=21a+81; (2)∵a 4=a 3+41=21a+83,所以a 5=21a 4=41a+163,所以b 1=a 1-41=a-41,b 2=a 3-41=21(a-41),b 3=a 5-41=41(a-41),猜想:{b n }是公比为21的等比数列.证明如下:∵b n+1=a 2n+1-41=21a 2n -41=21(a 2n-1-41)=21b n ,(n ∈N *) ∴{b n }是首项为a-41,公比为21的等比数列.思路分析:本题是考查猜想归纳能力及等比数列的定义.10.如图,点P 为斜三棱柱状ABC-A 1B 1C 1的侧棱BB 1上一点,PM ⊥B 1B 交AA 1于点M,PN ⊥BB 1交CC 1于点N.(1)求证:CC 1⊥MN;(2)在任意△DEF 中有余弦定理:DE 2=DF 2+EF 2-2DF·EFcos ∠DFE.拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明.答案:(1)证明:∵PM ⊥BB 1,PN ⊥BB 1,∴BB 1⊥平面PMN. ∴BB 1⊥MN.又CC 1∥BB 1,∴CC 1⊥MN. (2)解:在斜三棱柱ABC-A 1B 1C 1中,有S a BB 1A 12=211B BCC S +211A ACC S -211B BCC S ·11A ACC S cosα.其中α为平面CC 1B 1B 与平面CC 1A 1A 所成的二面角. ∵CC 1⊥平面PMN,∴上述的二面角的平面角为∠MNP. 在△PMN 中,PM 2=PN 2+MN 2-2PN·MN·cos ∠MNPPM 2·CC 12=PN 2·CC 12+MN 2·CC 12-2(PN·CC 1)·(MN·CC 1)·cos ∠MNP, 由于11B BCC S =PN·CC 1,11A ACC S =MN·CC 1,11A ABB S =MP·BB 1, ∴211A AAB S =211B BCC S +211A ACC S -211B BCC S ·11A ACC S cosα.思路分析:考虑到三个侧面的面积需要作出三个侧面的高,由已知条件可得△PMN 为三棱柱的直截面,选取三棱柱的直截面三角形作类比对象.11.找出三角形和四面体的相似性质,并用三角形的下列性质类比四面体的有关性质. (1)三角形的两边之和大于第三边;(2)三角形的中位线等于第三边的一半且平行于第三边;(3)三角形的三条内角平分线交于一点,且这个点是三角形内切圆的圆心; (4)三角形的面积为S=21(a+b+c)r(r 为内切圆的半径). 解:三角形与四面体有下列共同性质:(1)三角形是平面内由线段围成的最简单的封闭图形,四面体是空间中由平面三角形所围成的最简单的封闭图形.(2)三角形可以看作平面上一条线段外一点与这条直线段上的各点连线所形成的图形,四面体可以看作三角形外一点与这个三角形上各点连线所形成的图形.根据三角形的性质可以推测空间四面体的性质如下:有与另一类事物类似(或相同)的性质,充分分析出三角形和四面体之间所具有的共同性质,再进行类比推理.。
高中数学北师大版选修2-2第1章 知识归纳:归纳与类比

归纳与类比1. 推理按照一个或几个事实(或假设)得出一个判断,这种思维方式叫推理.从结构上说,推理一般由两部份组成,一部份是已知的事实(或假设)叫做前提,一部份是由已知推出的判断,叫结论.2.合情推理(1)归纳推理:由某类事物的部份对象具有的某些特征,推出该类事物的全数对象都具有这些特征的推理,或由个别事实归纳出一般结论的推理.简言之,归纳推理是由部份到整体、由个别到一般的推理.归纳推理是从特殊到一般的推理方式,通常归纳的个体数量越多,越具有代表性,那么推行的一般性命题也会越靠得住,它是一种发觉一般性规律的重要方式.(2)类比推理:也成为类比,是由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理.简言之,类比推理是由特殊到特殊的推理.类比推理是从特殊到特殊的推理,是寻觅事物之间的一路或相似性质,类比的性质相似性越多,相似的性质与推测的性质之间的关系就越相关,从而类比得出的结论就越靠得住.(3)归纳推理和类比推理都是按照已有的事实,通过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,统称为合情推理.合情推理是指“合乎情理”的推理.数学研究中,取得一个新结论之前,合情推理常常能够帮忙咱们猜想和发觉结论;证明一个数学结论之前,合情推理常常能为咱们提供证明的思路和方向.可是,合情推理的结论不必然正确,有待进一步证明.3. 演绎推理(1)演绎推理:从一般性的原理动身,推出某个特殊情形下的结论的推理.简言之,演绎推理是由一般到特殊的推理.(2)三段论是演绎推理的一般模式,它包括:①大前提——已知的一般原理;②小前提——所研究的特殊情形;③结论——按照一般原理,对特殊情形做出的判断.(3)演绎推理在大前提、小前提和推理形式正确的前提下,取得的结论必然是正确的.(4)公理化方式:尽可能少地选取原始概念和一组不加证明的原始命题(千米、公设),以此为起点,应用演绎推理,推出尽可能多的结论的方式.4. 合情推理与演绎推理之间的关系就数学而言,演绎推理是证明数学结论、成立数学体系的重要思维进程,但数学结论、证明思路的发觉,主要靠合情推理.5.合情推理与演绎推理是解题中常常利用的思想和方式,要好好掌握.1.在进行类比推理时,常常需要寻觅适合的类比对象,而且能够从不同的角度肯定类比对象.但大体原则是按照当前问题的需要,选择适当的类比对象.2.应用三段论解决问题是,第一应该明确什么是大前提和小前提.。
【高中课件】高中数学北师大版选修22第1章1归纳与类比课件ppt.ppt

• 3.下列平面图形中,与空间图形中的平行六面体作 为类比对象较合适的是( )
• A.三角形
B.梯形
• C.平行四边形 D.矩形
• [答案] C
• [解析] 从构成几何图形的几何元素的数目、位置关
系、度量等方面考虑,用平行四边形作为平行六面 体的类比对象较为合适.
• 区别:归纳推理是由特殊到一般的推理;类比推理 是由个别到个别的推理或是由一般到一般的推理.
• 联系:在前提为真时,归纳推理与类比推理的结论 都可真或可假.
• 1.如图是2015年元宵节灯展中一款五角星灯连续旋 转闪烁所成的三个图形,照此规律闪烁,下一个呈 现出来的图形是( )
• [答案] A • [解析] 观察题干中的三个图形,前一个图形以中心
• ②用一类事物的性质去推测另一类事物的性质,得 出一个明确的命题(或猜想).
• 一般情况下,如果类比的两类事物的相似性越多, 相似的性质与推测的性质之间越相关,那么类比得 出的结论就越可靠.类比推理的结论既可能真,也 可能假,它是一种由特殊到特殊的认识过程,具有 十分重要的实用价值.
• 3.归纳推理与类比推理的区别与联系
为原点沿顺时针旋转144°得到后一图形,类比可知 选A.
2.下面类比推理中恰当的是( ) A.“若a·3=b·3,则a=b”类比推出“若a·0=b·0,则a =b” B.“(a+b)c=ac+bc”类比推出“(a·b)c=ac·bc” C.“(a+b)c=ac+bc”类比推出“a+c b=ac+bc(c≠0)” D.“(ab)n=anbn”类比推出“(a+b)n=an+bn”
• 归纳推理是由部分到整体,由个别到一般的推理.
