时域有限差分法
时域有限差分法

时域有限差分法时域有限差分法(TimeDomainFiniteDifferenceMethod,简称TD-FDM)是数值分析领域中非常重要的一种数值计算方法,它是利用有限差分法对时域偏微分方程(PDE)进行求解的一种方法,其应用范围十分广泛,是在工程和科学领域中应用最多的计算方法之一。
时域有限差分法可以精确表示任意时域偏微分方程的解,但是由于求解过程中存在计算量大、精度低、收敛慢等问题,其计算效率和精度也有限。
因此,人们必须采取有效的方法来提高此类方法的精度和计算效率,增强其在工程和科学领域的应用价值。
时域有限差分法的原理很简单,即将偏微分方程的解以一系列有规律的离散点表示,再利用有限差分对偏微分方程进行求解。
它主要包括三个部分:数值模型构建、数值计算和数值结果分析。
首先,根据时域偏微分方程的类型及物理本质,构建与之对应的数值模型,采用有限差分形式表达偏微分方程,并根据时域偏微分方程的解特性对有限差分方程进行增强。
然后,构建时域有限差分的计算框架,利用计算机编程语言(如C++、Fortran、Python等)实现数值计算,采用常用的多项式插值和求解算法(如牛顿迭代法、拟牛顿法等)实现精确计算。
最后,利用计算机绘图软件对所得到的数值结果进行分析,以评估结果的准确性,并做出相应的修改和优化。
时域有限差分法的应用非常广泛,它可以用于各种工程领域,如稳态和不稳态流动场的求解,声学学中的各类传播现象的模拟,热传导的分析等。
此外,时域有限差分法在一些科学领域也有很大的应用,如量子力学中电子能级结构、原子结构的计算,核物理中文中阳离子反应剂度模拟,生物学中细胞动力学模型仿真等等。
近年来,随着计算机技术的进一步发展,出现了许多新的发展方向:从传统的有限差分法到基于保守型的计算方法,从基于有穷元的数值模拟方法到超差分法,从动态网格特定的方法到基于机器学习的计算方法。
所有这些方法都可以用于处理更复杂的时域偏微分方程,提高精度和计算效率。
时域有限差分法介绍

时域有限差分法介绍
时域有限差分法(Finite Difference Time Domain, FDTD)是
一种数值求解电磁波在时域中传播的方法。
它通过将空间和时间连续
性方程离散化,将偏微分方程转化为差分方程,并使用差分法来近似
求解波动方程。
时域有限差分法可以用于研究不同频率和波长的电磁波在各向同性、各向异性以及具有非线性、色散等特性的介质中的传播和相互作用。
它广泛应用于光学和电磁学领域中,可用于模拟光纤、微波器件、天线、光子晶体、超材料等的性能。
该方法的基本思想是将空间划分为离散的单元,称为网格,其中
包含了电场、磁场、电流和电荷等物理量。
通过对空间坐标和时间进
行离散化,可以将连续的偏微分方程转化为差分方程。
具体地,通过
泰勒展开将时域和空域的导数转化为有限差分的形式。
在时域有限差分法中,电场和磁场被分别定义在正方形的网格节
点上。
通过应用麦克斯韦方程组的差分形式,可以得到给定时间步长
的下一个时间步的电场和磁场值。
这些值可以根据初始条件和边界条
件进行更新。
时域有限差分法具有较好的稳定性和精度,可以模拟各种复杂的
电磁现象。
然而,它在处理边界条件和非均匀介质等问题时存在一些
困难。
因此,研究者们提出了各种改进的时域有限差分法,以提高其
适用性和效率。
时域有限差分方法发展

时域有限差分方法发展时域有限差分方法(FDTD)是一种数值模拟方法,用于分析电磁波在电磁介质中的传播规律和行为。
FDTD 方法因其精度高、适用性强和易于实现等特点,已成为求解电磁问题的重要数值方法之一。
本文将介绍 FDTD 方法的历史、理论基础、发展和应用。
一、FDTD方法的历史FDTD 方法最早可以追溯到20世纪60年代,当时美国内战研究所的J. T. Sinko 和K. L. Wong 开始了电磁场传输问题的理论研究,他们提出了一种细分方法,也就是时域有限差分方法。
此后,人们对这种方法进行了不断的改进和优化,以增强其计算效果和范围。
1970年代后期,FDTD 方法开始被广泛应用于求解电磁波的传播和散射问题,尤其在电磁场数值模型的精细化计算和二维和三维问题的求解方面得到了广泛应用。
随着计算机硬件和软件水平的提高以及数值方法的发展,FDTD 方法不断得到优化和完善,使得其在各种应用领域中都能得到成功地应用。
