处理器调度算法c语言

合集下载

操作系统-处理机调度的层次和调度算法的目标

操作系统-处理机调度的层次和调度算法的目标
中的处理机和其它所有资源都尽可能地保持忙碌状态,其中 最重要的处理机利用率可用以下方法计算:
CPU 有效工作时间
CPU 的利用率 = CPU 有效工作时间 ? CPU 空闲等待时间
3
第一章 操作系统引论
(2) 公平性。公平性是指应使诸进程都获得合理的CPU 时间,不会发生进程饥饿现象。公平性是相对的,对相同类 型的进程应获得相同的服务;但对于不同类型的进程,由于 其紧急程度或重要性的不同,则应提供不同的服务。
7
第一章 操作系统引论
3. 分时系统的目标 (1) 响应时间快。 (2) 均衡性。
8
第一章 操作系统引论
4. 实时系统的目标 (1) 截止时间的保证。 (2) 可预测性。
9
4
第一章 操作系统引论
2. 批处理系统的目标 (1) 平均周转时间短。 对每个用户而言,都希望自己作业的周转时间最短。但 作为计算机系统的管理者,则总是希望能使平均周转时间最 短,这不仅会有效地提高系统资源的利用率,而且还可使大 多数用户都感到满意。应使作业周转时间和作业的平均周转 时间尽可能短。否则,会使许多用户的等待时间过长,这将 会引起用户特别是短作业用户的不满。可把平均周转时间描 述为:
tn1tn1i???i66第一章操作系统引论为了进一步反映调度的性能更清晰地描述各进程在其周转时间中等待和执行时间的具体分配状况往往使用带权周转时间即作业的周转时间t与系统为它提供服务的时间ts之比即w??tts
第一章 操作系统引论
?3.1 处理机调度的层次和调度算法的目标
在多道程序系统中,调度的实质是一种资源分配,处理 机调度是对处理机资源进行分配。处理机调度算法是指根据 处理机分配策略所规定的处理机分配算法。在多道批处理系 统中,一个作业从提交到获得处理机执行,直至作业运行完 毕,可能需要经历多级处理机调度,下面先来了解处理机调 度的层次。

3处理器管理和调度

3处理器管理和调度

评价调度算法的性能指标


面向系统的: 1、资源利用率 2、吞吐率 3、公平性 面向用户的 : 4、响应时间 5、周转时间
1、资源利用率


CPU利用率=CPU有效工作时间/CPU总的 运行时间 CPU总的运行时间=CPU有效工作时间 +CPU空闲等待时间
2、吞吐率

单位时间内处理的作业数 处理的长作业多,吞吐率低 处理的短作业多,吞吐率高
处理器调度的层次

按照层次分为三级: (1)高级调度 (作业调度、长程调度) (2)中级调度 (平衡负载调度、中程调度) (3)低级调度 (进程/线程调度、短程调度)
高级调度

高级调度(作业调度、长程调度、宏观 调度)—— 按一定原则对外存输入井上 的大量后备作业进行选择调入内存,并 为它们创建进程、分配必要的资源,再 将新创建的进程排在就绪队列上,准备 执行。



进程:已提交完毕并选中运行的作业 (程序)的执行实体,也是为完成作业 任务向系统申请和分配资源的基本单位。 作业得到调度后必须为其生成相应的用 户进程才能真正执行完成计算任务 一个作业往往由多个父子关系的进程并 发完成
作业和进程的关系

因此:
作业是任务实体,进程是完成任务的执 行实体;没有作业任务,进程无事可干, 没有进程,作业任务没法完成。 作业概念更多地用在批处理操作系统, 而进程则可以用在各种多道程序设计系 统。
调度机制的功能模块



(1)队列管理程序 根据要求在各等待队列和就绪队列中移动 PCB/TCB指针 (2)上下文切换程序 保存当前运行进程的上下文信息到PCB,恢复 选中进程,使其运行 (3)分派程序 当前进程上下文-分派进程上下文-选中的进 程上下文

操作系统实验之处理机调度实验报告

操作系统实验之处理机调度实验报告

操作系统实验之处理机调度实验报告一、实验目的处理机调度是操作系统中的核心功能之一,本次实验的主要目的是通过模拟不同的处理机调度算法,深入理解操作系统对处理机资源的分配和管理策略,比较不同调度算法的性能差异,并观察它们在不同负载情况下的表现。

