高镍三元材料的技术发展趋势是怎样的
nca高镍三元正极材料前驱体的制备方法

一、概述NCA(镍钴铝)高镍三元正极材料是锂离子电池中常用的正极材料之一,具有高容量、高能量密度和较长循环寿命等优点。
其制备过程中,正极材料前驱体的制备方法对最终电池性能起着至关重要的作用。
本文将对NCA高镍三元正极材料前驱体的制备方法进行探讨。
二、溶胶-凝胶法制备NCA高镍三元正极材料前驱体1. 溶胶制备溶胶是指凝胶前的液态胶体溶液,通常由金属离子和有机物溶液组成。
在NCA高镍三元正极材料的制备中,首先需要制备含有镍、钴、铝等金属离子的溶胶。
通常选择硝酸盐、硫酸盐等金属盐作为金属离子的来源,通过溶解和配比制备得到所需的金属盐溶液。
2. 凝胶制备凝胶是指溶胶经过凝胶化过程形成的胶体凝胶体系。
将制备好的金属离子溶液与表面活性剂、络合剂等有机物混合,在适当的条件下(温度、pH值等)形成胶体凝胶。
凝胶的品质对最终材料的性能有着重要影响,因此在制备过程中需要严格控制凝胶的形成过程。
3. 凝胶成型通过旋涂、喷涂等方法将凝胶成型成片状结构,通常需要经过烘干等处理,得到NCA高镍三元正极材料前驱体。
三、固相反应法制备NCA高镍三元正极材料前驱体1. 配料在固相反应法中,通常选择氧化镍、氧化钴、氧化铝等作为原料。
按照一定的摩尔比进行混合,形成混合物作为前驱体的原料。
2. 粉磨经过混合的粉料需要进行机械粉磨处理,使其颗粒尺寸细化,有利于后续反应的进行。
3. 烧结将粉磨后的物料置于高温炉中进行烧结,通过一定的温度和时间进行热处理,使混合物发生固相反应,得到NCA高镍三元正极材料前驱体。
四、共沉淀法制备NCA高镍三元正极材料前驱体1. 配料将含有镍、钴、铝盐溶液用氢氧化钠等沉淀剂进行共沉淀反应,从而得到含有镍、钴、铝等金属离子的沉淀物。
2. 洗涤对得到的沉淀物进行洗涤处理,去除杂质离子和未反应的原料,得到较纯净的NCA高镍三元正极材料前驱体。
3. 干燥将洗涤后的NCA高镍三元正极材料前驱体进行适当的干燥处理,得到粉末状的前驱体物料。
固态高镍三元正极材料

固态高镍三元正极材料
固态高镍三元正极材料是指一种用于锂离子电池的正极材料,通常由镍(Ni)、锰(Mn)和钴(Co)组成,其中镍、锰和钴的比例为5:3:2。
这种材料是一种新型的高容量、高性能的锂离子电池正极材料,具有很高的比容量和循环稳定性,被广泛应用于电动汽车、电动工具、电子设备等领域。
固态高镍三元正极材料相比传统的钴酸锂正极材料具有以下优势:
1.高容量:固态高镍三元材料的比容量较高,可以实现更高的电池能量密度,提高电池的续航能力。
2.循环稳定性:固态高镍三元材料具有良好的循环稳定性,可以减缓电池在充放电过程中的容量衰减,延长电池的使用寿命。
3.资源丰富:相比钴酸锂等材料中的稀有金属钴,镍、锰和钴是较为常见且资源丰富的金属,有利于电池材料的可持续发展和成本控制。
4.价格优势:固态高镍三元材料相比钴酸锂等材料的生产成本更低,有助于降低锂离子电池的制造成本,推动电动汽车和储能系统等领域的发展。
5.安全性提高:固态高镍三元材料相比钴酸锂等材料具有更高的热稳定性和安全性,减少了电池在充放电过程中发生热失控的风险。
固态高镍三元正极材料的研发和应用将有助于推动锂离子电池技术的进步,提高电池的性能和安全性,促进电动汽车和可再生能源
等领域的发展。
高镍三元正极材料研究进展

第44卷第7期2016年7月硅酸盐学报Vol. 44,No. 7July,2016 JOURNAL OF THE CHINESE CERAMIC SOCIETY DOI:10.14062/j.issn.0454-5648.2016.07.03 锂离子电池正极材料高镍LiNi1−x−y Co x Mn y O2研究进展刘嘉铭,张英杰,董鹏,李雪,夏书标(昆明理工大学冶金与能源工程学院,昆明 650093)摘要:高镍含量三元层状材料LiNi1−x−y Co x Mn y O2(NCM)凭借比容量高、成本较低和安全性优良等优势,成为研究的热点,被认为是极具应用前景的锂离子动力电池正极材料。
综述了高镍NCM材料的晶体电子结构特征以及镍含量变化对性能的影响,介绍了国内外主要的制备方法和掺杂和包覆改性的机理和特性,并展望了高镍NCM材料未来的应用和发展方向。
关键词:锂离子电池;正极材料;镍钴锰氧化物;综述中图分类号:O484 文献标志码:A 文章编号:0454–5648(2016)07–0931–11网络出版时间:2016–05–30 10:27:26 网络出版地址:/kcms/detail/11.2310.TQ.20160530.1027.017.htmlProgress of Nickel–rich LiNi1−x−y Co x Mn y O2 as Cathode Materials for Lithium Ion BatteryLIU Jiaming, ZHANG Yingjie, DONG Peng, LI Xue, XIA Shubiao(Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China)Abstract: Due to their advantages of high specific capacity, low cost and high safety, nickel–rich layered metal