2020新七年级数学下册期中试卷及答案

合集下载

沪科版七年级下册数学期中考试试题及答案

沪科版七年级下册数学期中考试试题及答案

沪科版七年级下册数学期中考试试题及答案上海市科技版七年级下册数学期中考试试卷2020年4月一、单选题1.6根是()A。

4B。

±4C。

8D。

±82.在实数-6,9,π,-25中,无理数的个数是()A。

7B。

2C。

3D。

43.下列各式中,正确的是()A。

4=±2B。

±9=3C。

(-3)2=-3D。

3-27=-244.已知a>b,则下列不等式中,不成立的是() A。

a+3>b+3B。

(a+2)/(b+3)<2/3C。

-3a>-3bD。

5a>5b5.下列计算正确的是()A。

b3×b3=2b6B。

ab2×(ab)3=ab5C。

a5÷a3=a2D。

y3+y3=2y36.不等式2x+2≤6的解集在数轴上表示正确的是() A。

B。

C。

D。

7.不等式组x<-1的解集为()A。

x>-2B。

x<-1C。

-2<x<-1D。

无解8.下列因式分解正确的是()A。

6x+9y+3=3(2x+3y+1)B。

x2+2x+1=(x+1)2C。

x2-2xy-y2=(x-y)2D。

x2+4=(x+2)29.已知a+2+|b-1|=,那么(a+b)2019的值为() A。

-1B。

1C。

D。

-10.某商店将定价为3元的商品,按下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折。

小聪有27元钱想购买该种商品,那么最多可以购买多少件呢?若设小聪可以购买该种商品x件,则根据题意,可列不等式为()A。

3×5+3×0.8x≤27B。

3×5+3×0.8x≥27C。

3×5+3×0.8(x-5)≤27D。

3×5+3×0.8(x-5)≥27二、填空题11.计算2x4×x3的结果等于__________。

答案:2x712.分解因式:x2-4x=______.答案:x(x-4)13.已知关于x的不等式2x-m+3>0的最小整数解为1,则实数m的取值范围是_____。

2020年湖北省武汉市汉阳区七年级(下)期中数学试卷

2020年湖北省武汉市汉阳区七年级(下)期中数学试卷
7.【答案】D
【解析】解:交换命题 A 的题设和结论,得到的新命题是内错角相等,两直线平行是真 命题,不合题意; 交换命题 B 的题设和结论,得到的新命题是若 a=b 时,则 a2=b2,是真命题,不合题意; 交换命题 C 的题设和结论,得到的新命题是对顶角相等是真命题,不合题意; 交换命题 D 的题设和结论,得到的新命题是无理数是无限小数,假命题,符合题意, 故选:D. 写出原命题的逆命题,根据相关的性质、定义判断即可. 本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命 题的真假关键是要熟悉课本中的性质定理.
8.【答案】A
【解析】解:由题意,得 ,
解得

(b-a)2017=(-1)2017=-1, 故选:A. 根据非负数的性质,可得 a,b 的值,根据 本题考查了解二元一次方程组,利用非负数的性质的出关于 a,b 的方程组是解题关键.
9.【答案】D
【解析】解:线段 MN 是由线段 EF 经过平移得到的,点 E(-1,3)的对应点 M(2,5 ),故各对应点之间的关系是横坐标加 3,纵坐标加 2, ∴点 N 的横坐标为:-3+3=0;点 N 的纵坐标为-2+2=0; 即点 N 的坐标是(0,0). 故选:D. 各对应点之间的关系是横坐标加 3,纵坐标加 2,那么让点 F 的横坐标加 3,纵坐标加 2 即为点 N 的坐标. 本题考查图形的平移变换,在平面直角坐标系中,图形的平移与图形上某点的平移相同 ,解决本题的关键是找到各对应点之间的变化规律.
3.【答案】C
【解析】【分析】在同一平面内不重合的两条直线,有两种位置关系:相交或平行,据 此解答即可. 本题考查了平行线和相交线.注意:同一平面内的两条直线,不排除重合的现象. 【解答】在同一个平面内,两条直线平行或相交. 观察选项,C 选项符合题意. 故选:C.

人教版数学七年级下册《期中检测卷》(含答案)

人教版数学七年级下册《期中检测卷》(含答案)