二、实验环境本次实验使用的操作系统为 Windows 10,编程语言为 Python 38。

实验中使用了 Python 的相关库,如`numpy`、`matplotlib`等,用于数据生成、计算和图形绘制。

三、实验原理1、先来先服务(FCFS)调度算法先来先服务算法按照作业到达的先后顺序进行调度。

先到达的作业先被服务,直到完成或阻塞,然后再处理下一个到达的作业。

2、短作业优先(SJF)调度算法短作业优先算法选择预计运行时间最短的作业先执行。

这种算法可以有效地减少作业的平均等待时间,但可能导致长作业长时间等待。

3、时间片轮转(RR)调度算法时间片轮转算法将处理机的时间分成固定长度的时间片,每个作业轮流获得一个时间片的处理时间。

当时间片用完后,如果作业还未完成,则将其放入就绪队列的末尾等待下一轮调度。

4、优先级调度算法优先级调度算法为每个作业分配一个优先级,优先级高的作业先被执行。

优先级可以根据作业的性质、紧急程度等因素来确定。

四、实验内容与步骤1、数据生成首先,生成一组模拟的作业,包括作业的到达时间、预计运行时间和优先级等信息。

为了使实验结果更具代表性,生成了不同规模和特征的作业集合。

2、算法实现分别实现了先来先服务、短作业优先、时间片轮转和优先级调度这四种算法。

在实现过程中,严格按照算法的定义和规则进行处理机的分配和调度。

3、性能评估指标定义了以下性能评估指标来比较不同调度算法的效果:平均等待时间:作业在就绪队列中的等待时间的平均值。

平均周转时间:作业从到达系统到完成的时间间隔的平均值。

系统吞吐量:单位时间内完成的作业数量。

4、实验结果分析对每种调度算法进行多次实验,使用不同的作业集合,并记录相应的性能指标数据。

异构多核处理器的线程调度算法与任务分配优化

异构多核处理器的线程调度算法与任务分配优化

异构多核处理器的线程调度算法与任务分配优化随着计算机应用领域的不断扩大和复杂化,单一的CPU无法满足大规模并行计算的需求。

因此,异构多核处理器逐渐成为了一种主流的处理器架构。

在异构多核处理器中,不同类型的核心具有不同的特性和处理能力,因此如何有效地进行线程调度和任务分配优化是一个重要的研究方向。

线程调度算法是指根据不同线程的特性和需求,将其分配给合适的核心进行执行的一种技术。

由于异构多核处理器中的核心性能差异较大,线程调度算法需要考虑线程执行时间、核心负载平衡和能耗等因素,以实现最佳的性能优化。

传统的线程调度算法如Round Robin、First Come First Served等对于同构多核处理器来说是适用的,但对于异构多核处理器来说并不高效。

为了充分发挥异构多核处理器的优势,研究人员提出了多种针对异构多核处理器的线程调度算法。

一种常用的线程调度算法是基于任务特性的静态线程调度。

该算法根据任务的特性(如计算密集型、I/O密集型等),将任务分配给适合的核心。

这样可以最大程度上减少任务之间的干扰,提高整体性能和效率。

另一种常用的线程调度算法是基于负载的动态线程调度。

该算法通过实时监测各个核心的负载情况,动态地将任务分配给负载较小的核心。

这样可以实现负载均衡,提高整个系统的运行效率。

例如,当某个核心的负载过高时,可以将一部分任务从该核心转移到负载较低的核心上,以保持整个系统的平衡。

除了线程调度算法外,任务分配优化也是异构多核处理器中非常重要的一环。

任务分配优化是指将任务分配给合适的核心,以最大化各个核心的利用率和整体系统的性能。

为了实现任务分配优化,研究人员提出了多种策略和算法。

一种常用的任务分配优化算法是基于模型预测的任务分配。

该算法利用历史数据和统计模型,预测各个任务在不同核心上的执行时间和能耗。

然后根据这些预测结果,选择最佳的任务分配方案。

这种算法可以在一定程度上提高整个系统的性能,但对于复杂应用场景来说,模型预测的准确性可能会受到限制。

2016___操作系统处理器调度

2016___操作系统处理器调度