2017-2018学年高中数学选修2-2教学案:第1章 1-3 1-3-

_1.3导数在研究函数中的应用1.3.1单调性[对应学生用书P13]已知函数y1=x,y2=x2,y3=1 x.问题1:试作出上述三个函数的图象.提示:图象为问题2:试根据上述图象说明函数的单调性.提示:函数y1=x在R上为增函数,y2=x2在(-∞,0)上为减函数,在(0,+∞)上为增函数,y3=1x在(-∞,0),(0,+∞)上为减函数.问题3:判断它们导函数的正负.提示:y1′=1>0,y2′=2x,当x>0时,y2′>0,当x<0时,y2′<0,y3′=-1x2<0. 问题4:试探讨函数的单调性与其导函数正负的关系.提示:当f′(x)>0时,f(x)为增函数,当f′(x)<0时,f(x)为减函数.一般地,在某区间上函数y=f(x)的单调性与导数有如下关系:上述结论可以用下图来直观理解.1.根据导数的几何意义,可以用曲线切线的斜率来解释导数与单调性的关系,如果切线的斜率大于零,则其倾斜角是锐角,函数曲线呈现上升的状态,即函数单调递增;如果切线的斜率小于零,则其倾斜角是钝角,函数曲线呈现下降的状态,即函数单调递减.2.在某个区间内f′(x)>0(f′(x)<0)是函数f(x) 在此区间内为增(减)函数的充分条件,而不是充要条件.如果出现个别点使f′(x)=0,不会影响函数f(x)在包含该点的某个区间内的单调性.例如函数f(x)=x3在定义域(-∞,+∞)上是增函数,但由f′(x)=3x2知,f′(0)=0,即并不是在定义域内的任意一点处都满足f′(x)>0.[对应学生用书P14][例1](1)y=ax5-1(a>0);(2)y=a x-a-x(a>0且a≠1).[思路点拨]先求出函数的导数,然后通过导数的符号来讨论函数的单调性.[精解详析](1)∵y′=5ax4且a>0,∴y′≥0在R上恒成立,∴y=ax5-1在R上为增函数.(2)y′=a x ln a-a-x ln a(-x)′=(a x+a-x)ln a,当a>1时,ln a>0,a x+a-x>0,∴y′>0在R上恒成立,∴y=a x-a-x在R上为增函数.当0<a<1时,ln a<0,a x+a-x>0,∴y′<0在R上恒成立,∴y=a x-a-x在R上为减函数.[一点通]判定函数单调性的方法有两种:(1)利用函数的单调性的定义,在定义域内任取x1,x2,且x1<x2,通过判断f(x1)-f(x2)的符号确立函数的单调性.(2)利用导数判断可导函数f(x)在(a,b)内的单调性,步骤是:①求f′(x),②确定f′(x)在(a,b)内的符号,③得出结论.1.下列函数中,在区间(-1,1)上是减函数的有________. ①y =2-3x 2;②y =ln x ;③y =1x -2;④y =sin x .解析:显然,函数y =2-3x 2在区间(-1,1)上是不单调的; 函数y =ln x 的定义域为(0,+∞),不满足题目要求;对于函数y =1x -2,其导数y ′=-1(x -2)2<0,且函数在区间(-1,1)上有意义,所以函数y=1x -2在区间(-1,1)上是减函数; 函数y =sin x 在⎝⎛⎭⎫-π2,π2上是增函数,所以函数y =sin x 在区间(-1,1)上也是增函数. 答案:③2.证明:函数y =ln x +x 在其定义域内为增函数. 证明:显然函数的定义域为{x |x >0}, 又f ′(x )=(ln x +x )′=1x +1,当x >0时,f ′(x )>1>0,故y =ln x +x 在其定义域内为增函数.3.判断y =ax 3-1(a ∈R )在(-∞,+∞)上的单调性. 解:因为y ′=3ax 2,又x 2≥0.(1)当a >0时,y ′≥0,函数在R 上是增函数; (2)当a <0时,y ′≤0,函数在R 上是减函数; (3)当a =0时,y ′=0,函数在R 上不具备单调性.[例2] (1)y =x 3-2x 2+x ;(2)f (x )=3x 2-2ln x .[思路点拨] 先确定函数的定义域,再对函数求导,然后求解不等式f ′(x )>0,f ′(x )<0,并与定义域求交集从而得到相应的单调区间.[精解详析] (1)y ′=3x 2-4x +1. 令3x 2-4x +1>0,解得x >1或x <13,因此,y =x 3-2x 2+x 的单调递增区间为(1,+∞),⎝⎛⎫-∞,13. 再令3x 2-4x +1<0,解得13<x <1.(2)函数的定义域为(0,+∞), f ′(x )=6x -2x =2·3x 2-1x .令f ′(x )>0,即2·3x 2-1x >0,解得-33<x <0或x >33. 又∵x >0,∴x >33. 令f ′(x )<0,即2·3x 2-1x <0,解得x <-33或0<x <33, 又∵x >0,∴0<x <33. ∴f (x )的单调递增区间为⎝⎛⎭⎫33,+∞,单调递减区间为⎝⎛⎭⎫0,33. [一点通] (1)利用导数求函数f (x )的单调区间,实质上是转化为解不等式f ′(x )>0或f ′(x )<0,不等式的解集就是函数的单调区间.(2)如果函数的单调区间不止一个时,应用“及”、“和”等连接,而不能写成并集的形式.如本例(1)中的单调增区间不能写成⎝⎛⎭⎫-∞,13∪(1,+∞). (3)要特别注意函数的定义域.4.若函数f (x )=x 2-2x -4ln x ,则函数f (x )的单调递增区间为________. 解析:由已知f (x )的定义域为(0,+∞),f ′(x )=2x -2-4x =2x 2-2x -4x,由f ′(x )>0得x 2-x -2>0,解得x <-1或x >2, 又x >0,所以函数f (x )的单调递增区间为(2,+∞). 答案:(2,+∞)5.函数f (x )=x ln x 的单调递增区间为________. 解析:∵f (x )=x ln x (x >0),∴f ′(x )=ln x +1, 令f ′(x )>0,则ln x +1>0,即ln x >-1. ∴x >1e,答案:⎝⎛⎭⎫1e ,+∞ 6.已知函数f (x )=ln x +ke x(k 为常数,e =2.718 28…是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行.(1)求k 的值; (2)求f (x )的单调区间. 解:(1)由f (x )=ln x +ke x,得f ′(x )=1-kx -x ln xx e x,x ∈(0,+∞),由于曲线y =f (x )在(1,f (1))处的切线与x 轴平行, 所以f ′(1)=0,因此k =1.(2)由(1)得f ′(x )=1x e x (1-x -x ln x ),x ∈(0,+∞),令h (x )=1-x -x ln x ,x ∈(0,+∞),当x ∈(0,1)时,h (x )>0;当x ∈(1,+∞)时,h (x )<0. 又e x >0,所以当x ∈(0,1)时,f ′(x )>0; 当x ∈(1,+∞)时,f ′(x )<0. 因此f (x )的单调递增区间为(0,1), 单调递减区间为(1,+∞).[例3] 已知函数f (x )=x 2+ax (x ≠0,常数a ∈R ).若函数f (x )在x ∈[2,+∞)上是增函数,求a 的取值范围.[思路点拨] 解答本题可先对函数求导,再将问题转化为f ′(x )≥0在x ∈[2,+∞)上恒成立问题求解.[精解详析] f ′(x )=2x -a x 2=2x 3-ax2.要使f (x )在[2,+∞)上是增函数, 则f ′(x )≥0在x ∈[2,+∞)上恒成立, 即2x 3-ax 2≥0在x ∈[2,+∞)上恒成立.