oxide materials LiNi1−x−y Co x Mn y O2 (NCM) are believed to be a candidate of the potential cathode materials for lithium ion power battery, and have become a research hotspot. The impact of crystal structure, electronic structure, and nickel content on the electrochemical performance of nickel–rich NCM were summarized, the main synthesis methods at home and abroad, the mechanism and characteristics of coating and doping were introduced, and the prospect for nickel–rich NCM cathode materials has been discussed.Keywords: lithium–ion battery; cathode material; layered metal oxide; review锂离子电池因其能量密度高、循环寿命长、无记忆效应等特点而得到广泛的青睐[1–4]。
高镍三元和高硅负极全电池化成曲线

高镍三元和高硅负极全电池化成曲线1. 介绍在当今社会,随着电动汽车的普及与发展,电池技术越来越受到关注。
高镍三元和高硅负极全电池作为当下备受瞩目的新能源电池技术,其化成曲线更是备受关注。
化成曲线是指电池在初次充放电循环过程中容量的变化曲线,通过对化成曲线的分析可以了解电池的性能特点,进而为电池制造商和使用者提供重要参考。
本文将从深度和广度的角度探讨高镍三元和高硅负极全电池的化成曲线,揭示其性能特点和应用前景。
2. 高镍三元电池的化成曲线高镍三元电池是指以镍为正极材料、三元材料为正极锂离子电池。
其化成曲线表现为初次充放电循环过程中,电池容量的变化曲线。
在化成曲线中,高镍三元电池在初次充放电中有较高的放电比容量和较低的充电比容量,表现出较高的初始放电效率和较低的初始充电效率。
高镍三元电池的初始充电过程相对较慢,需要较长的时间才能完成。
这种化成曲线的特点说明了高镍三元电池具有较高的能量密度和较低的自放电率,适合用于需求高能量密度、低自放电率的应用场景,如电动汽车和储能系统。
3. 高硅负极全电池的化成曲线高硅负极全电池是指利用硅基材料作为负极材料的锂离子电池。
其化成曲线表现为初次充放电循环过程中,电池容量的变化曲线。
在化成曲线中,高硅负极全电池在初次充放电中表现出较高的放电比容量和较低的充电比容量,表现出较高的初始放电效率和较低的初始充电效率。
高硅负极全电池还存在着较明显的容量衰减现象,化成曲线在充放电循环过程中会逐渐趋于稳定。
这种化成曲线的特点说明了高硅负极全电池具有较高的比能量和较大的可充放电比容量,适合用于需求高比能量、大可充放电比容量的应用场景,如电动汽车和储能系统。
4. 综合分析从化成曲线的分析可以看出,高镍三元和高硅负极全电池各自具有不同的性能特点。
高镍三元电池具有较高的能量密度和较低的自放电率,而高硅负极全电池具有较高的比能量和较大的可充放电比容量。
在实际应用中,选择合适的电池技术取决于特定应用场景的需求。
三元正极材料简介介绍

汇报人: 日期:
目录
• 三元正极材料概述 • 三元正极材料的特性与优势 • 三元正极材料的生产与制备技术 • 三元正极材料的挑战与研究前沿 • 三元正极材料在电池产业中的应用实例 • 总结与展望
01
三元正极材料概述
定义与组成
定义
三元正极材料是指由三种元素组成的锂离子电池正极材料。通常,这三种元素 包括镍(Ni)、钴(Co)和锰(Mn),简称为NCM。
04
三元正极材料的挑战与研究前 沿
热稳定性挑战
热失控现象
三元正极材料在高温甚至正常工 作温度下可能发生热失控现象, 导致电池性能下降甚至安全隐患
。
晶体结构稳定性
材料晶体结构的稳定性与热稳定性 密切相关,如何优化晶体结构以提 高热稳定性是一个重要研究方向。
热隔离与散热设计
针对三元正极材料的热稳定性挑战 ,电池系统的热隔离与散热设计成 为关键,以防止过热引发安全问题 。
组成
三元正极材料的组成可以根据需要进行调整,以获得不同的性能。通常,通过 调整镍、钴、锰的比例,可以实现对电池容量、能量密度、循环寿命等性能的 优化。
发展历程
01
早期阶段
在锂离子电池发展的早期阶段,主要采用的是单一的钴酸锂作为正极材
料。然而,钴资源稀缺且价格昂贵,促使人们寻求替代材料。
02 03
三元材料的兴起
三元正极材料具有高能量密度和 长寿命,适用于大型储能电站, 可实现电网调峰、调频等功能。
高效能量转换
三元正极材料具有优异的充放电 性能,提高储能电站的能量转换
效率。
环保可持续
三元正极材料生产过程中污染较 小,且废弃电池可回收再利用,
有利于环保和可持续发展。
锂离子电池高镍三元正极材料表面改性研究进展