JCB的主要内容包括: (1)作业情况 (2)资源需求 (3)资源使用情况 (4)作业控制 (5)作业类型
作业调度与进程调度的关系
SPOOLin g作业预 输入 输 入 状 态 预输 入完 成 进程调度 后 备 状 态 就 绪 等 待 完
运 行
成 状 态
SPOOLin g作业缓 输出
作业调度(选 中并创建进程)
作业控制
作业调度(作 业终止并撤离)
3)批作业的调度
(1) 选择作业: (2) 分配资源: (3) 创建进程: (4) 作业控制: (5) 后续处理:
2 交互作业的组织和管理
• 分时系统的作业就是用户的一次上机交互过程, 可认为终端进程的创建是一个交互型作业的开始, 退出命令运行结束代表用户交互型作业的中止。 • 交互作业的情况和资源需求通过操作命令告知系 统,分时用户逐条输入命令,即提交作业(步) 和控制作业运行,系统则逐条执行并给出应答, 每键入一条或一组有关操作命令,便在系统内部 创建一个进程或若干进程来完成相应命令。 • 键盘命令有:作业控制类;资源申请类;文件操 作类;目录操作类;设备控制类等。
响应比定义
响应比 =(等待时间 + 要求执行时间) / 要求 执行时间=1+等待时间/要求执行时间 •短作业容易得到较高响应比, •长作业等待时间足够长后,也将获得足 够高的响应比, •饥饿现象不会发生。
HRRF算法举例
四个作业到达系统时间/所需CPU时间:作业1-0/20, 作业2-5/15,作业3-10 /5,作业4- 15/ 10。 • SJF调度顺序为作业1、3、4、2,平均作业周转时 间T=25, 平均带权作业周转时间W=2.25 。 • FCFS调度顺序为作业1、2、3、4,平均作业周转 时 间 T=28.75 , 平 均 带 权 作 业 周 转 时 间 W=3.125 。 • HRRF 调度顺序为作业 1 、 3 、 2 、 4 ,平均作业周 转 时 间 T=26.25 , 平 均 带 权 作 业 周 转 时 间 W=2.46 。

tomasulo算法例题详解

tomasulo算法例题详解

tomasulo算法例题详解Tomasulo算法例题详解什么是Tomasulo算法?Tomasulo算法是一种用于计算机处理器中的动态调度算法,通过并行执行指令来提高处理器的效率。

它主要包含三个组成部分:寄存器重命名、数据缓冲器和指令调度。

寄存器重命名寄存器重命名是Tomasulo算法的关键步骤之一,它的目的是解决数据相关性问题,提高指令的并行执行能力。

通过给每个指令生成一个唯一的标记,并将其保存到重命名表中,可以实现在不同指令之间共享相同的寄存器。

这样就能够避免指令间的数据相关性,提高程序的并行度。

数据缓冲器数据缓冲器是Tomasulo算法的重要组成部分,它用于存储指令执行过程中需要的操作数和计算结果。

缓冲器使用队列的形式进行管理,可以实现指令的乱序执行。

通过缓存器重新排序指令的执行顺序,可以更高效地利用处理器的资源,提高指令的执行效率。

指令调度指令调度是Tomasulo算法的最后一步,它用于确定指令的执行顺序。

通过优化指令的调度顺序,可以最大程度地减少指令之间的冲突,并提高程序的并行度。

调度器根据指令的执行状态和数据依赖关系,动态地调整指令的执行顺序,从而提高程序的性能。

例题下面通过一个例题来说明Tomasulo算法的应用:1.ADD F4, F2, F62.MUL F8, F4, F23.SUB F6, F4, F104.DIV F12, F6, F85.ADD F2, F4, F6首先,我们需要将指令分解成操作码和操作数,并构建重命名表和数据缓冲器。

然后按照Tomasulo算法的步骤依次执行指令。

1.重命名寄存器:重命名F4为Qi,将ADD指令写入缓冲器。

2.执行ADD指令:将F2和F6的值从缓冲器中读取,并将结果保存到缓冲器中,同时将结果写回寄存器。

3.重命名寄存器:重命名F8为Qj,将MUL指令写入缓冲器。

4.等待ADD指令完成:MUL指令需要等待ADD指令的结果,因此暂时无法执行。

进程的调度实验报告(3篇)

