最新人教版七年级上册数学一元一次方程应用题及答案汇总

合集下载

七年级数学一元一次方程应用题(年龄问题)(人教版)(专题)(含答案)

七年级数学一元一次方程应用题(年龄问题)(人教版)(专题)(含答案)

一元一次方程应用题(年龄问题)(人教版)(专题)一、单选题(共6道,每道16分)1.一个数的一半比这个数的相反数大8,设这个数为x,则下列所列方程正确的是( )A. B.C. D.答案:A解题思路:设这个数为x,则这个数的一半是,这个数的相反数是,由题意,一个数的一半比这个数的相反数大8,方程可列为.故选A.试题难度:三颗星知识点:一元一次方程的应用2.一桶油连桶的质量为8千克,油用去一半后,连桶的质量为4.5千克,则桶内原有油多少千克?设桶内原有油x千克,则下列所列方程正确的是( )A. B.C. D.答案:D解题思路:设桶内原有油x千克,那么油用去一半后,剩余的油连桶的质量为千克.因为油用去一半后,连桶的质量为4.5千克,所以方程可列为.故选D.试题难度:三颗星知识点:一元一次方程的应用3.6年前,母亲的年龄是女儿的5倍;6年后,母亲和女儿的年龄和是78岁,则2年后母亲的年龄是( )A.45岁B.51岁C.53岁D.63岁答案:C解题思路:设6年前女儿的年龄为x岁,根据题意列表梳理信息如下:根据6年后母亲和女儿的年龄和是78岁,可列方程,解得x=9.因此今年母亲的年龄是5x+6=5×9+6=51(岁),2年后母亲的年龄是51+2=53(岁).故选C.试题难度:三颗星知识点:一元一次方程应用——年龄问题4.我今年12岁,我的年龄比爸爸的年龄的小2岁,爸爸今年多少岁?设爸爸今年x岁,则下列所列方程正确的是( )A. B.C. D.答案:C解题思路:根据题意,列表如下:结合已知,我今年12岁,所以方程可列为.故选C.试题难度:三颗星知识点:一元一次方程的应用—年龄问题5.已知今年小郑母女二人的年龄之和为42岁,三年前母亲的年龄是小郑年龄的8倍,则5年后母亲的年龄为( )A.40岁B.35岁C.30岁D.45岁答案:A解题思路:设今年母亲的年龄为x岁,则小郑的年龄为(42-x)岁,根据题意列表梳理信息如下:根据三年前母亲的年龄是小郑年龄的8倍,可列方程x-3=8(42-x-3),解得x=35.因此5年后母亲的年龄为40岁.故选A.试题难度:三颗星知识点:一元一次方程的应用—年龄问题6.9年前(相对于今年)父亲年龄是儿子的12倍,今年父亲年龄是儿子的3倍.那么9年前儿子的年龄是( )岁.A.0B.11C.2D.4答案:C解题思路:设9年前儿子的年龄是x岁,可列表格为:根据今年父亲年龄是儿子的3倍,得12x+9=3(x+9)解得x=2故选C.试题难度:三颗星知识点:一元一次方程的应用—年龄问题。

新人教版七年级上册数学一元一次方程应用题及答案

新人教版七年级上册数学一元一次方程应用题及答案

一元一次方程应用题知能点1:市场经济、打折销售问题×100% (1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.1. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为()A.45%×(1+80%)x-x=50B. 80%×(1+45%)x - x = 50C. x-80%×(1+45%)x = 50D.80%×(1-45%)x - x = 504.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.知能点2:方案选择问题6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,?经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,?但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,?在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?7.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50?元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1?分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟,两种通话方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数关系式(即等式).(2)一个月内通话多少分钟,两种通话方式的费用相同?(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?8.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费。

3最新人教版七年级上册数学一元一次方程应用题及答案

3最新人教版七年级上册数学一元一次方程应用题及答案

一元一次方程应用题1:市场经济、打折销售问题知能点商品收益×100%(2)商品收益率=(1)商品收益=商品售价-商品成本价商品成本价(3)商品销售额=商品销售价×商品销售量( 4)商品的销售收益=(销售价-成本价)×销售量80% 销售.折销售,即按原价的8(5)商品打几折销售,就是按原价的百分之几十销售,如商品打元一双,60 某商铺开张,为了吸引顾客,所有商品一律按八折优惠销售,已知某种皮鞋进价1.40%,问这类皮鞋标价是多少元?优惠价是多少元?八折销售后商家获收益率为元,这15 折优惠卖出,结果每件仍赢利840% 后标价,又以一家商铺将某种服饰按进价提升 2.种服饰每件的进价是多少?元,5045%后标价,又以八折优惠卖出,结果每辆仍赢利 3.一家商铺将一种自行车按进价提升)元,那么所列方程为( x 这类自行车每辆的进价是多少元?若设这类自行车每辆的进价是 A.45%×( 1+80%) x-x=5050=x-80%×( 1+45%)xB.50=x-D.80% (×1-45%) x50=x-80%×( 1+45%).某商品的进价为元,后出处于该商品积压,商铺准备打折销售,但1200 元,销售时标价为5%,则至多打几折.要保持收益率不低于.经40%,而后在广告中写上“大酬宾,八折优惠”5.一家商铺将某种型号的彩电先按原售价提升求每台彩电的原售价.元的罚款, 2700 倍处以每台10 拆法部门按已得非法收入的顾客投拆后,方案选择问题 2:知能点元,??经粗加工后销售,10006.某蔬菜企业的一种绿色蔬菜,若在市场上直接销售,每吨收益为140 当地一家企业收买这类蔬菜元, 7500 每吨收益涨至经精加工后销售,元,4500 每吨收益可达吨,假如进行精加工, 16 假如对蔬菜进行精加工,每日可加工吨,该企业的加工生产能力是:天将这批15 吨, ??但两种加工方式不可以同时进行,受季度等条件限制,企业一定在 6 每日可加工蔬菜所有销售或加工完成,为此企业研制了三种可行方案:方案一:将蔬菜所有进行粗加工.方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,??在市场上直接销售.天达成.15 方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰巧你以为哪一种方案赢利最多?为何?150??元月基础费,而后每通话“全世界通”使用者先缴 7.某市移动通信企业开设了两种通信业务:元(这里均指0.41??分钟需付话费“神州行”不缴月基础费,每通话元;0.2 分钟,再付电话费元.y 元和 y 分钟,两种通话方式的花费分别为x.若一个月内通话市内电话)21.之间的函数关系式(即等式)x 与, yy(1)写出 21(2)一个月内通话多少分钟,两种通话方式的花费同样?元,则应选择哪一种通话方式较合算?120( 3)若某人估计一个月内使用话费千瓦时,则超出部分 a 元,若每个月用电量超出.某地域居民生活用电基本价钱为每千瓦时a.元,求千瓦时,共交电费 84( 1)某户八月份用电 70%收费。