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(共10道题,每题2分,共20分)1. 9的算术平方根是( )A. ﹣3B. ±3C. 3D. 32.在平面直角坐标系中,点A (﹣2,4)位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 3.将一直角三角板与两边平行的纸条如图放置.若∠1=50°,则∠2的度数为( )A 30° B. 40° C. 50° D. 60°4.如图,AB ∥CD ,∠AGE=126°,HM 平分∠EHD ,则∠MHD 的度数是( )A. 44°B. 25°C. 26°D. 27° 5.下列说法正确的是( )A. 相等的角是对顶角B. 一个角的补角必是钝角C. 同位角相等D. 一个角的补角比它的余角大90°6.点()1,3-向右平移个单位后的坐标为( )A ()4,3- B. ()1,6- C. ()2,3 D. ()1,0- 7.《九章算术》中记载:“今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?”意思是:现有一些人共同买一个物品,每人出8元,还余3元;每人出7元,还差4元.问共有多少人?这个物品价格是多少元?设共有个人,这个物品价格是元.则可列方程组为( )A. 83,74x y x y =+⎧⎨=-⎩B. 83,74x y x y =-⎧⎨=+⎩C. 84,73x y x y =+⎧⎨=-⎩D. 84,73x y x y =-⎧⎨=+⎩ 8.下列说法正确的是( )A. 的平方根是B. 的平方根C. 的平方根D. 的平方根9.过A(4,-2)和B(-2,-2)两点的直线一定()A. 垂直于x轴B. 与y轴相交但不平行于x轴C. 平行于x轴D. 与x轴,y轴平行10.二元一次方程2x+y=8的正整数解有( )个.A. 1B. 2C. 3D. 4二、填空题(共8道题,每题2分,共16分)11.在22,0, 3.141592,2.95,,25,3,0.2020020002...72π-+-(两个非零数之间依次多一个0),其中无理数有_______个12.16的平方根是.13.若25.36=5.036,253.6=15.906,则253600=__________.14.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________15.319127-=_____.16.把命题“对顶角相等”改写成“如果…那么…”的形式是__________________.17.如图,将一副三角板按如图放置,则下列结论:①∠1=∠3;②如果∠2=30°,则有BC∥AE;③如果∠1=∠2=∠3,则有BC∥AE;④如果∠2=45°,必有∠4=∠E.其中正确的有_____(填序号).18.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA 2B 2变换成△OA 3B 3,…,将△OAB 进行n 次变换,得到△OA n B n ,观察每次变换中三角形顶点坐标有何变化,找出规律,推测A 2020的坐标是__三、解答题(第19-26题,共64分)19.计算 (1)231981416⎛⎫-+-+ ⎪⎝⎭(2)3232--20.解方程组:(1)23321x y x y -=⎧⎨+=⎩. (2)222529x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩21.如图,在平面直角坐标系中,三角形ABC 的顶点坐标分别为()2,4A -,B(51)--,,(01)C ,,把三角形ABC 向右平移2个单位长度,再向下平移4个单位长度后得到三角形A B C '''.(1)画出三角形ABC 和平移后’’’A B C 的图形;(2)写出三个顶点,,的坐标;(3)求三角形ABC 的面积.22.在某体育用品商店,购买50根跳绳和80个毽子共用1120元,购买30根跳绳和50个毽子共用680元.(1)跳绳、毽子单价各是多少元?(2)该店在“元旦”节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1700元,该店的商品按原价的几折销售?23.如图,AB∥CD.∠1=∠2,∠3=∠4,试说明AD∥BE,请你将下面解答过程填写完整.解:∵AB∥CD,∴∠4= ()∵∠3=∠4∴∠3= (等量代换)∵∠1=∠2∴∠1+∠CAF=∠2+∠CAE 即∠BAE= .∴∠3= ()∴AD∥BE().24.已知,如图,AD∥BC,∠A=∠C.求证:∠1=∠2.25.如图1,点A、B直线1l上,点C、D在直线2l上,AE平分∠BAC,CE平分∠ACD,∠EAC+∠ACE=90°.(1)请判断1l与2l位置关系并说明理由;(2)如图2,在(1)的结论下,P为线段AC上一定点,点Q为直线CD上一动点,当点Q在射线CD上运动时(不与点C重合)∠CPQ+∠CQP与∠BAC有何数量关系?请说明理由.26.小明在拼图时,发现8个一样大小的长方形恰好可以拼成一个大的长方形,如图(1),小红看见了,说:“我来试一试”结果小红七拼八凑,拼成了如图(2)的正方形,中间还留下一个洞,恰好边长是2mm的小正方形,你能计算出每个长方形的长和宽吗?答案与解析一、选择题(共10道题,每题2分,共20分)1. 9的算术平方根是( )A. ﹣3B. ±3C. 3D. 3[答案]C[解析]试题分析:9的算术平方根是3.故选C.考点:算术平方根.2.在平面直角坐标系中,点A(﹣2,4)位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限[答案]B[解析][分析]根据第二象限内点的横坐标小于零,纵坐标大于零,可得答案.[详解]解:由﹣2<0,4>0得点A(﹣2,4)位于第二象限,故选:B.[点睛]本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.将一直角三角板与两边平行的纸条如图放置.若∠1=50°,则∠2的度数为( )A. 30°B. 40°C. 50°D. 60°[答案]B[解析][分析]先根据∠1=50°,∠FEG=90°,求得∠3的度数,再根据平行线的性质,求得∠2的度数即可.[详解]解:如图,∵∠1=50°,∠FEG=90°,∴∠3=40°,∵AB∥CD,∴∠2=∠3=40°.故选:B.[点睛]本题主要考查的是平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.4.如图,AB∥CD,∠AGE=126°,HM平分∠EHD,则∠MHD的度数是()A. 44°B. 25°C. 26°D. 27°[答案]D[解析][分析]由题意可由平行线的性质,求出∠EHD的度数,再由HM平分∠EHD,即可求出∠MHD的度数.[详解]解:由题意得:∠AGE=∠BGF=126°,∵AB∥CD,∴∠EHD=180°−∠BGF=54°,又∵HM平分∠EHD,∴∠MHD=12∠EHD=27°.故选D.[点睛]本题主要考查了平行线的性质,掌握平行线的性质是解题的关键.5.下列说法正确的是( )A. 相等的角是对顶角B. 一个角的补角必是钝角C. 同位角相等D. 一个角的补角比它的余角大90°[答案]D[解析][分析]根据对顶角的定义,余角与补角的关系,对各选项分析判断后利用排除法求解.[详解]解:A 、对顶角相等,相等的角不一定是对顶角,故本选项错误;B 、锐角的补角是钝角,直角的补角是直角,钝角的补角是锐角,故本选项错误;C 、只有两直线平行,同位角才相等,故本选项错误;D 、一个角α的补角为180°﹣α,它的余角为90°﹣α,(180°﹣α)﹣(90°﹣α)=90°,故本选项正确. 故选D .[点睛]本题综合考查了余角、补角、对顶角,是基本概念题,熟记概念与性质是解题的关键.6.点()1,3-向右平移个单位后坐标为( )A ()4,3-B. ()1,6-C. ()2,3D. ()1,0-[答案]C[解析][分析]直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.[详解]解:把点(−1,3)向右平移3个单位后所得的点的坐标为:(−1+3,3),即(2,3),故选C .[点睛]本题主要考查了坐标与图形变化−平移,平移中点的变化规律:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.7.《九章算术》中记载:“今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?”意思是:现有一些人共同买一个物品,每人出8元,还余3元;每人出7元,还差4元.问共有多少人?这个物品价格是多少元?设共有个人,这个物品价格是元.则可列方程组为( ) A. 83,74x y x y =+⎧⎨=-⎩B. 83,74x y x y =-⎧⎨=+⎩C. 84,73x y x y =+⎧⎨=-⎩D. 84,73x y x y =-⎧⎨=+⎩[答案]A[解析][分析] 根据等量关系:每人出8元,还余3元;每人出7元,还差4元即可列出方程组.[详解]根据题意有83,74x y x y =+⎧⎨=-⎩故选:A.[点睛]本题主要考查二元一次方程组的应用,读懂题意,找到等量关系是解题的关键.8.下列说法正确的是()A. 的平方根是B. 的平方根C. 的平方根D. 的平方根[答案]A[解析]分析]根据平方根性质,逐一判定即可.[详解]A选项,的平方根是,正确;B选项,的平方根是,错误;C选项,的平方根是,错误;D选项,没有平方根,错误;故选:A.[点睛]此题主要考查对平方根的理解,熟练掌握,即可解题.9.过A(4,-2)和B(-2,-2)两点的直线一定()A. 垂直于x轴B. 与y轴相交但不平行于x轴C. 平行于x轴D. 与x轴,y轴平行[答案]C[解析][分析]根据平行于x轴的直线上两点的坐标特点解答.[详解]∵A,B两点的纵坐标相等,∴过这两点的直线一定平行于x轴.故选C.[点睛]解答此题的关键是掌握平行于坐标轴的直线上的点的坐标的特点.10.二元一次方程2x+y=8的正整数解有( )个.A. 1B. 2C. 3D. 4[答案]C[解析][分析]由于二元一次方程2x+y=8中y的系数是1,可先用含x的代数式表示y,然后根据此方程的解是正整数,那么把最小的正整数x=1代入,算出对应的y的值,再把x=2代入,再算出对应的y的值,依此可以求出结果.[详解]解:∵2x +y =8,∴y =8﹣2x ,∵x 、y 都是正整数,∴x =1时,y =6;x =2时,y =4;x =3时,y =2.∴二元一次方程2x +y =8的正整数解共有3对.故选:C .[点睛]由于任何一个二元一次方程都有无穷多个解,求满足二元一次方程的正整数解,即此方程中两个未知数的值都是正整数,这是解答本题的关键.注意最小的正整数是1.二、填空题(共8道题,每题2分,共16分)11.在22,0, 3.141592,2.95,0.2020020002 (72)π-+-(两个非零数之间依次多一个0),其中无理数有_______个[答案]3[解析][分析]无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.[详解]解:无理数有2π−0.2020020002…(两个非零数之间依次多一个0),共3个, 故答案为3.[点睛]此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.2020020002…(相邻两个2之间0的个数逐次加1)等有这样规律的数.的平方根是 .[答案]±2.[解析][详解]±2. 故答案为±2.13.=5.036,=15.906,__________.[答案]503.6[解析][分析]根据平方根的计算方法和规律计算即可[详解]解:253600=25.3610000⨯=5.036×100=503.6.故答案为503.6.14.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________[答案]15°[解析][分析]如下图,过点E作EF∥BC,然后利用平行线的性质结合已知条件进行分析解答即可.[详解]由题意可得AD∥BC,∠DAE=∠1+45°,∠AEB=90°,∠EBC=30°,过点E作EF∥BC,则AD∥EF∥BC,∴∠AEF=∠DAE=∠1+45°,∠FEB=∠EBC=30°,又∵∠AEF=∠AEB-∠FEB,∴∠AEF=90°-30°=60°,∴∠1+45°=60°,∴∠1=60°-45°=15°.故答案为:15°.319127-_____.[答案]2 3[解析][分析]根据是实数的性质即可化简.[详解]解:原式=331982127273-==. 故答案为23. [点睛]此题主要考查二次根式的化简,解题的关键是熟知实数的性质.16.把命题“对顶角相等”改写成“如果…那么…”的形式是__________________.[答案]如果两个角是对顶角,那么这两个角相等[解析][分析]命题中的条件是两个角是对顶角,放在“如果”的后面,结论是这两个角相等,应放在“那么”的后面.[详解]解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等,故答案为:如果两个角是对顶角,那么这两个角相等.[点睛]本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.17.如图,将一副三角板按如图放置,则下列结论:①∠1=∠3;②如果∠2=30°,则有BC ∥AE ;③如果∠1=∠2=∠3,则有BC ∥AE ;④如果∠2=45°,必有∠4=∠E .其中正确的有_____(填序号).[答案]①③[解析][分析]根据平行线的判定和性质解答即可.[详解]解:∵∠EAD=∠CAB=90°,∴∠1=∠3,故①正确,当∠2=30°时,∠3=60°,∠4=45°,∴∠3≠∠4,故AE与BC不平行,故②错误,当∠1=∠2=∠3时,可得∠3=∠4=45°,∴BC∥AE,故③正确,∵∠E=60°,∠4=45°,∴∠E≠∠4,故④错误,故答案为:①③.[点睛]此题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解决本题的关键.18.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,…,将△OAB进行n次变换,得到△OA n B n,观察每次变换中三角形顶点坐标有何变化,找出规律,推测A2020的坐标是__[答案](22020,3)[解析][分析]根据图形写出点A系列的坐标与点B系列的坐标,根据具体数值找到规律即可.[详解]∵A(1,3),A1(2,3),A2(4,3),A3(8,3)…纵坐标不变为3,横坐标都和2有关,为2n,∴An(2n,3);∴A2020(22020,3)故答案为:(22020,3)[点睛]依次观察各点的横纵坐标,得到规律是解决本题的关键.三、解答题(第19-26题,共64分)19.计算(1(2)[答案](1)12-;(2).[解析][分析](1)直接利用立方根以及平方根的性质分别化简得出答案;(2)直接利用绝对值的定义化简得出答案;[详解](11512442 =-+=-(2)==[点睛]考查了实数的混合运算以及二次根式的加减混合运算,正确化简各数是解题关键.20.解方程组:(1)23321x yx y-=⎧⎨+=⎩.(2)222529x y zx y zx y z++=⎧⎪++=⎨⎪++=⎩[答案](1)11xy=⎧⎨=-⎩;(2)521xyz=⎧⎪=-⎨⎪=⎩.[解析][分析](1)首先由①×2+②,消去y,然后解关于x的方程即可求解.(2)由①+②+③得到x+y+z=4④,再由①-④得到y的值,②-④得到z的值,③-④得到x的值.[详解](1)23 321 x yx y①②-=⎧⎨+=⎩由①×2+②,得7x=7,解得x=1,把x=1 代入①式,得2﹣y=3,解得y=﹣1所以原方程组的解为11 xy=⎧⎨=-⎩.(2)2 2....2 5....29.... x y zx y zx y z++=⎧⎪++=⎨⎪++=⎩①②③①+②+③ 得4x+4y+4z=16 即 x+y+z=4 ④①-④ 得y= -2②-④ 得z= 1③-④ 得x= 5所以原方程组的解为521x y z =⎧⎪=-⎨⎪=⎩[点评]考查了解二元一次方程组和解三元一次方程组,解方程组的基本思想是消元,基本方法是代入消元和加减消元.21.如图,在平面直角坐标系中,三角形ABC 的顶点坐标分别为()2,4A -,B(51)--,,(01)C ,,把三角形ABC 向右平移2个单位长度,再向下平移4个单位长度后得到三角形A B C '''.(1)画出三角形ABC 和平移后’’’A B C 的图形;(2)写出三个顶点,,的坐标;(3)求三角形ABC 的面积.[答案](1)图见解析(2)点A ′的坐标为(0,0)、B'的坐标为(-3,−5)、C ′的坐标为(2,−3)(3)192[解析][分析](1)依据所得点的坐标,描点后首尾顺次连接即可求解;(2)根据点的坐标的平移规律即可求解;(3)根据割补法及三角形的面积公式可得答案.[详解](1)如图,△ABC 和△’’’A B C 为所求; (2)∵把三角形ABC 向右平移2个单位长度,再向下平移4个单位长度后得到三角形A B C '''.∴点A ′的坐标为(0,0)、B'的坐标为(-3,−5)、C ′的坐标为(2,−3);(3)三角形ABC 的面积=5×5-12×3×5-12×3×2-12×2×5=25-152-3-5=192.[点睛]本题主要考查作图−平移变换,解题的关键是掌握平移变换的定义和性质,并根据平移变换的定义和性质得出变换后的对应点位置.22.在某体育用品商店,购买50根跳绳和80个毽子共用1120元,购买30根跳绳和50个毽子共用680元.(1)跳绳、毽子的单价各是多少元?(2)该店在“元旦”节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1700元,该店的商品按原价的几折销售?[答案](1)跳绳的单价为16元,毽子的单价为4元;(2)商品按原价的八五折销售.[解析][分析](1)可设跳绳的单价为x 元,毽子的单价为y 元,根据题意列出关于x,y 的二元一次方程组,解方程组即可;(2)设商品按原价的z 折销售,根据第(1)问求出来的跳绳和毽子的单价,根据题意列出方程,解方程即可.[详解](1)设跳绳的单价为x 元,毽子的单价为y 元,根据题意有508011203050680x y x y +=⎧⎨+=⎩ ,解得164x y =⎧⎨=⎩所以跳绳的单价为16元,毽子的单价为4元;(2)设商品按原价的z 折销售,根据题意得(164)100170010z +⨯⨯= 解得8.5z = 所以商品按原价的八五折销售.[点睛]本题主要考查一元一次方程及二元一次方程组的应用,读懂题意,列出方程及方程组是解题的关键. 23.如图,AB∥CD.∠1=∠2,∠3=∠4,试说明AD∥BE,请你将下面解答过程填写完整.解:∵AB∥CD,∴∠4= ()∵∠3=∠4∴∠3= (等量代换)∵∠1=∠2∴∠1+∠CAF=∠2+∠CAE 即∠BAE= .∴∠3= ()∴AD∥BE().[答案]∠BAE;两直线平行,同位角相等;∠BAE;∠CAD;∠CAD;等量代换;内错角相等,两直线平行.[解析][分析]根据平行线的性质得出∠4=∠BAE,由此∠3=∠BAE,根据∠2=∠1可得∠BAE=∠CAD,从而得出∠3=∠CAD,根据平行线的判定定理得出即可.[详解]解:∵AB∥CD,∴∠4=∠BAE( 两直线平行,同位角相等),∵∠3=∠4,∴∠3=∠BAE(等量代换),∵∠1=∠2,∴∠1+∠CAF=∠2+∠CAE,即∠BAE=∠CAD,∴∠3=∠CAD( 等量代换),∴AD∥BE( 内错角相等,两直线平行).[点睛]本题考查平行线的性质和判定.熟记平行线的性质和判定定理,并能正确识图完成角度之间的转换是解决此题的关键.24.已知,如图,AD∥BC,∠A=∠C.求证:∠1=∠2.[答案]见解析.[解析][分析]根据两直线平行,同旁内角互补得到∠A+∠ABC=180°,再根据∠A=∠C得到∠C+∠ABC=180°,根据同旁内角互补,两直线平行得到DC∥AB,再利用两直线平行,内错角相等得到∠1=∠2.[详解]∵AD∥BC,∴∠A+∠ABC=180°,又∵∠A=∠C,∴∠C+∠ABC=180°,∴DC∥AB,∴∠1=∠2.[点睛]考查了直线平行的判定与性质:同位角相等,两直线平行;两直线平行,内错角相等.25.如图1,点A、B在直线1l上,点C、D在直线2l上,AE平分∠BAC,CE平分∠ACD,∠EAC+∠ACE=90°.(1)请判断1l与2l的位置关系并说明理由;(2)如图2,在(1)的结论下,P为线段AC上一定点,点Q为直线CD上一动点,当点Q在射线CD上运动时(不与点C重合)∠CPQ+∠CQP与∠BAC有何数量关系?请说明理由.[答案](1)1l∥2l;(2)①当Q在C点左侧时,∠BAC=∠CQP +∠CPQ,②当Q在C点右侧时,∠CPQ+∠CQP+∠BAC=180°.[解析]分析](1)先根据CE 平分∠ACD ,AE 平分∠BAC 得出∠BAC=2∠1,∠ACD=2∠2,再由∠1+∠2=90°可知∠BAC+∠ACD=180,故可得出结论;(2)分两种情况讨论:①当Q 在C 点左侧时;②当Q 在C 点右侧时.[详解]解:(1)1l ∥2l .理由如下:∵AE 平分∠BAC ,CE 平分∠ACD(已知),∴∠BAC=2∠1,∠ACD=2∠2(角平分线的定义);又∵∠1+∠2=90°(已知), ∴∠BAC+∠ACD=2∠1+2∠2=2(∠1+∠2)=180°(等量代换)∴1l ∥2l (同旁内角互补,两直线平行)(2)①当Q 在C 点左侧时,过点P 作PE ∥1l .∵1l ∥2l (已证),∴PE ∥2l (同平行于一条直线的两直线互相平行),∴∠1=∠2,(两直线平行,内错角相等),∠BAC=∠EPC ,(两直线平行,同位角相等),又∵∠EPC=∠1+∠CPQ ,∴∠BAC=∠CQP +∠CPQ (等量代换)②当Q 在C 点右侧时,过点P 作PE ∥1l .∵1l ∥2l (已证),∴PE ∥2l (同平行于一条直线的两直线互相平行),∴∠1=∠2,∠BAC=∠APE ,(两直线平行,内错角相等),又∵∠EPC=∠1+∠CPQ ,∠APE+∠EPC=180°(平角定义)∴∠CPQ+∠CQP+∠BAC=180°.[点睛]本题考查了平行线的性质,根据题意作出平行线是解答此题的关键.26.小明在拼图时,发现8个一样大小的长方形恰好可以拼成一个大的长方形,如图(1),小红看见了,说:“我来试一试”结果小红七拼八凑,拼成了如图(2)的正方形,中间还留下一个洞,恰好边长是2mm 的小正方形,你能计算出每个长方形的长和宽吗?[答案]小长方形的长为10mm ,宽为6mm .[解析][分析]设每个小长方形的长为xmm ,宽为 ymm ,根据图形给出的信息可知,长方形的5个宽与其3个长相等,两个长加2的和等于一个长与两个宽的和,于是得方程组,解出即可.[详解]设每个长方形的长为xmm ,宽为 ymm ,由题意得35222x yx x y=⎧⎨+=+⎩,解得:106xy=⎧⎨=⎩.答:小长方形的长为10mm,宽为6mm.[点睛]考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时根据矩形和正方形的长与宽的关系建立方程组是关键.。