二、FDTD方法的理论基础FDTD 方法是一种基于麦克斯韦方程组的数值算法,它可以用于求解完整的时间域电磁场的变化。
其核心思想是通过对空间内的电磁场进行离散化处理,将微分方程转化为差分方程,进而用数值计算方法求解出场的值。
FDTD 方法的主要思想是将物理力学中的傅里叶变换方法应用到电磁场问题中。
具体来说,FDTD 方法是否采用离散时间和空间点以在有限时间内模拟模拟区域内的电磁波。
该方法在时间内基于麦克斯韦方程组的简化形式,以离散的形式计算和分析电磁波的传播和反射。
这些离散点可以由网格、三角网格(二维情况下)或四面体、四面体网格(三维情况下)建模。
在离散化计算之后,差分方程可转化为等效的差分模型,以计算场值。
三、FDTD方法的发展在过去几十年中,FDTD 方法得到了快速的发展和广泛的应用。
目前,FDTD方法可用于众多的问题求解,如电磁波的传播问题、微波电路、微波天线设计、宽带天线、电磁兼容性、光学传输问题以及生物医学中的电磁传播问题等。
时域有限差分方法、编程技巧与应用

时域有限差分方法、编程技巧与应用下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、介绍在科学计算领域,时域有限差分方法是一种用于解决偏微分方程(PDEs)数值解的有效方法。
第十一章-时域有限差分方法

第十一章-时域有限差分方法第十一章时域有限差分方法自从1966年K. S. Yee 创建时域有限差分法 (Finite Difference Time Domain,简称FDTD)[1]以来,已经发展成为一种理论完整、应用广泛的数值方法,并且与矩量法和有限元法一起奠定了计算电磁学的基础。
本章将介绍时域有限差分的基本理论,数值模拟技术,若干相关的专题以及工程实例。
11-1 差分的基本概念时域有限差分法是对微分形式的Maxwell方程进行差分求解的技术。
在详述其之前,首先简单回顾差分的基本概念。
已知分段连续函数在位置处的增量可表示为fxx,,(11-1-1) ,,,,,fxfxxfx,,,,,,其差商为,,,,fxfxxfx,,,,,, (11-1-2) ,,,xx,x当,0时,fx的导数定义为差商的极限,即,,,,,,fxfxxfx,,,,,,'limlim (11-1-3) fx,,,,,,,,xx00,,xx,x当足够小时,的导数可以近似为 fx,,dff,, (11-1-4) dxx,根据导数取值位置的不同,差分格式分为前向差分、后向差分和中心差分。
前向差分定义为fxxfx,,,,,,,,f (11-1-5) ,,,xxx后向差分定义为fxfxx,,,,,,,,f (11-1-6) ,,,xxx中心差分定义为fxxfxx,,,,,22,,,,,f (11-1-7) ,,,xxxfxx,,将在点x处展开为Taylor级数,得,,23dddfxfxfx,,,,,,1123 (11-1-8) fxxfxxxx,,,,,,,,,,,,,23d2!d3!dxxx37123dddfxfxfx,,,,,,1123 (11-1-9) fxxfxxxx,,,,,,,,,,,,,23d2!d3!dxxx将方程 (11-1-8) 和 (11-1-9) 代入 (11-1-5) ~ (11-1-7)后可以发现,前向和后向差分具有一阶精度,中心差分具有二阶精度。
时域有限差分法关键技术及其应用研究

时域有限差分法关键技术及其应用研究时域有限差分法关键技术及其应用研究1. 引言时域有限差分法(Finite Difference Time Domain, FDTD)是一种常见的数值电磁计算方法,被广泛应用于电磁场的数值模拟和分析。
本文将介绍FDTD方法的基本原理及其一些关键技术,重点探讨其在电磁场模拟、天线研究和光学器件设计等领域的应用。
2. FDTD方法基本原理FDTD方法采用时空网格来离散求解麦克斯韦方程组,通过迭代的方式计算电磁场的时变分布。
其基本原理是利用麦克斯韦方程组的时域形式,将电场和磁场的空间导数用有限差分的形式进行近似,通过时间步进来模拟电磁场的时域行为。
FDTD方法的关键是对时空网格的离散化处理。
在时域,时间和空间被离散为等间距的格点,电磁场在格点之间通过有限差分方程进行计算,从而得到电场和磁场在每个格点的数值。
通过时间步进的迭代计算,可以模拟电磁场随时间的演化过程。
3. FDTD方法的关键技术3.1 源的建立在FDTD方法中,需要设置适当的源来激发电磁场的变化。