人教版七年级上册-一元一次方程实际应用题-打折销售问题(含答案)

人教版七年级上册-一元一次方程实际应用题-打折销售问题(含答案)

人教版七年级上册 一元一次方程实际应用题-打折销售问题(含答案)一、单选题1.一款新型的太阳能热水器进价2000元,标价3000元,若商场要求以利润率不低于5%的售价打折出售,则设销售员出售此商品最低可打x 折,由题意列方程,得( )A.()3000x 200015%=-B.3000x 20005%2000-= C.()x 3000200015%10⋅=⋅- D.()x 3000200015%10⋅=⋅+ 2.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( )A .180元B .200元C .225元D .元3.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱 4.一个商店把某件商品按进价加20%作为定价,后来老板按定价8折192元卖出这件商品,那么老板在销售这件商品的过程中的盈亏情况为( )A.盈利16元B.亏损24元C.亏损8元D.不盈不亏5.某商店购进甲、乙两种商品共160件,甲每件进价为15元,售价20元;乙每件进价为35元,售价45元;售完这批商品利润为l100元,设甲为x 件,则购进甲商品的件数满足方程( ) +15(160-x)=1100(160-x)+10x=1100 +25(160-x)=1100 +10(160-x)=l1006.中百超市推出如下优惠方案:(1)一次性购物不超过100元,不享受优惠;(2)一次性购物超过100元,但不超过300元一律9折;(3)一次性购物超过300元一律8折.王波两次购物分别付款80元、252元,如果他将这两次所购商品一次性购买,则应付款( )A.288元 B.332元 C.288元或316元 D.332元或363元$二、填空题7.某商场将一件玩具按进价提高60%后标价,销售时按标价打折销售,结果相对于进价仍获利20%,则这件玩具销售时打的折扣是_____.8.某个“清涼小屋”自动售货机出售A、B、C三种饮料.A、B、C三种饮料的单价分別是2元/瓶、3元/瓶、5元/瓶.工作日期间,每天上货量是固定的,且能全部售出,其中,A饮科的数量(单位:瓶)是B饮料数量的2倍,B饮料的数量(单位:瓶)是C饮料数量的2倍.某个周六,A、B、C三种饮料的上货量分別比一个工作日的上货量增加了50%、60%、50%,且全部售出.但是由于软件bug,发生了一起错单(即消费者按某种饮料一瓶的价格投币,但是取得了另一种饮料1瓶),结果这个周六的销售收入比一个工作日的销售收入多了503元.则这个“清凉小屋”自动售货机一个工作日的销售收入是_____元.三、解答题9.华联超市购进一批四阶魔方,按进价提高40%后标价,为了让利于民,增加销量,超市决定打八折出售,这时每个魔方的售价为28元.(1)求魔方的进价(2)超市卖出一半后,正好赶上双十一促销,商店决定将剩下的魔方以每3个80元的价格出售,很快销售一空,这批魔方超市共获利2800元,求该超市共购进魔方多少个$10.某水果批发市场苹果的价格如表(1)小明分两次共购买40千克,第二次购买的数量多于第一次购买的数量,共付出216元,小明第一次购买苹果_____千克,第二次购买_____千克.(2)小强分两次共购买100千克,第二次购买的数量多于第一次购买的数量,且两次购买每千克苹果的单价不相同,共付出432元,请问小强第一次,第二次分别购买苹果多少千克(列方程解应用题)`11.某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标12.某超市计划购进甲、乙两种商品共1200件,这两种商品的进价、售价如下表:^⑴超市如何进货,进货款恰好为46000元.⑵为确保乙型节能灯顺利畅销,在(1)的条件下,商家决定对乙型节能灯进行打折出售,且全部售完后,乙型节能灯的利润率为20%,请问乙型节能灯需打几折13.13.马刚家附近有甲乙两家超市,春节来临之际两个超市分别给出了不同的促销方案:甲超市购物全场折,乙超市购物①不超过200元,不给予优惠;②超过200元而不超过500元,打9折;③超过500元,其中的500元仍打9折,超过500元的部分打8折.(假设两家超市相同商品的标价都一样)(1)当一次性购物标价总额是300元时,甲乙两个超市实付款分别是多少(2)当标价总额是多少元时,甲乙超市实付款一样#14.某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:方案一:按照商铺标价一次性付清铺款,每年可获得的租金为商铺标价的10%;方案二:按商铺标价的八折一次性付清铺款,前3年商铺的租金收益归开发商所有,3年后每年可获得的租金为商铺标价的9%(1)问投资者选择哪种购铺方案,5年后所获得的投资收益率更高为什么(注:投资收益率=投资收益实际投资额×100%)>(2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益相差万元.问甲乙两人各投资了多少万元15.平价商场经销的甲、乙两种商品,甲种商品每件售价60元,利润率为50%;乙种商品每件进价50元,售价80元.(1)甲种商品每件进价为元,每件乙种商品利润率为.(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件(3)在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:按上述优惠条件,若小华一次性购买乙种商品实际付款504元,求小华在该商场购买乙种商品多少件$16.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,求这一天有几个工人加工甲种零件.17.列方程解应用题:“双十一”期间,某电商决定对网上销售的商品一律打8折销售,黄芳购买一台某种型号的手机时发现,每台手机比打折前少支付400元,求每台该种型号的手机打折前的售价.)18.列方程解应用题某文具店一支铅笔的售价为元,一支圆珠笔的售价为2元,在元旦期间该店举行文具优惠活动,铅笔按原价打八折出售,圆珠笔按原价打九折出售,结果两种笔共卖出60支,卖得87元,则在这次优惠活动中卖出铅笔、圆珠笔各多少支19.列方程...解应用题:某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的一半多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价-进价)(1)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润(2)该超市第二次以第一次的进价又购进甲、乙两种商品.其中购进甲种商品的件数不变,购进的乙种商品的件数是第一次购进乙种商品件数的3倍;甲商品按原价销售,乙商品打折销售.第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙种商品是按原价打几折销售20.某蔬菜经营户,用1200元从菜农手里批发了长豆角和番茄共450千克,长豆角和番茄当天的批发价和零售价如表:(1)这天该经营户批发了长豆角和番茄各多少千克《(2)当天卖完这些番茄和长豆角能盈利多少元21.某文教店购进一批钢笔,按进价提高40%后标价,为了增加销量,文教店决定按标价打八折出售,这时每支钢笔的售价为28元.(1)求每支钢笔的进价为多少元;(2)该文教店卖出这批钢笔的一半后,决定将剩下的钢笔以每3支80元的价格出售,很快销售完毕,销售这批钢笔文教店共获利2800元,求该文教店共购进这批钢笔多少支(22.某电器商销售一种微波炉和电磁炉,微波炉每台定价800元,电磁炉每台定价200元,“双十一”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一台微波炉送一台电磁炉;方案二:微波炉和电磁炉都按定价的90%付款.现某客户要到该卖场购买微波炉2台,电磁炉x台(x>2).(1)若该客户按方案一购买,需付款___元.(用含x的代数式表示)若该客户按方案二购买,需付款___元.(用含x的代数式表示)(2)若x=5时,通过计算说明此时按哪种方案购买较为合算!(3)当x=5时,你能给出一种更为省钱的购买方案吗试写出你的购买方法.23.“丰收1号”油菜籽的平均每公顷产量为2400kg,含油率为40%.“丰收2号”油菜籽比“丰收1号”的平均每公顷产量提高了300kg,含油率提高了10个百分点。

