随机过程精品课件 (3)
合集下载
《数学随机过程》课件

《数学随机过程》PPT课 件
欢迎大家来到今天的课程,本PPT课件将介绍数学随机过程的定义、分类、 特性、应用领域及实例,带您领略数学随机过程的魅力。
数学随机过程的定义
数学随机过程是描述随机变量随时间或空间的变化规律的数学模型。
数学随机过程的分类
离散时间随机过程
在离散时间点上定义的随机变量序列。
马尔可夫过程
用于模拟金融资产的价格变化。
用于预测天气变化及气象灾害 风险。
交通流量
用于优化交通规划及道路设计。
数学随机过程的实例
泊松过程
用于描述随机事件的到达 过程,如电话呼叫的到达。
随机游走
用于模拟股票价格随机波 动。
排队论
用于研究服务系统中顾客 达到、等待和离开的规律。
总结和要点
数学随机过程是一种重要的数学工具,可以描述和分析不确定性的变化。
具有马尔可夫性质的随机过程。
连续时间随机过程
在连续时间上定义的随机变量函数。
布朗运动
具有连续、平稳、独立增量的随机过程。
数学随机过程的特性
1
随机性
随机过程的未来状态是不确定的。
2
独立增量
过程在不同时间间隔上的增量是相互独立的。
3
平稳性
统计特性在时间上保持不变。数学随机过程的应用领域
金融市场
天气预报
欢迎大家来到今天的课程,本PPT课件将介绍数学随机过程的定义、分类、 特性、应用领域及实例,带您领略数学随机过程的魅力。
数学随机过程的定义
数学随机过程是描述随机变量随时间或空间的变化规律的数学模型。
数学随机过程的分类
离散时间随机过程
在离散时间点上定义的随机变量序列。
马尔可夫过程
用于模拟金融资产的价格变化。
用于预测天气变化及气象灾害 风险。
交通流量
用于优化交通规划及道路设计。
数学随机过程的实例
泊松过程
用于描述随机事件的到达 过程,如电话呼叫的到达。
随机游走
用于模拟股票价格随机波 动。
排队论
用于研究服务系统中顾客 达到、等待和离开的规律。
总结和要点
数学随机过程是一种重要的数学工具,可以描述和分析不确定性的变化。
具有马尔可夫性质的随机过程。
连续时间随机过程
在连续时间上定义的随机变量函数。
布朗运动
具有连续、平稳、独立增量的随机过程。
数学随机过程的特性
1
随机性
随机过程的未来状态是不确定的。
2
独立增量
过程在不同时间间隔上的增量是相互独立的。
3
平稳性
统计特性在时间上保持不变。数学随机过程的应用领域
金融市场
天气预报
随机过程及其平稳性PPT课件

coefficient)。
24
第24页/共43页
偏相关系数
X •
设 两
个
、
1
随机
变和X量2的是影三响个X。相3在互这之种间情都况有下关,系两的个随随机机变变量量,的每相个关随系机数变反量映都的包其含实有不另是
这两个变量之间的真正关系,因为这两个随机变量的水平都受第三个随机变量水
平的影响。设法将第三个变量的影响从前个变量中去掉后,再计算两“净值”序
.|. |
9
-0.159
-0.025
55.674
0.000
30
•
.**| . |
.|. |
10
- 0第. 23403页/共-40 3. 0页3 7
58.274
0.000
View/correlogram/选Level,OK
31
第31页/共43页
从上图样本自相关函数的值分析
• Autocorrelation的图形没有截尾或拖尾特征, • 还有许多值落在临界值范围之外,所以,可以初步判断时间序列Y有非平稳性。 • 下面分析DY的平稳性。
• 1983 615.0000
• 1984 726.0000
• 1985 992.0000
• 1986 1170.000
• 1987 1282.000
• 1988 1648.000
• 1989 1812.000
• 1990 1936.000
29
• 1991 2167.000
第29页/共43页
View/correlogram/level/ok
感谢您的观看!
43
第43页/共43页
800 600 400 200
24
第24页/共43页
偏相关系数
X •
设 两
个
、
1
随机
变和X量2的是影三响个X。相3在互这之种间情都况有下关,系两的个随随机机变变量量,的每相个关随系机数变反量映都的包其含实有不另是
这两个变量之间的真正关系,因为这两个随机变量的水平都受第三个随机变量水
平的影响。设法将第三个变量的影响从前个变量中去掉后,再计算两“净值”序
.|. |
9
-0.159
-0.025
55.674
0.000
30
•
.**| . |
.|. |
10
- 0第. 23403页/共-40 3. 0页3 7
58.274
0.000
View/correlogram/选Level,OK
31
第31页/共43页
从上图样本自相关函数的值分析
• Autocorrelation的图形没有截尾或拖尾特征, • 还有许多值落在临界值范围之外,所以,可以初步判断时间序列Y有非平稳性。 • 下面分析DY的平稳性。
• 1983 615.0000
• 1984 726.0000
• 1985 992.0000
• 1986 1170.000
• 1987 1282.000
• 1988 1648.000
• 1989 1812.000
• 1990 1936.000
29
• 1991 2167.000
第29页/共43页
View/correlogram/level/ok
感谢您的观看!
43
第43页/共43页
800 600 400 200
随机过程 马尔科夫过程93页PPT