常见的源包括点源、平面波源和边界条件处理等。
点源是在空间某一点施加突变的电场或磁场,用于模拟电磁波的辐射和传播;平面波源是在一个平面波入射,模拟平面波在介质中的传播行为;边界条件处理则是为了模拟无限大空间中的电磁波的传播。
3.2 时间步进时间步进是FDTD方法中的一个关键技术,决定了电场和磁场的更新方式。
常用的时间步进算法有显式和隐式两种。
显式时间步进是根据已知的电场和磁场的数值,通过有限差分方程计算新的电场和磁场的值;隐式时间步进则是使用迭代或矩阵求解的方法,利用已知的旧场和新场的关系求解新场。
3.3 网格约束条件FDTD方法中需要设置一些约束条件,以满足电磁场在网格边界条件下的数值计算。
常见的约束条件有吸收边界条件和周期性边界条件。
吸收边界条件是用于吸收入射电磁波的反射波,常用的吸收边界条件有Mur吸收边界条件和PML吸收边界条件;周期性边界条件是为了模拟周期性结构或周期性辐射场景,将仿真空间分割成无限个重复的周期结构。
时域有限差分法

时域有限差分法时域有限差分(FiniteDifferenceinTimeDomain,称FDTD)法是一种广泛应用于电磁场仿真的数值计算方法,它以离散时间步长来描述电磁场的变化,可以准确模拟空间内电磁场随时间变化的波动特性。
在时域有限差分仿真中,以Maxwell方程描述电磁场的运动,将时域的空间变化转换为表示时间的一维网格,用有限差分技术对Maxwell 方程组及其边界条件进行求解,可以得到空间中电磁场的离散值的解,从而达到仿真电磁场变化的目的。
FDTD仿真技术的最早应用出现在1960年代。
由于它的有效性和快速灵活性,FDTD仿真技术得到了快速发展,在电磁场仿真中得到了普遍应用。
FDTD仿真技术具有以下优点:1.基本实现简单,编程简单,计算效率高;2.可以准确仿真各种复杂电磁环境中电磁波传播的特性,如介质内各种参数随时间变化;3.不仅可以仿真欧姆模型,还可以用于局部质点模型的仿真;4.容易添加吸收边界,有效地抑制反射和折射现象;5.可以定制计算区域,灵活处理各种复杂的边界条件;6.计算中可以容易地加入激励和探测源;7.可以同时计算多个激励源和探测源,完成多源多探测器的仿真;8.可以方便地仿真非线性电磁材料的特性;9.单片机控制的实时仿真可以实时进行激励和探测调制;10.可以方便地模拟分布式电磁系统。
时域有限差分仿真技术的基本原理是采用有限差分法,沿时间轴以离散的步长,用一维数组离散地表示各点的电场态,并以此实现电磁场系统的时间域模拟。
FDTD法在时间域上使用一维离散网格,将Maxwell方程组及其边界条件分解,分别应用一阶导数近似公式(如中心差分公式)求解,按照计算元(grid point)在时空域中的局部特性,分别设定电磁场源、介质参数和边界条件,利用时域有限差分公式迭代求解Maxwell方程,可以得到边界条件和激励源允许的范围内的空间中的电磁场的离散值的解,从而达到仿真电磁场变化的目的。
借助时域有限差分法可以实现对天线、微波传输线、无线局域网、雷达、全波器件等电磁系统的仿真,其结果可以用于设计、性能预测、状态诊断、运行维护、电磁干扰抑制等诸多应用领域。
matlab模拟的电磁学时域有限差分法 pdf

matlab模拟的电磁学时域有限差分法 pdf电磁学时域有限差分法(FDTD)是一种基于数值模拟的电磁场计算方法,它使用有限差分来近似微分方程。
该方法广泛用于电磁学、电波传播、微波技术、光学等领域,以求解电磁场分布和场的辐射、散射等问题。
而在这个领域中,MATLAB是非常流行的工具之一。
本文将围绕“MATLAB模拟的电磁学时域有限差分法”这一主题,从以下几个方面进行阐述:1.时域有限差分法的基础概念在FDTD方法中,将时域中的Maxwell方程组转化为差分形式,使得可以在计算机上进行数值解法。
通过在空间和时间上的离散,可以得到电磁场在时域内的各种分布,进而求得特定情况下的电磁场变化。
2.MATLAB中的FDTD仿真在MATLAB中,我们可以使用PDE工具箱中的电磁学模块来实现FDTD仿真。
通过选择适当的几何形状和边界条件,可以利用该工具箱演示电磁场的传输、反射、折射、透射等现象。
同时,MATLAB中还提供了不同的场分量计算和可视化工具,以便用户可以更好地理解电磁场分布。
3.MATLAB代码实现以下是一些MATLAB代码示例,展示了FDTD模拟的基础实现方法。