(完整版)人教版七年级上册数学一元一次方程应用题及答案

(完整版)人教版七年级上册数学一元一次方程应用题及答案

一元一次方程大练习列一次方程(组)或分式方程解应用题的基本步骤是:审、设、列、解、答.常见题型有以下几种情形:①和、差、倍、分问题,即两数和=较大的数+较小的数,较大的数=较小的数×倍数±增(或减)数;②行程类问题,即路程=速度×时间;③工程问题,即工作量=工作效率×工作时间;④浓度问题,即溶质质量=溶液质量×浓度;⑤分配问题,即调配前后总量不变,调配后双方有新的倍比关系;⑥等积问题,即变形前后的质量(或体积)不变;⑦数字问题,即有若个位上数字为a,十位上的数字为b,百位上的数字为c,则这三位数可表示为100c+10b+a,等等;⑧经济问题,即利息=本金×利率×期数;本息和=本金+利息=本金+本金×利率×期数;税后利息=本金×利率×期数×(1-利息税率);商品的利润=商品的售价-商品的进价;商品的利润率=×100%.等等一元一次方程应用题知能点1:市场经济、打折销售问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.1. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为()A.45%×(1+80%)x-x=50B. 80%×(1+45%)x - x = 50C. x-80%×(1+45%)x = 50D.80%×(1-45%)x - x = 504.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.知能点2:方案选择问题6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,•经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,•但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,•在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?7.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50•元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1•分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟,两种通话方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数关系式(即等式).(2)一个月内通话多少分钟,两种通话方式的费用相同?(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?8.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费。

人教版七年级上册一元一次方程应用题分类练习:行程问题与图形规律【有答案】

人教版七年级上册一元一次方程应用题分类练习:行程问题与图形规律【有答案】

一元一次方程应用题分类练习:行程问题与图形规律一:行程问题类1.星期天天气晴好,小米骑自行车向宁波登山基地九峰山出发,由于太匆忙,出发半个小时后,他爸爸发现他把可以免费进入景区的证件落在家里,于是,他立即开摩托车去追,已知小米骑自行车的平均速度为12千米/时,摩托车的平均速度为48千米/时.(1)求出爸爸多长时间能追上小米?(2)若爸爸出发的同时手机通知小米掉头回来,那么爸爸多久与小米相遇?(3)若爸爸出发的同时手机通知小米掉头来取,结果爸爸出发十分钟还没有遇到小米,手机联系才发现他俩已经错开了一段距离了,这时他们又赶紧掉头,问爸爸从家里出发到送证件成功共花了多少时间?(4)小米继续骑自行车,他留意到每隔15分钟有一辆某路公交车从他身后驶向前面,假设小米的平均速度是12千米/时,公交车的的平均速度为60千米/时.小米就想:每隔几分钟从车站开出一辆该路公交车呢?请你帮小米求岀.2.已知甲、乙两地相距160km,A、B两车分别从甲、乙两地同时出发,A车速度为85km/h,B车速度为65km/h.(1)A、B两车同时同向而行,A车在后,经过几小时A车追上B车?(2)A、B两车同时相向而行,经过几小时两车相距20km?3.快车以200km/h的速度由甲地开往乙地再返回甲地,慢车以75km/h的速度同时从乙地出发开往甲地.已知当快车回到甲地时,慢车距离甲地还有225km,则(1)甲乙两地相距多少千米?(2)从出发开始,经过多长时间两车相遇?(3)几小时后两车相距100千米?4.一天早晨,乐乐以80米/分的速度上学,5分钟后乐乐的爸爸发现他忘了带数学书,爸爸立即骑自行车以280米/分的速度去追乐乐,并且在途中追上了他,请解决以下问题:(1)爸爸追上乐乐用了多长时间?(2)爸爸追上乐乐后,乐乐搭爸爸的自行车回到学校,结果提前了10分钟到校,若爸爸搭上乐乐后的骑行速度为240米/分,求乐乐家离学校有多远.5.一列火车匀速行驶,经过一条长475m的A隧道用了32s的时间.A隧道顶上有一盏灯,垂直向下发光,行驶过程中灯光照在火车上的时间是13s(1)求这列火车的长度;(2)若这列火车经过A隧道侯按原速度又经过了一条长750m的B隧道,求这列火车经过B隧道需要的时间.二:图形规律类6.为了迎接元旦,孝昌县政府要在广场上设计一座三角形展台,要求园林工人把它的每条边上摆放上相等盆数的盆栽鲜花(如图所示的每个小圆圈表示一盆鲜花)以美化环境,如果每条边上摆放两盆鲜花,共需要3盆鲜花;如果每条边上摆放3盆鲜花,共需要6盆鲜花;…,按此要求摆放下去:(1)根据图示填写下表:每条边上摆放的盆数(n) 2 3 4 5 6 …共需要的盆数(s) 3 6 …(2)如果要在每条边上摆放n盆鲜花,那么需要鲜花的总盆数.(3)请你帮园林工人参考一下,能否用2020盆鲜花作出符合要求的摆放?如果能,请计算出每条边上应摆放花的盆数;如果不能,请说明理由.7.小红用110根长短相同的小木棍按照如图所示的方式,连续摆正方形或六边形,要求相邻的图形只有一条公共边.(1)小红首先用m根小木棍摆出了p个小正方形,请你用等式表示m,P之间的关系:;(2)小红用剩下的小木棍摆出了一些六边形,且没有木棍剩余.已知他摆出的正方形比六边形多4个,请你求出摆放的正方形和六边形各多少个?(3)小红重新用50根小木棍,摆出了s排,一共t个小正方形.其中每排至少含有1个小正方形,每排含有的小正方形的个数可以不同.请你用等式表示s,t之间的关系,并写出所有s,t可能的取值.8.如图所示,将一张正方形纸片第一次剪成4张大小相同的小正方形纸片,第二次将其中的一张小正方形纸片按同样的方法剪成4张更小的正方形纸片,如此继续剪下去.(1)填写表格:剪的次数 1 2 3 4 5 …正方形纸片的张数…(2)剪n次一共可以剪出多少张小正方形纸片?(3)能否经过若干次分割后,共得2019张纸片?请说明理由.9.如图,一个瓶子的容积为1升,瓶内装着一些溶液,当瓶子正放时,瓶内溶液的高度为20cm,倒放时,空余部分的高度为5cm(如图).现把溶液全部倒在一个底面直径为8cm的圆柱形杯子里.求:(1)瓶内溶液的体积.(2)圆柱形杯子溶液的高度是多少?10.将自然数按照下表进行排列:用a mn表示第m行第n列数,例如a43=29表示第4行第3列数是29.)(1)已知a mn=49,m=,n=;(2)将图中5个阴影方格看成一个整体并在表格内平移,所覆盖的5个自然数之和能否为2021?若能,求出这个整体中左上角最小的数;若不能,请说明理由;(3)用含m,n的代数式表示a mn=.参考答案1.解:(1)设爸爸经过x小时能追上小米,则小米出发了(x+0.5)小时,依题意,得:48x=12(0.5+x),解得:x=.答:爸爸经过小时能追上小米.(2)设爸爸经过y小时与小米相遇,依题意,得:(48+12)y=12×0.5,解得:y=.答:爸爸经过小时与小米相遇.(3)设爸爸从家里出发到送证件成功共花了z小时,依题意,得:(48+12)(z﹣)=(48+12)×﹣12×0.5,解得:z=.答:爸爸从家里出发到送证件成功共花了小时.(4)设每隔m分钟从车站开出一辆该路公交车,依题意,得:(60﹣12)×=60×,解得:m=12.答:每隔12分钟从车站开出一辆该路公交车.2.解:(1)设经过x小时A车追上B车,依题意,得:85x﹣65x=160,解得:x=8.答:经过8小时A车追上B车.(2)设经过y小时两车相距20km.。