人教版数学七年级下册《期中检测题》(含答案)

人教版数学七年级下册《期中检测题》(含答案)

人教版数学七年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(每题2分,共20分)1. 据悉,世界上最小开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00000009克,用科学记数法表示此数正确的是( )A. 9.0×10﹣8B. 9.0×10﹣9C. 9.0×108D. 0.9×1092. 下列运算正确的是( )A. (﹣x﹣y)2=x2﹣2xy+y2B. (﹣2x3)3=﹣6x9C. x•x2=x3D. (x+2)2=x2+43. 下列各式中,不能用平方差公式是( )A. (3x﹣2y)(3x+2y)B. (a+b+c)(a﹣b+c)C. (a﹣b)(﹣b﹣a)D. (﹣x+y)(x﹣y)4. 下列说法错误的个数( )①过一点有且只有一条直线与已知直线垂直;②不相交两条直线必平行;③三角形的三条高线交于一点:④直线外一点到已知直线的垂线段叫做这点到直线的距离;⑤过一点有且只有一条直线与已知直线平行.A. 2个B. 3个C. 4个D. 5个5. 下列图形中,由∠1=∠2能得到AB∥CD的是( )A B.C. D.6. 如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADF的面积为S1,△CEF的面积为S2,若S△ABC=9,则S1﹣S2=( )A. 12B. 32C. 1D. 27. 如果(x 2+ax+b )(x 2﹣3x )的展开式中不含x 2与x 3项,那么a 与b 的值是( )A. a =﹣3,b =9B. a =3,b =9C. a =﹣3,b =﹣9D. a =3,b =﹣9 8. 给定下列条件,不能判定三角形是直角三角形的是( )A. ::2:3:5A B C ∠∠∠=B. A C B ∠-∠=∠C. 2A B C ∠=∠=∠D. 1123A B C ∠=∠=∠ 9. 如图,在长方形ABCD 中,点E ,G 、F 分别在边AD 、BC 、AB 上,将△AEF 沿着EF 翻折至△A ′EF ,将四边形EDCG 沿着EG 翻折至ED ′C ′G ,使点D 的对应点D ′落在AE 上,已知∠AFE =70°,则∠BGC ′的度数为( )A. 20°B. 30°C. 40°D. 50°10. 如图,在ABC ∆中,AC BC =,若有一动点从出发,沿A C B A →→→匀速运动,则CP 的长度与时间之间的关系用图像表示大致是( )A B.C. D.二、填空题(每题3分,共24分)11. 若a+3b ﹣3=0,则3a •27b =_____.12. (a ﹣2018)2+(2020﹣a )2=20,则a ﹣2019=_____.13. 若∠A 与∠B 的两边分别平行,且∠A 比∠B 的3倍少40°,则∠B =_____度.14. 已知a ,b ,c 是一个三角形的三边长,化简|a+c ﹣b|﹣|b ﹣c+a|﹣|a ﹣b ﹣c|=_____.15. 已知BD 、CE 是△ABC 的高,BD 、CE 所在的直线相交所成的角中有一个角为60°,则∠BAC =_____. 16. 一个等腰三角形的周长是21,其中两边之差为6,则腰长为_____.17. 如图,AB ∥CD ,CF 平分∠DCG ,GE 平分∠CGB 交FC 的延长线于点E ,若∠E =34°,则∠B 的度数为____________.18. 已知动点P 以每秒2cm 的速度沿图甲的边框按从B →C →D →E →F →A 的路径移动,相应的△ABP 的面积S (cm 2)与时间t (秒)之间的关系如图乙中的图象所示.其中AB =6cm .当t =_____时,△ABP 的面积是15cm 2.三、解答题(共7小题,满分76分)19. 计算(1)(﹣a )3•a 2+(﹣2a 4)2÷a 3(2)()-30212019-20182020+-3.14--2π⎛⎫⨯ ⎪⎝⎭.20. 先化简,再求值:[(2x﹣y)2﹣(3x+y)(3x﹣y)+5x2]÷(﹣2y),其中x=﹣12,y=1.21. 如图,在四边形ABCD中,AB//CD,E为BC延长线上一点,AE交CD于点F,∠1=∠2,∠3=∠4,试说明AD//BE.证明:∵∠3=∠4( )且∠4=∠AFD( )∴∠3=∠AFD在△ABC中,∠1+∠B+∠3=180°在△ADF中, =180°∵∠1=∠2,∠3=∠AFD∴∠B=∠D( )∵AB//CD∴∠B=∠DCE( )∴(等量代换)∴AD//BE( )22. 如图,在△ABC中,点D在边BC上,点G在边AB上,点E、F在边AC上,∠AGF=∠ABC=70°,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若DE⊥AC,∠2=150°,求∠A的度数.23. 如图,某市修建了一个大正方形休闲场所,在大正方形内规划了一个正方形活动区,连接绿地到大正方形四边的笔直小路如图所示.已知大正方形休闲场所的边长为6a米,四条小路的长与宽都为b米和b2米.阴影区域铺设草坪,草坪的造价为每平米30元.(1)用含a、b的代数式表示草坪(阴影)面积并化简.(2)若a=10,b=5,计算草坪的造价.24. 甲、乙两人在同一平直的道路上同时、同起点、同方向出发,他们分别以不同的速度匀速跑步2400米(甲的速度大于乙的速度),当甲第一次超出乙600米时,甲停下来等候乙.甲、乙两人会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息.在整个跑步过程中,甲、乙两人之间的距离y(米)与乙出发的时间x(秒)之间的关系图象如图所示,根据图象中提供的信息回答问题:(1)A点表示的是;(2)乙出发s时到达终点,a=,b=;(3)甲乙出发s相距150米.25. 在△ABC中,∠B,∠C均为锐角且不相等,线段AD,AE分别是△ABC中BC边上的高和△ABC的角平分线.(1)如图1,∠B=70°,∠C=30°,则∠DAE的度数.(2)若∠B=α,∠DAE=10°,则∠C=(3)F是射线AE上一动点,G、H分别为线段AB,BE上的点(不与端点重合),将△ABC沿着GH折叠,使点B 落到点F处,如图2所示,其中∠1=∠AGF,∠2=∠EHF,请直接写出∠1,∠2与∠B的数量关系.答案与解析一、选择题(每题2分,共20分)1. 据悉,世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00000009克,用科学记数法表示此数正确的是( )A. 9.0×10﹣8B. 9.0×10﹣9C. 9.0×108D. 0.9×109[答案]A[解析][分析]绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.[详解]解:0.00000009=9.0×10﹣8.故选:A.[点睛]本题考查了绝对值小于1的数的科学计数法表示,熟练掌握表示法则是解题的关键.2. 下列运算正确的是( )A. (﹣x﹣y)2=x2﹣2xy+y2B. (﹣2x3)3=﹣6x9C. x•x2=x3D. (x+2)2=x2+4[答案]C[解析][分析]分别根据完全平方公式,积的乘方,同底数幂的乘法等知识进行计算即可求解.[详解]解:A.原式=x2+2xy+y2,计算错误,不合题意;B.原式=﹣8x9,计算错误,不合题意;C.原式=x1+2=x3,计算正确,符合题意;D.原式=x2+4+4x,计算错误,不合题意.故选:C.[解答]本题考查了完全平方公式、积的乘方、同底数幂的乘法等知识,熟知相关法则是解题关键.3. 下列各式中,不能用平方差公式的是( )A. (3x﹣2y)(3x+2y)B. (a+b+c)(a﹣b+c)C. (a﹣b)(﹣b﹣a)D. (﹣x+y)(x﹣y)[答案]D[解析][分析]根据平方差公式的结构特点,两个数的和乘以两个数的差,对各选分析判断即可得解.[详解]解:A、(3x﹣2y)(3x+2y)是3x与2y的和与差的积,符合公式结构,故本选项不符合题意;B、(a+b+c)(a﹣b+c),是(a+c)与b的和与差的积,符合公式结构,故本选项不符合题意;C、(a﹣b)(﹣b﹣a),是﹣b与a的和与差的积,符合公式结构,故本选项不符合题意;D、(﹣x+y)(x﹣y)=﹣(x﹣y)2,不符合公式结构,故本选项符合题意.故选:D.[点睛]此题主要考查平方差公式的结构特点,正确掌握结构是解题关键.4. 下列说法错误的个数( )①过一点有且只有一条直线与已知直线垂直;②不相交的两条直线必平行;③三角形的三条高线交于一点:④直线外一点到已知直线的垂线段叫做这点到直线的距离;⑤过一点有且只有一条直线与已知直线平行.A 2个 B. 3个 C. 4个 D. 5个[答案]D[解析][分析]根据三角形的高、点到直线的距离定义、平行公理、平行线定义进行分析即可.[详解]解:①平面内,过一点有且只有一条直线与已知直线垂直,故原题说法错误;②平面内,不相交的两条直线必平行,故原题说法错误;③三角形的三条高线交于一点,应该是三条高线所在直线交于一点,故原题说法错误:④直线外一点到已知直线的垂线段的长度叫做这点到直线的距离,故原题说法错误;⑤过直线外一点有且只有一条直线与已知直线平行,故原题说法错误.错误的说法有5个,故选:D.[点睛]此题主要考查真假命题的判断,正确理解各相关概念是解题关键.5. 下列图形中,由∠1=∠2能得到AB∥CD的是( )A. B.C D.[答案]B[解析][分析]根据平行线的判定定理对各选项进行逐一判断即可.[详解]解:A、∠1=∠2不能判定任何直线平行,故本选项错误;B、∵∠1=∠2,∴AB∥CD,符合平行线判定定理,故本选项正确;C、∵∠1=∠2,∴AC∥BD,故本选项错误;D、∠1=∠2不能判定任何直线平行,故本选项错误.故选:B.[点睛]本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.6. 如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADF的面积为S1,△CEF的面积为S2,若S△ABC=9,则S1﹣S2=( )A. 12B.32C. 1D. 2[答案]B[解析][分析]S△ADF-S△CEF=S△ABE-S△BCD,所以求出三角形ABE的面积和三角形BCD的面积即可,因为AD=2BD,BE=CE,且S△ABC=9,就可以求出三角形ABE的面积和三角形BCD的面积.[详解]∵BE=CE,∴BE=12 BC,∵S△ABC=9,∴S△ABE=12S△ABC=12×9=4.5.∵AD=2BD ,S △ABC =9,∴S △BCD =13S △ABC =13×9=3, ∵S △ABE -S △BCD =(S △ADF +S 四边形BEFD )-(S △CEF +SS 四边形BEFD )=S △ADF -S △CEF ,即S △ADF -S △CEF =S △ABE -S △BCD =4.5-3=1.5.故选B .[点睛]考查三角形的面积,关键知道当高相等时,面积等于底边的比,根据此可求出三角形的面积,然后求出差.7. 如果(x 2+ax+b )(x 2﹣3x )的展开式中不含x 2与x 3项,那么a 与b 的值是( )A. a =﹣3,b =9B. a =3,b =9C. a =﹣3,b =﹣9D. a =3,b =﹣9 [答案]B[解析][分析]直接利用多项式乘多项式运算法则计算,进而得出a ,b 的值.[详解]解:∵(x 2+ax+b )(x 2﹣3x )的展开式中不含x 2与x 3项,∴原式=x 4﹣3x 3+ax 3﹣3ax 2+bx 2﹣3bx=x 4+(﹣3+a )x 3+(﹣3a+b )x 2﹣3bx ,∴﹣3+a =0,﹣3a+b =0,解得:a =3,b =9.故选:B .[点睛]本题考查整式的乘法、多项式乘多项式的法则,灵活运用这些法则是解题的关键,属于中考常考题型. 8. 给定下列条件,不能判定三角形是直角三角形是( )A. ::2:3:5A B C ∠∠∠=B. A C B ∠-∠=∠C. 2A B C ∠=∠=∠D. 1123A B C ∠=∠=∠ [答案]C[解析][分析]根据三角形的内角和等于180°求出最大角,然后选择即可.[详解]解:A 、最大角∠C=180°÷(2+3+5)×5=90°,是直角三角形,故此选项不符合题意;B 、最大角∠A=∠B+∠C=180°÷2=90°,是直角三角形,故此选项不符合题意;C 、最大角∠A=180°÷(2+2+1)×2=72°,故此选项符合题意;D 、最大角∠C=(1+2+3)×3==90°,故此选项不符合题意;故答案为:C.[点睛]本题考查了由角度大小计算判断直角三角形,掌握三角形的内角和等于180°是解题的关键. 9. 如图,在长方形ABCD 中,点E ,G 、F 分别在边AD 、BC 、AB 上,将△AEF 沿着EF 翻折至△A ′EF ,将四边形EDCG 沿着EG 翻折至ED ′C ′G ,使点D 的对应点D ′落在AE 上,已知∠AFE =70°,则∠BGC ′的度数为( )A. 20°B. 30°C. 40°D. 50°[答案]C[解析][分析] 先求出∠AEF ,再根据翻折变换的性质得到∠A ′EA ,根据平角的定义和翻折变换的性质可求∠A ′EG ,∠DEG ,再根据平行线的性质和角的和差关系即可求解.[详解]解:∵∠AFE =70°,∴∠AEF =20°,由翻折变换的性质得∠A ′EA =40°,∴∠A ′ED =140°,由翻折变换的性质得∠A ′EG =∠DEG =70°,∵A ′E ∥C ′G ,∴∠EGC ′=110°,∵AD ∥BC ,∴∠EGB =70°,∴∠BGC ′=110°﹣70°=40°.故选:C .[点睛]本题考查了翻折的性质,平行线的性质,理解翻折的性质得到相等的角解题关键.10. 如图,在ABC ∆中,AC BC =,若有一动点从出发,沿A C B A →→→匀速运动,则CP 的长度与时间之间的关系用图像表示大致是( )A. B.C. D.[答案]D[解析][分析]该题属于分段函数:点P在边AC上时,s随t的增大而减小;当点P在边BC上时,s随t的增大而增大;当点P在线段BD上时,s随t的增大而减小;当点P在线段AD上时,s随t的增大而增大.[详解]解:如图,过点C作CD⊥AB于点D.∵在△ABC中,AC=BC,∴AD=BD.①点P在边AC上时,s随t的增大而减小.故A、B错误;②当点P在边BC上时,s随t的增大而增大;③当点P在线段BD上时,s随t的增大而减小,点P与点D重合时,s最小,但是不等于零.故C错误;④当点P在线段AD上时,s随t的增大而增大.故D正确.故选:D.[点睛]本题考查了动点问题的函数图象.用图象解决问题时,要理清图象的含义即会识图.二、填空题(每题3分,共24分)11. 若a+3b﹣3=0,则3a•27b=_____.[答案]27[解析][分析]先将原式化为同底,然后利用条件即可求出答案.[详解]解:原式=3a•(33)b=3a+3b,∵a+3b﹣3=0∴a+3b=3,∴原式=33=27,故答案为:27.