时域有限差分法
时域有限差分法

时域有限差分法时域有限差分法(TimeDomainFiniteDifferenceMethod,简称TD-FDM)是数值分析领域中非常重要的一种数值计算方法,它是利用有限差分法对时域偏微分方程(PDE)进行求解的一种方法,其应用范围十分广泛,是在工程和科学领域中应用最多的计算方法之一。
时域有限差分法可以精确表示任意时域偏微分方程的解,但是由于求解过程中存在计算量大、精度低、收敛慢等问题,其计算效率和精度也有限。
因此,人们必须采取有效的方法来提高此类方法的精度和计算效率,增强其在工程和科学领域的应用价值。
时域有限差分法的原理很简单,即将偏微分方程的解以一系列有规律的离散点表示,再利用有限差分对偏微分方程进行求解。
它主要包括三个部分:数值模型构建、数值计算和数值结果分析。
首先,根据时域偏微分方程的类型及物理本质,构建与之对应的数值模型,采用有限差分形式表达偏微分方程,并根据时域偏微分方程的解特性对有限差分方程进行增强。
然后,构建时域有限差分的计算框架,利用计算机编程语言(如C++、Fortran、Python等)实现数值计算,采用常用的多项式插值和求解算法(如牛顿迭代法、拟牛顿法等)实现精确计算。
最后,利用计算机绘图软件对所得到的数值结果进行分析,以评估结果的准确性,并做出相应的修改和优化。
时域有限差分法的应用非常广泛,它可以用于各种工程领域,如稳态和不稳态流动场的求解,声学学中的各类传播现象的模拟,热传导的分析等。
此外,时域有限差分法在一些科学领域也有很大的应用,如量子力学中电子能级结构、原子结构的计算,核物理中文中阳离子反应剂度模拟,生物学中细胞动力学模型仿真等等。
近年来,随着计算机技术的进一步发展,出现了许多新的发展方向:从传统的有限差分法到基于保守型的计算方法,从基于有穷元的数值模拟方法到超差分法,从动态网格特定的方法到基于机器学习的计算方法。
所有这些方法都可以用于处理更复杂的时域偏微分方程,提高精度和计算效率。
时域有限差分法介绍

时域有限差分法介绍
时域有限差分法(Finite Difference Time Domain, FDTD)是
一种数值求解电磁波在时域中传播的方法。
它通过将空间和时间连续
性方程离散化,将偏微分方程转化为差分方程,并使用差分法来近似
求解波动方程。
时域有限差分法可以用于研究不同频率和波长的电磁波在各向同性、各向异性以及具有非线性、色散等特性的介质中的传播和相互作用。
它广泛应用于光学和电磁学领域中,可用于模拟光纤、微波器件、天线、光子晶体、超材料等的性能。
该方法的基本思想是将空间划分为离散的单元,称为网格,其中
包含了电场、磁场、电流和电荷等物理量。
通过对空间坐标和时间进
行离散化,可以将连续的偏微分方程转化为差分方程。
具体地,通过
泰勒展开将时域和空域的导数转化为有限差分的形式。
在时域有限差分法中,电场和磁场被分别定义在正方形的网格节
点上。
通过应用麦克斯韦方程组的差分形式,可以得到给定时间步长
的下一个时间步的电场和磁场值。
这些值可以根据初始条件和边界条
件进行更新。
时域有限差分法具有较好的稳定性和精度,可以模拟各种复杂的
电磁现象。
然而,它在处理边界条件和非均匀介质等问题时存在一些
困难。
因此,研究者们提出了各种改进的时域有限差分法,以提高其
适用性和效率。
时域有限差分方法发展

时域有限差分方法发展时域有限差分方法(FDTD)是一种数值模拟方法,用于分析电磁波在电磁介质中的传播规律和行为。
FDTD 方法因其精度高、适用性强和易于实现等特点,已成为求解电磁问题的重要数值方法之一。
本文将介绍 FDTD 方法的历史、理论基础、发展和应用。
一、FDTD方法的历史FDTD 方法最早可以追溯到20世纪60年代,当时美国内战研究所的J. T. Sinko 和K. L. Wong 开始了电磁场传输问题的理论研究,他们提出了一种细分方法,也就是时域有限差分方法。
此后,人们对这种方法进行了不断的改进和优化,以增强其计算效果和范围。
1970年代后期,FDTD 方法开始被广泛应用于求解电磁波的传播和散射问题,尤其在电磁场数值模型的精细化计算和二维和三维问题的求解方面得到了广泛应用。
