时域有限差分法的基本原理及仿真
时域有限差分法

引言
时域有限差分法的软件
• • FDTDA,三维时域有限差分法的软件,源程序用FORTRAN语言 编写(1993年) XFDTD,具有多种功能,包含有瞬态近—远场外推,亚网格技 术,介质可以是有耗介质、磁化铁氧体,可用以分析生物体对电 磁波的吸收特性(SAR),螺旋及微带天线,天线阻抗的频率特 性,移动电话场强分布,细导线及复杂物体电磁散射和RCS (1996年) EMA3D,分析核电磁脉冲(NEMP)及雷电耦合,高功率微波, 宽带RCS,天线,屏蔽特性,印刷电路板的电磁兼容。软件具有 多种边界条件,亚网格剖分,适用于有耗介质、平面波源及电压 电流源(1997年)
其中E为电场强度,单位为伏特/米 D为电通量密度,单位为库仑/米2 H为磁场强度,单位为安培/米 B为磁通量密度,单位为韦伯/米2 J为电流密度,单位为安培/米2 Jm为磁流密度,单位为伏特/米2
麦克斯韦方程
各向同性线性介质中的本构关系为
B = μH
D = εE
其中 ε 为介质介电系数,单位为法拉/米 μ 为磁导系数,单位为亨利/米 σ 为电导率,单位为西门子/米 σ m 为导磁率,单位为欧姆/米 σ 和 σ m 分别为介质的电损耗和磁损耗 在真空中, σ = 0 , σ = 0 , ε = ε = 8.85 ×10−12 法拉/米
引言
时域有限差分法的产生与发展
• 1989年,Britt首次给出时域远场的结果,但未给出外 推的具体方法 • 1989年,Larson、Perlik和Taflove等人提出研究适用于 时域有限差分法的专用计算机,以便用于计算电磁波 与电大尺寸物体的相互作用 • 1990年,Maloney等人用柱坐标系下的时域有限差分法 分析了柱状和锥状天线位于理想导体平面上的辐射, 得到宽带天线的输入阻抗及瞬态辐射场的直观可视化 显示
时域有限差分法(姚伟)介绍

伊犁师范学院硕士研究生————期末考核科目:电磁波有限时域差分方法姓名:***学号:*************学院:电子与信息工程学院专业:无线电物理时域有限差分法1 选题背景在多种可用的数值方法中,时域有限差分法(FDTD)是一种新近发展起来的可选方法。
1966年,K.S.Yee 首次提出电磁场数值计算的新方法—时域有限差分法(Finite Difference- Time Domain ,简称FDTD)。
经历了二十年的发展FDTD 法才逐渐走向成熟。
上世纪80年代后期以来FDTD 法进入了一个新的发展阶段,即由成熟转为被广泛接受和应用的阶段。
FDTD 法是解决复杂问题的有效方法之一,是一种直接基于时域电磁场微分方程的数值算法,它直接在时域将Maxwell 旋度方程用二阶精度的中心差分近似,从而将时域微分方程的求解转换为差分方程的迭代求解。
是电磁场和电磁波运动规律和运动过程的计算机模拟。
原则上可以求解任意形式的电磁场和电磁波的技术和工程问题,并且对计算机内存容量要求较低、计算速度较快、尤其适用于并行算法。
现在FDTD 法己被广泛应用于天线的分析与设计、目标电磁散射、电磁兼容、微波电路和光路时域分析、生物电磁剂量学、瞬态电磁场研究等多个领域[1]。
2 原理分析2.1 FDTD 的Yee 元胞E,H 场分量取样节点在空间和时间上采取交替排布,利用电生磁,磁生电的原理t t ∂∂=∂∂=⨯∇E D H ε t t ∂∂-=∂∂-=⨯∇HB E μ图1 Yee 模型如图1所示,Yee 单元有以下特点[2]:1)E 与H 分量在空间交叉放置,相互垂直;每一坐标平面上的E 分量四周由H 分量环绕,H 分量的四周由E 分量环绕;场分量均与坐标轴方向一致。
2)每一个Yee 元胞有8个节点,12条棱边,6个面。
棱边上电场分量近似相等,用棱边的中心节点表示,平面上的磁场分量近似相等,用面的中心节点表示。
3)每一场分量自身相距一个空间步长,E 和H 相距半个空间步长 4)每一场分量自身相距一个时间步长,E 和H 相距半个时间步长,电场取n 时刻的值,磁场取n+0.5时刻的值;即:电场n 时刻的值由n-1时刻的值得到,磁场n+0.5时刻的值由n-0.5时刻的值得到;电场n 时刻的旋度对应n+0.5时刻的磁场值,磁场n+0.5时刻的旋度对应(n+0.5)+0.5时刻的电场值,逐步外推。
时域有限差分方法、编程技巧与应用