பைடு நூலகம்
1、最灵繁的人也看不见自己的背脊。——非洲 2、最困难的事情就是认识自己。——希腊 3、有勇气承担命运这才是英雄好汉。——黑塞 4、与肝胆人共事,无字句处读书。——周恩来 5、阅读使人充实,会谈使人敏捷,写作使人精确。——培根
随机过程 马尔科夫过程
11、用道德的示范来造就一个人,显然比用法律来约束他更有价值。—— 希腊
12、法律是无私的,对谁都一视同仁。在每件事上,她都不徇私情。—— 托马斯
13、公正的法律限制不了好的自由,因为好人不会去做法律不允许的事 情。——弗劳德
14、法律是为了保护无辜而制定的。——爱略特 15、像房子一样,法律和法律都是相互依存的。——伯克
随机过程课件

1
m X (t1 )][ x2 m X (t 2 )] f ( x1 x2 ; t1 , t 2 )dx1dx 2 f ( x1, x2 ; t1 , t 2 )dx1dx 2
x x
1 2
X(t) 协方差与相关函数的关系为 当 mx (t ) 0 时 C X (t 1 , t 2 ) R X (t 1 , t 2 ) 在协方差定义中取t1=t2=t,就有
为XT 的均值函数或数学期望。其中F(x,t)是过程 的一维分布函数。 若是连续型随机变量,有 mX (t) xf(x,t)dx 其中f(x,t)是一维分布密度。 12
2.随机过程的方差 若 DX (t) 2 (t) E[X(t) mX (t)]2 存在,t∈T, X 称为X(t)的方差。 x (t) Dx (t) 称为X(t)的标准差。 它们描绘过程的样本曲线在各个t时刻对均 值 m X ( t ) 的离散程度, 对每个t1∈T, EX (t1 ) 反映t1状态取值的概率平均。 DX (t1 ) 反映t1状态取值与 EX (t1 ) 离散程度。 在工程中随机过程的均方值具有物理意义,比 较有用。均方值定义为: E[ X 2 (t )] X (t ) DX (t ) E( X 2 (t )) E 2 ( X (t )) 有关系式: 13 Dx (t ) x (t ) [mx (t )]2 即
第一章. 随机过程的基本概念
§1.1 随机过程及其概率分布
在实际问题中,有时需要对随机现象的变化进 行研究,这时就必须考虑无穷个随机变量或一族 随机变量, 我们就称这种随机变量族为随机过程。 例1: 生物群体的增长问题。在描述群体的发展 或演变过程中, 以 Xt 表示在时刻 t 群体的个数, 则 对每一个 t ,Xt 是随机变量。假设我们从 t =0 开 始每隔24小时对群体的个数观测一次, 则{Xt , t =0, 1, 2, ...}是一个随机过程。 例2: 电话呼唤问题。某电话总机在[0,t]时间 内收到的呼唤次数用 Xt 来表示, 则对于固定的 t , 1 Xt 是随机变量。于是{Xt , t ∈[0, ∞)}是随机过程。
随机过程课件.ppt