㊀第56卷第3期郑州大学学报(理学版)Vol.56No.3㊀2024年5月J.Zhengzhou Univ.(Nat.Sci.Ed.)May 2024收稿日期:2023-08-31基金项目:国家自然科学基金面上项目(52272242)㊂第一作者:李静(2000 ),女,硕士研究生,主要从事电化学储能研究,E-mail:1650193197@㊂通信作者:许春阳(1991 ),男,讲师,主要从事电化学储能研究,E-mail:chunyangxu@㊂锂离子电池高镍三元正极材料表面改性研究进展李㊀静1,㊀梁雅文1,㊀李㊀威2,㊀叶㊀飞1,2,㊀崔鑫炜1,㊀许春阳1(1.郑州大学㊀河南先进技术研究院㊀河南郑州450003;2.新乡天力锂能股份有限公司㊀河南新乡453002)摘要:高镍三元材料存在表面结构不稳定㊁锂镍混排㊁晶间裂纹等问题,导致材料的循环性能降低以及高比容量无法充分发挥,表面包覆是解决上述问题的主要手段㊂目前的包覆材料主要有电化学惰性材料㊁离子/电子电导性材料和复合包覆材料,从这三个方面综述了高镍三元材料的表面改性研究㊂介绍了不同类型包覆材料的界面改善稳定机制㊁离子在固液界面的迁移率提升机理㊁界面副反应抑制机制以及对材料电化学性能的影响,并对高镍三元正极材料包覆改性的发展方向进行了展望㊂关键词:锂离子电池;高镍三元;正极材料;表面改性中图分类号:TM911文献标志码:A文章编号:1671-6841(2024)03-0041-08DOI :10.13705/j.issn.1671-6841.2023207Research Progress on Surface Modification of High-nickel TernaryCathode Materials for Lithium-ion BatteriesLI Jing 1,LIANG Yawen 1,LI Wei 2,YE Fei1,2,CUI Xinwei 1,XU Chunyang 1(1.Henan Institute of Advanced Technology ,Zhengzhou University ,Zhengzhou 450003,China ;2.Xinxiang Tianli Lithium Energy Co.,Ltd ,Xinxiang 453002,China )Abstract :Problems of high-nickel ternary materials such as unstable surface structure,lithium-nickelco-segregation,and intergranular cracking led to a decrease in the cycling performance of the materials and inability to fully utilize high specific capacity.Surface coating was the primary approach to address these problems.Currently,coating materials mainly included electrochemically inert materials,ion /elec-tron-conductive materials,and composite coating materials.A review was conducted on the surface modi-fication research of high-nickel ternary materials from these aspects.The mechanisms for interface im-provement and stabilization of different types of coating materials,enhancement of ion migration at the solid-liquid interface,suppression of interface side reactions,and their impacts on the electrochemical performance were introduced.The development directions of surface modification of high-nickel ternarycathode materials were also discussed.Key words :lithium-ion battery;high-nickel ternary;cathode material;surface modification0㊀引言随着化石能源的逐渐匮乏以及环境污染的日趋严峻,高性能电化学储能器件的研发已经刻不容缓㊂在众多储能器件中,锂离子电池(lithium-ion battery,LIB)具有高能量密度㊁长循环寿命和高能量转换效率,已成为电动汽车和便携式电子设备最主要的能量来源㊂在锂离子电池正极材料中,高镍三元正极材料NCM /NCA (LiNi x Co y Mn z O 2和LiNi x Co y Al z O 2,x +y +z =1)在能量密度上具有巨大优势,是动力电池市场的主导材料㊂郑州大学学报(理学版)第56卷以NCM为例,其具有α-NaFeO2型层状结构,属六方晶系,R-3m空间群㊂Ni2+㊁Co3+和Mn4+共同占据八面体中心位置,以立方密堆积方式形成层状排列[1]㊂开发高镍三元正极材料可以满足人们日益增长的能量密度需求㊂但是,高镍三元材料存在一些不足之处,包括表面结构不稳定㊁锂镍混排㊁晶间裂纹等[2]㊂为了解决上述问题,研究者们提出了各种改性策略,主要包括表面包覆㊁晶内掺杂和晶体形貌控制,这些策略在改善三元材料电化学性能方面展现出了良好的效果㊂其中,表面改性是最常用㊁最有效的方法之一㊂目前,高镍三元材料表面改性所选的包覆材料主要有电化学惰性材料㊁离子电导性材料和电子电导性材料,并在此基础上发展到复合包覆㊂本文综述了高镍三元材料的表面改性研究进展,通过介绍不同类型包覆材料的保护机制和对材料电化学性能的影响,进而剖析目前各种包覆材料的优势及存在的问题,并展望了高镍三元正极材料包覆改性的未来发展趋势㊂1㊀电化学惰性材料电化学惰性材料主要有金属氧化物㊁金属氟化物和金属磷酸盐等,它们能有效阻隔三元正极材料和电解质之间的直接接触,有助于防止HF的侵蚀和界面副反应的发生㊂1.1㊀金属氧化物包覆材料金属氧化物包覆材料主要有Al2O3㊁ZrO2㊁TiO2㊁WO3等㊂金属氧化物包覆层可以与HF反应转化为金属氟化物,达到消除HF的目的,从而降低电解液的酸性,提升电极的结构稳定性㊂但是,这些氧化物的Li+传输速率和电子导电性相对较低,会造成包覆界面电子和离子传输阻力的增加㊂Al2O3是最常用的金属氧化物包覆材料㊂Wu 等[3]通过聚合物辅助溶胶-凝胶法在NCM622材料表面上实现微孔聚合物/γ-Al2O3保护层的构建㊂这种包覆层能有效减轻NCM622材料的电极-电解液界面副反应的发生,使材料在高压循环下的电化学性能得到显著的提升,其循环稳定性和倍率性能分别比原始材料提高了22.8%和26%㊂Ma等[4]利用水热合成法制备了NCM622单晶颗粒,然后以三异丙氧基铝为铝源通过干混烧结的方法形成Al2O3包覆层㊂13nm厚的Al2O3包覆层使NCM622的放电比容量㊁倍率性能和循环性能均得到大幅度提升,但是过厚的Al2O3包覆层也会使NCM622的储锂性能降低㊂ZrO2具有较高的化学稳定性,ZrO2包覆能有效缓解电解液的分解㊂Kim等[5]给出了ZrO2包覆样品的SEM图和带隙能量图,如图1所示㊂可以看出,其通过简单的还原反应,将白色单斜ZrO2转化为黑色的缺氧四方ZrO2-x,降低了材料的能带能(图1(b)),并成功地将其修饰在高镍正极NCM811表面(图1(a))㊂黑色ZrO2-x通过电感保持Ni2+的高氧化态,有效地抑制了在高压4.5V充电过程中的气体析出㊂图1㊀ZrO2包覆样品的SEM图和带隙能量图[5] Figure1㊀SEM images and Tauc of ZrO2coated sample[5] TiO2由于其电化学性质不活泼以及具有电荷补偿作用而被用作包覆材料㊂Mo等[6]通过湿法包覆将TiO2引入NCM622样品的二次粒子表面㊂TiO2与残留的锂化合物反应生成Li2TiO3并充当隔离层,减少了副反应的发生㊂此外,通过该方法还获得了从外到内不同Ti4+浓度的扩散层,这不仅强化了初级粒子,减少了随机取向晶粒之间的间隙,所提供的包覆层还有助于将Ti4+扩散到NCM622的晶格中,从而增加了晶格层间距,使随后的Li+迁移更加容易,迁移速率有所增加,并且机械强度和界面稳定性也会更高㊂因此,NCM622样品的循环稳定性得到增强㊂WO3具有较高的电子电导率(1.76S㊃cm-1),且作为酸性氧化物,其具有更好的耐HF蚀性㊂此外,WO3还可以和锂化合物反应,有助于消除部分残留在NCM材料表面上的碱性化合物㊂Gan等[7]将一定量的WO3溶解在H2O2中,并将其分散在无24㊀第3期李㊀静,等:锂离子电池高镍三元正极材料表面改性研究进展水乙醇中,然后再和NCM811混合蒸发高温烧结,形成WO3包覆㊂研究结果表明,WO3包覆改性在一定程度上降低了NCM811的极化,提高了NCM811的倍率和循环性能㊂此外,SiO2由于具有电化学活性低㊁储量丰富㊁环境友好㊁价格低廉等优点而备受人们关注㊂其同样可以与HF反应,保护正极颗粒免受电解液的侵蚀,缓解循环过程中的表面结构退化㊂Li等[8]采用静电引力法,通过调整SiO2溶胶悬浮体与NCM715之间的电动电位,将SiO2溶胶均匀吸附在NCM715表面,然后经过热处理形成SiO2包覆层㊂NCM715表面的SiO2包覆层减少了电解液与正极之间的反应,保护了电极的层状结构,减小了界面阻抗,即使在4.5V的高截止电压下,依然能表现出良好的电化学稳定性㊂1.2㊀金属氟化物包覆材料最主要的金属氟化物包覆材料是AlF3㊂AlF3包覆层可以通过缓解晶格膨胀来抑制循环过程中的锂镍混排和锂损失㊂此外,它还可以抑制高镍三元材料在储存过程中表面残碱的产生,提高高镍三元材料与电解质之间的界面稳定性㊂传统的干法或湿法构筑的包覆层对层结构的厚度和保形性的可控性较小,因此包覆层通常是不均匀的,这会导致电极的离子和电子传输阻力增加㊂原子层沉积(atomic layer