随着计算机硬件和软件水平的提高以及数值方法的发展,FDTD 方法不断得到优化和完善,使得其在各种应用领域中都能得到成功地应用。
二、FDTD方法的理论基础FDTD 方法是一种基于麦克斯韦方程组的数值算法,它可以用于求解完整的时间域电磁场的变化。
其核心思想是通过对空间内的电磁场进行离散化处理,将微分方程转化为差分方程,进而用数值计算方法求解出场的值。
FDTD 方法的主要思想是将物理力学中的傅里叶变换方法应用到电磁场问题中。
具体来说,FDTD 方法是否采用离散时间和空间点以在有限时间内模拟模拟区域内的电磁波。
该方法在时间内基于麦克斯韦方程组的简化形式,以离散的形式计算和分析电磁波的传播和反射。
这些离散点可以由网格、三角网格(二维情况下)或四面体、四面体网格(三维情况下)建模。
在离散化计算之后,差分方程可转化为等效的差分模型,以计算场值。
三、FDTD方法的发展在过去几十年中,FDTD 方法得到了快速的发展和广泛的应用。
目前,FDTD方法可用于众多的问题求解,如电磁波的传播问题、微波电路、微波天线设计、宽带天线、电磁兼容性、光学传输问题以及生物医学中的电磁传播问题等。
时域有限差分方法、编程技巧与应用

时域有限差分方法、编程技巧与应用下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、介绍在科学计算领域,时域有限差分方法是一种用于解决偏微分方程(PDEs)数值解的有效方法。
第十一章-时域有限差分方法

第十一章-时域有限差分方法第十一章时域有限差分方法自从1966年K. S. Yee 创建时域有限差分法 (Finite Difference Time Domain,简称FDTD)[1]以来,已经发展成为一种理论完整、应用广泛的数值方法,并且与矩量法和有限元法一起奠定了计算电磁学的基础。
本章将介绍时域有限差分的基本理论,数值模拟技术,若干相关的专题以及工程实例。
11-1 差分的基本概念时域有限差分法是对微分形式的Maxwell方程进行差分求解的技术。
在详述其之前,首先简单回顾差分的基本概念。
已知分段连续函数在位置处的增量可表示为fxx,,(11-1-1) ,,,,,fxfxxfx,,,,,,其差商为,,,,fxfxxfx,,,,,, (11-1-2) ,,,xx,x当,0时,fx的导数定义为差商的极限,即,,,,,,fxfxxfx,,,,,,'limlim (11-1-3) fx,,,,,,,,xx00,,xx,x当足够小时,的导数可以近似为 fx,,dff,, (11-1-4) dxx,根据导数取值位置的不同,差分格式分为前向差分、后向差分和中心差分。
前向差分定义为fxxfx,,,,,,,,f (11-1-5) ,,,xxx后向差分定义为fxfxx,,,,,,,,f (11-1-6) ,,,xxx中心差分定义为fxxfxx,,,,,22,,,,,f (11-1-7) ,,,xxxfxx,,将在点x处展开为Taylor级数,得,,23dddfxfxfx,,,,,,1123 (11-1-8) fxxfxxxx,,,,,,,,,,,,,23d2!d3!dxxx37123dddfxfxfx,,,,,,1123 (11-1-9) fxxfxxxx,,,,,,,,,,,,,23d2!d3!dxxx将方程 (11-1-8) 和 (11-1-9) 代入 (11-1-5) ~ (11-1-7)后可以发现,前向和后向差分具有一阶精度,中心差分具有二阶精度。
时域有限差分法关键技术及其应用研究

时域有限差分法关键技术及其应用研究时域有限差分法关键技术及其应用研究1. 引言时域有限差分法(Finite Difference Time Domain, FDTD)是一种常见的数值电磁计算方法,被广泛应用于电磁场的数值模拟和分析。
本文将介绍FDTD方法的基本原理及其一些关键技术,重点探讨其在电磁场模拟、天线研究和光学器件设计等领域的应用。
2. FDTD方法基本原理FDTD方法采用时空网格来离散求解麦克斯韦方程组,通过迭代的方式计算电磁场的时变分布。
其基本原理是利用麦克斯韦方程组的时域形式,将电场和磁场的空间导数用有限差分的形式进行近似,通过时间步进来模拟电磁场的时域行为。