人教版七年级上册数学一元一次方程应用题及答案

人教版七年级上册数学一元一次方程应用题及答案一元一次方程应用题知识和能力要点1:市场经济和折扣销售(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润×100%商品成本价(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.1.某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?2.一家商店将某件衣服的价格提高了40%,并以20%的折扣出售。

因此,每件衣服仍能盈利15元。

每件衣服的售价是多少?3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为()a、45%×(1+80%)x-x=50b。

80%×(1+45%)x-x=50摄氏度。

x-80%×(1+45%)x=50d。

80%×(1-45%)x-x=504.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.知识和能力要点2:方案选择6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,?经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,?但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:粗加工尽可能多的蔬菜。

人教版七年级上册数学一元一次方程应用题类型专练一【含答案】

一元一次方程应用题类型一配套类问题1.(基础)某工厂工人急需在计划时间内加工一批零件用于机械制造,如果每天加工500个,就比规定任务少80个;如果每天加工550个,则超额20个.求规定加工的零件数和计划加工的天数分别是多少?2.(基础)某眼镜厂有60名工人,每个工人每天可生产镜片200片或生产镜架50个.应如何分配工人生产镜片和镜架,才能使每天生产的产品成套?(2片镜片和1个镜架成一套)3.(中等)“吃元宵,品元宵,元宵佳节香气飘”,某厂家拥有A,B两条不同的元宵生产线,已知A生产线每小时生产元宵80袋,B生产线每小时生产元宵100袋.(1)为满足元宵节市场需求,工厂加紧生产,若A,B两条生产线一天一共工作20小时,且共生产了1820袋元宵,则A生产线生产元宵多少小时?(2)元宵节后,市场需求减少,在(1)问基础上,厂家减少了A生产线每天的生产时间,且A生产线生产时间每减少1小时,该生产线每小时的产量将增加6袋,B生产线生产时间不变,产量也不变,这样一天两条生产线的总产量为1688袋,求该厂A生产线减少的生产时间.4.(难)某工厂接受了 20 天内生产1200 台GH 型电子产品的总任务。