deposition,ALD)技术是一种先进的构建包覆层技术㊂此技术可以在具有较高比表面积的基材上沉积薄膜,即使几何形状不规则,也可以精确控制其沉积厚度,保证沉积的均匀性㊂Yang等[9]使用三甲基铝和HF-吡啶作为前驱体材料,然后利用ALD技术在NCM811表面上均匀地形成AlF3纳米包覆层㊂结果表明,AlF3保护层抑制了锂镍混排,稳定了NCM811的结构㊂Li等[10]通过溶液法成功合成了AlF3包覆的Li[Ni0.80Co0.15Al0.05]O2,制备过程中首先将原始的Li[Ni0.80Co0.15Al0.05]O2粉末浸入Al(NO3)3稀溶液中,然后逐滴加入NH4F溶液,通过沉淀反应形成不同包覆厚度的AlF3㊂与原始Li[Ni0.8Co0.15Al0.05]O2相比,0.5%AlF3包覆层样品在不同测试温度下均表现出较高的容量保持率和倍率性能㊂1.3㊀金属磷酸盐包覆材料金属磷酸盐包覆材料主要有AlPO4㊁MnPO4等㊂金属磷酸盐在界面附近有转化成非晶态的趋势,这个过程可抑制相变的发生,使三元材料内部和界面处的结构更加稳定,提高材料的循环稳定性㊂Tang等[11]通过简单的干混和煅烧,成功合成了AlPO4改性的NCM622㊂研究结果表明,在NCM622表面上Al和P的存在形式分别是LiAlO2和Li3PO4,它们是由AlPO4和NCM622在煅烧过程中发生化学反应产生的㊂Al取代Ni位生成LiAlO2和Li3PO4包覆层,共同稳定了NCM622的结构㊂尽管与原始NCM622相比,在0.1C倍率时初始放电比容量有所降低,但是AlPO4提高了循环性能并缓解了高温状态下的晶格应变,提升了材料的结构稳定性,降低了微裂纹的产生㊂Liu等[12]也将AlPO4在NCM811正极材料上形成Li3PO4-LiAlO2包覆层,并研究了不同AlPO4包覆量对样品的改性㊂NCM811表面形成的Li3PO4-LiAlO2保护层不仅可以减轻表面附近的层状结构退化生成盐岩相,还可以防止HF和H2O对本体材料的侵蚀,从而使材料的结构更加稳定㊂Wu等[13]首次将非水溶液中的成膜工艺用于三元正极材料AlPO4的改性,这种方法克服了沉淀方法中包覆层不均匀的难点㊂AlPO4质量分数可控制在0.2%,这远低于之前大多数文献中的含量,超薄包覆层可以最大限度地减少包覆层的形成对Li+扩散速率㊁电子电导率和能量密度的影响,但较薄的包覆层也更容易消耗殆尽㊂2㊀离子/电子电导性材料2.1㊀离子电导性材料高镍三元正极材料的倍率性能较差,主要源于Li+在层状结构中的二维扩散通路和阻碍Li+扩散的锂镍混排,这些因素限制了它们在高功率密度领域的应用㊂Huang等[14]通过溶胶-凝胶法将Li2MnO3纳米域引入初级NCM811颗粒的层状结构中,并在这种集成结构中构建许多域边界,从而形成三维离子扩散网络,Li2MnO3包覆NCM811样品的TEM图和选区电子衍射图如图2所示㊂在这种体系中,由于颗粒尺寸减小诱导出了中空结构,增加了Li+的迁移速率,同时Li2MnO3纳米域整合到NCM811基体中,阻碍了锂镍混排的形成㊂上述因素共同促成了Li+的快速传输,从而提高了NCM811的倍率性能㊂LiAlO2具有优异的Li+传输性能㊂LiAlO2包覆层不仅可以稳定正极和电解质之间的界面结构,而且由于其提供了良好的Li+脱嵌过程的传输网络,可以显著提高电化学性能㊂Tang等[15]设计了一种通过蚀刻诱导包覆层策略,在高镍NCM811正极材料上形成γ-LiAlO2保护层和Li+导电性包覆层,以提34郑州大学学报(理学版)第56卷图2㊀Li2MnO3包覆NCM811样品的TEM图和选区电子衍射图[14]Figure2㊀TEM images and selected area electrondiffraction pattern of Li2MnO3-coated NCM811[14]高其电化学性能㊂性能提升主要是由于Al3+扩散到NCM811的晶格内部,可以减轻锂镍混排并增强结构稳定性㊂LiAlO2包覆层为Li+提供了良好的传输网络,提高了结构稳定性并防止核心材料受到电解液的侵蚀㊂Li2TiO3具有较宽的工作电压㊁较高的热稳定性和快速的Li+传输动力学,被认为是有效的用于三元正极表面修饰的包覆层材料㊂He等[16]提出一种新型的Li2TiO3纳米颗粒包覆层,避免了Ti4+的掺杂造成的锂镍混排过程的恶化㊂纳米Li2TiO3包覆的NCA8155显示出几乎没有变化的形貌结构和较低的表面残碱,因此Li2TiO3包覆层显著提升了循环稳定性和倍率性能㊂最优异的表面包覆层不仅能通过阻断电解质和电极表面上高活性阳离子之间的物理接触来解决不稳定性问题,还能稳定电极中晶格氧离子,改善Li+的迁移率㊂Wang等[17]提出了一种直接调控策略,用于适应固相中的高活性阳离子㊂通过利用锂镧镍氧双离子导体(层状钙钛矿La4NiLiO8)包覆层中稳定的氧空位和间隙,显著抑制了表面晶格氧离子的活性,抑制了晶格中的氧释放以及不可逆相变和晶间机械裂纹㊂同时,引入的双离子导体还可以改善Li+在颗粒表面的扩散动力学和材料本体的电子导电性㊂另外,Li等[18]首次采用简单的一步法制备了结构和界面可靠的B掺杂和La4NiLiO8包覆改性的NCM811正极㊂La4NiLiO8包覆层可以防止电极遭受电解液的腐蚀,并提升Li+的传输动力学㊂此外, B掺杂可以有效地抑制有害的H2~H3相变,并将初级粒子的取向调整为径向排列,这阻碍了由于晶体各向异性导致的体积变化而引起的微裂纹产生㊂Yang等[19]通过一种简单的方法成功地制备了La和Al共掺杂和包覆改性的NCM811㊂XRD和XPS证实,La和Al不仅可以掺杂到NCM811本体中,而且可以在表面形成La2Li0.5Al0.5O4包覆层㊂高压电化学性能的提高主要归因于La和Al通过共掺杂增强了体相结构,形成的La2Li0.5Al0.5O4包覆层作为高T