∵x 2>0,∴2x 3-a ≥0,∴a ≤2x 3在x ∈[2,+∞)上恒成立.∴a ≤(2x 3)min .∵x ∈[2,+∞),y =2x 3是增函数, ∴(2x 3)min =16,∴a ≤16.当a =16时,f ′(x )=2x 3-16x 2≥0(x ∈[2,+∞))恒成立.∴a 的取值范围是a ≤16.[一点通] (1)已知f (x )在区间(a ,b )上的单调性,求参数范围的方法:①利用集合的包含关系处理:f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集; ②利用不等式的恒成立处理:f (x )在(a ,b )上单调,则f ′(x )≥0或f ′(x )≤0在(a ,b )内恒成立,注意验证等号是否成立.(2)两个非常重要的转化: ①m ≥f (x )恒成立⇔m ≥f (x )max ; ②m ≤f (x )恒成立⇔m ≤f (x )min .7.函数f (x )=x 3-mx 2+m -2的单调递减区间为(0,3),则m =________. 解析:∵f (x )=x 3-mx 2+m -2, ∴f ′(x )=3x 2-2mx .令f ′(x )=0,则x =0或x =23m ,又∵函数f (x )的单调递减区间为(0,3), ∴23m =3,即m =92. 答案:928.若f (x )=-12(x -2)2+b ln x 在(1,+∞)上是减函数,则b 的取值范围是________.解析:由题意可知f ′(x )=-(x -2)+bx ≤0在(1,+∞)上恒成立,即b ≤x (x -2)在x ∈(1,+∞)上恒成立,由于φ(x )=x (x -2)=x 2-2x (x ∈(1,+∞))的值域是(-1,+∞),故只要b ≤-1即可.答案:(-∞,-1]9.已知函数f (x )=2ax -1x 2,x ∈(0,1].若f (x )在(0,1]上是增函数,求a 的取值范围.解:由已知得f ′(x )=2a +2x 3,∵f (x )在(0,1]上单调递增,∴f ′(x )≥0,即a ≥-1x3在x ∈(0,1]上恒成立.而g (x )=-1x 3在(0,1]上单调递增,∴g (x )max =g (1)=-1,∴a ≥-1. 当a =-1时,f ′(x )=-2+2x 3.对x ∈(0,1]也有f ′(x )≥0.∴a =-1时,f (x )在(0,1]上为增函数. ∴综上,f (x )在(0,1]上为增函数, a 的取值范围是[-1,+∞).1.在利用导数来讨论函数的单调区间时,首先要确定函数的定义域,解决问题的过程中只能在定义域内通过讨论导数的符号来判断函数的单调区间.2.一般利用使导数等于零的点来对函数划分单调区间. 3.如果函数在某个区间内恒有f ′(x )=0,则f (x )为常数函数.[对应课时跟踪训练(六)]一、填空题1.函数y =x 3-x 2-40x +80的增区间为________,减区间为________. 解析:y ′=3x 2-2x -40=(3x +10)(x -4),由y ′>0,得x >4或x <-103;由y ′<0,得-103<x <4.所以函数的单调增区间为⎝⎛⎭⎫-∞,-103和(4,+∞),单调减区间为⎝⎛⎭⎫-103,4. 答案:⎝⎛⎭⎫-∞,-103和()4,+∞ ⎝⎛⎭⎫-103,4 2.函数f (x )=xln x 的单调递减区间是________.解析:令f ′(x )=ln x -1ln 2x <0,解得0<x <e ,又因为函数f (x )的定义域为(0,1)∪(1,+∞), 所以函数f (x )=xln x 的单调递减区间是(0,1),(1,e).答案:(0,1),(1,e)3.函数y =12x 2-ln x 的单调减区间为________.解析:y ′=x -1x,由y ′<0,得x <-1或0<x <1.又∵x >0,∴0<x <1.即函数的单调减区间为(0,1). 答案:(0,1)4.(浙江高考改编)已知函数y =f (x )的图象是下列四个图象之一,且其导函数y =f ′(x )的图象如图所示,则该函数的图象是________.解析:由函数f (x )的导函数y =f ′(x )的图象自左至右是先增后减,可知函数y =f (x )图象的切线的斜率自左至右先增大后减小.答案:②5.已知函数f (x )为定义在(0,+∞)上的可导函数,且f (x )>xf ′(x ).则不等式x 2f ⎝⎛⎭⎫1x -f (x )<0的解集为________.解析:令φ(x )=f (x )x ,则φ′(x )=xf ′(x )-f (x )x 2<0.∴φ(x )在(0,+∞)上单调递减, 又x 2f ⎝⎛⎭⎫1x <f (x ),∴xf ⎝⎛⎭⎫1x <f (x )x . 即f ⎝⎛⎭⎫1x 1x <f (x )x,∴φ⎝⎛⎭⎫1x <φ(x ). 故1x >x .又∵x >0,∴0<x <1. 答案:(0,1) 二、解答题6.求下列函数的单调区间: (1)f (x )=x 4-2x 2+3;(2)f (x )=sin x (1+cos x )(0<x <π). 解:(1)函数f (x ) 的定义域为R .f ′(x )=4x 3-4x =4x (x 2-1)=4x (x +1)(x -1). 令f ′(x )>0,则4x (x +1)(x -1)>0, 解得-1<x <0或x >1,所以函数f (x )的单调递增区间为(-1,0)和(1,+∞). 令f ′(x )<0,则4x (x +1)(x -1)<0. 得x <-1或0<x <1.所以函数f (x )的单调递减区间为(-∞,-1)和(0,1).(2)f ′(x )=cos x (1+cos x )+sin x (-sin x )=2cos 2x +cos x -1=(2cos x -1)(cos x +1). ∵0<x <π,∴cos x +1>0, 由f ′(x )>0得0<x <π3;由f ′(x )<0得π3<x <π,故函数f (x )的单调增区间为⎝⎛⎭⎫0,π3,单调减区间为⎝⎛⎭⎫π3,π. 7.设函数f (x )=ax -2-ln x (a ∈R ).(1)若f (x )在点(e ,f (e))处的切线为x -e y -2e =0,求a 的值; (2)求f (x )的单调区间.解:(1)∵f (x )=ax -2-ln x (x >0), ∴f ′(x )=a -1x =ax -1x.又f (x )在点(e ,f (e))处的切线为x -e y -2e =0, ∴f ′(e)=a -1e =1e ,故a =2e.(2)由(1)知:f ′(x )=a -1x =ax -1x (x >0),当a ≤0时,f ′(x )<0在(0,+∞)上恒成立, ∴f (x )在(0,+∞)上是单调减函数. 当a >0时,令f ′(x )=0解得:x =1a,当x 变化时,f ′(x ),f (x )随x 的变化情况如下表:由表可知:f (x )在⎝⎛⎭⎫0,1a 上是单调减函数,在⎝⎛⎭⎫1a ,+∞上是单调增函数. 综上所述:当a ≤0时,f (x )的单调减区间为(0,+∞);当a >0时,f (x )的单调减区间为⎝⎛⎭⎫0,1a ,单调增区间为⎝⎛⎭⎫1a ,+∞. 8.若函数f (x )=13x 3-12ax 2+(a -1)x 在区间(1,4)上单调递减,在区间(6,+∞)上单调递增,试求实数a 的取值范围.解:f ′(x )=x 2-ax +(a -1),因为f (x )在(1,4)上单调递减,所以f ′(x )≤0在(1,4)上恒成立,即a (x -1)≥x 2-1在(1,4)上恒成立,所以a ≥x +1.因为2<x +1<5,所以a ≥5.因为f(x)在(6,+∞)上单调递增,所以f′(x)≥0在(6,+∞)上恒成立,所以a≤x+1. 因为x+1>7,所以a≤7.综上可知,实数a的取值范围是5≤a≤7.。