已知每台GH 型产品由 4 个G 型装置和3 个H 型装置配套组成。

工厂现有80 名工人,每个工人每天能加工6 个G 型装置或3 个H 型装置。

工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G 、H 型装置数量正好组成GH 型产品.(1)按照这样的生产方式,工厂每天能配套组成多少套GH 型电子产品?(2)工厂补充 40名新工人,这些新工人只能独立进行G 型装置的加工,且每人每天只能加工 4个G型装置,则补充新工人后每天能配套生产多少产品?补充新工人后20天内能完成总任务吗?工程类问题5.(基础)一项工作,甲单独做20天完成,乙单独做10天完成.现在由乙先做几天后,剩下的部分由甲单独做,共花12天完成,求乙做了几天.6.(基础)完成一项工作,一个工人需要16天才能完成.开始先安排几个工人做1天后,又增加1人和他们一起做2天,结果完成了这项工作的一半,假设每个工人的工作效率相同.(1)开始安排了多少个工人?(2)如果要求再用2天做完剩余的全部工作,还需要再增加多少个工人一起做?7.(中等)某建筑工地计划租用甲、乙两辆车清理建筑垃圾,已知甲车单独运完需要12天,乙车单独运完需要24天.甲车先运了3天,然后甲、乙两车合作运完剩下的垃圾.(1)甲、乙两车合作还需要多少天才能运完这些垃圾?(2)已知甲车每天的租金比乙车多100元,运完这些垃圾后建筑工地共需支付租金3900元,甲、乙两车每天的租金分别为多少元?8.(难)姐、弟二人录入一批稿件,姐姐单独录入需要的时间是弟弟的38,姐姐先录入了这批稿件的25,接着由弟弟单独录入,共用24小时录入完.问:姐姐录入用了多少小时?销售类问题9.(基础)某商店对A,B两种商品开展促销活动,方案如下:(1)商品B降价后的标价为元;(用含的式子表示)(2)小艺购买A商品20件,B商品10件,共花费6000元,试求a的值.10.(基础)今年入冬以来,中兴家电商场以150元/台的价格购进一款取暖器,很快售完,又用相同的货款再次购进这款取暖器,因单价提高了30元,进货量比第一次少了10台.(1)中兴商场两次各购进取暖器多少台?(2)若以250元/台的售价卖完这两批取暖器,则商场共获利多少元?11.(中等)列方程解应用题欧尚超市恰好用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的与13少10件,甲、乙两种商品的进价和售价如表;(注:每件商品获利=售价﹣进价).(2)该超市将购进的甲、乙两种商品全部卖完后一共可获得多少利润?12.(难)甲、乙两个玩具的成本共300元,商店老板为获取利润,并快速出售玩具,决定甲玩具按60%的利润率标价出售,乙玩具按50%的利润率标价出售.在实际出售时,应顾客要求,两个玩具均按标价9折出售,这样商店共获利114元.(1)求甲、乙两个玩具的成本各是多少元?(2)商店老板决定投入1000元购进这两种玩具,且为了吸引顾客,每个玩具至少购进1个,那么可以怎样安排进货?比赛积分类问题13.(基础)足球比赛的计分规则是胜一场得3分,平一场得1分,负一场得0分”,一支足球队在某个赛季中共比赛16场,现已比赛了10场,负3场,共得17分,问:(1)前10场比赛中这支足球队共胜多少场?(2)这支足球队打满16场比赛,最高能得多少分14.(基础)足球比赛计分规则:胜一场得3分,平一场得1分,输一场不得分.一支足球队在某个赛季中共比赛14场,现在已比赛8场,输了1场,共得17分.问:(1)前8场比赛中,这支球队共胜多少场?(2)打满14场比赛,最高能得多少分?(3)到比赛全部结束,若这支球队得分不低于29分,则后面的比赛至少要胜几场才能达到预期目标?15.(中等)列方程解应用题:(1)五四前夕,上极团委发给某校团委电影票240张,校团委决定初一、初二、初三三个年级按2:5:3的比例分配电影票.问每个年级各能分到电影票多少张?(2)某篮球队参加篮球赛,胜一场得2分,负一场得0分,平一场得1分,该队一共赛12场,未负一场,总得20分,问该队胜了几场?(3)随着互联网走进千家万户,在网上购买东西已经成为现代人生活的一部分.某同学想购买一款iPad和一款手机,他发现iPad和手机单价之和是3300元,iPad的单价是手机单价的2倍又少300元,求该同学看中的iPad和手机的单价各有多少元?(1)列一元一次方程求出胜一场、负一场各积多少分?(2)某队的胜场总积分能等于它的负场总积分吗?若能,试求胜场数和负场数;若不能,说出理由.(3)试就某队的胜场数求出该队的负场总积分是它的胜场总积分的正整数倍的情况?方案选择类问题17.(基础)公园门票价格规定如下表:某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,若两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?18.(基础)列方程解应用题某校举行元旦汇演,七年级的701班、702班、703班三个班各需购买贺卡70张,已知贺卡的价格如(1)若701班分两次购买,第一次购买24张,第二次购买46张,则701班购买贺卡费用是多少元?(2)若702班一次性购买贺卡70张,则702班购买贺卡费用是多少元?(3)若703班分两次购买贺卡共70张(第二次多于第一次),共付费150元,则第一次、第二次分别购买贺卡多少张?19.(中等)“十一”期间,小聪跟爸爸一起去A市旅游,出发前小聪从网上了解到A市出租车收费(1)若甲、乙两地相距8千米,乘出租车从甲地到乙地需要付款多少元?(2)小聪和爸爸从火车站乘出租车到旅馆,下车时计费表显示17.2元,请你帮小聪算一算从火车站到旅馆的距离有多远?(3)小聪的妈妈乘飞机来到A市,小聪和爸爸从旅馆乘出租车到机场去接妈妈,到达机场时计费表显示70元,接完妈妈,立即沿原路返回旅馆(接人时间忽略不计),请帮小聪算一下乘原车返回和换乘另外的出租车,哪种更便宜?20.(难)某购物网站上的一种小礼品按销售量分三部分制定阶梯销售单价,如下表:(1)“双十一”期间,购物总金额累计满300元可使用50元购物津贴(即累计总金额每满300减50元),若购买75件,花费______元;若购买120件,花费______元;若购买240件,花费______元.(2)“双十一”期间,王老师购买这种小礼品共花了342元,列方程求王老师购买这种小礼品的件数.(3)“双十二”即将来临,但“双十二”期间不能使用购物津贴,王老师和李老师各自单独在该网站购买这种小礼品,他们一共购买了400件,其中王老师的购买数量大于李老师的购买数量,他们一共花费1331元,请问王老师和李老师各购买这种小礼品多少件?答案1.规定加工零件数为1080个,计划加工天数为2天.【详解】解:设计划加工的天数为x天,由题意得:500x+80=550x﹣20,解得:x=2,所以规定加工的零件数为500x+80=500×2+80=1080(个),答:规定加工零件数为1080个,计划加工天数为2天. 2.20人生产镜片,40人生产镜架 【详解】解:设x 人生产镜片,则(60-x )人生产镜架. 由题意得:200x=2×50×(60-x ), 解得x=20, 则60-x=40.答:20人生产镜片,40人生产镜架,才能使每天生产的产品配套. 3.(1)A 生产线生产元宵9小时;(2)3小时. 【详解】解:(1)设A 生产线生产元宵x 小时,则B 生产线生产元宵()20x -小时,所以()80100201820,x x +-= 20180,x ∴-=-9,x ∴=即A 生产线生产元宵9小时.(2)设该厂A 生产线减少的生产时间为t 小时,则每天的生产量为()80+6t 袋,则()()8069111001688,t t +-+⨯=2313660,t t ∴+-=()()32230,t t ∴+-=1222,3,3t t ∴=-= 经检验:1223t =-不合题意,舍去,取2 3.t =答:该厂A 生产线每天减少的生产时间为3小时.4.(1)48;(2)64,能. 【详解】(1)设安排x 名工人生产G 型装置,则安排(80﹣x )名工人生产H 型装置, 根据题意得:()380643x x -=, 解得:x =32,∴663244x ⨯==48. 答:按照这样的生产方式,工厂每天能配套组成48套GH 型电子产品.(2)设安排y 名工人生产H 型装置,则安排(80﹣y )名工人及40名新工人生产G 型装置, 根据题意得:()680440343y y -+⨯=, 解得:y =64,∴33y=y =64.∵64×20=1280>1200,∴补充新工人后20天内能完成总任务.答:补充新工人后每天能配套生产4套产品,补充新工人后20天内能完成总任务. 5.8天 【详解】解:设乙做了x 天,则甲做了(12-x )天, 根据题意列方程得:1212010x x-+=, 解得:x =8,答:乙做了8天. 6.(1)2;(2)1. 【详解】解:(1)设开始安排了x 个工人,由题意得:2(1)116162x x ++=, 2(1)8x x ++=36x = 2x ∴=,答:开始安排了2个工人.(2)设再增加y 个工人,由题意得:2(3)1162y +=, 2(3)8y += 22y ∴=1y =∴答:还需要再增加1个工人一起做.7.(1)甲、乙两车合作还需要6天运完垃圾;(2)甲车每天的租金为300元,乙车每天的租金为200元. 