FDTD方法的关键是对时空网格的离散化处理。
在时域,时间和空间被离散为等间距的格点,电磁场在格点之间通过有限差分方程进行计算,从而得到电场和磁场在每个格点的数值。
通过时间步进的迭代计算,可以模拟电磁场随时间的演化过程。
3. FDTD方法的关键技术3.1 源的建立在FDTD方法中,需要设置适当的源来激发电磁场的变化。
常见的源包括点源、平面波源和边界条件处理等。
点源是在空间某一点施加突变的电场或磁场,用于模拟电磁波的辐射和传播;平面波源是在一个平面波入射,模拟平面波在介质中的传播行为;边界条件处理则是为了模拟无限大空间中的电磁波的传播。
3.2 时间步进时间步进是FDTD方法中的一个关键技术,决定了电场和磁场的更新方式。
常用的时间步进算法有显式和隐式两种。
显式时间步进是根据已知的电场和磁场的数值,通过有限差分方程计算新的电场和磁场的值;隐式时间步进则是使用迭代或矩阵求解的方法,利用已知的旧场和新场的关系求解新场。
3.3 网格约束条件FDTD方法中需要设置一些约束条件,以满足电磁场在网格边界条件下的数值计算。
常见的约束条件有吸收边界条件和周期性边界条件。
吸收边界条件是用于吸收入射电磁波的反射波,常用的吸收边界条件有Mur吸收边界条件和PML吸收边界条件;周期性边界条件是为了模拟周期性结构或周期性辐射场景,将仿真空间分割成无限个重复的周期结构。
时域有限差分法

时域有限差分法时域有限差分(FiniteDifferenceinTimeDomain,称FDTD)法是一种广泛应用于电磁场仿真的数值计算方法,它以离散时间步长来描述电磁场的变化,可以准确模拟空间内电磁场随时间变化的波动特性。
在时域有限差分仿真中,以Maxwell方程描述电磁场的运动,将时域的空间变化转换为表示时间的一维网格,用有限差分技术对Maxwell 方程组及其边界条件进行求解,可以得到空间中电磁场的离散值的解,从而达到仿真电磁场变化的目的。
FDTD仿真技术的最早应用出现在1960年代。
由于它的有效性和快速灵活性,FDTD仿真技术得到了快速发展,在电磁场仿真中得到了普遍应用。
FDTD仿真技术具有以下优点:1.基本实现简单,编程简单,计算效率高;2.可以准确仿真各种复杂电磁环境中电磁波传播的特性,如介质内各种参数随时间变化;3.不仅可以仿真欧姆模型,还可以用于局部质点模型的仿真;4.容易添加吸收边界,有效地抑制反射和折射现象;5.可以定制计算区域,灵活处理各种复杂的边界条件;6.计算中可以容易地加入激励和探测源;7.可以同时计算多个激励源和探测源,完成多源多探测器的仿真;8.可以方便地仿真非线性电磁材料的特性;9.单片机控制的实时仿真可以实时进行激励和探测调制;10.可以方便地模拟分布式电磁系统。
时域有限差分仿真技术的基本原理是采用有限差分法,沿时间轴以离散的步长,用一维数组离散地表示各点的电场态,并以此实现电磁场系统的时间域模拟。
FDTD法在时间域上使用一维离散网格,将Maxwell方程组及其边界条件分解,分别应用一阶导数近似公式(如中心差分公式)求解,按照计算元(grid point)在时空域中的局部特性,分别设定电磁场源、介质参数和边界条件,利用时域有限差分公式迭代求解Maxwell方程,可以得到边界条件和激励源允许的范围内的空间中的电磁场的离散值的解,从而达到仿真电磁场变化的目的。
借助时域有限差分法可以实现对天线、微波传输线、无线局域网、雷达、全波器件等电磁系统的仿真,其结果可以用于设计、性能预测、状态诊断、运行维护、电磁干扰抑制等诸多应用领域。
matlab模拟的电磁学时域有限差分法 pdf

matlab模拟的电磁学时域有限差分法 pdf电磁学时域有限差分法(FDTD)是一种基于数值模拟的电磁场计算方法,它使用有限差分来近似微分方程。
该方法广泛用于电磁学、电波传播、微波技术、光学等领域,以求解电磁场分布和场的辐射、散射等问题。
而在这个领域中,MATLAB是非常流行的工具之一。
本文将围绕“MATLAB模拟的电磁学时域有限差分法”这一主题,从以下几个方面进行阐述:1.时域有限差分法的基础概念在FDTD方法中,将时域中的Maxwell方程组转化为差分形式,使得可以在计算机上进行数值解法。
通过在空间和时间上的离散,可以得到电磁场在时域内的各种分布,进而求得特定情况下的电磁场变化。