2017-2018学年高中数学选修2-2教学案:第1章 1-3 1-3-

1.3.3最大值与最小值[对应学生用书P19]1.问题:如何确定你班哪位同学最高?提示:方法很多,可首先确定每个学习小组中最高的同学,再比较每组的最高的同学,便可确定班中最高的同学.2.如图为y=f(x),x∈[a,b]的图象.问题1:试说明y=f(x)的极值.提示:f(x1),f(x3)为函数的极大值,f(x2),f(x4)为函数的极小值.问题2:你能说出y=f(x),x∈[a,b]的最值吗?提示:函数的最小值是f(a),f(x2),f(x4)中最小的,函数的最大值是f(b),f(x1),f(x3)中最大的.3.函数y=g(x),y=h(x)在闭区间[a,b]的图象都是一条连续不断的曲线(如下图所示).问题1:两函数的最大值和最小值分别是什么?提示:函数y=g(x)的最大值为g(a),最小值是其极小值g(c);函数y=h(x)的最大值为h(b),最大值为h(a).问题2:函数的最大值和最小值是否都在区间的端点处取得?提示:不一定.问题3:函数的极值与函数的最值是同一个问题吗?提示:不是.1.最大值与最小值(1)如果在函数定义域I内存在x0,使得对任意的x∈I,总有f(x)≤f(x0),则称f(x0)为函数在定义域上的最大值.最大值是相对函数定义域整体而言的,如果存在最大值,那么最大值惟一.(2)如果在函数定义域I内存在x0,使得对任意的x∈I,总有f(x)≥f(x0),则称f(x0)为函数在定义域上的最小值.最小值是相对函数定义域整体而言的,如果存在最小值,那么最小值惟一.2.求f(x)在区间[a,b]上的最大值与最小值的步骤(1)求f(x)在区间(a,b)上的极值;(2)将第(1)步中求得的极值与f(a),f(b)比较,得到f(x)在区间[a,b]上的最大值与最小值.1.函数的最值是一个整体性的概念.函数极值是在局部上对函数值的比较,具有相对性;而函数的最值则是表示函数在整个定义域上的情况,是对整个区间上的函数值的比较.2.函数在一个闭区间上若存在最大值或最小值,则最大值或最小值只能各有一个,具有惟一性,而极大值和极小值可能多于一个,也可能没有,例如:常数函数就既没有极大值也没有极小值.3.极值只能在区间内取得,最值则可以在端点处取得,有极值的不一定有最值,有最值的也未必有极值;极值有可能成为最值,最值只要不在端点处取必定是极值.[对应学生用书P19][例1][思路点拨]求f′(x)→令f′(x)=0得到相应的x的值→列表→确定函数取极值的点→求极值与端点处的函数值→比较大小确定最值[精解详析]f′(x)=-4x3+4x,令f′(x)=-4x(x+1)(x-1)=0,得x=-1,x=0,x=1.当x变化时,f′(x)及f(x)的变化情况如下表:所以当x=-3时,f(x)取最小值-60;当x=-1或x=1时,f(x)取最大值4.[一点通]求函数的最值需要注意的问题:(1)用导数求函数的最值与求函数的极值方法类似,在给定区间是闭区间时,极值要和区间端点的函数值进行比较,并且要注意取极值的点是否在区间内;(2)当函数多项式的次数大于2或用传统方法不易求解时,可考虑用导数的方法求解.1.已知函数f(x)=x3-12x+8在区间[-3,3]上的最大值与最小值分别为M,m.则M-m =________.解析:令f′(x)=3x2-12=0,解得x=±2.计算f(-3)=17,f(-2)=24,f(2)=-8,f(3)=-1,所以M=24,m=-8,故M-m =32.答案:322.求函数f(x)=e x(3-x2)在区间[2,5]上的最值.解:∵f(x)=3e x-e x x2,∴f′(x)=3e x-(e x x2+2e x x)=-e x(x2+2x-3)=-e x(x+3)(x-1),∵在区间[2,5]上,f′(x)=-e x(x+3)(x-1)<0,即函数f(x)在区间[2,5]上是单调递减函数,∴x=2时,函数f(x)取得最大值f(2)=-e2;x=5时,函数f(x)取得最小值f(5)=-22e5.[例2]29,求a,b的值.[思路点拨]根据导数与单调性之间的关系求解,由于f(x)既有最大值,又有最小值,因此a≠0,要注意对参数的取值情况进行讨论.[精解详析]由题设知a≠0,否则f(x)=b为常数函数,与题设矛盾.取导得f′(x)=3ax2-12ax=3ax(x-4).令f′(x)=0,得x1=0,x2=4(舍).(1)∵当a>0时,如下表:∴当x =0时,f (x )取得最大值,f (0)=3,∴b =3. 又f (-1)=-7a +3>f (2)=-16a +3, ∴最小值f (2)=-16a +3=-29,a =2. (2)∵当a <0时,如下表:∴当x =0时,f (x )取得最小值, ∴b =-29.又f (-1)=-7a -29<f (2)=-16a -29, ∴最大值f (2)=-16a -29=3,a =-2.综上,⎩⎪⎨⎪⎧ a =2,b =3或⎩⎪⎨⎪⎧a =-2,b =-29.[一点通] 解决由函数的最值来确定参数问题的关键是利用函数的单调性确定某些极值就是函数的最值,同时由于系数a 的符号对函数的单调性有直接的影响,其最值也受a 的符号的影响,因此,需要进行分类讨论.本题是运用最值的定义,从逆向出发,由已知向未知转化,通过待定系数法,列出相应的方程,从而得出参数的值.3.已知函数f (x )=12x 2-a ln x ,a ∈R .(1)若a =2,求函数在点(1,f (1))处的切线方程; (2)求f (x )在区间[1,e]上的最小值. 解:(1)a =2时,f (x )=12x 2-2ln x ,f (1)=12,f ′(x )=x -2x,f ′(1)=-1,故切线方程为y -12=-(x -1),即2x +2y -3=0.(2)依题意,x >0,f ′(x )=x -a x =1x(x 2-a ),①a ≤1时,因为x ∈[1,e],1≤x 2≤e 2,所以f ′(x )≥0(当且仅当x =a =1时等号成立),所以f (x )在区间[1,e]上单调递增,最小值为f (1)=12.②a ≥e 2时,因为1≤x 2≤e 2,所以f ′(x )≤0(当且仅当x =e ,a =e 2时等号成立),所以f (x )在区间[1,e]上单调递减,最小值为f (e)=12e 2-a .③1<a <e 2时,解f ′(x )=1x (x 2-a )=0得x =±a (负值舍去),f ′(x )的符号和f (x )的单调性如下表:f (x )在区间[1,e]上的最小值为f ()a =12a -12a ln a .综上所述,a ≤1时,f (x )的最小值为f (1)=12;1<a <e 2时,f (x )的最小值为f ()a =12a -12a ln a ;a ≥e 2时,f (x )的最小值为f (e)=12e 2-a .4.已知函数f (x )=ax 2+1(a >0),g (x )=x 3+bx .(1)若曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线,求a ,b 的值; (2)当a =3,b =-9时,若函数f (x )+g (x )在区间[k,2]上的最大值为28,求k 的取值范围. 