时域有限差分方法、编程技巧与应用下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、介绍在科学计算领域,时域有限差分方法是一种用于解决偏微分方程(PDEs)数值解的有效方法。
《用于光伏器件的光学天线的FDTD仿真》范文

《用于光伏器件的光学天线的FDTD仿真》篇一一、引言随着光伏器件的快速发展,光学天线在提高光伏器件的光电转换效率方面发挥着越来越重要的作用。
为了更好地理解和优化光学天线的性能,本文采用时域有限差分法(Finite-Difference Time-Domain,FDTD)对用于光伏器件的光学天线进行仿真分析。
本文首先介绍了FDTD仿真的基本原理及其在光学天线仿真中的应用,然后详细描述了仿真的模型、方法和过程,最后对仿真结果进行了深入分析和讨论。
二、FDTD仿真的基本原理及其在光学天线仿真中的应用FDTD是一种基于电磁场理论、时域差分法的电磁仿真方法,通过离散时间空间中的电场和磁场来模拟电磁波的传播和散射过程。
在光学天线仿真中,FDTD可以模拟光学天线在不同波长、不同角度的光照下的电磁响应,从而分析光学天线的性能。
三、仿真模型、方法和过程1. 模型建立本文以一种典型的光伏器件光学天线为研究对象,利用电磁仿真软件建立三维仿真模型。
模型包括光学天线、光伏器件以及周围环境等部分。
在模型中,对各部分的材料属性、尺寸参数等进行了详细设置。
2. 仿真方法采用FDTD方法对模型进行仿真分析。
在仿真过程中,设定不同波长、不同角度的光源,模拟实际环境中的光照条件。
同时,通过监测模型中的电场、磁场等物理量,分析光学天线的性能。
3. 仿真过程(1)建立仿真模型并设置材料属性、尺寸参数等;(2)设定光源及边界条件;(3)运行FDTD仿真程序,监测电场、磁场等物理量;(4)分析仿真结果,优化光学天线性能。
四、仿真结果分析1. 电场分布分析通过分析仿真结果中的电场分布图,可以观察到光学天线在不同波长、不同角度的光照下的电场分布情况。
电场分布的均匀性和强度直接影响着光伏器件的光电转换效率。
因此,通过优化光学天线的结构参数和材料属性,可以提高电场的均匀性和强度,从而提高光伏器件的效率。
2. 光学天线性能指标分析通过对仿真结果中的光学天线性能指标进行分析,可以评估光学天线的性能。
时域有限差分法的Matlab仿真

w j = c
n { 一 c 。 ・ E 杠 一 《  ̄ x / 2 - E + . )
( 7 )
式 中系数 C A, c 曰 , C Q 的定义为 :
Байду номын сангаас
C A = 1 一  ̄ a t 1 / : + 警) ; C B = ( 等) / ( 1 + 警) c  ̄ - ( 1 一 & a t ) , ( 1 + ) ; C Q = , ( 1 + )
比 + C B 。 川 、 H I "  ̄  ̄ / 2 川 一 I )( 5 ) E I i d + l = A C 。 , : ・ E 。 + C B i , j + l / 2 " ( i + 1 / m 2  ̄ / 一 l n * I / 2 )( 6 )
【 Ke y wo r d s l F D T D; Ma t l a b ; E l e c t r i c i f e l d d i s t i r b u t i o n
0 引言
时 域有限差 分 ( F i n i t e D i f e r e n c e T i me D o ma i n. F D T D)法是 K. S . Y e e在 1 9 6 6年 给出的利用有 限差分式把麦克斯 韦( Ma x w e l 1 ) 旋 度方 程 替换为一组差分方程_ 】 1 。 并提供所解问题中电磁特性物理意义 的算法 . 可直接在时域 中求解
【 A b s t r a c t 】 T h e b a s i c p i r n c i p l e o f i f n i t e d i f f e r e n c e t i me d o ma i n i s i n t r o d u c e d i n t h i s p a p e r . Wi t h t w o — d i m e n s i o n a l i f n i t e d i f f e r e n c e t i m e d o ma i n
matlab模拟的电磁学时域有限差分法 pdf