2.MATLAB中的FDTD仿真在MATLAB中,我们可以使用PDE工具箱中的电磁学模块来实现FDTD仿真。
通过选择适当的几何形状和边界条件,可以利用该工具箱演示电磁场的传输、反射、折射、透射等现象。
同时,MATLAB中还提供了不同的场分量计算和可视化工具,以便用户可以更好地理解电磁场分布。
3.MATLAB代码实现以下是一些MATLAB代码示例,展示了FDTD模拟的基础实现方法。
代码中的示例模拟了平面波在一个矩形和圆形障碍物上的传播情况。
% 1. Square obstaclegridSize = 200; % Grid sizemaxTime = 600; % Maximum time (in steps)imp0 = 377.0; % Impedance of free spacecourantNumber = 0.5; % Courant numbercdtds = ones(gridSize,gridSize); % Courant number in space% (not variable in this example)Ez = zeros(gridSize, gridSize); % Define EzHy = zeros(gridSize, gridSize); % Define Hy% Simulation loopfor n = 1:maxTime% Update magnetic fieldHy(:,1:end-1) = Hy(:,1:end-1) + ...(Ez(:,2:end) - Ez(:,1:end-1)) .*cdtds(:,1:end-1) / imp0;% Update electric fieldEz(2:end-1,2:end-1) = Ez(2:end-1,2:end-1) + ...(Hy(2:end-1,2:end-1) - Hy(1:end-2,2:end-1)) .* cdtds(2:end-1,2:end-1) .* imp0;end% 2. Circular obstacleradius = 50;xAxis = [-100:99];[X,Y] = meshgrid(xAxis);obstacle = sqrt((X-50).^2 + (Y).^2) < radius;gridSize = length(xAxis); % Grid sizemaxTime = 500; % Maximum time (in steps)imp0 = 377.0; % Impedance of free space courantNumber = 0.5; % Courant numbercdtds = ones(gridSize,gridSize); % Courant number in space% (not variable in this example)Ez = zeros(gridSize, gridSize); % Define EzHy = zeros(gridSize, gridSize); % Define Hy% Simulation loopfor n = 1:maxTime% Update magnetic fieldHy(:,1:end-1) = Hy(:,1:end-1) + ...(Ez(:,2:end) - Ez(:,1:end-1)) .*cdtds(:,1:end-1) / imp0;% Update electric field, with obstacleEz(2:end-1,2:end-1) = Ez(2:end-1,2:end-1) + ...(Hy(2:end-1,2:end-1) - Hy(1:end-2,2:end-1)) .* cdtds(2:end-1,2:end-1) .* imp0;Ez(obstacle) = 0;end以上代码仅供参考,不同条件下的模拟需要适当修改,以便获得特定的模拟结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
j 2 c 2 jk 2
(1-8)