代码中的示例模拟了平面波在一个矩形和圆形障碍物上的传播情况。
% 1. Square obstaclegridSize = 200; % Grid sizemaxTime = 600; % Maximum time (in steps)imp0 = 377.0; % Impedance of free spacecourantNumber = 0.5; % Courant numbercdtds = ones(gridSize,gridSize); % Courant number in space% (not variable in this example)Ez = zeros(gridSize, gridSize); % Define EzHy = zeros(gridSize, gridSize); % Define Hy% Simulation loopfor n = 1:maxTime% Update magnetic fieldHy(:,1:end-1) = Hy(:,1:end-1) + ...(Ez(:,2:end) - Ez(:,1:end-1)) .*cdtds(:,1:end-1) / imp0;% Update electric fieldEz(2:end-1,2:end-1) = Ez(2:end-1,2:end-1) + ...(Hy(2:end-1,2:end-1) - Hy(1:end-2,2:end-1)) .* cdtds(2:end-1,2:end-1) .* imp0;end% 2. Circular obstacleradius = 50;xAxis = [-100:99];[X,Y] = meshgrid(xAxis);obstacle = sqrt((X-50).^2 + (Y).^2) < radius;gridSize = length(xAxis); % Grid sizemaxTime = 500; % Maximum time (in steps)imp0 = 377.0; % Impedance of free space courantNumber = 0.5; % Courant numbercdtds = ones(gridSize,gridSize); % Courant number in space% (not variable in this example)Ez = zeros(gridSize, gridSize); % Define EzHy = zeros(gridSize, gridSize); % Define Hy% Simulation loopfor n = 1:maxTime% Update magnetic fieldHy(:,1:end-1) = Hy(:,1:end-1) + ...(Ez(:,2:end) - Ez(:,1:end-1)) .*cdtds(:,1:end-1) / imp0;% Update electric field, with obstacleEz(2:end-1,2:end-1) = Ez(2:end-1,2:end-1) + ...(Hy(2:end-1,2:end-1) - Hy(1:end-2,2:end-1)) .* cdtds(2:end-1,2:end-1) .* imp0;Ez(obstacle) = 0;end以上代码仅供参考,不同条件下的模拟需要适当修改,以便获得特定的模拟结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
引言
时域有限差分法的软件
• • FDTDA,三维时域有限差分法的软件,源程序用FORTRAN语言 编写(1993年) XFDTD,具有多种功能,包含有瞬态近—远场外推,亚网格技 术,介质可以是有耗介质、磁化铁氧体,可用以分析生物体对电 磁波的吸收特性(SAR),螺旋及微带天线,天线阻抗的频率特 性,移动电话场强分布,细导线及复杂物体电磁散射和RCS (1996年) EMA3D,分析核电磁脉冲(NEMP)及雷电耦合,高功率微波, 宽带RCS,天线,屏蔽特性,印刷电路板的电磁兼容。软件具有 多种边界条件,亚网格剖分,适用于有耗介质、平面波源及电压 电流源(1997年)