解:(1)f ′(x )=2ax ,g ′(x )=3x 2+b .因为曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线,所以f (1)=g (1),且f ′(1)=g ′(1),即a +1=1+b ,且2a =3+b , 解得a =3,b =3.(2)记h (x )=f (x )+g (x ),当a =3,b =-9时, h (x )=x 3+3x 2-9x +1, h ′(x )=3x 2+6x -9.令h ′(x )=0,得x 1=-3,x 2=1.h (x )与h ′(x )在(-∞,2]上的变化情况如下:由此可知:当k≤-3时,函数h(x)在区间[k,2]上的最大值为h(-3)=28;当-3<k<2时,函数h(x)在区间[k,2]上的最大值小于28.因此,k的取值范围是(-∞,-3].[例3](1)求f(x)的最小值h(t);(2)若h(t)<-2t+m,对t∈(0,2)恒成立,求实数m的取值范围.[思路点拨](1)可通过配方求函数f(x)的最小值;(2)h(t)<-2t+m,即m>h(t)+2t恒成立,从而可转化为求h(t)+2t的最大值问题解决.[精解详析](1)∵f(x)=t(x+t)2-t3+t-1(x∈R,t>0),∴当x=-t时,f(x)取得最小值f(-t)=-t3+t-1,即h(t)=-t3+t-1.(2)令g(t)=h(t)+2t=-t3+3t-1.则g′(t)=-3t2+3=-3(t-1)(t+1).令g′(t)=0,得t1=1,t2=-1(舍去).列表:由表可知,g(t)在(0,2)内有最大值1.∵h(t)<-2t+m在(0,2)恒成立等价于m>g(t)在(0,2)内恒成立.∴m>1.即实数m的取值范围是(1,+∞).[一点通]有关恒成立问题,一般是转化为求函数的最值问题.求解时要确定这个函数,看哪一个变量的范围已知,即函数是以已知范围的变量为自变量的函数.一般地,λ≥f(x)恒成立⇔λ≥[f(x)]max;λ≤f(x)恒成立⇔λ≤[f(x)]min.5.已知g(x)=ln x-a,若g(x)<x2在(0,e]上恒成立,求a的取值范围.解:g(x)<x2即ln x-a<x2,所以a>ln x-x2,故g(x)<x2在(0,e]上恒成立也就是a>ln x-x2在(0,e]上恒成立.设h(x)=ln x-x2,则h′(x)=1x-2x=1-2x2x,由h′(x)=0及0<x≤e得x=2 2.当0<x<22时h′(x)>0,当22<x≤e时h′(x)<0,即h (x )在⎝⎛⎭⎫0,22上为增函数,在⎝⎛⎦⎤22,e 上为减函数, 所以当x =22时h (x )取得最大值为h ⎝⎛⎭⎫22=ln 22-12. 所以g (x )<x 2在(0,e]上恒成立时, a 的取值范围为⎝⎛⎭⎫ln22-12,+∞.6.设函数f (x )=e x -ax -2. (1)求f (x )的单调区间;(2)若a =1,k 为整数,且当x >0时,(x -k )f ′(x )+x +1>0,求k 的最大值. 解:(1)f (x )的定义域为(-∞,+∞),f ′(x )=e x -a . 若a ≤0,则f ′(x )>0,所以f (x )在(-∞,+∞)上单调递增. 若a >0,则当x ∈(-∞,ln a )时,f ′(x )<0; 当x ∈(ln a ,+∞)时,f ′(x )>0, 所以,f (x )在(-∞,ln a )上单调递减, 在(ln a ,+∞)上单调递增. (2)由于a =1,所以(x -k )f ′(x )+x +1=(x -k )(e x -1)+x +1. 故当x >0时,(x -k )f ′(x )+x +1>0等价于 k <x +1e x -1+x (x >0).① 令g (x )=x +1e x -1+x ,则g ′(x )=-x e x -1(e x -1)2+1=e x (e x -x -2)(e x -1)2.由(1)知,函数h (x )=e x -x -2在(0,+∞)上单调递增.而h (1)<0,h (2)>0,所以h (x )在(0,+∞)上存在惟一的零点.故g ′(x )在(0,+∞)上存在惟一的零点.设此零点为α,则α∈(1,2).当x ∈(0,α)时,g ′(x )<0;当x ∈(α,+∞)时,g ′(x )>0.所以g (x )在(0,+∞)上的最小值为g (α).又由g ′(α)=0,可得e α=α+2,所以g (α)=α+1∈(2,3). 由于①式等价于k <g (α),故整数k 的最大值为2.1.函数的最大值与最小值:在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值;但在开区间(a ,b )内连续的函数f (x )不一定有最大值与最小值.例如:函数f (x )=1x 在(0,+∞)上连续,但没有最大值与最小值.2.设函数f (x )在[a ,b ]上连续,在(a ,b )内可导,求f (x )在[a ,b ]上的最大值和最小值的步骤如下(1)求f (x )在(a ,b ) 内的极值.(2)将f (x )的各极值与f (a ),f (b )比较,确定f (x )的最大值与最小值. 3.求实际问题的最大值(最小值)的方法在实际问题中,如果函数在区间内只有一个极值点,那么只要根据实际意义判定是最大值还是最小值即可,不必再与端点的函数值比较.[对应课时跟踪训练(八)]一、填空题1.函数f (x )=x -sin x ,x ∈⎣⎡⎦⎤π2,π的最大值是________. 解析:∵f (x )=x -sin x ,∴f ′(x )=1-cos x ≥0. ∴函数f (x )=x -sin x 在⎣⎡⎦⎤π2,π上为单调增函数, ∴当x =π时,f (x )取最大值π. 答案:π2. 函数y =ln xx 的最大值为________.解析:y ′=(ln x )′·x -ln x ·x ′x 2=1-ln xx 2, 令y ′=0,则x =e.因此函数f (x )的最大值为f (e)=1e .答案:1e3.函数f (x )=x ·e -x ,x ∈[0,4]的最小值为________.解析:f ′(x )=e -x -x ·e -x =e -x (1-x ),令f ′(x )=0,得x =1. 而f (0)=0,f (1)=1e ,f (4)=4e 4.因此函数f (x )的最小值为0.答案:04.已知函数y =-x 2-2x +3在[a,2]上的最大值为154,则a =________.解析:y ′=-2x -2,令y ′=0,得x =-1. 而f (-1)=-1+2+3=4≠154,∴a >-1.而f (2)=-4-4+3=-5, 因此f (a )=-a 2-2a +3=154,解得a =-32(舍去)或a =-12.答案:-125.函数f (x )=ax 4-4ax 3+b (a >0)在[1,4])上的最大值为3,最小值为-6,则a +b =________.解析:f ′(x )=4ax 3-12ax 2(a >0,x ∈[1,4]).由f ′(x )=0,得x =0(舍),或x =3,可得x =3时,f (x )取到最小值为b -27a . 又f (1)=b -3a ,f (4)=b , 因此f (4)为最大值.由⎩⎪⎨⎪⎧b =3,b -27a =-6.解得⎩⎪⎨⎪⎧a =13,b =3.所以a +b =103.答案:103二、解答题6.已知函数f (x )=a ln x +1(a >0).(1)若a =2,求函数f (x )在(e ,f (e))处的切线方程; (2)当x >0时,求证:f (x )-1≥a ⎝⎛⎭⎫1-1x . 