(1-9) 可见,相速与频率无关,称为非色散。非色散意味着对于具有任意 调制的包络或脉冲形状的波传播任意距离后波形保持不变。进一步 由(1-8)可以得到群速关系 d vg c (1-10) dk 这种情况下,群速也是与频率无关。
1.2 数值色散关系(2)
(200空间格),数值模拟传播了199.378格,相位误差为11.1960,也 减少了4倍。误差减少了4倍反映了差分算法是二阶精度的。
1.3 数值相速(2)
• 情况1:非常细网格 t 0, x 0
2 cos x 1 x 2 , 当 x 0 ,数值色散关系(1-12)变为 根据 ~ 2 2 2 t k x ct 1 1 1 1 2 2 x ~ ~ v 。 2 2 ~2 即, c k ,最后得 k k ,于是有 v p p c
定义数值相速为 (1-14) • 情况1 非常细网格 利用正弦函数的一阶Taylor展开,可得 ~ 2 2~ (1-15) c t k x c k ~ v g x0 x t t 0 所以,群速与相速一样,在细网格条件下趋近精确解。这证明了 当空间步长和时间步长趋于零时,数值解变得精确。 • 情况2 魔时间步 将魔时间步条件和波数代入(1-14),得 2 (1-16) c t sin c ct ~ vg c v g ct sint 再次验证了魔时间步下数值解等于精确解。
时域有限差分法
第1讲 一维标量波动方程
引言(1)
• 1966年,K.S. Yee(美籍香港人)首先提出了FiniteDifference Time-Domain Method,并用于柱形金属柱 电磁散射分析。由于当时计算机技术还比较落后,这 一方法并未引起重视。
• 1972年,A.Taflovey应用FDTD研究了UHF和微波对人类 眼睛的穿透,以了解“微波白内障”的成因。Taflove 成功地应用和发展了Yee的FDTD算法。 • 80年代后期,随着高速大容量计算机的普及,FDTD法 得到了迅速发展。如今已应用于涉及波动现象的任何 领域。至今,FDTD法的研究与应用仍方兴未艾。
1.5 数值稳定性(1)
• 时间本征值问题
2 t 2
n n u u numerical i i
(1-17)
差分近似,得
u in 1 2u in u in 1
t 2
u in 1 u in
u in
(1-18)
定义不变增长因子
qi
u in u in 1
(1-19)
2
(1-12)
1.3 数值相速(1)
~ ~ k 类似于(1-9),定义数值相速为 v p
由(1-12)可得 (1-13)
2 ~ 1 x 1 k cos 1 cost 1 x ct
可见数值相速与频率有关。因此,由FDTD得到的数值波是色散的。
1.1 差分近似(1)
一维标量波动方程 上式的解为 采用Taylor 展开
2u t
2
c2
2u x
2
(1-1) (1-2)
u F ( x ct ) G( x ct )
u x 2 2 u u ( xi x, t n ) u xi ,tn x xi ,t n x 2! x 2 x 3 3 u x 4 4 u ,t 3 xi ,t n 3! x 4! x 4 1 n
0 x ~ • 取 ct 则数值相速为v p 0.9873c 。相对误差为 ,x 2 10 -1.27%。如果物理波传播了 100 距离(100空间格)时,数值模拟波只
传播了98.73空间格,相位误差为45.720。
0 x ~ 0.9969c 。这时数值相速的相对 ,x • 取 ct 则v p 2 20 误差为0.31,减少了4倍。同样,当物理波传播了同样的 100 时
于是利用单向差分近似得到吸收边界条件,详细讨论 见后面章节。
结 论 1
本讲介绍了一维标量波动方程的FDTD求解过程: • 利用Taylor级数展开方法获取空间/时间导数的二阶 中心差分近似,从而得到具有二阶精度的方程数值解的 时间步进迭代公式。 • 一般情况下,数值解引入了寄生的数值色散。当空 间步长和时间步长非常小时,数值解逼近精确解。当时 间步长满足魔时间步条件时,数值解等于精确解。 • 空间步长和时间步长必须满足Courant稳定性条件才能 保证数值解的稳定性。
1.5 数值稳定性(2)
将(1-19)代入(1-18),有 qi2 [2 t 2 ]qi 1 0,于是