进程的调度实验报告(3篇)

第1篇一、实验目的通过本次实验,加深对操作系统进程调度原理的理解,掌握先来先服务(FCFS)、时间片轮转(RR)和动态优先级(DP)三种常见调度算法的实现,并能够分析这些算法的优缺点,提高程序设计能力。

二、实验环境- 编程语言:C语言- 操作系统:Linux- 编译器:GCC三、实验内容本实验主要实现以下内容:1. 定义进程控制块(PCB)结构体,包含进程名、到达时间、服务时间、优先级、状态等信息。

2. 实现三种调度算法:FCFS、RR和DP。

3. 创建一个进程队列,用于存储所有进程。

4. 实现调度函数,根据所选算法选择下一个执行的进程。

5. 模拟进程执行过程,打印进程执行状态和就绪队列。

四、实验步骤1. 定义PCB结构体:```ctypedef struct PCB {char processName[10];int arrivalTime;int serviceTime;int priority;int usedTime;int state; // 0: 等待,1: 运行,2: 完成} PCB;```2. 创建进程队列:```cPCB processes[MAX_PROCESSES]; // 假设最多有MAX_PROCESSES个进程int processCount = 0; // 实际进程数量```3. 实现三种调度算法:(1)FCFS调度算法:```cvoid fcfsScheduling() {int i, j;for (i = 0; i < processCount; i++) {processes[i].state = 1; // 设置为运行状态printf("正在运行进程:%s\n", processes[i].processName); processes[i].usedTime++;if (processes[i].usedTime == processes[i].serviceTime) { processes[i].state = 2; // 设置为完成状态printf("进程:%s 完成\n", processes[i].processName); }for (j = i + 1; j < processCount; j++) {processes[j].arrivalTime--;}}}```(2)RR调度算法:```cvoid rrScheduling() {int i, j, quantum = 1; // 时间片for (i = 0; i < processCount; i++) {processes[i].state = 1; // 设置为运行状态printf("正在运行进程:%s\n", processes[i].processName); processes[i].usedTime++;processes[i].serviceTime--;if (processes[i].serviceTime <= 0) {processes[i].state = 2; // 设置为完成状态printf("进程:%s 完成\n", processes[i].processName); } else {processes[i].arrivalTime++;}for (j = i + 1; j < processCount; j++) {processes[j].arrivalTime--;}}}```(3)DP调度算法:```cvoid dpScheduling() {int i, j, minPriority = MAX_PRIORITY;int minIndex = -1;for (i = 0; i < processCount; i++) {if (processes[i].arrivalTime <= 0 && processes[i].priority < minPriority) {minPriority = processes[i].priority;minIndex = i;}}if (minIndex != -1) {processes[minIndex].state = 1; // 设置为运行状态printf("正在运行进程:%s\n", processes[minIndex].processName);processes[minIndex].usedTime++;processes[minIndex].priority--;processes[minIndex].serviceTime--;if (processes[minIndex].serviceTime <= 0) {processes[minIndex].state = 2; // 设置为完成状态printf("进程:%s 完成\n", processes[minIndex].processName); }}}```4. 模拟进程执行过程:```cvoid simulateProcess() {printf("请选择调度算法(1:FCFS,2:RR,3:DP):");int choice;scanf("%d", &choice);switch (choice) {case 1:fcfsScheduling();break;case 2:rrScheduling();break;case 3:dpScheduling();break;default:printf("无效的调度算法选择。