【详解】解:(1)设甲、乙两车合作还需要x 天运完垃圾, 依题意,得:311224x x++=, 解得:x=6,答:甲、乙两车合作还需要6天运完垃圾;(2)设乙车每天的租金为y 元,则甲车每天的租金为(y+100)元, 依题意,得:()()6310063900y y +++=,解得:y=200, ∴y+100=300.答:甲车每天的租金为300元,乙车每天的租金为200元. 8.445小时【详解】解:设弟弟单独打印需要的时间设为x 小时,那么姐姐单独打印需要的时间就是38x 小时 322124855x x ⎛⎫⨯+-= ⎪⎝⎭; 3324205x x +=; 3244x =; 32x =324324855⨯⨯=(小时)答:姐姐录入用了445小时9.(1)()4001%a -;(2)30 【详解】(1)∵B 商品每件按标价降价%a , ∴B 商品降价后的标价为:()4001%a -, 故()4001%a -;(2)由题意,A 商品降价后的售价为()200120%160⨯-=, 则列方程:()16020104001%6000a ⨯+⨯-=,解得:30a =, ∴a 的值为30.10.(1)商场第一次购进取暖器60台,第二次购进50台;(2)以250元/台的售价卖完这两批取暖器,商场共获利9500元 【详解】解:(1)设商场第一次购进取暖器x 台,则第二次购进(10)x -台, 由题意得:150180(10)x x =-,解得60x =,故商场第一次购进取暖器60台,第二次购进60-10=50台. (2)根据题意可得(250150)60(250180)509500-⨯+-⨯=元,故以250元/台的售价卖完这两批取暖器,商场共获利9500元.11.(1)该超市第一次购进甲种商品210件、乙种商品60件;(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润1650元. 【详解】解:(1)设第一次购进甲种商品x 件,则购进乙种商品(13x ﹣10)件, 根据题意得:20x +30(13x ﹣10)=6000, 解得:x =210,∴13x ﹣10=60. 答:该超市第一次购进甲种商品210件、乙种商品60件.(2)(25﹣20)×210+(40﹣30)×60=1650(元).答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润1650元.12.(1)甲玩具的成本是100元,乙玩具的成本是200元;(2)购进乙玩具1个,购进甲玩具8个.【详解】解:(1)设甲玩具的成本是x 元,则乙玩具的成本是(300-x )元,则有:0.9(150%)(300)30011460%)0.9(1x x +⨯+⨯+--=,解得:100x =,所以甲玩具的成本是100元,乙玩具的成本是200元;(2)由题意可知:甲玩具的实际利润为:401.90(160%)01004⨯+=⨯-(元);乙玩具的实际利润为:002.90(150%)02007⨯+=⨯-(元);甲玩具投入100元,利润为44元,而乙玩具投入200元,利润为70元,所以尽可能多的购进甲玩具,且保证每个玩具至少购进1个,所以购进乙玩具1个,剩下800元购进甲玩具8个.13.(1)前10场比赛中这支足球队共胜5场;(2)这支足球队打满16场比赛,最高能得35分.【详解】解:(1)设前10场比赛中这支足球队共胜x 场,根据题意,得:()310317x x +--=,解得:5x =,答:前10场比赛中这支足球队共胜5场.(2)∵在余下的6场球全胜时,这支足球队得分才能最高,∴最高得分为173635+⨯=(分),答:这支足球队打满16场比赛,最高能得35分.14.(1)5,(2)35分,(3)至少要胜3场【详解】解:(1)设这个球队胜x 场,则平了(81)x --场,根据题意,得:3(81)17x x +--=.解得,5x =,即这支球队共胜了5场;(2)所剩6场比赛均胜的话,最高能拿173635+⨯=(分);(3)由题意知以后的6场比赛中,只要得分不低于12分即可,所以胜4场,就能达到预期目标, 而胜三场、平三场,即33312⨯+=,正好达到预期目标,故至少要胜3场.15.(1)初一年级能分48张,初二年级能分120张,初三年级能分72张;(2)胜8场;(3)手机的单价为1200元,则iPad 的单价为2100元.【详解】解:(1)设初一、初二、初三年级的票数分别为2x ,5x ,3x ,根据题意,得253240x x x ++=,解得24x =.答:初一年级能分48张,初二年级能分120张,初三年级能分72张.(2)设胜x 场,根据题意,得()21220x x +-=,解得8x =.答:胜8场.(3)设手机的单价为x 元,则iPad 的单价为(2x-300)元,根据题意,得23003300x x +-=, 解得1200x =.所以iPad 的单价为212003002100⨯-=.答:手机的单价为1200元,则iPad 的单价为2100元.16.(1)胜一场积2分,负一场积1分.(2)胜6场,负12场.(3)胜2场时,负场总积分是它的胜场总积分的4倍;胜6场时,负场总积分是它的胜场总积分的1倍.【详解】解:(1)设胜一场积x 分,则负一场积29117x -分, 依题意得:14x +4×29117x -=32 解得:x =2 此时29117x -=1 ∴胜一场积2分,负一场积1分.(2)答:能.理由如下:设胜场数是a ,负场数是(18﹣a ),依题意得:2a =18﹣a解得:a =618﹣a =18﹣6=12答:胜6场,负12场.(3)设胜场数是a ,负场数是(18﹣a ),依题意得:18﹣a =2ka解得:a =1821k + 显然,k 是正整数,2k +1是奇数符合题意的有:2k +1=9,k =4,a =2;2k +1=3,k =1,a =6.答:胜2场时,负场总积分是它的胜场总积分的4倍;胜6场时,负场总积分是它的胜场总积分的1倍.17.(1)初一(1)班的人数为48人,初一(2)班的人数为56人;(2)可省304元;(3)购买51张门票时最省钱.【详解】解:(1)设初一(1)班的人数为x 人,则初一(2)班的人数为(104-x )人,由题意得: ()131********x x +-=,解得:48x =,∴初一(2)班的人数为:1044856-=(人);答:初一(1)班的人数为48人,初一(2)班的人数为56人.(2)由表格及题意可得:两班联合起来的票钱为:1049936⨯=(元),∴1240-936=304(元);答:作为一个团体购票可省304元.(3)由(1)得:初一(1)班的人数为48人,由表格可得:当以48人去购票时,则需花费48×13=624(元);当以51人去购票时,则需花费51×11=561(元);答:购买51张门票时最省钱.18.(1)187元;(2)140元;(3)第一次购买10张,第二次购买60张【详解】解:(1)由题意得:24346 2.5187⨯+⨯=(元);答:701班购买贺卡费用是187元.(2)由题意可得702班购买贺卡的张数在50张以上,故价格为2元每张,则有:702140⨯=(元);答:702班购买贺卡费用是140元.(3)由题意得:因为150大于140小于187,且第二次买足50张,也需160元,故第二次购买肯定多于50张,设第一次购买x 张,第二次购买()70x -张,则有:3x +2(70-x )=150,解得:x =10;∴第二次购买60张,答:第一次购买10张,第二次购买60张.19.(1)乘出租车从甲地到乙地需要付款22元;(2)从火车站到旅馆的距离为6千米;(3)换乘另外出租车更便宜【详解】解:(1)由表格及题意得:()10 2.48322+⨯-=(元);答:乘出租车从甲地到乙地需要付款22元.(2)设火车站到旅馆的距离为x 千米,由(1)及题意得:∵1017.222<<,∴38x <<,∴()10 2.4317.2x +⨯-=,解得:6x =;答:从火车站到旅馆的距离为6千米.(3)设旅馆到机场的距离为x 千米,由题意得:∵7022>,∴8x >,∴()()10 2.4833870x +⨯-+-=,解得:24x =,∴乘原车返回的路费为:()()10 2.48332428142+⨯-+⨯⨯-=(元);换乘另外车辆的费用为702140⨯=(元);∴换乘另外出租车更便宜.20.(1)262.5,370,704;(2)王老师购买了这种小礼品112件;(3)李老师购买80件,则王老师购买320件.【详解】解:(1)若购买75件,花费75×3.5=262.5(元),购买120件,120×3.5=420(元),花费:420-50=370(元),购买240件,() 240120 3.2420804-⨯+=(元),花费:8045050704--=(元),故262.5,370,704;(2)设王老师购买了这种小礼品a 件.∵34250392420+=<,∴120a <,∴3.534250a =+,解得:112a =,答:王老师购买了这种小礼品112件;(3)设李老师购买x 件,则王老师购买(400-x )件.①当x <120时,由题意得:()3.5120 3.5 3.24001201331x x +⨯+--=,或()3.5120 3.5180 3.234001201801331x x +⨯+⨯+---=,解得50x =(舍弃)或70x =,∴李老师购买70件,则王老师购买330件.②当x >120时,由题意:840+3.2×160≠1331,不符合题意.答:李老师购买80件,则王老师购买320件.。