matlab模拟的电磁学时域有限差分法 pdf电磁学时域有限差分法(FDTD)是一种基于数值模拟的电磁场计算方法,它使用有限差分来近似微分方程。
该方法广泛用于电磁学、电波传播、微波技术、光学等领域,以求解电磁场分布和场的辐射、散射等问题。
而在这个领域中,MATLAB是非常流行的工具之一。
本文将围绕“MATLAB模拟的电磁学时域有限差分法”这一主题,从以下几个方面进行阐述:1.时域有限差分法的基础概念在FDTD方法中,将时域中的Maxwell方程组转化为差分形式,使得可以在计算机上进行数值解法。
通过在空间和时间上的离散,可以得到电磁场在时域内的各种分布,进而求得特定情况下的电磁场变化。
2.MATLAB中的FDTD仿真在MATLAB中,我们可以使用PDE工具箱中的电磁学模块来实现FDTD仿真。
通过选择适当的几何形状和边界条件,可以利用该工具箱演示电磁场的传输、反射、折射、透射等现象。
同时,MATLAB中还提供了不同的场分量计算和可视化工具,以便用户可以更好地理解电磁场分布。
3.MATLAB代码实现以下是一些MATLAB代码示例,展示了FDTD模拟的基础实现方法。
代码中的示例模拟了平面波在一个矩形和圆形障碍物上的传播情况。
% 1. Square obstaclegridSize = 200; % Grid sizemaxTime = 600; % Maximum time (in steps)imp0 = 377.0; % Impedance of free spacecourantNumber = 0.5; % Courant numbercdtds = ones(gridSize,gridSize); % Courant number in space% (not variable in this example)Ez = zeros(gridSize, gridSize); % Define EzHy = zeros(gridSize, gridSize); % Define Hy% Simulation loopfor n = 1:maxTime% Update magnetic fieldHy(:,1:end-1) = Hy(:,1:end-1) + ...(Ez(:,2:end) - Ez(:,1:end-1)) .*cdtds(:,1:end-1) / imp0;% Update electric fieldEz(2:end-1,2:end-1) = Ez(2:end-1,2:end-1) + ...(Hy(2:end-1,2:end-1) - Hy(1:end-2,2:end-1)) .* cdtds(2:end-1,2:end-1) .* imp0;end% 2. Circular obstacleradius = 50;xAxis = [-100:99];[X,Y] = meshgrid(xAxis);obstacle = sqrt((X-50).^2 + (Y).^2) < radius;gridSize = length(xAxis); % Grid sizemaxTime = 500; % Maximum time (in steps)imp0 = 377.0; % Impedance of free space courantNumber = 0.5; % Courant numbercdtds = ones(gridSize,gridSize); % Courant number in space% (not variable in this example)Ez = zeros(gridSize, gridSize); % Define EzHy = zeros(gridSize, gridSize); % Define Hy% Simulation loopfor n = 1:maxTime% Update magnetic fieldHy(:,1:end-1) = Hy(:,1:end-1) + ...(Ez(:,2:end) - Ez(:,1:end-1)) .*cdtds(:,1:end-1) / imp0;% Update electric field, with obstacleEz(2:end-1,2:end-1) = Ez(2:end-1,2:end-1) + ...(Hy(2:end-1,2:end-1) - Hy(1:end-2,2:end-1)) .* cdtds(2:end-1,2:end-1) .* imp0;Ez(obstacle) = 0;end以上代码仅供参考,不同条件下的模拟需要适当修改,以便获得特定的模拟结果。
计算电磁学-第5章-时域有限差分法1

FDTD 方法提出之后,随着计算技术,特别是电子 计算机技术的发展, FDTD 方法得到了长足的发展 ,在电磁学,电子学,光学等领域都得到了广泛 的应用
4
为求解由偏微分方程定解问题所构造的数学模型
,有限差分法是将定解区域(场区)离散化为网 格离散节点的集合。
并以各离散点上函数的差商来近似该点的偏导数 ,使待求的偏微分方程定解问题转化为一组相应 的差分方程。根据差分方程组解出各离散点处的 待求函数值—离散解。
6
时域和频域的麦克斯韦方程
时域
H E t E H J , J E t E B 0
频域
E j H H J j E E B 0
x
+1
/2 ,k )
( x x, y, z ) (i 1, j, k )
y
Hx(i, j + 1 / 2,k + 1 / 2)
Hy (i +
( x, y , z ) (i, j, k )
x
Hz(i + 1 / 2, j + 1 / 2,k)
Hx(i,j+1/2,k+1/2) Hy(i+1/2,j,k+1/2) Hz(i+1/2,j+1/2,k)
12
离散取样
空间离散:假设在各方向上均匀离散,网 格步长 Δx, Δy, Δz ,用字符 i,j,k分别表示 x,y,z方向上的网格标示。这样连续的空间 (x,y,z)离散为用(i,j,k) 表示的离散空间点— —空间取样点。 ( x x, y y, z z )
电磁波时域有限差分方法