嵌入式操作系统_第3章 处理机调度

嵌入式操作系统_第3章 处理机调度

短作业优先调度算法的特点
算法调度性能较好,
例如上例中,
先来先服务
短作业优先
平均周转时间
2.8
2.45
平均带权周转时间
5.25
3.85
但对长作业不利,未考虑作业的紧迫程度, 运行时间为估计。
调度算法
先来先服务调度算法 短作业(进程)优先调度算法 时间片轮转调度算法 优先权调度算法 最高响应比优先调度算法 多级队列调度算法
抢占方式
抢占方式:又称剥夺方式、可剥夺方式。这 种调度方式是指允许调度程序根据某种原则 去停止正在执行的进程,将已分配给该进程 的处理机重新分配给其他进程。
高级调度主要用于多道批处理系统中,在分 时和实时系统中不设高级调度。
2.中级调度
中级调度又称内存调度,其功能是将内存中 暂时不用的信息移到外存,以腾出空间给内 存中的进程使用,或将需要的信息从外存读 入内存。
引入中程调度的目的是提高内存利用率和系 统吞吐量。
中级调度的运行频率介于两者之间。
事 件 出 现
时间片完 就绪 队列 阻塞队列
进程调度
进程完成 CP U
等待事件
3.2.2 选择调度算法的准则
由于操作系统的类型及目标不同,因此选择 的调度算法也不同。
选择调度算法有以下准则:
面向系统的准则 面向用户的准则
面向用户的准则
周转时间短:指从作业提交到作业完成的时 间间隔。
微机不太重要。
周转时间
作业的周转时间是指从作业提交到作业完 成之间的时间间隔。
平均周转时间是指多个作业的周转时间的 平均值。n个作业的平均周转时间:
T =(T1+T2+ … +Tn)/n(Ti为作业i 的周转时间)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