其中E为电场强度,单位为伏特/米 D为电通量密度,单位为库仑/米2 H为磁场强度,单位为安培/米 B为磁通量密度,单位为韦伯/米2 J为电流密度,单位为安培/米2 Jm为磁流密度,单位为伏特/米2
麦克斯韦方程
各向同性线性介质中的本构关系为
B = μH
D = εE
其中 ε 为介质介电系数,单位为法拉/米 μ 为磁导系数,单位为亨利/米 σ 为电导率,单位为西门子/米 σ m 为导磁率,单位为欧姆/米 σ 和 σ m 分别为介质的电损耗和磁损耗 在真空中, σ = 0 , σ = 0 , ε = ε = 8.85 ×10−12 法拉/米
引言
时域有限差分法的产生与发展
• 1989年,Britt首次给出时域远场的结果,但未给出外 推的具体方法 • 1989年,Larson、Perlik和Taflove等人提出研究适用于 时域有限差分法的专用计算机,以便用于计算电磁波 与电大尺寸物体的相互作用 • 1990年,Maloney等人用柱坐标系下的时域有限差分法 分析了柱状和锥状天线位于理想导体平面上的辐射, 得到宽带天线的输入阻抗及瞬态辐射场的直观可视化 显示
引言
时域有限差分法的产生与发展
• 1987年,Kasher和Yee提出亚网格技术 • Umsshankar和Taflove 分别在1987年和1988年用时域有 限差分法分析了自由空间及腔体中导线上的感应电 流,讨论了时域有限差分法中细导线的处理方法 • Zhang和Mei(1988年)、 Gwarek(1988年)、 Liang 等人(1989年)、Sheen和Kong等人(1990年)用时域 有限差分法分析计算了波导、同轴线、微带天线及微 带不连续性问题,得到相应的阻抗、传播常数及S参数
引言
时域有限差分法的产生与发展
• Sacks等人(1995年)和Gedney(1996年)提 出各向异性介质的PML,其支配方程是各向异 性介质麦克斯韦方程 • 1999年,Prather和Shi分析轴对称衍射透镜,给 出波长为一微米的平面波和高斯波入射时,直 径为102.47微米的衍射透镜的光波传播特性 • 。。。。。。
•
引言
时域有限差分法的软件
• AutoMESH,可以自动产生三维非均匀正交网格以描 写复杂结构物体,并给出二维分层显示,应用Visual BASIC语言,结合时域有限差分法可以计算微带滤波 器、微带天线传输及辐射特性等(1999年) • A Conformal FDTD Software Package,用来模拟射频天 线,微带电路元件,应用非均匀及共形网格,PML吸 收边界,近—远场变换,可处理曲面和有边缘物体, 使用Visual BASIC和C++语言(2000年)
对 f ( x, y , z , t ) 关于时间和空间的一阶偏导数取中心差分近似,即
∂f ( x, y, z , t ) ∂x ∂f ( x, y, z , t ) ∂z
f n1
x =iΔx y = j Δy z = k Δz t = nΔt
≈
i + , j ,k 2
− f n1
i − , j ,k 2
引言
时域有限差分法的产生与发展
• 1975年,Taflove等人用时域有限差分法计算非均匀介 质在正弦波入射时的时谐场(稳态)电磁散射,讨论 了时谐场情况的近—远场外推,以及数值稳定性条件 • Holland( 1977年)和Kunz(1978年)用时域有限差分 法计算F117飞机这种复杂目标的电磁脉冲辐射 • 1981年,Mur提出在计算区域截断边界处的一阶和二阶 吸收边界条件及其在时域有限差分法中的离散形式。 这是时域有限差分法中的一种十分有效的吸收边界条 件,获得广泛应用
∂H y ∂Ex ∂Ez − = −μ −σmH y ∂z ∂x ∂t ∂E y ∂Ex ∂H z − = −μ −σmHz ∂x ∂y ∂t
Yee元胞
时域有限差分法的差分离散 令 f ( x, y , z , t ) 代表E或H在直角坐标系中某一分量,在时间和空 间域中的离散取以下符号表示
n f ( x, y, z, t ) = f (iΔx, j Δy, k Δz, nΔt ) = fijk
引言
时域有限差分法的应用
• 周期结构分析,例如频率选择表面、光栅传输特性、 周期阵列天线、光子带隙结构,以及随机粗糙表面等 • 电子封装,电磁兼容分析,例如多线传输及高密度封 装时的数字信号传输,分析环境和结构对元器件和系 统电磁参数及性能的影响 • 核电磁脉冲的传播和散射,在地面的反射及对电缆传 输的干扰 • 微光学元器件中光的传播和衍射特性 • 双负介质中电磁波的传播特性