[点睛]本题考查幂的乘方、同底数幂的乘法,解题的关键是熟练掌握运算法则.12. (a﹣2018)2+(2020﹣a)2=20,则a﹣2019=_____.[答案]±3[解析][分析]将(a﹣2018)、(2020﹣a)分别转化为含有(a﹣2019)的形式,然后利用完全平方公式解答.[详解]解:∵(a﹣2018)2+(2020﹣a)2=[(a﹣2019)+1]2+[(a﹣2019)﹣1]2=2(a﹣2019)2+2=20.∴(a﹣2019)2=9.∴a﹣2019=±3.故答案是:±3.[点睛]此题主要考查求代数式的值,解题关键是根据题意整理式子.13. 若∠A与∠B的两边分别平行,且∠A比∠B的3倍少40°,则∠B=_____度.[答案]55或20[解析][分析]根据平行线性质得出∠A+∠B=180°①,∠A=∠B②,求出∠A=3∠B﹣40°③,把③分别代入①②求出即可.[详解]解:∵∠A与∠B的两边分别平行,∴∠A+∠B=180°①,∠A=∠B②,∵∠A比∠B的3倍少40°,∴∠A=3∠B﹣40°③,把③代入①得:3∠B﹣40°+∠B=180°,∠B=55°,把③代入②得:3∠B﹣40°=∠B,∠B=20°,故答案为:55或20.[点睛]本题考查平行线的性质,解题的关键是掌握由∠A和∠B的两边分别平行,即可得∠A =∠B或∠A+∠B=180°,注意分类讨论思想的应用.14. 已知a,b,c是一个三角形的三边长,化简|a+c﹣b|﹣|b﹣c+a|﹣|a﹣b﹣c|=_____.[答案]a﹣3b+c[解析][分析]根据三角形三边关系得到a+c﹣b>0,b﹣c+a>0,a﹣b﹣c<0,再去绝对值,合并同类项即可求解.[详解]解:∵a,b,c是一个三角形的三条边长,∴a+c﹣b>0,b﹣c+a>0,a﹣b﹣c<0,|a+c﹣b|﹣|b﹣c+a|﹣|a﹣b﹣c|=a+c﹣b﹣b+c﹣a+a﹣b﹣c=a﹣3b+c,故答案为:a﹣3b+c.[解答]本题考查了三角形三边关系,绝对值的意义,根据三角形三边关系得到三个绝对值内整式的符号是解题关键.15. 已知BD、CE是△ABC的高,BD、CE所在的直线相交所成的角中有一个角为60°,则∠BAC=_____.[答案]60°或120°.[解析][分析]分两种情况:(1)当∠A为锐角时,如图1;(2)当∠A为钝角时,如图2;根据四边形的内角和为360°即可得出结果.[详解]解:分两种情况:(1)当∠A为锐角时,如图1,∵∠DOC=60°,∴∠EOD=120°,∵BD、CE是△ABC的高,∴∠AEC=∠ADB=90°,∴∠A=360°﹣90°﹣90°﹣120°=60°;(2)当∠A为钝角时,如图2,∵∠F=60°,同理:∠ADF=∠AEF=90°,∴∠DAE=360°﹣90°﹣90°﹣60°=120°,∴∠BAC=∠DAE=120°,综上所述,∠BAC的度数为60°或120°,故答案为:60°或120°.[点睛]本题考查了三角形高线的定义,四边形的内角和等知识,掌握相关定理,能分类讨论是解题关键.16. 一个等腰三角形的周长是21,其中两边之差为6,则腰长为_____.[答案]9[解析][分析]分底小于腰和底大于腰两种情况分别计算三角形的三边,再根据三边关系进行取舍即可.[详解]解:(1)设底为x,则腰为(x+6),由题意得:x+2(x+6)=21,解得:x=3,当x=3时,x+6=9,此时等腰三角形的三边为:3,9,9;(2)设底为x,则腰为(x﹣6),由题意得:x+2(x﹣6)=21,解得:x=11,当x=11时,x﹣6=5,11,5,5不能构成三角形,不符合题意;因此,腰为9,故答案为:9.[点睛]本题考查了等腰三角形的定义,三角形的三边关系,根据题意分类讨论,并对答案根据三边关系进行分析取舍是解题关键.17. 如图,AB∥CD,CF平分∠DCG,GE平分∠CGB交FC的延长线于点E,若∠E=34°,则∠B的度数为____________.[答案]68°[解析][分析]如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.构建方程组证明∠GMC=2∠E即可解决问题.[详解]解:如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.则有22x y GMCx y E=+∠⎧⎨=+∠⎩①②,①-2×②得:∠GMC=2∠E, ∵∠E=34°,∴∠GMC=68°,∵AB∥CD,∴∠GMC=∠B=68°,故答案为:68°.[点睛]本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟悉基本图形,学会添加常用辅助线,学会利用参数构建方程组解决问题,属于中考填空题中的能力题.18. 已知动点P 以每秒2cm 的速度沿图甲的边框按从B →C →D →E →F →A 的路径移动,相应的△ABP 的面积S (cm 2)与时间t (秒)之间的关系如图乙中的图象所示.其中AB =6cm .当t =_____时,△ABP 的面积是15cm 2.[答案]2.5或14.5[解析][分析]根据题意得:动点P 在BC 上运动的时间是4秒,又由动点的速度,可得BC 、AF 的长;再根据三角形的面积公式解答即可.[详解]解:动点P 在BC 上运动时,对应的时间为0到4秒,易得:BC =2cm/秒×4秒=8(cm ); 动点P 在CD 上运动时,对应的时间为4到6秒,易得:CD =2cm/秒×(6﹣4)秒=4(cm );动点P 在DF 上运动时,对应的时间为6到9秒,易得:DE =2cm/秒×(9﹣6)秒=6(cm ),故图甲中的BC 长是8cm ,DE =6cm ,EF =6﹣4=2(cm )∴AF =BC+DE =8+6=14(cm ),∴b =9+(EF+AF )÷2=17, ∴12152AB t ⋅=或()12152AB BC CD DE EF AF t ++++-=, 解得t =2.5或14.5.故答案为:2.5或14.5.[点睛]本题考查了一元一次方程的应用及动点问题,根据题意需要分情况讨论是解题的关键.三、解答题(共7小题,满分76分)19. 计算(1)(﹣a )3•a 2+(﹣2a 4)2÷a 3(2)()-30212019-20182020+-3.14--2π⎛⎫⨯ ⎪⎝⎭.[答案](1)3a5;(2)10.[解析][分析](1)直接利用同底数幂的乘除运算法则以及积的乘方运算法则分别化简得出答案;(2)直接利用乘法公式将原式变形进而得出答案.[详解]解:(1)原式=﹣a5+4a8÷a3=﹣a5+4a5=3a5;(2)原式=20192﹣(2019﹣1)(2019+1)+1+8=20192﹣(20192﹣1)+9=20192﹣20192+1+9=10.[点睛]本题考查了整式的乘法运算,平方差公式,0指数幂,负整数指数幂等知识,熟知相关运算法则是解题关键.20. 先化简,再求值:[(2x﹣y)2﹣(3x+y)(3x﹣y)+5x2]÷(﹣2y),其中x=﹣12,y=1.[答案]﹣y+2x,﹣2[解析][分析]先根据整式的运算法则进行化简,然后将x与y的值代入原式即可求出答案.[详解]解:原式=(4x2﹣4xy+y2﹣9x2+y2+5x2)÷(﹣2y)=(2y2﹣4xy)÷(﹣2y)=﹣y+2x,当x=12-,y=1时,原式=﹣1+2×(12 -)=﹣1﹣1=﹣2.[点睛]本题考查乘法公式的混合运算,熟记完全平方公式和平方差公式是解题的关键,需要注意把乘法公式的结果用括号括起来.21. 如图,在四边形ABCD中,AB//CD,E为BC延长线上一点,AE交CD于点F,∠1=∠2,∠3=∠4,试说明AD//BE.证明:∵∠3=∠4( )且∠4=∠AFD( )∴∠3=∠AFD在△ABC中,∠1+∠B+∠3=180°在△ADF中, =180°∵∠1=∠2,∠3=∠AFD∴∠B=∠D( )∵AB//CD∴∠B=∠DCE( )∴(等量代换)∴AD//BE( )[答案]已知;对顶角相等;∠2+∠D+∠AFD;等式的性质;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.[解析]分析]利用平行线的性质定理和判定定理进行解答即可.[详解]证明:∵∠3=∠4(已知)且∠4=∠AFD(对顶角相等)∴∠3=∠AFD,在△ABC中,∠1+∠B+∠3=180°,在△ADF中,∠2+∠D+∠AFD=180°,∵∠1=∠2,∠3=∠AFD,∴∠B=∠D(等式的性质),∵AB//CD,∴∠B=∠DCE(两直线平行,同位角相等)∴∠D=∠DCE(等量代换),∴AD//BE(内错角相等,两直线平行).故答案为:已知;对顶角相等;∠2+∠D+∠AFD;等式的性质;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.[点睛]本题考查平行线的性质以及判定定理,熟练掌握相关定理是解决此题的关键.22. 如图,在△ABC中,点D在边BC上,点G在边AB上,点E、F在边AC上,∠AGF=∠ABC=70°,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若DE⊥AC,∠2=150°,求∠A的度数.[答案](1)DE∥BF,理由见解析;(2)∠A =50°.[解析][分析](1)依据FG∥CB,即可得出∠1=∠3,再根据∠1+∠2=180°,即可得到∠2+∠3=180°,进而判定DE∥BF.(2)依据三角形外角性质以及三角形内角和定理,即可得到∠A的度数.[详解]解:(1)BF与DE的位置关系为互相平行,理由:∵∠AGF=∠ABC=70°,∴FG∥CB,∴∠1=∠3,又∵∠1+∠2=180°,∴∠2+∠3=180°∴DE∥BF.(2)∵DE⊥AC,∠2=150°,∴∠C=∠2﹣∠CED=150°﹣90°=60°,又∵∠ABC=70°,∴∠A=180°﹣∠ABC﹣∠C=180°﹣70°﹣60°=50°.[点睛]此题主要考查平行线的判定和性质、三角形的内角和定理、三角形的外角性质,熟练进行逻辑推理是解题关键.23. 如图,某市修建了一个大正方形休闲场所,在大正方形内规划了一个正方形活动区,连接绿地到大正方形四边的笔直小路如图所示.已知大正方形休闲场所的边长为6a米,四条小路的长与宽都为b米和b2米.阴影区域铺设草坪,草坪的造价为每平米30元.(1)用含a、b的代数式表示草坪(阴影)面积并化简.(2)若a=10,b=5,计算草坪的造价.[答案](1)24ab-6b2;(2)31500元.[解析][分析](1)根据已知条件,用大正方形的面积减去4个长方形的面积再减去中间小正方形的面积即可求解.(2)把a=10,b=5及草坪的造价为每平米30元代入代数式即可求解.[详解]解:(1)∵阴影部分的面积为:大正方形的面积减去4个长方形的面积再减去中间小正方形的面积,∴草坪(阴影)面积为:6a×6a﹣4×b×12×b﹣(6a﹣2b)2=24ab-6b2.(2)当a=10,b=5时,草坪的造价为:(24×10×5-6×52)×30=31500(元).[点睛]本题考查了整式的应用和求整式的值,根据题意正确列出整式是解题的关键.24. 甲、乙两人在同一平直的道路上同时、同起点、同方向出发,他们分别以不同的速度匀速跑步2400米(甲的速度大于乙的速度),当甲第一次超出乙600米时,甲停下来等候乙.甲、乙两人会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息.在整个跑步过程中,甲、乙两人之间的距离y(米)与乙出发的时间x(秒)之间的关系图象如图所示,根据图象中提供的信息回答问题:(1)A点表示的是;(2)乙出发s时到达终点,a=,b=;(3)甲乙出发s相距150米.[答案](1)甲在600秒时,第一次超出乙600米;(2)1600,1000,1360;(3)150或900或1150或1500.[解析][分析](1)由图象可得:点A表示甲在600秒时,第一次超出乙600米;(2)先求出甲,乙速度,即可求解;(3)分四种情况讨论,由时间=路程÷速度,即可求解.[详解]解:(1)点A表示甲在600秒时,第一次超出乙600米,故答案为:甲在600秒时,第一次超出乙600米;(2)由图形可得乙出发1600s时到达终点,∴乙的速度=24001600=1.5米/秒,∴甲的速度=600600+1.5=2.5秒,∴a=600 2.51.5⨯=1000,∴b=24002.5﹣600+1000=1360,故答案为:1600,1000,1360;(2)刚出发时,1502.5 1.5-=150s,甲在A地时,2.56001501.5⨯-=900s,从A地出发后,1000+150=1150s,甲到终点后,24001501.5-=1500s,综上所述:甲乙出发150s或900s或1150s或1500s时,相距150米.故答案为:150或900或1150或1500.[点睛]此题主要考查根据函数图象的信息解决实际问题,解题关键是读懂函数图象.25. 在△ABC中,∠B,∠C均为锐角且不相等,线段AD,AE分别是△ABC中BC边上的高和△ABC的角平分线.(1)如图1,∠B=70°,∠C=30°,则∠DAE的度数.(2)若∠B=α,∠DAE=10°,则∠C=(3)F是射线AE上一动点,G、H分别为线段AB,BE上的点(不与端点重合),将△ABC沿着GH折叠,使点B 落到点F处,如图2所示,其中∠1=∠AGF,∠2=∠EHF,请直接写出∠1,∠2与∠B的数量关系.[答案](1)∠DAE=20°;(2)α﹣20°;(3)∠1+∠2=2∠B[解析][分析](1)三角形根据三角形内角和定理求出∠BAC,再由角平分线性质求得∠BAE,再根据三角形的高和直角三角形的性质求得∠BAD,进而由角的和差关系求得结果;(2)根据直角三角形的性质求得∠BAD,再由角的和差关系求得∠BAE,由角平分线的定义求得∠BAC,最后根据三角形内角和定理求得结果;(3)根据邻补角性质和角平分线定义用∠1、∠2分别表示∠BGH和∠BHG,再由三角形内角和定理得结果.[详解]解:(1)∵∠B=70°,∠C=30°,∴∠BAC=180°﹣70°﹣30°=80°,∵AE平分∠BAC,∴∠BAE=40°,∵AD是△ABC的高,∴∠ADB=90°,∴∠BAD=90°﹣∠B=20°,∴∠DAE=∠BAE﹣∠BAD=40°﹣20°=20°;(2)∵∠B=α,∠ADB=90°,∴∠BAD=90°﹣α,∵∠DAE=10°,∴∠BAE=∠BAD+∠DAE=100°﹣α,∵AE平分∠BAC,∴∠BAC=200°﹣2α,∴∠C=180°﹣∠B﹣∠BAC=180°﹣α﹣200°+2α=α﹣20°, 故答案为:α﹣20°;(3)∠1+∠2=2∠B.理由:由折叠知,11,,22BGH BGF BHG BHF ∠=∠∠=∠∵∠BGF=180°﹣∠1,∠BHF=180°﹣∠2,∴∠BGH=90°﹣12∠1,∠BHG=90°﹣122∠,∴∠B=180°﹣∠BGH﹣∠BHG=1112 22∠+∠,即∠1+∠2=2∠B.[点睛]本题考查三角形内角和、邻角补角性质、角平分线、高线、直角三角形相关性质以及折叠图形的特点,熟练掌握相关知识点并运用是解决此题的关键.。