解:(1)当a =2时,f (x )=2ln x +1, f ′(x )=2x ,f (e)=3,k =f ′(e)=2e ,所以函数f (x )在(e ,f (e))处的切线方程为 y -3=2e (x -e),即2x -e y +e =0.(2)令g (x )=f (x )-1-a ⎝⎛⎭⎫1-1x =a ln x -a ⎝⎛⎭⎫1-1x (x >0), 则g ′(x )=a x -a x 2=a (x -1)x 2,由g ′(x )=0,得x =1.当0<x <1时,g ′(x )<0,g (x )在(0,1)上单调递减; 当x >1时,g ′(x )>0,g (x )在(1,+∞)上单调递增. 所以g (x )在x =1处取得极小值,也是最小值. 因此g (x )≥g (1)=0,即f (x )-1≥a ⎝⎛⎭⎫1-1x . 7.已知函数f (x )=-x 3+3x 2+9x +a . (1)求f (x )的单调递减区间;(2)若f (x )在区间[-2,2]上的最大值为20,求它在该区间上的最小值. 解:(1)f ′(x )=-3x 2+6x +9=-3(x 2-2x -3) =-3(x +1)(x -3).令f ′(x )<0,则-3(x +1)(x -3)<0, 解得x <-1或x >3.∴函数f (x )的单调递减区间为(-∞,-1),(3,+∞). (2)结合(1),令f ′(x )=0,得x =-1或x =3. 又∵x ∈[-2,2],∴x =-1. 当-2<x <-1时,f ′(x )<0; 当-1<x <2时,f ′(x )>0.∴x =-1是函数f (x )的极小值点,该极小值也就是函数f (x )在[-2,2]上的最小值, 即f (x )min =f (-1)=a -5. 又函数f (x )的区间端点值为 f (2)=-8+12+18+a =a +22, f (-2)=8+12-18+a =a +2.∵a +22>a +2,∴f (x )max =a +22=20,∴a =-2. 此时f (x )min =a -5=-2-5=-7.8.已知函数f (x )=ax 4ln x +bx 4-c (x >0)在x =1处取得极值-3-c ,其中a ,b ,c 为常数.若对任意x >0,不等式f (x )≥-2c 2恒成立,求c 的取值范围.解:由题意知f (1)=-3-c . 因此b -c =-3-c ,从而b =-3.对f (x )求导,得f ′(x )=4ax 3ln x +ax 4×1x+4bx 3=x 3(4a ln x +a +4b ).由题意知f ′(1)=0,得a +4b =0,解得a =12.因为f ′(x )=48x 3ln x (x >0),令f ′(x )=0,解得x =1.当0<x <1时,f ′(x )<0,此时f (x )为减函数; 当x >1时,f ′(x )>0,此时f (x )为增函数. 所以f (x )在x =1处取得极小值f (1)=-3-c , 并且此极小值也是最小值.所以要使f (x )≥-2c 2(x >0)恒成立,只需-3-c ≥-2c 2即可.整理得2c 2-c -3≥0,解得c ≥32或c ≤-1. 所以c 的取值范围为(-∞,-1]∪⎣⎡⎭⎫32,+∞.。
2018年高中数学 第一章 推理与证明 1.1.1 归纳推理课件2 北师大版选修2-2

归纳推理的作用
• 应用归纳推理可以发现新事实,获得新结论! • 归纳推理是科学发现的重要途径!
牛顿说:“没有大 胆的猜测,就不会 有伟大的发现
例1.已知数列{an}的第1项a1=1,且
an1
1
an an
(n=1 , 2 , …),试归纳出这个数列的通项公式.
练习1.
f(n)1111(nN*),计算
f (2) > 3
2
23
f (4)> 2
n
f (8)>
5
2
f (16)> 3
f (32)> 7
2
…则当n
2时,有
f(2n)n2(nN) 2
2
2.已知数列{an}的前n项和Sn , a 1
1
Sn
Sn
2an(n2).
计算S1
2
1
3
n=1时, f (1) 1
2
1
3
n=1时, f (1) 1 n=2时, f (2) 3
2
1
3
n=1时, f (1) 1 n=2时, f (2) 3 n=3时, f (3) 7
2
1
3
n=1时, f (1) 1 n=2时, f (2) 3
n=3时, f ( 3 ) 3 1 3
4.一组数2,4,6,8,‥‥‥
猜想:第n个数为2n
归纳推理
尝第一个杨
梅都是甜的 尝第二个杨
这一篮杨 梅都是甜 的
梅都是甜部的 分
铜能导电
铝能导电 金能导电
整 银能导电
一切金属 都能导电.
体
个别
2018版数学北师大版选修2-2课件:第一章 推理与证明

(2)假设当n=k (k∈N+)时,命题成立,
即(3k+1)· 7k-1能被9整除,
则当n=k+1时,(3k+4)· 7k+1-1=7· (3k+1)· 7k+21· 7k-1
=[(3k+1)· 7k-1]+18k· 7k+6· 7k+21· 7k=[(3k+1)· 7k-1]+18k· 7k+27· 7k ,
(3)注意点:在第二步归纳递推时,从n=k到n=k+1必须用上归纳假设.
题型探究
类型一 求参数问题 例1 是否存在常数 a,b ,c,使等式1· (n2-12)+2(n2-22)+…+n(n2-
n2)=an4+bn2+c对一切正整数n都成立?并证明你的结论.
解答
反思与感悟
这类猜测存在性问题的思路:若存在 a , b , c使等式成立,首先在 n =1,
A.1
C.3 √
B.2
D.4
1
2
3
4
5
答案
2.已知1+2×3+3×32+4×33+…+n×3n-1=3n(na-b)+c对一切n∈N+ 都成立,那么a,b,c的值为
√
1 1 A.a=2,b=c=4 1 C.a=0,b=c=4
1 B.a=b=c=4 D.a,b,c 不存在
解析 令n等于1,2,3,得
第一章 推理与证明
习题课 数学归纳法
学习目标
1. 进一步掌握数学归纳法的实质与步骤,掌握用数学归纳
法证明等式、不等式、整除问题、几何问题等数学命题的
方法.
2.掌握证明n=k+1成立的常见变形技巧:提公因式、添项、
拆项、合并项、配方等.
内容索引
知识梳理 题型探究 当堂训练
知识梳理
知识点一
归纳法
高中数学第一章推理与证明1.1归纳与类比1.1.2类比推理课件北师大版选修22

2.进行类比推理时,要注意比较两个对象的相同点和不同点,找到 可以进行类比的两个量,然后加以推测,得到类比结果,最好能够结 合相关的知识进行证明,以确保类比结果的合理性.
题型一 题型二 题型三
设等比数列{bn}的公比为 q,首项为 b1,
则 T4= ������14������6, ������8 = ������18������1 + 2 + ⋯+7= ������18������28,
T12= ������112������1 + 2 + ⋯+11= ������112������66,
答案:
������8 ������4
������12 ������8
题型一 题型二 题型三
题型二 平面几何与空间几何之间的类比
【例2】 在矩形ABCD中,对角线AC与两邻边AB,BC所成的角分 别为α,β,则cos2α+cos2β=1.在立体几何中,通过类比,给出一个猜想 并证明.
分析:本题主要考查类比推理的思想,考虑到平面几何中的矩形, 故可联想到立体几何中的长方体.
相似比的平方.同理,两个正四面体是两个相似的几何体,它们的体
积之比为相似比的立方,故体积比为1∶8.