七年级上册新人教版教材一元一次方程应用题带答案

【教材上出现的应用题】问题1 某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍.前年这个学校购买了多少台计算机?(P86)答案:解:设前年购买了x台,则x+2x+4x=140解得x=20答:前年购买了20台问题2 把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?(P88)答案:解:(1)设这个班有x名学生.依题意有:3x+20=4x﹣25解得:x=45答:这个班有45名学生.例4 某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200t;如用新工艺,则废水排量比环保限制的最大量少100t,新、旧工艺的废水排量之比为2:5,两种工艺的废水排量各是多少?(P90)答案:解:设新、旧工艺的废水排量分别为2xt、5xt,则依题意得5x-200=2x+100,解得 x=100.则2x=200,5x=500.答:新、旧工艺的废水排量分别为200t、500t.11.几个人共同种一批树苗,如果每人种10棵,则剩下6棵树苗未种;如果每人种12棵,则缺6棵树苗,求参与种树的人数.(P91)答案:解:设有x人种树,则树苗共有(10x+6)棵.12x-(10x+6)=6x=6答:参与种树人数为6人13.一个两位数的个位上的数的3倍加1是十位上的数,个位上的数与十位上的数的和等于9,这个两位数是多少?(P92)答案:解:设个位数为xx+3x+1=9解得x=2十位上的数:9―2=7答:这个两位数是:7×10+2=72一艘船从甲码头到乙码头顺流而行,用了2h;从乙码头返回甲码头逆流而行,用了2.5h 。

已知水流的速度是3㎞/h ,求船在静水中的平均速度.(P94)答案:解:设船在静水中的速度为x 千米/时,则顺流的速度为(x+3)千米/时,逆流的速度为:(x-3)千米/时, 由题意得:2(3+x )=2.5(x-3), 解得:x=27.答:船在静水中的平均速度为27千米/小时.10.王力骑自行车从A 地到B 地,陈平骑自行车从B 地到A 地,两人都沿同一公路匀速前进,已知两人在上午8时同时出发,到上午10时,两人还相距36km ,到中午12时,两人又相距36km ,求A 、B 两地间的路程。

七年级上册数学一元一次方程应用题及答案

1.小明买了一些苹果,一共花了100元。

如果每个苹果2元,他一共买了多少个苹果?解:设苹果的个数为x,则2x=100,解得x=50。

小明买了50个苹果。

2.甲乙两个人一起跑步,甲每分钟跑500米,乙每分钟跑400米。

他们同时出发,如果甲跑了12分钟后才追上乙,请问甲跑了多少米?解:设甲跑了x米,则12分钟后甲共跑了12*500=6000米。

乙已经跑了400*12=4800米。

所以甲比乙多跑了6000-4800=1200米。

3.一辆汽车以每小时60公里的速度行驶,从A地到B地全程300公里。

如果汽车从A地出发一段时间后遇到雨,速度减少为每小时50公里,这时到达B地需要多少时间?解:设汽车在遇到雨前行驶了t小时。

则在遇到雨前汽车已经行驶了60t公里。

从遇到雨到到达B地,汽车的速度变为50公里/小时,所以这段路程需要的时间为(300-60t)/50小时。

所以汽车从A地到B地一共需要的时间为t+(300-60t)/50小时。

4.小明爸爸的年龄是小明年龄的3倍,两人的总年龄是60岁。

请问小明的年龄是多少?解:设小明的年龄为x岁,则小明爸爸的年龄为3x岁。

根据题意,有x+3x=60,解得x=15、所以小明的年龄是15岁。

5.一只小猫每天要吃掉它体重的1/10的食物,如果小猫每天吃1斤食物,请问它需要多少天才能吃完自己的体重?解:设小猫需要吃x天才能吃完自己的体重。

根据题意,有x*(1/10)=1,解得x=10。

所以小猫需要10天才能吃完自己的体重。

6.高铁的速度是普通列车的2倍,假设普通列车从A地到B地需要5小时,高铁从A地到B地需要多少小时?解:设高铁从A地到B地需要x小时。

根据题意,有5/x=2,解得x=2.5、所以高铁从A地到B地需要2.5小时。

7.一个矩形的长度是宽度的2倍,如果周长为30米,请问这个矩形的长和宽各是多少米?解:设矩形的宽度为x米,则矩形的长度为2x米。

根据题意,有2*(x+2x)=30,解得x=4、所以矩形的长度为8米,宽度为4米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 一元一次方程应用题 知能点1:市场经济、打折销售问题

(1)商品利润=商品售价-商品成本价 (2)商品利润率=商品利润商品成本价×100% (3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量 (5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售. 1. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?