c超导氧化物,不仅促进了Li+的传输,而且保护了材料免受电解质的侵蚀㊂此外,残留的锂盐还能通过形成La2Li0.5Al0.5O4而被还原㊂电化学性能的提升表明,La2Li0.5Al0.5O4包覆层的改性和La-Al共掺杂是NCM811材料大规模工业化生产的一种有竞争力的方法㊂Wang等[20]引入晶体结构相似的钙钛矿相来 铆钉 层状结构的膨胀收缩,钉扎效应显著减轻了由于晶体结构的体积变化所带来的有害结构演变㊂与传统材料相比,每个循环中的晶格应变演变减少了近70%,这显著增强了二次颗粒的完整性,从而提高了电池的可逆循环性能㊂这种应变抑制方法拓宽了晶格工程的应用前景,以释放锂嵌(脱)产生的应变,并为开发具有长寿命的高能量密度正极铺平道路㊂Wang等[21]提出一种利用富锂和富锰层状氧化物(lithium-and manganese-rich layered oxide,LMR)的低应变材料在富镍层状氧化物(nickel-rich lay-ered oxide,NLO)正极上重建稳定表面的策略㊂新的表面结构不仅由梯度结构组成,而且形成了丰富的氧空位和阳离子有序的缺陷结构,这种结构可以同时提升Li+的扩散速率并在锂嵌(脱)过程中稳定晶体结构㊂NLO中的这些特征显著改善了电化学性能,特别是在高压循环下的稳定性㊂Tan等[22]通过在NCM811的层状相中引入尖晶石状榫卯结构,可以显著抑制正极材料中不利的体积变化㊂同时,该榫卯结构对Li+的快速传输起到了类似高速公路的作用㊂此外,具有榫卯结构的颗粒通常以最稳定的(003)面终止㊂该工作提供了一种可行的晶格工程,以解决NLO的稳定性和低首次库仑效率的问题,并有助于实现具有高能量密度和长耐久性的锂离子电池㊂Cai等[23]提出了高压诱导析氧的理论,并报道了一种镧系化过程,以调节正极材料的近表面结构,并将这种超越传统的表面修饰推广到贫钴/无钴高44㊀第3期李㊀静,等:锂离子电池高镍三元正极材料表面改性研究进展能量密度层状正极中,证明了有效的表面钝化抑制了表面降解和改善了电化学性能,高压循环稳定性大大增强,最高可达4.8V(相对于Li+/Li)㊂所设计的表面相在高电压下抑制了析氧反应㊂表明通过高氧活性钝化㊁选择性化学合金化和使用湿化学的应变工程进行改性,能获得高性能层状氧化物正极材料㊂Yang等[24]制备了Li0.5La2Al0.5O4(LLAO)原位包覆层和Mn离子补偿掺杂的多层LiNi0.82Co0.14Al0.04O2㊂XRD精修表明,La-Mn协同改性可以实现适当的锂镍混排㊂计算结果和原位XRD分析表明,LLAO包覆层能够有效地抑制二次颗粒中的机械裂纹,这得益于内部晶体应变被抑制㊂测试结果表明,LLAO-Mn改性的循环后的正极具有更完整的形貌,与电解液的副反应更少㊂进一步研究了气体析出时的正极电解质界面,表明NCA-LM2比NCA-P释放更少的CO2,从而达到更稳定的表面㊂2.2㊀电子电导性材料石墨烯具有大的比表面积㊁优异的电子导电性和机械性能,其化学性质稳定㊂石墨烯的引入可以有效地提高电极材料表面的电子电导率㊁电容性能等㊂Luo等[25]通过模板自组装法制备了一种具有三维纳米结构的NCA8155/石墨烯复合材料(G-NCA8155)㊂首先将制备的石墨烯溶在无水乙醇中,在大功率超声搅拌下形成均匀的石墨烯分散液,然后把NCA8155粉末加入上述溶液中,将混合物轻微超声搅拌自组装,透析㊁干燥后得到G-NCA8155㊂石墨烯三维网络增加了材料的比表面积,同时协同效应能够提高电子导电性和稳定晶体结构,从而显著提高倍率性能和循环稳定性㊂Tian等[26]通过共沉淀和水热反应制备了一种具有独特结构的三维多孔石墨烯气凝胶包裹的NCM622纳米颗粒(NCM@GA)㊂由于其高导电性和大量相互交织的开放孔结构,自组装后的石墨烯气凝胶网络可以极大地加快电子和离子的传输速率,提升电化学反应动力学㊂此外,分散良好的NCM622纳米颗粒可以提供更大的电极-电解质界面并促进Li+的快速传输㊂因此,三维导电结构和分散良好的纳米粒子的协同作用可以有效地增强NCM@GA材料的电化学性能㊂Liu等[27]用蔗糖和葡萄糖作为碳料,在NCA8155表面构建纳米碳包覆层㊂结果表明,以蔗糖为碳源构建的包覆层具有更好的电化学性能㊂原因是葡萄糖碳化后形成的包覆层较致密,而蔗糖形成的包覆层相对疏松,内部分布着尺寸较大的孔结构㊂这样的碳包覆层具有较大的比表面积,有利于电解液的浸润,同时也有利于Li+的脱嵌和迁移,并能减缓电解液对本体材料的侵蚀㊂Cao等[28]制备了集聚苯胺(PANI)优异的电子导电性和聚乙二醇(PEG)的高离子导电性于一体的双功能导电聚合物,用于NCM811材料的表面改性,获得高性能NCM@PANI-PEG复合材料㊂具有高弹性和高柔韧性的PANI-PEG聚合物在减轻循环过程中NCM811材料的体积收缩和膨胀方面发挥着至关重要的作用㊂过渡金属的溶解是由电解液分解产生的HF腐蚀引起的,这会对电化学性能产生不利的影响㊂在相同的储存时间下,表面改性电极中Ni㊁Co和Mn过渡金属的溶解量均低于未修饰的电极㊂包覆到NCM811颗粒表面的PANI-PEG保护层提供了物理屏障,以防止正极材料被HF侵蚀,从而抑制过渡金属的溶解,进而提高主体材料在高温下的循环稳定性㊂苝-3,4,9,10-四羧酸二酐(PTCDA)是一种具有高化学稳定性的N型有机半导体材料㊂PTCDA的高电子亲和力(约3.6eV)导致附加负电荷更容易稳定化,为黏附石墨烯提供了理论基础㊂从结构上看,PTCDA分子为二维共轭π电子体系,其所携带的苯环与石墨烯的六方结构是一致的㊂Ning等[29]在PTCDA的作用下,通过简单的物理混合来制备均匀的rGO包覆的NCM811(PG-NCM)材料㊂在使用PG-NCM作为正极材料时,rGO纳米片和PTCDA的协同作用可以提供更好的电子导电性和更稳定的电极-电解质界面㊂特别是P1G1-NCM(仅含质量分数1.0%的添加剂)在所有样品中表现最佳,在1C 