qi 2 t
2
2 t
2
2
4
2
a a2 1
算法稳定性要求 qi 1 。如果 a 2 1 0 ,则总有 qi a j 1 a 2 ,于是 qi a 2 1 a 2 1 ,满足稳定性 要求。这样可得 2 (1-20) 这就是稳定的数值差分解所要求的时间本征值谱。
上式称为二阶偏导数的二阶中心差分格式。 将它们代入(1-1),得
u in 1 ct n n n n n 1 u i 1 2u i u i 1 2u i u i x (1-6) 2 2 2 2 t c O x O t
上述过程也可用于一维标量波动方程差分近似的数值色散分析。
, 设在离散空间点 xi , t n ,离散行波解为 uxi , t n e ~ 为存在于有限差分网格中的数值正弦波的波数。一般情况 式中,k 下,不同于连续物理波的波数。正是这种不同导致了数值相速和群 速偏离了精确解。进而导致了数值色散误差。
1.7 吸收边界条件
由于计算机容量所限,计算域必须是有限的。对于 理想电壁或磁壁的边界条件的设置是直接的。但如果模 拟的是“开”问题,就要设置截断边界。在截断边界上 要设置吸收边界条件,使得电磁波可以被完全吸收,模 拟波无反射的通过吸收边界。 对于一维问题,采用单向波方程
u u c t x
xi ,t n
(1-3)
1.1 差分近似(2)
于是,有 同理,有
2u x
2 xi ,t n
u in1 2u in u in1 x
2
O x 2
(1-4) (1-5)
2u t
2 xi ,t n
u in 1 2u in u in 1 t
2
O t 2
t
4c
2
0
1.5 数值稳定性(3)
• 空间本征值问题
c2 2 x 2
numerical
u in u in
(1-21)
代入中心差分公式,得
c
2
u in1 2u in u in1
令 u u0 e
~ jk ix
x2
u in
2c 2
(1-22)
,Eular公式可得 x 2
应当注意,在一般情况下(1-6)对时间或空间具有二阶精度。但对 于 ct x 1 的特殊情况,根据解(1-2),可以证明
4u x
于是
2
4 ,t n
c4
4u t 4
xi ,
2 c x c 2 Ox
4u x
4
12
,t n
t 2
x 2
4c 2
t 2
(1-24)
4
即
t
x c
可见,时间步长 t 必须是有界的。上式称为Courant稳 定性条件。有趣的是其上界恰好是魔时间步。
1.6 激励源的设置
在FDTD模拟电磁波传播时需要设置初始条件和激励 源。最简单的源设置方法是“硬源”, 即在激励源的位置 令 u满足ui=f(n), 常用的有 正弦函数 ui=sin(nt+) 高斯函数 ui=exp[-(n-n0)2/T2] 阶跃函数 ui= 0 n<n1 = ( n-n1)/(n2-n1) n1<n<n2 =1 n>n2 “硬源”设置简单,但当反射波回到“硬源”位置时, 会引起寄生反射,所以,要在这之前“关”掉源。 以后会有有关源设置的更详细讨论。
2
忽略高次项,便可得到求解的差分迭代公式。
1.1 差分近似(3)
n=0 在所有空间点给uin, uin-1(i=1:imax)赋初值
n=n+1
由(1-6)在所有空间点求uin+1(i=1:imax)
No
n>nmax? Yes 结束
图1.1 一维波动方程FDTD流程图
1.1 差分近似(4)
4u
4
12 t
xi ,
O t 2
所以,(1-6)中的两个剩余项抵消,得到了精确的数值差分公式 (1-7) ct x 1为“魔时间步”(Magic time 正因为有这样的奇妙特性, step).
uin1 uin1 uin1 uin1
1.2 数值色散关系(1)
[1]A.Taflove,Computational Electrodynamics The FiniteDifference Time-Domain Method, Artech Hourse,1995. [2]高本庆,时域有限差分法,国防工业出版社,1995. [3]葛德彪,闫玉波,电磁场时域有限差分法,西电出版社,2002
~ 2 d c t sin k x ~ v g ~ x sint dk
1.5 数值稳定性(1)