2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?

3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为( ) A.45%×(1+80%)x-x=50 B. 80%×(1+45%)x - x = 50 C. x-80%×(1+45%)x = 50 D.80%×(1-45%)x - x = 50 4.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.

5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价. 2

知能点2: 方案选择问题 6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,•经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是: 如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,•但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案: 方案一:将蔬菜全部进行粗加工. 方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,•在市场上直接销售. 方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成. 你认为哪种方案获利最多?为什么?

7.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50•元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1•分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟,两种通话方式的费用分别为y1元和y2元. (1)写出y1,y2与x之间的函数关系式(即等式). (2)一个月内通话多少分钟,两种通话方式的费用相同? (3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?

8.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费。(1)某户八月份用电84千瓦时,共交电费30.72元,求a. (2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦时?•应交电费是多少元?

9.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元. 3

(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.

(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,•销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?

10.小刚为书房买灯。现有两种灯可供选购,其中一种是9瓦的节能灯,售价为49元/盏,另一种是40瓦的白炽灯,售价为18元/盏。假设两种灯的照明效果一样,使用寿命都可以达到2800小时。已知小刚家所在地的电价是每千瓦时0.5元。 (1).设照明时间是x小时,请用含x的代数式分别表示用一盏节能灯和用一盏白炽灯的费用。(费用=灯的售价+电费) (2).小刚想在这种灯中选购两盏。假定照明时间是3000小时,使用寿命都是2800小时。请你设计一种费用最低的选灯照明方案,并说明理由。

知能点3储蓄、储蓄利息问题 (1)顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。利息的20%付利息税 (2)利息=本金×利率×期数 本息和=本金+利息 利息税=利息×税率(20%)

(3)%,100本金每个期数内的利息利润 11. 某同学把250元钱存入银行,整存整取,存期为半年。半年后共得本息和252.7元,求银行半年期的年利率是多少?(不计利息税) 4

12. 为了准备6年后小明上大学的学费20000元,他的父亲现在就参加了教育储蓄,下面有三种教育储蓄方式: (1)直接存入一个6年期; (2)先存入一个三年期,3年后将本息和自动转存一个三年期; (3)先存入一个一年期的,后将本息和自动转存下一个一年期;你认为哪种教育储蓄方式开始存入的本金比较少?

13.小刚的爸爸前年买了某公司的二年期债券4500元,今年到期,扣除利息税后,共得本利和约4700元,问这种债券的年利率是多少(精确到0.01%).

14.(北京海淀区)白云商场购进某种商品的进价是每件8元,销售价是每件10元(销售价与进价的差价2元就是卖出一件商品所获得的利润).现为了扩大销售量,•把每件的销售价降低x%出售,•但要求卖出一件商品所获得的利润是降价前所获得的利润的90%,则x应等于( ). A.1 B.1.8 C.2 D.10

15.用若干元人民币购买了一种年利率为10% 的一年期债券,到期后他取出本金的一半用作购物,剩下的一半和所得的利息又全部买了这种一年期债券(利率不变),到期后得本息和1320元。问张叔叔当初购买这咱债券花了多少元?

知能点4:工程问题 工作量=工作效率×工作时间 工作效率=工作量÷工作时间 工作时间=工作量÷工作效率 完成某项任务的各工作量的和=总工作量=1 16. 一件工作,甲独作10天完成,乙独作8天完成,两人合作几天完成?

17. 一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?

一年 2.25 三年 2.70 六年 2.88 5 18. 一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?

19.一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?

20.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几个工人加工甲种零件. 21.一项工程甲单独做需要10天,乙需要12天,丙单独做需要15天,甲、丙先做3天后,甲因事离去,乙参与工作,问还需几天完成?

知能点5:若干应用问题等量关系的规律 (1)和、差、倍、分问题 此类题既可有示运算关系,又可表示相等关系,要结合题意特别注意题目中的关键词语的含义,如相等、和差、几倍、几分之几、多、少、快、慢等,它们能指导我们正确地列出代数式或方程式。 增长量=原有量×增长率 现在量=原有量+增长量 (2)等积变形问题 常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变. ①圆柱体的体积公式 V=底面积×高=S·h=r2h ②长方体的体积 V=长×宽×高=abc 22.某粮库装粮食,第一个仓库是第二个仓库存粮的3倍,如果从第一个仓库中取出20吨放入第二个

仓库中,第二个仓库中的粮食是第一个中的75。问每个仓库各有多少粮食? 6

23.一个装满水的内部长、宽、高分别为300毫米,300毫米和80•毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,≈3.14).

24.长方体甲的长、宽、高分别为260mm,150mm,325mm,长方体乙的底面积为130×130mm2,又知甲的体积是乙的体积的2.5倍,求乙的高?

知能点6:行程问题 基本量之间的关系: 路程=速度×时间 时间=路程÷速度 速度=路程÷时间 (1)相遇问题 (2)追及问题 快行距+慢行距=原距 快行距-慢行距=原距 (3)航行问题 顺水(风)速度=静水(风)速度+水流(风)速度 逆水(风)速度=静水(风)速度-水流(风)速度 抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系. 25. 甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。 (1)慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇? (2)两车同时开出,相背而行多少小时后两车相距600公里? (3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里? (4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车? (5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车? 此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。故可结合图形分析。

26. 甲乙两人在同一道路上从相距5千米的A、B两地同向而行,甲的速度为5千米/小时,乙的速度为3千米/小时,甲带着一只狗,当甲追乙时,狗先追上乙,再返回遇上甲,再返回追上乙,依次反复,直至甲追上乙为止,已知狗的速度为15千米/小时,求此过程中,狗跑的总路程是多少?

相关文档
最新文档