电磁波时域有限差分方法
电磁波时域有限差分法(Finite-Difference Time-Domain Method, FDTD)是一种求解电磁学问题的常用数值方法。
它由Yee在1966年首次提出,可用于求解复杂三维电磁场交互作用的问题,如,电磁波、磁致传导、微波加热、能量传输、电磁辐射等。
相比其它数值方法,FDTD方法求解算例更为精确,具有以下特点:
1. TDTD方法是在时域上,而非在频域中,因此可以方便地处理暂态和复杂变化的电磁场。
2. FDTD方法可以通过改变差分格式和计算网格或计算量来获得更加精确的结果。
3. FDTD方法可以数值模拟出任何电磁场的行为,并且可以得到高质量的结果,而且不受物理规律的限制。
4. 可以自动识别模型中的隐藏材料特性,并增强模型的实用性。
5. FDTD方法可以结合有限体积法(FVM)和有限元法(FEM),提高模型的精度,并减少工作量。
6. 较少的内存要求,使FDTD方法更适用于工程应用。
FDTD方法在处理复杂电磁场时,有时会导致计算窗口大小,以及时间分辨率的降低,因此,要想获得较为准确的结果,就要采取足够的计算网格,以及足够高的时间分辨率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时域有限差分法的基本原理及仿真
时域有限差分法(FDTD算法)是一种用于求解时域电磁场分布的数值方法,广泛应用于电磁场仿真与分析。
FDTD算法的基本原理是通过将时域Maxwell方程进行离散化,将空间和时间划分为网格单元,然后在这些离散的网格点上进行差分计算,从而得到电磁场在全空间的时间演化过程。
FDTD算法的原理可以总结为以下几个步骤:
1. 空间离散化:将求解区域分割为网格点,并对每个网格点进行编号。
一般使用的是Cartesian坐标系,其中在每个网格点上会有电场和磁场的分量。
2. 时间离散化:将时间轴分割为等间隔的时间步长,并通过时间步长来描述电磁场在时间上的变化。
时间步长需要满足Courant-Friedrichs-Lewy(CFL)条件,以保证算法的稳定性。
3. 更新电场:根据Faraday定律,通过差分法更新电场在每个网格点上的数值。
根据电场的分量及其对应的电场方程,可以得到电场在每个网格点上新的数值。
4. 更新磁场:根据Ampere定律,通过差分法更新磁场在每个网格点上的数值。
根据磁场的分量及其对应的磁场方程,可以得到磁场在每个网格点上新的数值。
5.添加源与边界条件:在仿真区域内添加合适的源,以模拟电磁波的激励,同时设置合适的边界条件来保证电磁波在边界处的反射或吸收。
6.迭代求解:通过反复迭代执行步骤3和步骤4,以实现电磁场在全
空间的时间演化过程。
每次迭代,电磁场都会根据已知的电磁场状态进行
更新,直到达到设定终止条件。
FDTD算法的仿真过程可以描述如下:
1.初始化电场和磁场:根据初始条件,设置仿真区域内电场和磁场的
初值。
2.迭代求解电场和磁场:在每个时间步长内,按照步骤3和步骤4的
方法更新电场和磁场的数值。
3.添加源与边界条件:在每个时间步长内,根据场源和边界条件的设置,更新仿真区域内的电磁场状态。
4.重复执行步骤2和步骤3,直到达到设定的仿真时间或满足终止条件。
FDTD算法具有广泛的应用领域,在电磁场仿真、天线设计、光学器
件设计以及雷达散射等领域都有重要的应用。
它的优点是易于理解和实现,并且可以处理各种复杂的电磁场问题。
它的缺点是计算精度受到网格尺寸
和时间步长的限制,而且计算量较大,对计算资源要求较高。
但通过合理
的选择网格尺寸和时间步长,可以在保证精度的前提下减小计算量。
总而言之,时域有限差分法是一种非常重要的数值方法,可以用于求
解时域的电磁场分布,并在多个领域中进行电磁场的仿真和分析。
它的基
本原理是离散化Maxwell方程,通过差分法在网格点上进行计算,得到电
磁场在全空间的时间演化过程。
通过反复迭代计算,可以得到电磁场的时
间演化过程,并模拟出相应的场分布和行为。