处理器调度算法c语言一、概述处理器调度算法是操作系统中一个非常重要的问题。

在多任务操作系统中,有多个进程同时运行,而处理器只有一个,因此需要对进程进行调度,使得每个进程都能够得到适当的执行时间。

二、常见的处理器调度算法1. 先来先服务(FCFS)FCFS算法是最简单的调度算法之一。

它按照进程到达时间的先后顺序进行调度,即先到达的进程先执行。

这种算法容易实现,但可能会导致长作业等待时间过长。

2. 最短作业优先(SJF)SJF算法是根据每个进程所需的CPU时间来进行排序,并按照顺序进行调度。

这种算法可以减少平均等待时间和平均周转时间,并且可以最大限度地利用CPU资源。

3. 优先级调度优先级调度是根据每个进程的优先级来进行排序,并按照顺序进行调度。

这种算法可以确保高优先级进程得到更多的CPU时间,但可能会出现低优先级进程饥饿问题。

4. 时间片轮转(RR)RR算法将CPU分配给每个任务一定量的时间片,在该时间片内运行任务。

如果任务在该时间片内未完成,则将其放回队列尾部,并分配给下一个任务时间片。

这种算法可以确保公平性,并且可以避免长作业等待时间过长。

三、C语言中的处理器调度算法实现1. FCFS算法实现#include <stdio.h>int main(){int n, i, j;float avg_waiting_time = 0, avg_turnaround_time = 0;printf("Enter the number of processes: ");scanf("%d", &n);int burst_time[n], waiting_time[n], turnaround_time[n];printf("Enter the burst time for each process:\n");for(i=0; i<n; i++)scanf("%d", &burst_time[i]);waiting_time[0] = 0;turnaround_time[0] = burst_time[0];for(i=1; i<n; i++){waiting_time[i] = waiting_time[i-1] + burst_time[i-1];turnaround_time[i] = waiting_time[i] + burst_time[i];avg_waiting_time += waiting_time[i];avg_turnaround_time += turnaround_time[i];}avg_waiting_time /= n;avg_turnaround_time /= n;printf("\nProcess\tBurst Time\tWaiting Time\tTurnaround Time\n");for(i=0; i<n; i++)printf("P%d\t%d\t\t%d\t\t%d\n", i+1, burst_time[i], waiting_time[i], turnaround_time[i]);printf("\nAverage Waiting Time: %.2f\n", avg_waiting_ time);printf("Average Turnaround Time: %.2f\n", avg_turnaround_ time);return 0;}2. SJF算法实现#include <stdio.h>int main(){int n, i, j, temp;float avg_waiting_time = 0, avg_turnaround_time = 0; printf("Enter the number of processes: ");scanf("%d", &n);int burst_time[n], waiting_time[n], turnaround_time[n]; printf("Enter the burst time for each process:\n");for(i=0; i<n; i++)scanf("%d", &burst_time[i]);for(i=0; i<n-1; i++)for(j=i+1; j<n; j++)if(burst_time[i] > burst_time[j]){temp = burst_time[i];burst_time[i] = burst_time[j]; burst_time[j] = temp;}waiting_time[0] = 0;turnaround_time[0] = burst_time[0];for(i=1; i<n; i++){waiting_time[i] = waiting_time[i-1] + burst_time[i-1];turnaround_time[i] = waiting_time[i] + burst_time[i];avg_waiting_time += waiting_time[i];avg_turnaround_time += turnaround_time[i];}avg_waiting_time /= n;avg_turnaround_time /= n;printf("\nProcess\tBurst Time\tWaiting Time\tTurnaround Time\n");for(i=0; i<n; i++)printf("P%d\t%d\t\t%d\t\t%d\n", i+1, burst_time[i], waiting_time[i], turnaround_time[i]);printf("\nAverage Waiting Time: %.2f\n", avg_waiting_ time);printf("Average Turnaround Time: %.2f\n", avg_turnaround_ time);return 0;}3. 优先级调度算法实现#include <stdio.h>int main(){int n, i, j, temp;float avg_waiting_time = 0, avg_turnaround_time = 0;printf("Enter the number of processes: ");scanf("%d", &n);int burst_time[n], waiting_time[n], turnaround_time[n], priority[n];printf("Enter the burst time and priority for each process:\n"); for(i=0; i<n; i++)scanf("%d %d", &burst_time[i], &priority[i]);for(i=0; i<n-1; i++)for(j=i+1; j<n; j++)if(priority[i] > priority[j]){temp = priority[i];priority[i] = priority[j];priority[j] = temp;temp = burst_time[i];burst_time[i] = burst_time[j]; burst_time[j] = temp;}waiting_time[0] = 0;turnaround_time[0] = burst_time[0];for(i=1; i<n; i++){waiting_time[i] = waiting_time[i-1] + burst_time[i-1];turnaround_time[i] = waiting_time[i] + burst_time[i];avg_waiting_ time += waiting_ time[i];avg_turnaround_ time += turnaround_ time[i];}avg_waiting_ time /= n;avg_turnaround_ time /= n;printf("\nProcess\tBurst Time\tPriority\tWaiting Time\tTurnaround Time\n");for(i=0; i<n; i++)printf("P%d\t%d\t\t%d\t\t%d\t\t%d\n", i+1, burst_ time[i], priority[i], waiting_time[i], turnaround_time[i]);printf("\nAverage Waiting Time: %.2f\n", avg_waiting_ time);printf("Average Turnaround Time: %.2f\n", avg_turnaround _ time);return 0;}4. RR算法实现#include <stdio.h>int main(){int n, i, j, time_quantum;float avg_waiting_time = 0, avg_turnaround_time = 0;printf("Enter the number of processes: ");scanf("%d", &n);int burst_time[n], remaining_time[n], waiting_time[n], turnaround_time[n];printf("Enter the burst time for each process:\n");for(i=0; i<n; i++)scanf("%d", &burst_time[i]);printf("Enter the time quantum: ");scanf("%d", &time_quantum);for(i=0; i<n; i++)remaining_time[i] = burst_time[i];int t=0;while(1){int done = 1;for(i=0; i<n; i++){if(remaining_time[i] > 0){done = 0;if(remaining_ time[i] > time_ quantum){t += time_ quantum;remaining_ time[i] -= time_ quantum;}else{t += remaining _ time[i];waiting_time[i] = t - burst_time[i];remaining_ time[i] = 0;turnaround_ time[i] = waiting_time[i] + burst_time[i];avg_waiting_ time += waiting_ time[i];avg_turnaround _ time += turnaround_ time[i];}}}if(done == 1)break;}avg_waiting_ time /= n;avg_turnaround_ time /= n;printf("\nProcess\tBurst Time\tWaiting Time\tTurnaround Time\n");for(i=0; i<n; i++)printf("P%d\t%d\t\t%d\t\t%d\n", i+1, burst_time[i], waiting_time[i], turnaround_time[i]);printf("\nAverage Waiting Time: %.2f\n", avg_waiting_ time);printf("Average Turnaround Time: %.2f\n", avg_turnaround _ time);return 0;}四、总结以上是常见的处理器调度算法的C语言实现方式。

相关文档
最新文档