2020年苏科版七年级数学下期中检测卷精选解答题讲评试卷含参考答案及试题解析

2020年苏科版七年级数学下期中检测卷精选解答题讲评试卷含参考答案及试题解析

2020年苏科版七年级数学下期中检测卷精选解答题讲评试卷一.解答题(共7小题)1.如图,将一张矩形大铁皮切割成九块,切痕如下图虚线所示,其中有两块是边长都为m 厘米的大正方形,两块是边长都为n厘米的小正方形,五块是长宽分别是m厘米、n厘米的全等小矩形,且m>n.(1)用含m、n的代数式表示切痕的总长为厘米;(2)若每块小矩形的面积为34.5厘米2,四个正方形的面积和为200厘米2,试求m+n 的值.2.将下列证明过程补充完整:已知:如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,∠1=∠2,∠A=∠F.求证:∠C=∠D.证明:因为∠1=∠2 (已知).又因为∠1=∠ANC(),所以(等量代换).所以∥(同位角相等,两直线平行).所以∠ABD=∠C().又因为∠A=∠F(已知),所以∥().所以(两直线平行,内错角相等).所以∠C=∠D().3.如图,已知AB∥CD,EF分别交AB、CD于点M、N,∠EMB=40°,MG平分∠BMF,MG交CD于G,求∠MGC的度数.4.如图,有A、B、C三种不同型号的卡片,每种卡片各有10张,其中A型卡片是边长为a的正方形,B型卡片是长为b、宽a的长方形,c型卡片是边长为b的正方形.(1)从其中取出若干张卡片,每种卡片至少取一张,把取出的这些卡片拼成一个正方形(所拼的图中既不能有缝隙,也不能有重合部分),能拼成几种不同的正方形,并说说你这样拼的理由;(2)从其中取出17张卡片,每种卡片至少取一张,取出的这些卡片能否拼成一个正方形(所拼的图中既不能有缝隙,也不能有重合部分),说说你的理由.5.阅读下文,寻找规律:已知x≠1时,(1﹣x)(1+x)=1﹣x2,(1﹣x)(1+x+x2)=1﹣x3,(1﹣x)(1+x+x2+x3)=1﹣x4…(1)填空:(1﹣x)()=1﹣x5.(2)观察上式,并猜想:①(1﹣x)(1+x+x2+…+x n)=.②(x﹣1)(x10+x9+…+x+1)=.(3)根据你的猜想,计算:①(1﹣2)(1+2+22+23+24+25)=.②1+3+32+33+34…32016=.6.线段EA,AC,CB,BF组成折线图形,若∠C=α,∠EAC+∠FBC=β(1)如图①,AM是∠EAC的平分线,BN是∠FBC的平分线,若AM∥BN,则α与β有何关系?并说明理由.(2)如图②,若∠EAC的平分线所在直线与∠FBC平分线所在直线交于P,试探究∠APB与α、β的关系是.(3)如图③,若α≥β,∠EAC与∠FBC的平分线相交于P1,∠EAP1与∠FBP1的平分线交于P2;依此类推,则∠P5=.(用α、β表示)2020年苏科版七年级数学下期中检测卷精选解答题讲评试卷参考答案与试题解析一.解答题(共6小题)1.如图,将一张矩形大铁皮切割成九块,切痕如下图虚线所示,其中有两块是边长都为m 厘米的大正方形,两块是边长都为n厘米的小正方形,五块是长宽分别是m厘米、n厘米的全等小矩形,且m>n.(1)用含m、n的代数式表示切痕的总长为(6m+6n)厘米;(2)若每块小矩形的面积为34.5厘米2,四个正方形的面积和为200厘米2,试求m+n 的值.【解答】解:(1)根据已知图象切痕如图虚线所示直接得出:切痕的总长为(6m+6n);故答案为:(6m+6n);(2)依题意得,2m2+2n2=200,mn=34.5,∴m2+n2=100,∵(m+n)2=m2+2mn+n2,∴(m+n)2=100+69=169,∵m+n>0,∴m+n=13.2.将下列证明过程补充完整:已知:如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,∠1=∠2,∠A=∠F.求证:∠C=∠D.证明:因为∠1=∠2 (已知).又因为∠1=∠ANC(对顶角相等),所以∠2=∠ANC(等量代换).所以DB∥EC(同位角相等,两直线平行).所以∠ABD=∠C(两直线平行,同位角相等).又因为∠A=∠F(已知),所以DF∥AC(内错角相等,两直线平行).所以∠D=∠ABD(两直线平行,内错角相等).所以∠C=∠D(等量代换).【解答】证明:∵∠1=∠2 (已知).又∵∠1=∠ANC(对顶角相等),∴∠2=∠ANC(等量代换).∴DB∥EC(同位角相等,两直线平行).∴∠ABD=∠C(两直线平行,同位角相等)又∵∠A=∠F(已知),∴DF∥AC(内错角相等,两直线平行),∴∠D=∠ABD(两直线平行,内错角相等).∴∠C=∠D(等量代换).3.如图,已知AB∥CD,EF分别交AB、CD于点M、N,∠EMB=40°,MG平分∠BMF,MG交CD于G,求∠MGC的度数.【解答】解:∵∠EMB=40°,∴∠BMF=180°﹣∠EMB=180°﹣40°=140°,∵MG平分∠BMF,∴∠BMG=12∠BMF=12×140°=70°,∵AB∥CD,∴∠MGC=∠BMG=70°.4.如图,有A、B、C三种不同型号的卡片,每种卡片各有10张,其中A型卡片是边长为a的正方形,B型卡片是长为b、宽a的长方形,c型卡片是边长为b的正方形.(1)从其中取出若干张卡片,每种卡片至少取一张,把取出的这些卡片拼成一个正方形(所拼的图中既不能有缝隙,也不能有重合部分),能拼成几种不同的正方形,并说说你这样拼的理由;(2)从其中取出17张卡片,每种卡片至少取一张,取出的这些卡片能否拼成一个正方形(所拼的图中既不能有缝隙,也不能有重合部分),说说你的理由.【解答】解:A型卡片的面积为a2,B型卡片的面积为ab,C型卡片的面积为b2.(1)可以看出①A型和C型各取1张,B型取2张.他们的面积和为a2+2ab+b2.可以拼成一个边长为a+b的正方形;②B型和C型各取4张,A型取1张.他们的面积和为a2+4ab+4b2.可以拼成一个边长为a+2b的正方形;③A型和B型各取4张,C型取1张.他们的面积和为4a2+4ab+b2.可以拼成一个边长为2a+b的正方形;④A型和C型各取4张,B型取8张.他们的面积和为4a2+8ab+4b2.可以拼成一个边长为2a+2b的正方形;⑤A型取1张,B型取6张,C型取9张.他们的面积和为a2+6ab+9b2.可以拼成一个边长为a+3b的正方形;⑥A型取9张,B型取6张,C型取1张.他们的面积和为9a2+6ab+b2.可以拼成一个边长为3a+b的正方形;(2)从上面的答案可以看出,按照上面的规律,17张卡片不能拼成一个正方形.5.阅读下文,寻找规律:已知x ≠1时,(1﹣x )(1+x )=1﹣x 2,(1﹣x )(1+x +x 2)=1﹣x 3,(1﹣x )(1+x +x 2+x 3)=1﹣x 4…(1)填空:(1﹣x )( 1+x +x 2+x 3+x 4 )=1﹣x 5.(2)观察上式,并猜想:①(1﹣x )(1+x +x 2+…+x n )= 1﹣x n +1 .②(x ﹣1)(x 10+x 9+…+x +1)= x 11﹣1 .(3)根据你的猜想,计算:①(1﹣2)(1+2+22+23+24+25)= 1﹣26 .②1+3+32+33+34…32016= 32017−12 .【解答】解:(1)(1﹣x )(1+x +x 2+x 3+x 4)=1﹣x 5.故答案为:1+x +x 2+x 3+x 4;(2)①(1﹣x )(1+x +x 2+…+x n )=1﹣x n +1;②(x ﹣1)(x 10+x 9+…+x +1)=x 11﹣1;故答案为:1﹣x n +1;x 11﹣1;(3)①解:设S =1+2+22+23+24+25①,将等式两边同时乘以2得:2S =2+22+23+24+25+26②,②﹣①得,2S ﹣S =26﹣1,即S =26﹣1,即1+2+22+23+24+25=26﹣1.设S =1+3+32+33+…+32015+32016,①①×3得3S =3+32+33+3…32016+32017,②②﹣①得:2s =32017﹣1,S =32017−12. 故答案为:26﹣1,32017−12. 6.线段EA ,AC ,CB ,BF 组成折线图形,若∠C =α,∠EAC +∠FBC =β(1)如图①,AM 是∠EAC 的平分线,BN 是∠FBC 的平分线,若AM ∥BN ,则α与β有何关系?并说明理由.(2)如图②,若∠EAC 的平分线所在直线与∠FBC 平分线所在直线交于P ,试探究∠APB 与α、β的关系是 α=∠APB +12β或α+∠APB =12β .(3)如图③,若α≥β,∠EAC 与∠FBC 的平分线相交于P 1,∠EAP 1与∠FBP 1的平分线交于P2;依此类推,则∠P5=α−3132β.(用α、β表示)【解答】解:(1)∵AM是∠EAC的平分线,BN是∠FBC的平分线,∴∠MAC+∠NCB=12∠EAC+12∠FBC=12β,∵AM∥BN,∴∠C=∠MAC+∠NCB,即α=12β;(2)∵∠EAC的平分线与∠FBC平分线相交于P,∴∠P AC+∠PBC=12∠EAC+12∠FBC=12β,若点P在点C的下方,则∠C=∠APB+(∠P AC+∠PBC),即α=∠APB+12β,若点P在点C的上方,则∠C+∠APB=∠P AC+∠PBC,即α+∠APB=12β;综上所述,α=∠APB+12β或α+∠APB=12β;(3)由(2)得,∠P1=∠C﹣(∠P AC+∠PBC)=α−12β,∠P2=∠P1﹣(∠P2AP1+∠P2BP1),=α−12β−14β=α−34β,∠P3=α−34β−18β=α−78β,∠P4=α−78β−116β=α−1516β,∠P5=α−1516β−132β=α−3132β.故答案为:(2)α=∠APB+12β或α+∠APB=12β;(3)α−3132β.。