倍率下达到了194.1mAh㊃g-1的放电比容量,在循环100次后容量保持率为92.8%,并且在高倍率下性能也得到了提升(10C倍率下放电比容量达到122.1mAh㊃g-1)㊂3㊀复合包覆材料3.1㊀电子电导性材料和金属氧化物复合包覆通过电子电导性材料和金属氧化物复合包覆层可以同时改善正极材料的导电性和结构稳定性㊂在这种方法中,其中一种成分可以通过保护表面免受不需要的副反应来提高循环性能,而另一种成分则提升了电子导电性能,提高了放电比容量㊂Y2O3作为包覆剂,使用石墨烯作为导电添加剂㊂Y2O3属于稀土元素氧化物,具有很高的热稳定性㊂Loghavi等[30]通过湿法化学煅烧的方法用Y2O354郑州大学学报(理学版)第56卷修饰NCA811正极材料,并将制备的材料与石墨烯机械混合㊂电化学性能测试表明,NCA811㊁Y 2O 3/NCA811和石墨烯/Y 2O 3/NCA811材料在2C 倍率下分别提供109㊁136和164mAh ㊃g -1的放电比容量㊂石墨烯/Y 2O 3/NCA811材料在100次循环后(0.5C)依旧拥有180mAh㊃g-1的放电比容量,而原始NCA811仅提供了87mAh ㊃g -1的放电比容量㊂3.2㊀离子电导性和电子电导性材料复合包覆在材料表面构建一种具有高离子和电子导电性的双功能包覆层,可以提高电池在循环过程和离子储存过程中的稳定性㊂本体材料㊁离子包覆材料㊁电子包覆材料和电解质共同形成了四相正极-电解质界面,这对容量保持率的大幅度提高起到了关键作用㊂Yang 等[31]在NCM811表面构建了具有高离子和电子电导率的多功能包覆层,以提高电池在循环过程中的稳定性㊂磷酸与原始NCM811上残留的锂盐发生反应,形成具有碳纳米管穿透的Li 3PO 4包覆层,具有高离子和电子导电性㊂NCM811㊁Li 3PO 4㊁CNT 和电解质共同形成四相正极-电解质界面,这对提高容量保持率起到关键作用,在0.5C 倍率下循环500次后,容量保持率从原始的50.3%提高到84.8%㊂改进后的NCM811在高截止电压4.5V㊁高温55ħ和10C 倍率下依旧具有出色的电化学性能㊂此外,在高湿度空气中暴露2周后,它还可以在500次循环后提供154.2mAh㊃g -1的放电比容量㊂CNT-LPO-NCM 的机理示意图和循环性能如图3所示㊂图3㊀CNT-LPO-NCM 的机理示意图和循环性能[31]Figure 3㊀Schematic diagram of mechanism and cycling performance of CNT-LPO-NCM [31]为了提高锂离子电池正极材料的离子和电子导电性,Na 等[32]提出一种具有高离子导体Li 1.3Al 0.3Ti 1.7[PO 4]3(LATP )和高电子导体多壁碳纳米管的Li 1.03(Ni 0.88Co 0.08Mn 0.04)O 2正极材料的表面改性,LATP 粉末使用改进的Pechini 方法制备而成㊂表面改性的高镍NCM 电极,其表面高离子和电子导电网络能够实现Li +和电子的快速传输,从而显著增强充放电循环期间的电化学性能㊂3.3㊀离子电导性材料和金属氧化物复合包覆金属氧化物可以保护材料免受电解液的侵蚀,金属氧化物包覆层可以提高材料界面结构的稳定性,提升电池的循环性能㊂离子电导性材料包覆层可以增强Li +的传输能力,提高电池的倍率性能㊂离子电导性材料和金属氧化物复合包覆层可以同时提高电池的容量保持率和倍率性能㊂Maiti 等[33]采用了一种简单有效的ALD 包覆策略,用Al 2O 3㊁Li 5AlO 4和Na 5AlO 4对NCM424粉末材料进行表面包覆,从而提高了其氧化还原活性,抑制不可逆的氧从晶格中释放出来㊂在1C 倍率下超过400次循环后,未包覆的NCM424材料的放电比容量仅有63mAh ㊃g -1,而具有复合包覆层的NCM424材料显示出大约两倍的放电比容量㊂通过XPS 光谱和电压分布进行分析,得出了改性后的NCM424材料的表面锰从四价态部分还原到较低的价态㊂根据研究结果,在有ALD 包覆层的情况下,表面锰的还原可能是由于三甲基铝挥发性物质通过其在正极材料表面的分解反应与它们接触而发生的㊂这项工作的关键发现是,与所有包覆的正极材料相比,通过阳离子氧化(Ni 2+/Ni 4+,Co 3+/Co 4+)传递的电荷容量和经过阴离子氧化证实的电荷容量均略低于未包覆材料㊂该发现可能与NCM424颗粒表面包覆层上形成的修饰电极-电解质界面有关㊂4㊀结语高镍三元正极材料因其具有高能量密度而备受科研人员关注㊂然而,这些材料存在着一系列问题,如对空气敏感㊁与电解液反应㊁阳离子混排㊁晶格氧析出㊁过渡金属离子迁出以及微裂纹形成等,这些问题限制了高镍三元正极材料的应用与发展㊂包覆是高镍三元正极材料表面改性的重要方法㊂常用的包覆材料有电化学惰性材料㊁离子电导性材料㊁电子电导性材料㊂在此基础上发展到复合包覆,常见的复合包覆有电子电导性材料和金属氧化物复合包覆㊁离子电导性和电子电导性材料复合包覆㊁离子电导性材料和金属氧化物复合包覆㊂包覆材料不仅可以保护材料表面和提高材料的结构稳定性,还可以提高离子或电子的传输能力,提高材料的电化学性能㊂64。