答案:1∶8
2.合情推理与演绎推理 (1)归纳推理和类比推理是最常见的合情推理. (2)合情推理是根据实验和实践的结果、个人的经验和直觉、已有的 事实和正确的结论(定义、公理、定理等),推测出某些结果的推理方式. (3)演绎推理是根据已知的事实和正确的结论,按照严格的逻辑法则 得到新结论的推理过程. 【做一做2】 判断下列由合情推理所得的结论是否正确,并说明理由. (1)f(x)=(x-1)(x-2)(x-3)…(x-100)+2.因为 f(1)=2,f(2)=2,f(3)=2,…,f(100)=2,所以归纳猜想f(n)=2(n∈N+); (2)“在平面内,垂直于同一条直线的两条直线互相平行”,类比可得“在 空间中,垂直于同一个平面的两个平面互相平行”. 解:(1)不正确.当n>100时,f(n)≠2. (2)不正确.在空间中,垂直于同一
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[对应学生用书P2]问题1:我们知道铜、铁、铝、金、银都是金属,它们有何物理性质? 提示:都能导电.问题2:由问题1你能得出什么结论? 提示:一切金属都能导电.问题3:若数列{a n }的前四项为2,4,6,8,试写出a n . 提示:a n =2n (n ∈N +).问题4:上面问题2、3得出结论有何特点? 提示:都是由几个特殊事例得出一般结论.归纳推理问题1:试写出三角形的两个性质. 提示:(1)三角形的两边之和大于第三边; (2)三角形的面积等于高与底乘积的12.问题2:你能由三角形的性质推测空间四面体的性质吗?试写出来. 提示:(1)四面体任意三个面的面积之和大于第四个面的面积;(2)四面体的体积等于底面积与高乘积的13.问题3:试想由三角形的性质推测四面体的性质体现了什么.提示:由一类事物的特征推断另一类事物的类似特征,即由特殊到特殊.1.合情推理的含义合情推理是根据实验和实践的结果、个人的经验和直觉、已有的事实和正确的结论(定义、公理、定理等),推测出某些结果的推理方式.归纳推理和类比推理是最常见的合情推理. 2.演绎推理的含义演绎推理是根据已知的事实和正确的结论,按照严格的逻辑法则得到新结论的推理过程.1.归纳推理的特点:(1)由归纳推理得到的结论具有猜测的性质,结论是否正确,还需经过逻辑证明和实践检验,因此,归纳推理不能作为数学证明的工具;(2)一般地,如果归纳的个别对象越多,越具有代表性,那么推广的一般性结论也就越可靠.2.类比推理的特点:(1)运用类比推理常常先要寻找合适的类比对象;(2)如果类比的两类对象的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的结论就越可靠;(3)由类比推理得到的结论也具有猜测的性质,结论是否正确,还需经过逻辑证明和实践检验,因此,类比推理不能作为数学证明的工具.[对应学生用书P3][例1] 已知:1>12;1+12+13>1;1+12+13+14+15+16+17>32;1+12+13+…+115>2;….根据以上不等式的结构特点,请你归纳一般结论.[思路点拨] 观察不等式左边最后一项的分母特点为2n -1,不等式右边为n2,由此可得一般性结论.[精解详析] 1=21-1,3=22-1,7=23-1,15=24-1,…,猜想不等式左边最后一项的分母为2n -1,而不等式右端依次分别为:12,22,32,42,…,n2.归纳得一般结论:1+12+13+…+12n -1>n2(n ∈N +).[一点通] 根据给出的数与式,归纳一般结论的思路:(1)观察数与式的结构特征,如数、式与符号的关系,代数式的相同或相似之处等; (2)提炼出数、式的变化规律; (3)运用归纳推理写出一般结论.1.已知a n =⎝⎛⎭⎫13n,把数列{a n }的各项排成如下的三角形:a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9……记A (s ,t )表示第s 行的第t 个数,则A (11,12)=( ) A.⎝⎛⎭⎫1367 B.⎝⎛⎭⎫1368C.⎝⎛⎭⎫13111D.⎝⎛⎭⎫13112解析:该三角形每行所对应元素的个数为1,3,5……那么第10行的最后一个数为a 100,第11行的第12个数为a 112,即A (11,12)=⎝⎛⎭⎫13112.答案:D2.(陕西高考)已知f (x )=x1+x,x ≥0,若 f 1(x )=f (x ),f n +1(x )=f (f n (x )),n ∈N +, 则f 2014(x)的表达式为________.解析:由f1(x)=x1+x⇒f2(x)=f⎝⎛⎭⎫x1+x=x1+x1+x1+x=x1+2x;又可得f3(x)=f(f2(x))=x1+2x1+x1+2x=x1+3x,故可猜想f2 014(x)=x1+2 014x.答案:x1+2 014x3.已知数列{a n}中,a1=1,a n+1=a n1+2a n(n=1,2,3,…).(1)求a2,a3,a4;(2)归纳猜想数列{a n}的通项公式.解:(1)当n=1时,a1=1,由a n+1=a n1+2a n(n∈N+),得a2=13,a3=a21+2a2=15,a4=a31+2a3=17.(2)由a1=1=11,a2=13,a3=15,a4=17,可归纳猜想a n=12n-1(n∈N+).[例2]个图案,这些图案都是由小正方形构成的,小正方形数越多,刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.(1)求f(5)的值;(2)利用合情推理的“归纳推理思想”,归纳出f(n+1)与f(n)之间的关系式,并根据你得到的关系式求出f(n)的表达式;(3)求1f(1)+1f(2)-1+1f(3)-1+…+1f(n)-1的值.[思路点拨]先求出f(1),f(2),f(3),f(4),f(5)的值,并归纳出n与f(n)的关系,然后即可解决问题(2)、(3).[精解详析](1)f(5)=41.(2)f (2)-f (1)=4=4×1, f (3)-f (2)=8=4×2, f (4)-f (3)=12=4×3, f (5)-f (4)=16=4×4, ……由上式规律,得f (n +1)-f (n )=4n . ∴f (n +1)=f (n )+4n , f (n )=f (n -1)+4(n -1) =f (n -2)+4(n -1)+4(n -2)=f (1)+4(n -1)+4(n -2)+4(n -3)+…+4 =2n 2-2n +1.(3)当n ≥2时,1f (n )-1=12n (n -1)=12⎝⎛⎭⎫1n -1-1n ,∴1f (1)+1f (2)-1+1f (3)-1+…+1f (n )-1=1+12⎝⎛⎭⎫11-12+12⎝⎛⎭⎫12-13+…+12⎝⎛⎭⎫1n -1-1n =1+12⎝⎛⎭⎫1-1n =32-12n. [一点通] 解决此类问题可以从两个方面入手:(1)从图形的数量规律入手,找到数值变化与序号的关系.(2)从图形的结构变化规律入手,发现图形的结构每发生一次变化,与上一次比较,数值发生了怎样的变化.4.如图是今年元宵花灯展中一款五角星灯连续旋转闪烁所成的三个图形,照此规律闪烁,下一个呈现出来的图形是( )解析:由图可知该五角星对角上亮的两盏花灯依次按逆时针方向亮一盏,故下一个呈现出来的图形是A 中所示的图形.答案:A5.如图,将平面直角坐标系中的格点(横、纵坐标均为整数的点)按如下规则标上数字标签:原点处标0,点(1,0)处标1,点(1,-1)处标2,点(0,-1)处标3,点(-1,-1)处标4,点(-1,0)处标5,点(-1,1)处标6,点(0,1)处标7,依此类推,则标签为2 0132的格点的坐标为( )A .(1 006,1 005)B .(1 007,1 006)C .(1 008,1 007)D .(1 009,1 008)解析:因为点(1,0)处标1=12,点(2,1)处标9=32,点(3,2)处标25=52,点(4,3)处标49=72,依此类推得点(1 007,1 006)处标2 0132.答案:B6.设平面内有n 条直线(n ≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f (n )表示这n 条直线交点的个数,则f (4)=____________;当n >4时,f (n )=______________.