2020最新七年级数学下册期中数学模拟试卷及答案

2020最新七年级数学下册期中数学模拟试卷及答案

1 七年级(下)期中数学试卷 考试范围:苏科版《数学》七年级下册第八、九、十章内容;考试时间:120分钟;考试题型:选择题、填空题、解答题;考试分值:130分。 一、精心选一选(本大题共有8小题,每小题3分,共30分.请将正确选项前的字母代号填在答题纸相应位置上) 1.(3分)下列等式从左到右的变形,属于因式分解的是( ) A.a(x﹣y)=ax﹣ay B.x2+2x+1=x(x+2)+1 C.x3﹣x=x(x+1)(x﹣1) D.(x+1)(x+3)=x2+4x+3 2.(3分)下列四个算式:①(﹣a)3•(﹣a2)2=﹣a7;②(﹣a3)2=﹣a6;③(﹣a3)3÷a4=﹣a2;④(﹣a)6÷(﹣a)3=﹣a3中,正确的有( ) A.0个 ; B.1个; C.2个; D.3个 3.(3分)中国的光伏技术不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7 mm2,这个数用科学记数法表示为( ) A.7×10-6 mm2 B.0.7×10-6 mm2 C.7×10-7 mm2 D.70×10-8 mm2 4.(3分)下列方程是二元一次方程的是( )

A.2x+y=z﹣3; B.xy=5; C.+5=3y; D.x=y

5.(3分)以11xy,为解的二元一次方程组是( ) A.01xyxy, B.01xyxy, C.02xyxy, D.0 2xyxy, 6.(3分)若xm=2,xn=4,则x2m+n的值为( ) A.12 B. 32 C.16 D.64 7.(3分)甲、乙、丙三种商品,若购买甲3件、乙2件、丙1件,共需315元钱,购甲1件、乙2件、丙3件共需285元钱,那么购甲、乙、丙三种商品各一件共需多少钱( ) A.128元 B.130元 C.150 元 D.160元 8. (3分) 9x2﹣mxy+16y2是一个完全平方式,那么m的值是( ) A.12 ; B.﹣12 ; C.±12 ; D.±24 9. (3分) 若(x﹣5)(x+3)=x2+mx﹣15,则( ) A.m=8 ; B.m=﹣8 ; C.m=2 ; D.m=﹣2 10. 如图,两个正方形边长分别为a、b,如果a+b=ab=6,则阴影部分的面积为( ) A.6 B.9 C.12 D.18