浅谈锂离子电池高镍三元正极材料

浅谈锂离子电池高镍三元正极材料摘要:本文主要对锂离子电池高镍三元正极材料进一步分析了解。
锂离子电池的飞速发展、新能源汽车的工业化趋势,带动了高能量密度、安全性高且成本低廉的电极材料的研发。
在正极材料中,高镍三元材料由于具有这一系列的优点而得到了广泛的关注。
关键词:锂离子电池;高镍;三元正极材料引言:随着经济社会的快速发展,人类对于能源的需求不断增加,传统化石能源也随着时间的推移而逐渐耗尽。
传统化石能源在使用过程中对环境的影响越来越不可忽视,全球气温变暖,空气质量的下降很大程度上都与化石能源的燃烧有关。
因此,开发新型的清洁可再生能源具有十分重要的意义。
化学电源作为一种储能转换装置,在目前人们的日常生活中起着至关重要的作用。
锂离子电池由于其高能量密度,高功率密度,环境友好性而得到了广泛的研究。
锂离子电池也已被广泛的应用在交通运输、储能转换、医疗设施与航空航天等多个领域。
一、锂离子电池的概述锂离子电池是一种二次电池(充电电池),它主要依靠锂离子在正极和负极之间移动来工作。
在充放电过程中,Li+在两个电极之间往返嵌入和脱嵌:充电时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。
锂离子电池是一种浓差电池,其正极和负极可进行锂离子可逆的脱出和嵌入,正极通常是高电位锂和过渡金属的氧化物,负极通常是低电位嵌锂化合物。
锂离子电池以碳素材料为负极,以含锂的化合物作正极,没有金属锂存在,只有锂离子,这就是锂离子电池。
锂离子电池是指以锂离子嵌入化合物为正极材料电池的总称。
锂离子电池的充放电过程,就是锂离子的嵌入和脱嵌过程。
在锂离子的嵌入和脱嵌过程中,同时伴随着与锂离子等当量电子的嵌入和脱嵌。
在充放电过程中,锂离子在正、负极之间往返嵌入/脱嵌和插入/脱插,被形象地称为“摇椅电池”。
二、三元正极材料的概述到目前为止最先进的可充电电池就是锂离子电池,1991年索尼集团把锂电池技术推向了世界,一直以来电池材料的不断进步成为推动锂电池技术向前发展的动力之一,先进的电极材料成为了锂电池更新换代的关键技术。
高镍三元正极材料多次烧结

高镍三元正极材料多次烧结全文共四篇示例,供读者参考第一篇示例:高镍三元正极材料是锂离子电池中一种重要的正极材料,具有高容量、高能量密度和长循环寿命的特点。
由于其结构特殊,高镍三元正极材料在制备过程中需要进行多次烧结,以达到理想的性能。
一、高镍三元正极材料的特点高镍三元正极材料一般由镍、钴、锰和锂等元素组成,具有高镍含量、高比能量和高安全性。
这种材料在锂离子电池中被广泛应用,可以提高电池的能量密度和循环寿命,是未来新一代电池材料的发展方向。
高镍三元正极材料在制备过程中存在一些问题,如颗粒分布不均匀、容量衰减快等,这就需要进行多次烧结来改善其性能。
二、多次烧结的意义1. 改善颗粒分布:高镍三元正极材料在烧结过程中会形成颗粒,而多次烧结可以使颗粒更加均匀分布,提高电池的循环寿命和性能稳定性。
2. 优化结晶结构:多次烧结可以优化高镍三元正极材料的结晶结构,使其晶格更加稳定,提高电池的充放电性能。
3. 减少氧化物:在高温下,高镍三元正极材料容易被氧化,多次烧结可以减少氧化物的生成,提高材料的稳定性和耐高温性能。
三、多次烧结的工艺流程1. 初步混合:将镍、钴、锰和锂等元素按一定比例混合,形成正极材料的原料。
2. 一次烧结:将初步混合的原料进行一次烧结,使其形成初步的颗粒结构。
3. 粉碎:对一次烧结后的材料进行粉碎,得到更小的颗粒。
4. 二次烧结:将粉碎后的材料进行二次烧结,使颗粒更加均匀分布,并优化其结晶结构。
5. 循环:根据需要,可以进行多次烧结,直至达到理想的性能。
高镍三元正极材料多次烧结是提高材料性能的有效途径,通过优化工艺流程和控制条件,可以制备出性能稳定的正极材料,为电池行业的发展和应用提供坚实的基础。
希望未来在材料研究和生产中能够进一步完善高镍三元正极材料的制备技术,为新能源领域的发展作出更大的贡献。
第二篇示例:高镍三元正极材料是锂离子电池中常用的一种正极材料,具有高容量、高能量密度和长循环寿命等优点,因此受到广泛关注。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高镍三元材料的技术发展趋势是怎样的
吴建华表示,针对高镍三元材料的制备瓶颈,科恒提出了利用特殊金属氧
化物对表面进行修饰的改性思路。
高镍三元正极材料具有高克比容量、高能量密度、低成本等一系列优势,
是一种极有应用前景及市场前景的下一代锂离子电池材料。
与此同时,高镍三元材料也存在一系列棘手的问题挑战:1、充电态下晶
格失氧,不可逆结构相变;2、高镍含量导致的Ni2+与Li+混排;3、长循环
过程中的微裂痕,性能衰减;4、表面碱度高,对CO2、H2O敏感。
尤其是高镍三元材料表面碱度高,对CO2、H2O敏感,因此材料制备时
需要更严格的全过程管控制备条件,更严格的包装存储条件以及更严格的后
期加工使用条件。
不同材料厂家也在采取不同创新工艺等实现手段,突破高镍三元材料的量
产应用。