(用含n 的数学表达式表示)解析:画图可知,f (4)=5,当n >4时,可得递推式f (n )-f (n -1)=n -1,由 f (n )-f (n -1)=n -1, f (n -1)-f (n -2)=n -2, …f (4)-f (3)=3,叠加可得, f (n )-f (3)=12(n +2)(n -3),又f (3)=2,所以f (n )=12(n +2)(n -3)+2,化简整理得f (n )=12(n -2)(n +1).答案:5 12(n -2)(n +1).[例3] (1)圆心与弦(非直径)中点的连线垂直于弦; (2)与圆心距离相等的两弦长相等; (3)圆的周长C =πd (d 是直径); (4)圆的面积S =πr 2.[思路点拨]先找出相似的性质再类比,一般是点类比线、线类比面、面类比体.[精解详析]圆与球有下列相似的性质:(1)圆是平面上到一定点的距离等于定长的所有点构成的集合;球面是空间中到一定点的距离等于定长的所有点构成的集合.(2)圆是平面内封闭的曲线所围成的对称图形;球是空间中封闭的曲面所围成的对称图形.通过与圆的有关性质类比,可以推测球的有关性质.[一点通]解决此类问题,从几何元素的数目、位置关系、度量等方面入手,将平面几何的相关结论类比到立体几何中,相关类比点如下:7.平面内平行于同一直线的两直线平行,由此类比我们可以得到()A.空间中平行于同一直线的两直线平行B.空间中平行于同一平面的两直线平行C.空间中平行于同一直线的两平面平行D.空间中平行于同一平面的两平面平行解析:利用类比推理,平面中的直线和空间中的平面类比.答案:D8.已知扇形的弧长为l ,半径为r ,类比三角形的面积公式:S =底×高2,可推知扇形面积公式S 扇等于( )A.r 22B.l 22C.lr 2D.不可类比解析:扇形的弧长类比三角形的底,扇形的半径类比三角形的高.所以S 扇形=l ×r2. 答案:C9.如图所示,在△ABC 中,射影定理可表示为a =b ·cos C +c ·cos B ,其中a ,b ,c 分别为角A ,B ,C 的对边,类比上述定理,写出对空间四面体性质的猜想.解:如图所示,在四面体P —ABC 中,S 1,S 2,S 3,S 分别表示△P AB ,△PBC ,△PCA ,△ABC 的面积,α,β,γ依次表示面P AB ,面PBC ,面PCA 与底面ABC 所成二面角的大小.我们猜想射影定理类比推理到三维空间,其表现形式应为S =S 1·cos α+S 2·cos β+S 3·cos γ.[例4] [精解详析] (1)两实数相加后,结果是一个实数,两向量相加后,结果仍是向量; (2)从运算律的角度考虑,它们都满足交换律和结合律, 即:a +b =b +a ,a +b =b +a ,(a +b )+c =a +(b +c ),(a +b )+c =a +(b +c );(3)从逆运算的角度考虑,二者都有逆运算,即减法运算, 即a +x =0与a +x =0都有唯一解,x =-a 与x =-a ;(4)在实数加法中,任意实数与0相加都不改变大小,即a +0=a .在向量加法中,任意向量与零向量相加,既不改变该向量的大小,也不改变该向量的方向,即a +0=a .[一点通] 运用类比推理常常先要寻找合适的类比对象,本例中实数加法的对象为实数,向量加法的对象为向量,且都满足交换律与结合律,都存在逆运算,而且实数0与零向量0分别在实数加法和向量加法中占有特殊的地位.因此我们可以从这四个方面进行类比.10.试根据等式的性质猜想不等式的性质并填写下表.答案:①a >b ⇒a +c >b +c ②a >b ⇒ac >bc (c >0) ③a >b >0⇒a 2>b 2.(说明:“>”也可改为“<”)11.已知等差数列{a n }的公差为d ,a m ,a n 是{a n }的任意两项(n ≠m ),则d =a n -a mn -m ,类比上述性质,已知等比数列{b n }的公比为q ,b n ,b m 是{b n }的任意两项(n ≠m ),则q =________.解析:∵a n =a m q n -m ,∴q =⎝⎛⎭⎫a n a m答案:⎝⎛⎭⎫a n a m1.用归纳推理可从具体事例中发现一般规律,但应注意,仅根据一系列有限的特殊事例,所得出的一般结论不一定可靠,其结论的正确与否,还要经过严格的理论证明.2.进行类比推理时,要尽量从本质上思考,不要被表面现象所迷惑,否则,只抓住一点表面的相似甚至假象就去类比,就会犯机械类比的错误.3.多用下列技巧会提高所得结论的准确性: (1)类比对象的共同属性或相似属性尽可能的多些. (2)这些共同属性或相似属性应是类比对象的主要属性.(3)这些共同(相似)属性应包括类比对象的各个方面,并尽可能是多方面.[对应课时跟踪训练(一)]1.由数列2,20,200,2 000,…,猜测该数列的第n 项可能是( ) A .2×10n B .2×10n -1C .2×10n +1D.2×10n -2答案:B2.如图所示的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形,根据图中的数构成的规律,a 所表示的数是( )1 1 1 12 1 13 3 1 14 a 4 1 15 10 10 5 1A .2B .4C .6D.8解析:由杨辉三角形可以发现:每一行除1外,每个数都是它肩膀上的两数之和.故a =3+3=6.答案:C3.(湖北高考)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V ≈136L 2h .它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V ≈275L 2h 相当于将圆锥体积公式中的π近似取为( )A.227B.258C.15750D.355113解析:由题意知275L 2h =13πr 2h ⇒275L 2=13πr 2,而L =2πr ,代入得π=258.答案:B4.从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性( )解析:每一行图中的黑点从右上角依次递减一个. 答案:A5.类比平面内正三角形的“三边相等,三内角相等”的性质,你认为可推知正四面体的下列哪些性质________.(填写序号)①各棱长相等,同一顶点上的任两条棱的夹角都相等;②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等.解析:正四面体的面(或棱)可与正三角形的边类比,正四面体的相邻两面成的二面角(或共顶点的两棱的夹角)可与正三角形相邻两边的夹角类比,故①②③都对.答案:①②③6.四个小动物换座位,开始时鼠、猴、兔、猫分别坐在编号为1,2,3,4的位置上(如图),第1次前后排动物互换座位,第2次左右列动物互换座位,第3次前后排动物互换座位,……这样交替进行下去,那么第2 014次互换座位后,小兔的座位对应的编号是________.解析:第4次左右列动物互换座位后,鼠、猴、兔、猫分别坐在编号为1,2,3,4的位置上,即回到开始时的座位情况,于是可知这样交替进行下去,呈现出周期为4的周期现象,又2 014=503×4+2,故第2 014次互换座位后的座位情况就是第2次互换座位后的座位情况,所以小兔的座位对应的编号是2.答案:27.观察等式:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,你能得出怎样的结论? 解:通过观察发现:等式的左边为正奇数的和,而右边是整数(实际上就是左边奇数的个数)的完全平方.因此可推测得出:1+3+5+7+9+…+(2n -1)=n 2(n ≥2,n ∈N +).8.如图,在三棱锥S -ABC 中,SA ⊥SB ,SB ⊥SC ,SA ⊥SC ,且SA ,SB ,SC 和底面ABC 所成的角分别为α1,α2,α3,三侧面△SBC ,△SAC ,△SAB 的面积分别为S 1,S 2,S 3.类比三角形中的正弦定理,给出空间情形的一个猜想.解:在△DEF 中,由正弦定理,得d sin D =e sin E =f sin F. 于是,类比三角形中的正弦定理,在四面体S -ABC 中,猜想S 1sin α1=S 2sin α2=S 3sin α3成立.。