2020-2021学年陕西省西市七年级(下)期中数学试卷

2020-2021学年陕西省西安市七年级(下)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列运算正确的是()A.a2•a4=a8B.(﹣2a)3=﹣6a3C.m3÷(﹣m)2=m D.a4+a4=a82.(3分)截至4月2日,全球累计确诊新冠肺炎病例约1.3亿例.我们切不可掉以轻心,要做好日常防护.科学研究表明,导致新冠肺炎的新冠病毒比细菌小很多,平均直径仅为0.000000098m.这个数用科学记数法表示为()A.0.98×10﹣7B.9.8×10﹣8C.98×10﹣8D.9.8×10﹣9 3.(3分)如图所示,下列推理不正确的是()A.若∠1=∠B,则BC∥DEB.若∠2=∠ADE,则AD∥CEC.若∠A+∠ADC=180°,则AB∥CDD.若∠B+∠BCD=180°,则BC∥DE4.(3分)下列各式能用平方差公式计算的是()A.(2a+b)(a﹣2b)B.(a﹣2b)(2b﹣a)C.(2a﹣b)(﹣2a+b)D.(b﹣2a)(﹣2a﹣b)5.(3分)下面说法:①三角形的三条高交于同一点;②面积相等的两个正方形全等;③两条射线不相交就平行;④同位角相等.其中正确的有()A.1个B.2个C.3个D.4个6.(3分)如图,下列推理不能求证△ABD≌△CAD的是()A.DB=DC,AB=AC B.∠ADC=∠ADB,DB=DCC.∠C=∠B,∠ADC=∠ADB D.∠C=∠B,DB=DC7.(3分)如图,AD,AE为△ABC的高线,角平分线,DF⊥AE于点F.当∠DAC=21°,∠B=25°时,∠DAF的度数为()A.21°B.22°C.25°D.30°8.(3分)乐乐观察“抖空竹”时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB∥CD,∠BAE=94°,∠DCE=115°,则∠E的度数是()A.30°B.25°C.23°D.21°9.(3分)如图,△ABF的面积是2,D是AB边上任意一点,E是CD中点,F是BE中点,△ABC的面积是()A.4B.6C.8D.1610.(3分)如图,长方形ABCD的两边之差为4,以长方形的四条边分别为边向外作四个正方形,且这四个正方形的面积和为80,则长方形ABCD的面积是()A.12B.21C.24D.32二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)若一个角的补角是43°,则这个角的度数为.12.(3分)已知三角形的两边长分别为2和7,第三边为奇数,则它第三边的长是.13.(3分)如果2021a=5,2021b=3.那么20212a﹣3b=.14.(3分)如图,△ABC中,∠ACB=90°,AC=5,BC=12,AB=13,P为直线AB上一动点,连接PC,则线段PC的最小值是.15.(3分)当x=﹣1时,ax2+bx+1的值为﹣3,则(a﹣b+2)(3﹣2a+2b)的值为.16.(3分)已知:如图,在四边形ABCD中,AB∥CD,∠B=90°,AB=6厘米,BC=8厘米,CD=10厘米,点P从点B出发,以2厘米/秒的速度沿BC向点C运动,同时点Q从点D出发,沿DC向点C运动,连接AP,PQ.则点Q的运动速度为厘米/秒时,△ABP与△CPQ全等.三、解答题(本大题共6小题,共52分)17.(12分)计算:(1)(﹣1)2021﹣(﹣2)﹣2+(3﹣π)0;(2)a3a4a+(a2)4﹣(﹣2a4)2;(3)[(a﹣b)(2a﹣b)﹣(a+b)2]÷(﹣a).18.(6分)在△ABC中,∠C>∠B、请用尺规作图法,在AB上找一点P,使∠PCB=∠B.(保留作图痕迹,不写作法.)19.(6分)已知:如图,AD∥BC,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E,那么∠B与∠DCE相等吗?试说明理由.请将下面的推理过程补充完整.解:∠B=∠DCE,理由如下:∵AE平分∠BAD(已知),∴∠1=∠2(角平分线定义),∵AD∥BC(已知),∴∠2=∠E(),∴∠1=∠E(),又∵∠CFE=∠E(已知),∴∠CFE=∠(等量代换),∴∥(),∴∠B=∠DCE.20.(8分)如图,在四边形ABCD中,AB∥CD,∠1=∠2,AD=EC.(1)求证:△ABD≌△EDC;(2)若AB=2,BE=3,求CD的长.21.(8分)为迎接十四运,某小区修建一个长为(3a﹣b)米,宽为(a+2b)米的长方形休闲场所ABCD.长方形内筑一个正方形活动区EFGH和连接活动区到矩形四边的四条笔直小路(如图),正方形活动区的边长为(a﹣b)米,小路的宽均为2米.活动区与小路铺设鹅卵石,其它地方铺设草坪.(1)求铺设草坪的面积是多少平方米;(2)当a=10,b=4时,需要铺设草坪的面积是多少?22.(12分)问题背景:课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=4,AC=3,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,则得到△ADC≌△EDB,小明证明△BED≌△CAD用到的判定定理是:(用字母表示);问题解决:小明发现:解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.请写出小明解决问题的完整过程;拓展应用:以△ABC的边AB,AC为边向外作△ABE和△ACD,AB=AE,AC=AD,∠BAE=∠CAD=90°,M是BC中点,连接AM,DE.当AM=3时,求DE的长.2020-2021学年陕西省西安市七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列运算正确的是()A.a2•a4=a8B.(﹣2a)3=﹣6a3C.m3÷(﹣m)2=m D.a4+a4=a8【分析】分别根据同底数幂的乘法法则,积的乘方运算法则,同底数幂的除法法则、幂的乘方运算法则以及合并同类项法则逐一判断即可.【解答】解:A、a2•a4=a6,故本选项不合题意;B、(﹣2a)3=﹣8a3,故本选项不合题意;C、m3÷(﹣m)2=m,故本选项符合题意;D、a4+a4=2a4,故本选项不合题意;故选:C.2.(3分)截至4月2日,全球累计确诊新冠肺炎病例约1.3亿例.我们切不可掉以轻心,要做好日常防护.科学研究表明,导致新冠肺炎的新冠病毒比细菌小很多,平均直径仅为0.000000098m.这个数用科学记数法表示为()A.0.98×10﹣7B.9.8×10﹣8C.98×10﹣8D.9.8×10﹣9【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000098m=9.8×10﹣8m.故选:B.3.(3分)如图所示,下列推理不正确的是()A.若∠1=∠B,则BC∥DEB.若∠2=∠ADE,则AD∥CEC.若∠A+∠ADC=180°,则AB∥CDD.若∠B+∠BCD=180°,则BC∥DE【分析】根据平行线的判定定理即可判断.【解答】解:A、若∠1=∠B,则BC∥DE,不符合题意;B、若∠2=∠ADE,则AD∥CE,不符合题意;C、若∠A+∠ADC=180°,则AB∥CD,不符合题意;D、若∠B+∠BCD=180°,则AB∥CD,符合题意.故选:D.4.(3分)下列各式能用平方差公式计算的是()A.(2a+b)(a﹣2b)B.(a﹣2b)(2b﹣a)C.(2a﹣b)(﹣2a+b)D.(b﹣2a)(﹣2a﹣b)【分析】根据平方差公式逐个判断即可.【解答】解:A.不符合平方差公式,不能用平方差公式进行计算,故本选项不符合题意;B.不符合平方差公式,故本选项不符合题意;C.不符合平方差公式,故本选项不符合题意;D.(b﹣2a)(﹣2a﹣b)=(﹣2a)2﹣b2=4a2﹣b2,符合平方差公式,故本选项符合题意;故选:D.5.(3分)下面说法:①三角形的三条高交于同一点;②面积相等的两个正方形全等;③两条射线不相交就平行;④同位角相等.其中正确的有()A.1个B.2个C.3个D.4个【分析】①三角形的三条高所在直线交于同一点,锐角三角形交在内部,钝角三角形交在外部,直角三角形交在直角顶点上;②根据正方形的面积得出结论;③异面的两直线有既不平行,也不相交的情况;④根据平行线的性质可得到出结论.【解答】解:①三角形的三条高所在直线交于一点,故①说法不符合题意;②因为正方形的面积是边长的平方,所以面积相等的两个正方形边长相等,且四个角又是直角,所以是全等图形,故②说法符合题意;③两条不在同一平面的直线不相交但不一定平行,故③说法不符合题意;④两直线平行,则同位角相等,故④说法不符合题意,所以正确的是①,1个,故选:A.6.(3分)如图,下列推理不能求证△ABD≌△CAD的是()A.DB=DC,AB=AC B.∠ADC=∠ADB,DB=DCC.∠C=∠B,∠ADC=∠ADB D.∠C=∠B,DB=DC【分析】依据全等三角形的判定定理解答即可.【解答】解:A、依据SSS可知△ABD≌△ACD,故A不符合要求;B、依据SAS可知△ABD≌△ACD,故B不符合要求;C、依据AAS可知△ABD≌△ACD,故C不符合要求;D、依据SSA可知△ABD≌△ACD,故D符合要求.故选:D.7.(3分)如图,AD,AE为△ABC的高线,角平分线,DF⊥AE于点F.当∠DAC=21°,∠B=25°时,∠DAF的度数为()A.21°B.22°C.25°D.30°【分析】依据AD,AE为△ABC的高线,角平分线,即可得到∠BAD和BAE的度数,再根据角的和差关系,即可得出∠DAF的度数.【解答】解:∵AD⊥BC,∴∠ADB=90°,又∵∠B=25°,∴∠BAD=90°﹣25°=65°,又∵∠CAD=21°,∴∠BAC=65°+21°=86°,又∵AE平分∠BAC,∴∠BAE=∠BAC=86°=43°,∴∠DAF=∠BAD﹣∠BAE=65°﹣43°=22°,故选:B.8.(3分)乐乐观察“抖空竹”时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB∥CD,∠BAE=94°,∠DCE=115°,则∠E的度数是()A.30°B.25°C.23°D.21°【分析】延长DC交AE于F,依据AB∥CD,∠BAE=94°,可得∠CFE=94°,再根据三角形外角性质,即可得到∠E=∠DCE﹣∠CFE.【解答】解:如图,延长DC交AE于F,∵AB∥CD,∠BAE=94°,∴∠CFE=94°,又∵∠DCE=115°,∴∠E=∠DCE﹣∠CFE=115°﹣94°=21°.故选:D.9.(3分)如图,△ABF的面积是2,D是AB边上任意一点,E是CD中点,F是BE中点,△ABC的面积是()A.4B.6C.8D.16【分析】连接AE,由F为BE中点可得S△ABE=4,又由E为CD中点可得S△ADE=,S△BDE=,从而S△ABE=S△ADE+S△BDE=(S△ADC+S△BDC)=S△ABC=4,即可得到答案.【解答】解:连接AE,如图.∵F为BE中点,S△ABF=2,∴S△ABE=2S△ABF=2×2=4,又E为CD中点,∴S△ADE=,S△BDE=,∴S△ABE=S△ADE+S△BDE=+=(S△ADC+S△BDC)=S△ABC=4,故S△ABC=8.故选:C.10.(3分)如图,长方形ABCD的两边之差为4,以长方形的四条边分别为边向外作四个正方形,且这四个正方形的面积和为80,则长方形ABCD的面积是()A.12B.21C.24D.32【分析】设长方形ABCD的边长,表示出四个正方形的面积,根据四个正方形的面积和为80列方程求解即可.【解答】解:设AD=x,AB=y,∴y﹣x=4,∴2y2+2x2=80,即y2+x2=40,∴(y﹣x)2=16,∴y2+x2﹣2xy=16,∴40﹣2xy=16,∴xy=12,即长方形ABCD的面积为12,故选:A.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)若一个角的补角是43°,则这个角的度数为137°.【分析】根据补角的和等于180°计算即可.【解答】解:∵一个角的度数是43°,∴它的补角=180°﹣43°=137°,故答案为:137°.12.(3分)已知三角形的两边长分别为2和7,第三边为奇数,则它第三边的长是7.【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边长的范围;又知道第三边长为奇数,就可以得出第三边的长度.【解答】解:设第三边的长为x,根据三角形的三边关系,得7﹣2<x<7+2,即5<x<9,又∵第三边长是奇数,∴x=7.故答案为7.13.(3分)如果2021a=5,2021b=3.那么20212a﹣3b=.【分析】根据同底数幂的除法及幂的乘方的逆运算可计算求解.【解答】解:∵2021a=5,2021b=3,∴20212a﹣3b=20212a÷20213b=(2021a)2÷(2021b)3=52÷33=.故答案为.14.(3分)如图,△ABC中,∠ACB=90°,AC=5,BC=12,AB=13,P为直线AB上一动点,连接PC,则线段PC的最小值是.【分析】当PC⊥AB时,PC的值最小,利用面积法求解即可.【解答】解:在Rt△ABC中,∠ACB=90°,AC=5,BC=12,AB=13,当PC⊥AB时,PC的值最小,此时:△ABC的面积=•AB•PC=•AC•BC,∴13PC=5×12,∴PC=,故答案为:.15.(3分)当x=﹣1时,ax2+bx+1的值为﹣3,则(a﹣b+2)(3﹣2a+2b)的值为﹣22.【分析】先根据已知等式,得到a﹣b的值,然后对所求式子进行因式分解,整体代入计算即可.【解答】解:∵当x=﹣1时,ax2+bx+1=﹣3,∴a﹣b+1=﹣3,即a﹣b=﹣4,∴(a﹣b+2)(3﹣2a+2b)=[(a﹣b)+2][3﹣2(a﹣b)],∴原式=(﹣4+2)[3﹣2×(﹣4)]=﹣2×11=﹣22.故答案为:﹣22.16.(3分)已知:如图,在四边形ABCD中,AB∥CD,∠B=90°,AB=6厘米,BC=8厘米,CD=10厘米,点P从点B出发,以2厘米/秒的速度沿BC向点C运动,同时点Q从点D出发,沿DC向点C运动,连接AP,PQ.则点Q的运动速度为2或8厘米/秒时,△ABP与△CPQ全等.【分析】设点C运动t秒时,△ABP与△CPQ全等,则BP=2t,CP=8﹣2t,分两种情况:①当AB=CQ,BP=CP,②当AB=CP,BP=CQ分别求出t和DQ,根据速度公式即可求出答案,【解答】解:设点C运动t秒时,△ABP与△CPQ全等,则BP=2t,∵BC=8,∴CP=8﹣2t,∵AB∥CD,∠B=90°,∴∠B+∠C=180°,∴∠C=180°﹣∠B=90°.①当AB=CQ=6,BP=CP时,△ABP≌△PCQ,∴DQ=10﹣6=4,2t=8﹣2t,∴t=2,∴点Q的运动速度为4÷2=2(厘米/秒);②当AB=CP,BP=CQ时,△ABP≌△QCP,∴8﹣2t=6,CQ=2t,∴t=1,∴CQ=2,∴DQ=10﹣2=8,∴点Q的运动速度为8÷1=8(厘米/秒);综上所述:点Q的运动速度为2或8厘米/秒时,△ABP与△CPQ全等.故答案为:2或8.三、解答题(本大题共6小题,共52分)17.(12分)计算:(1)(﹣1)2021﹣(﹣2)﹣2+(3﹣π)0;(2)a3a4a+(a2)4﹣(﹣2a4)2;(3)[(a﹣b)(2a﹣b)﹣(a+b)2]÷(﹣a).【分析】(1)根据有理数的乘方、负整数指数幂和零指数幂可以解答本题;(2)根据同底数幂的乘法、积的乘方可以解答本题;(3)根据多项式乘多项式、完全平方公式、多项式除以单项式可以解答本题.【解答】解:(1)(﹣1)2021﹣(﹣2)﹣2+(3﹣π)0=(﹣1)﹣+1=﹣;(2)a3•a4•a+(a2)4﹣(﹣2a4)2=a8+a8﹣4a8=﹣2a8;(3)[(a﹣b)(2a﹣b)﹣(a+b)2]÷(﹣a)=(2a2﹣3ab+b2﹣a2﹣2ab﹣b2)×(﹣)=(a2﹣5ab)×(﹣)=﹣2a+10b.18.(6分)在△ABC中,∠C>∠B、请用尺规作图法,在AB上找一点P,使∠PCB=∠B.(保留作图痕迹,不写作法.)【分析】作线段BC的垂直平分线交AB于点P,点P即为所求作.【解答】解:如图,点P即为所求作.19.(6分)已知:如图,AD∥BC,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E,那么∠B与∠DCE相等吗?试说明理由.请将下面的推理过程补充完整.解:∠B=∠DCE,理由如下:∵AE平分∠BAD(已知),∴∠1=∠2(角平分线定义),∵AD∥BC(已知),∴∠2=∠E(两直线平行,内错角相等),∴∠1=∠E(等量代换),又∵∠CFE=∠E(已知),∴∠CFE=∠1(等量代换),∴AB∥CD(同位角相等,两直线平行),∴∠B=∠DCE.【分析】根据平行线的性质与判定逐项进行判定即可得出答案.【解答】解:∠B=∠DCE,理由如下:∵AE平分∠BAD(已知),∴∠1=∠2(角平分线定义),∵AD∥BC(已知),∴∠2=∠E(两直线平行,内错角相等),∴∠1=∠E(等量代换),又∵∠CFE=∠E(已知),∴∠CFE=∠1(等量代换),∴AB∥CD(同位角相等,两直线平行),∴∠B=∠DCE.故答案为:两直线平行,内错角相等;等量代换;1;AB;CD;同位角相等,两直线平行.20.(8分)如图,在四边形ABCD中,AB∥CD,∠1=∠2,AD=EC.(1)求证:△ABD≌△EDC;(2)若AB=2,BE=3,求CD的长.【分析】(1)由“AAS”即可证△ABD≌△EDC;(2)结合(1)可得AB=DE,BD=CD,可得结论.【解答】(1)证明:∵AB∥CD,∴∠ABD=∠EDC.在△ABD和△EDC中,,∴△ABD≌△EDC(AAS),(2)∵△ABD≌△EDC,∴AB=DE=2,BD=CD,∴CD=BD=DE+BE=2+3=5.21.(8分)为迎接十四运,某小区修建一个长为(3a﹣b)米,宽为(a+2b)米的长方形休闲场所ABCD.长方形内筑一个正方形活动区EFGH和连接活动区到矩形四边的四条笔直小路(如图),正方形活动区的边长为(a﹣b)米,小路的宽均为2米.活动区与小路铺设鹅卵石,其它地方铺设草坪.(1)求铺设草坪的面积是多少平方米;(2)当a=10,b=4时,需要铺设草坪的面积是多少?【分析】(1)用大长方形的面积减去小正方形的面积和四个长方形的面积即可;(2)将a=10,b=4代入(1)中结果计算可得答案.【解答】解:(1)草坪的面积为:(3a﹣b)(a+2b)﹣(a﹣b)2﹣[3a﹣b﹣(a﹣b)]×2=3a2+5ab﹣2b2﹣a2﹣b2+2ab﹣2(2a)﹣2×3b=2a2+7ab﹣3b2﹣4a﹣6b(平方米);(2)当a=10,b=4时,草坪的面积为:2×102+7×10×4﹣3×42﹣4×10﹣6×4=368(平方米),22.(12分)问题背景:课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=4,AC=3,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,则得到△ADC≌△EDB,小明证明△BED≌△CAD用到的判定定理是:SAS(用字母表示);问题解决:小明发现:解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.请写出小明解决问题的完整过程;拓展应用:以△ABC的边AB,AC为边向外作△ABE和△ACD,AB=AE,AC=AD,∠BAE=∠CAD=90°,M是BC中点,连接AM,DE.当AM=3时,求DE的长.【分析】问题背景:先判断出BD=CD,由对顶角相等∠BDE=∠CDA,进而得出△ADC ≌△EDB(SAS);问题解决:先证明△ADC≌△EDB(SAS),得出BE=AC=3,最后用三角形三边关系即可得出结论;拓展应用:如图2,延长AM到N,使得MN=AM,连接BN,同(1)的方法得出△BMN ≌△CMA(SAS),则BN=AC,进而判断出∠ABN=∠EAD,进而判断出△ABN≌△EAD,得出AN=ED,即可求解.【解答】解:问题背景:如图1,延长AD到点E,使DE=AD,连接BE,∵AD是△ABC的中线,∴BD=CD,在△ADC和△EDB中,,∴△ADC≌△EDB(SAS),故答案为:SAS;问题解决:如图1,延长AD到点E,使DE=AD,连接BE,∵AD是△ABC的中线,∴BD=CD,在△ADC≌△EDB中,,∴△ADC≌△EDB(SAS),∴BE=AC,在△ABE中,AB﹣BE<AE<AB+BE,∵AB=4,AC=3,∴4﹣3<AE<4+3,即1<AE<7,∵DE=AD,∴AD=AE,∴<AD<;拓展应用:如图2,延长AM到N,使得MN=AM,连接BN,由问题背景知,△BMN≌△CMA(SAS),∴BN=AC,∠CAM=∠BNM,∵AC=AD,AC∥BN,∴BN=AD,∵AC∥BN,∴∠BAC+∠ABN=180°,∵∠BAE=∠CAD=90°,∴∠BAC+∠EAD=180°,∴∠ABN=∠EAD,在△ABN和△EAD中,,∴△ABN≌△EAD(SAS),∴AN=DE,∵MN=AM,∴DE=AN=2AM,∵AM=3,∴DE=6.。