引言
时域有限差分法的产生与发展
• 1992年,Maloney和Smith提出将阻抗边界条件应用于 时域有限差分法 • 1992年,Sui等人提出了用二维时域有限差分法计算有 集中参数元件的数字和微波电路模型,包括电阻、电 容、电感、二极管、晶体管等元件 • Berenger(1994,1996年)提出将麦克斯韦方程扩展为 场分量分裂形式,并构成完全匹配层(PML),这是 一种全新的吸收边界
Δx fn
1 i , j ,k + 2
∂f ( x, y, z , t ) ∂y
fn
x = i Δx y = j Δy z = k Δz t = nΔt
≈
1 i , j + ,k 2
− fn
1 i , j − ,k 2
Δy
n+ 1 2 n− 1 2
− fn Δz
x =iΔx y = j Δy z = k Δz t = nΔt
引言
时域有限差分法的基本点
• Yee元胞 • 区的划分 • 吸收边界 • 近—远场变换
引言
时域有限差分法的基本点(一)
Yee元胞 • 对于描述电磁场的麦克斯韦方程,每个电场E 的分量周围有四个磁场H分量环绕,同样地, 每个磁场H的分量周围有四个电场E分量环绕 • 对电磁场E和H分量在时间和空间上采用半步长 交替网格的离散形式,应用这种离散方式将含 时间变量的麦克斯韦旋度方程转化为一组差分 方程,并在时间轴上逐步推进地求解空间电磁 场
引言
时域有限差分法的基本点(四)
近—远场变换
• 时域有限差分法的模拟只能限于有限空间,为了获得 计算域以外的散射或辐射场,必须借助等效原理应用 计算区域内的近场数据实现计算区域以外远场的外推 • 对于时谐场和瞬态场分别采用不同的外推方法
麦克斯韦方程
麦克斯韦旋度方程为
∂D ∇×H = +J ∂t ∂B ∇×E = − − Jm ∂t
引言
时域有限差分法的产生与发展 • 1966年,Yee首先提出了麦克斯韦方程的差分 离散方式,并用来处理电磁脉冲的传播和反射 问题 • 1969年,Taylor等人用时域有限差分法分析非 均匀介质的电磁散射,提出用吸收边界来吸收 外向行波,吸收边界采用的是简单插值方法 • 1971年,Merewether用时域有限差分法计算旋 转体上由入射脉冲所引起的感生电流,采用了 辐射边界条件
≈
1 i , j ,k − 2
∂f ( x, y, z, t ) ∂t
x =iΔx y = j Δy z = k Δz t = nΔt
≈
fijk − fijk Δt
Yee元胞
在时域有限差分法的差分离散中,电场和磁场的空间分布
这就是著名的Yee元胞
Yee元胞
• • • • 在Yee元胞中,每个磁场分量由四个电场分量环绕,每个电场分 量由四个磁场分量环绕 这种电磁场的空间分布符合法拉第感应定律和安培环路定律 这种电磁场的空间分布适合与麦克斯韦方程的差分计算,能够恰 当地描述电磁场的传播特性 电场和磁场在时间顺序上交替取值,时间间隔彼此相差半个时间 步长,使麦克斯韦旋度方程在差分离散后构成显式差分格式,从 而可以在给定相应电磁问题的初始条件和边界条件后,利用时域 有限差分法可以逐步推进地求出以后各个时刻空间电磁场的分布
引言
时域有限差分法的基本点(二)
区的划分(一)
• 散射问题
引言
时域有限差分法的基本点(二)
区的划分(二)
• 对于辐射问题,激励源直接加到辐射天线上,整个计算区域为辐 射场
引言
时域有限差分法的基本点(三)
吸收边界条件
• 为了在有限计算区域模拟无界空间中的电磁问题,必 须在计算区域的截断边界上设置吸收边界条件 • 吸收边界条件从简单的插值边界,已经发展了多种吸 收边界条件 • 目前比较广泛采用的有Mur吸收边界,以及近几年发展 起来的完全匹配层(PML)吸收边界
m
Jm = σ mH
J =σE
0
μ = μ 0 = 4π × 10 −7 亨利/米
麦克斯韦方程
在直角坐标系中
∂Ex ∂H z ∂H y − =ε + σ Ex ∂y ∂z ∂t
∂H x ∂Ez ∂E y − = −μ −σ mHx ∂y ∂z ∂t
∂E y ∂H x ∂H z − =ε + σ Ey ∂z ∂x ∂t ∂H y ∂H x ∂Ez − =ε + σ Ez ∂x ∂y ∂t