2020-2021学年新人教版七年级下期中数学试题及答案

侨育中学2020-2021学年下期半期七年级数学试卷(满分:150分;时间:100分钟;出卷:古竹中学数学教研组)一、选择题(每题4分,共40分)1、如图,点E 在AC 的延长线上,下列条件中能判断CD AB //( ) A 、43∠=∠ B 、21∠=∠ C 、DCE D ∠=∠ D 、180=∠+∠ACD D2、如图,直线AB ∥CD,∠B=25º,∠D=37º,则∠E=( ) A 、25º B 、37º C 、62º D 、12º3、下列命题是真命题的是( )A 、同位角相等B 、相等的角是对顶角C 、直线外一点到这条直线的垂线段叫做点到直线的距离D 、过一点有且只有一条直线与已知直线垂直 4、在平面直角坐标系中,点A(-4,0)在( )A 、x 轴正半轴上B 、x 轴负半轴上C 、y 轴正半轴上D 、y 轴负半轴上 5、若点P 的坐标是(m ,n ),且m <0,n >0,则点P 在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 6、下列各组数不可能是一个三角形的边长的是( ) A 、1,2,3 B 、2,3,4 C 、3,4,5 D 、4,5,6 7、在△ABC 中,∠A=2021,∠B=50 o,则∠C 的外角度数为( ) A 、60° B 、70° C 、110° D 、120218、在△ABC 中,∠A=12∠B=13∠C ,则这个三角形是( )A 、锐角三角形B 、直角三角形C 、钝角三角形D 、不能确定 9、只用下列正多边形,不能进行平面镶嵌的是( ) A 、正三角形 B 、正四边形 C 、正六边形 D 、正八边形10、如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCED 的外部时,则与和之间有一种数EDCBA4321第1题EDCB A第2题第10题量关系始终保持不变,请试着找一找这个规律,你发现的规律是( ) A .212∠-∠=∠A B .)21(23∠-∠=∠A C .2123∠-∠=∠A D .21∠-∠=∠A 二、填空题(每题4分,共40分)11、如图,已知a ∥b ,如果∠1=40º,那么∠2= 。

2020-2021学年人教版七年级下数学期中试题及答案(word版)

D D D D D C BA CCC C B B B B AA A A 2020-2021学年度七年级下册数学期中考试题一、选择题(每题3分,共30分)1、如图,若 a ∥b ,∠1=115°,则∠2 = ( )A 、55°B 、60°C 、65°D 、75°2.点(x,y)的坐标满足xy<0,则点N 在( )A .第一象限B .第二象限C .第一或第三象限D .第二或第四象限3、实数38, 2π,34 ,310 ,25 其中无理数有( )A 、 1个B 、 2个C 、 3个D 、 4个4、在下列图案中,不能用平移得到的图案是( )5、下列说法中的不正确的是( ) A 、两直线平行,内错角相等 B 、两直线平行,同旁内角相等 C 、同位角相等,两直线平行D 、平行于同一条直线的两直线平行6、将点P(-4,3)先向左平移2个单位长度,再向下平移2个单位长度得点P ’,则P ’的坐标为( ) A .(-2,5) B .(-6,1) C .(-6,5) D .(-2,1)7.在下列各图形中,分别画出了△ABC 中BC 边上的高AD ,其中正确的是( )8、下列语句中,不是命题的是( )A 、同位角相等,两直线平行B 、画直线AB 平行于CDC 、若a 2=b 2,则a=bD 、同角的余角相等9、如下图:下列条件不能判定AB ∥CD 的是( ) A 、41∠=∠ B 、32∠=∠ C 、B ∠=∠5D 、0180=∠+∠D BAD10观察图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色三角形有 ( )个 .A 、 121个B 、 26个C 、 41个D 、 110个二、耐心填一填 (每空3分,共15分)11.若∠1的对顶角是∠2,∠2的邻补角是∠3,∠3=45°,则∠1的度数为________。

12.64的立方根是_______;13.如果将电影票上的“6排11号”简记为(6,11),那么(9,4)表示14.如图,从A 处观测C 处仰角∠CAD=300,从B 处观测C 处的仰角∠CBD=450,从C 外观测A 、B 两处时视角∠ACB= 度 15.把一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点 为G ,D 、C 分别在M 、N 的位置上,若∠EFG =55°, 则 ∠1=_______.三、解答题(共55分)16、解方程4)4(2=-x (4分)17若12-a 的平方根是3±,282+-b a 的立方根是3,求ba 的立方根。

2020年七年级下册期中考试数学试卷及答案

第二学期期中考试 213、若a 4,b 3,且a+b<0,则a-b 的值是()初一年级数学试卷A. 1 或7B.﹣1 或7C. 1 或﹣7D.﹣1 或﹣7一、选择题(每题2 分,共 30 分) 14、小亮的妈妈用 28 元钱买了甲、乙两种生果,甲种生果每3 27 的结果是()1、核算A. 3 3B. 3 3C. ±3D. 32、如图,四个图形中的∠1 和∠2,不是同位角的是()千克 4 元,乙种生果每千克 6 元,且乙种生果比甲种生果少买了 2 千克,求小亮妈妈两种生果各买了多少千克?设小亮妈妈买了甲种生果 x 千克,乙种生果 y 千克,则可列方程组为()A.4xx6yy 228B.4xy 6xy 228A. B. C. D.23、在平面直角坐标系中,点(﹣1,m+1)必定在()C.4xx6yy 228D.4xy 6xy 228A. 榜首象限B. 第二象限C. 第三象限D. 第四象限 15、如图,已知 A1(1,0),A2(1,﹣1),A3(﹣1,﹣1),4、在下边各数中无理数的个数有()A4(﹣1,1),A5(2,1),⋯则点A2017 的坐标是()22﹣3.14 ,,0.1010010001 ⋯⋯,+1.99 ,7A. 1 个B. 2 个C. 3 个D. 4 个3。

A. (505,504)B. (﹣503,﹣504)C. (503,﹣503)D. (﹣504,504)二、填空题(每题3 分,共12 分)16、绝对值等于5 的数是________ ;3 8 的相反数是________;1 2 的绝对值是5、如图,直线AB∥C D, AF交 CD于点 E,∠ CEF=140°,则∠ A等于() ________。

A. 35 °B. 40 °C. 45 °D. 50 ° 17、已知 AB∥x轴,A点的坐标为(3,2),并且 AB=5,则B的坐标为____________________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
七年级数学下册试卷
一、选择题:
1.
下列说法错误的是( )

A.1的平方根是1 B.﹣1的立方根是﹣1
C.是2的平方根 D.是的平方根

2.
方程2x-=0,3x+y=0,2x+xy=1,3x+y-2x=0,x2-x+1=0

中,二元一次方程的个数是( )
A.1个 B.2个 C.3个 D.4个
3.不等式2x﹣6>0的解集在数轴上表示正确的是( )

4.
如图,已知直线AB和CD相交于O点,∠COE=90°,OF平分∠AOE,∠COF=34°,则∠BOD大小为( )

A.22° B.34° C.56° D.90°
2

5.
下列各数:,

,,
﹣1.414,,0.1010010001…中,无理数有( )
A.1个 B.2个 C.3个 D.4个
6.如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠2=80°,则∠1等于( )
3


A.120° B.110° C.100° D.80°

7.
如图,直线m∥n,Rt△ABC的顶点A在直线n上,∠C=90°,AB,CB分别交直线m于点D和点E,且

DB=DE,若∠B=25°,则∠1的度数为( )

A.60° B.65° C.70° D.75°
8.
下列四个命题中:

①在同一平面内,互相垂直的两条直线一定相交
②有且只有一条直线垂直于已知直线
③两条直线被第三条直线所截,同位角相等
④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.
其中真命题的个数为( )
A.1个 B.2 个 C.3个 D.4个
9.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比( )
A.向右平移了3个单位长度 B.向左平移了3个单位长度
C.向上平移了3个单位长度 D.向下平移了3个单位长度
10.一个自然数的算术平方根是x,则它后面一个数的算术平方根是( )

A.x+1 B.x2+1 C.+1
4

D.
11.
若方程组的解满足x=y,则k的

值是( )
A.1 B.2 C.3 D.4
12.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,
1),(3,2),(3,1),(3,0),(4,0).根据这个规律探索可得,第100个点的坐标为( )
5

A.(14,8) B.(13,0) C.(100,99) D.(15,14)
二、填空题:
13.
x的2倍与5的差<0,用不等式表示为 .

14.教室里的座位摆放整齐,如果1排2号用(1,2)表示,那么(4,5)表示的意思是____________.
15.已知点M到x轴的距离为3,到y轴的距离为4.
(1)若M点位于第一象限,则其坐标为 ;
(2)若M点位于x轴的上方,则其坐标为 ;
(3)若M点位于y轴的右侧,则其坐标为 .
16.方程4x+3y=20的所有非负整数解为:
17.
若干名学生分宿舍,每间4人余20人,每间8人,其中一间不空也不满,则宿舍有 间.

18.正整数按如图的规律排列.请写出第20行,第21列的数字 .

三、解答题:
19.计算:23125-93. 20.解方程组:
6

21.
解不等式组:.

22.直线AB,CD相交于O,OE平分∠AOC,∠EOA:∠AOD=1:4.求∠EOB的度数.

23.如图,AB∥CD,∠1=∠2,∠3=∠4,试说明AD∥BE.
24.小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.
妈妈:“今天买这两样菜共花了45元,上月买同重量的这两种菜只要36元”;
爸爸:“报纸上说了萝卜的单价上涨了50%,排骨的单价上涨了20%”;
7

小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?”
请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤).

25.
如图,已知在平面直角坐标系中,△ABO的面积为8, OA=OB, BC=12,点P的坐标是(a, 6).

(1)求△ABC三个顶点A, B, C的坐标;
(2)若点P坐标为(1, 6),连接PA, PB,则△PAB的面积为 ;
(3)是否存在点P,使△PAB的面积等于△ABC的面积?如果存在,请求出点P的坐标.

参考答案
1.
A

2.B
8

3.A.
4.A
5.C
6.
B.

7.A
8.D;
9.D
10.B
11.D.
12.B.
13.
答案为:2x﹣5<0.

14.答案为:4排5号;
15.答案为:(4,3);(4,3)或(-4,3);(4,3)或(4,-3).
16.略
17.答案为:6;
18.答案为:420;

19.原式=-3.
20.
答案为:x=3,y=-2.

21.
答案为:.

22.解:设∠EOA=x°.
∵OE平分∠AOC,
∴∠AOC=2x°.
∵∠EOA∶∠AOD=1∶4,∴∠AOD=4x°.
∵∠COA+∠AOD=180°,
∴2x+4x=180,解得x=30.
∴∠EOB=180°-30°=150°.
23.证明:∵AB∥CD(已知)
∴∠4=∠EAB(两直线平行,同位角相等)
∵∠3=∠4(已知)
∴∠3=∠EAB(等量代换)
∵∠1=∠2(已知)
∴∠1+∠CAF=∠2+∠CAF(等式的性质).即∠BAE=∠CAD(角的和差)
∴∠3=∠CAD.
∴AD∥BE (内错角相等,两直线平行).
24.略

25.
9


相关文档
最新文档