随机过程的统计描述 二 有限维分布族
两种描述
分布函数 特征数
设随机过程X (t),t T,对每一固定的t T ,随机变量X (t)的分布函数与t有关, 记为FX (x,t) PX (t) x,x R,称它为随机过程X (t),t T的一维分布函数 FX (x,t),t T称为一维分布函数族
为了描述随机过程在不同时刻状态之间的统计联系, 一般地,对任意n(n 2,3,L )个不同的时刻,t1,t2,L tn T
研究生课程
随机过程
汪荣鑫编 主讲教师:田ቤተ መጻሕፍቲ ባይዱ俊
2013年9月
第一章 随机过程基本概念
第1节 随机过程及其概率分布
1)随机过程概念 随机过程被认为是概率论的“动力学”部分,即
它的研究对象是随时间演变的随机现象,它是从 多维随机变量向一族(无限多个)随机变量的推广。
自然界中事物的变化过程可以大致分成为两类: 确定性过程:事物变化的过程可用时间的确定函数表示;
4
x1 (t )
3
2
1
t1' t1 t2 t2' t3 t3' t4' t4
t
4
例5:考虑抛掷一颗骰子的试验:
(1) 设X n是第n次(n 1)抛掷的点数,对于n 1, 2,L 的不同值,
X n是随机变量,服从相同的分布,P( X n
i)
1 6
,i
1, 2,3, 4,5, 6
因而X n , n 1构成一随机过程,称为伯努利过程或伯努利随机序列,
它的状态空间为1,2,3,4,5,6。
(2) 设Yn是前n次抛掷中出现的最大点数,Yn , n 1也是
一随机过程,它的状态空间仍是1, 2,3, 4,5, 6。
随机过程总复习.ppt

3、全数学期望公式
E(X |Y ) 是随机变量Y的函数,当 Y y 时取值E(X |Y y)
因而它也是随机变量。
定理 离散型
对一切随机变量X和Y,有
E(X) E[E(X |Y )]
E( X ) E( X | Y y j )P(Y y j ) j1
连续型 E( X ) E( X | Y y) fY ( y)dy
k0
(eit )k
k!
e eeit e (eit 1)
条件分布函数与条件期望
1、条件分布函数的定义
离散型 若P(Y y j ) 0 ,则称
P(X
xi
|Y
yj)
P(X xi ,Y P(Y yj )
yj)
pij p• j
为在条件 Y y j 下,随机变量X的条件分布律 。
同样
P(Y
yj
t1t22 E[(U E(U ))2 ] t1t22 D(U ) 3t1t22
1.严平稳过程
定义1
设随机过程{ X (t) , t T },若对任意的
t1,t2 , , tn T 和任意的 (使得ti T )
( X (t1 ), , X (tn ))与 ( X (t1 ), , X (tn )) 具有相同的联合分布, 记为
t 3
x1
et
x1 et
随机过程的数字特征
1.均值函数 X (t ) E[ X (t )]
2.方差函数
D[ X (t)] E[( X (t) X (t))2 ]
3.协方差函数
E[ X 2 (t )] X 2 (t )
(t1, t2 ) E[( X (t1 ) X (t1 ))( X (t2 ) X (t2 ))]
北大随机过程课件:第 3 章 第 5 讲 更新过程
f (t ) = f1 (t ) ⊗ f 2 (t ) = ∫ λ e − λ (t − μ ) ⋅ λ e − λμ d μ
0 t
= ∫ e − λt ⋅ λ 2 d μ
0
t
= λ ⋅ λ te − λt
Sn
( λt )n −1 −λt = ∑ xi ,表示过程的第 n 次更新时刻; f n (t ) = λ ⋅ e (n − 1)! i =1
2.4 更新过程的极限,平均更新时间与更新速率
在有限的时间内更新的次数是有限的、当时间 t 趋于无穷时,更新的次数趋于无穷, 考虑到,
S n 是第 n 次更新事件发生的时刻,
N(t)是直到时刻 t 发生更新事件的次数,
S N (t ) < t ≤ S N (t ) +1
S N (t ) N (t )
泊松过程作为更新过程的均值过程
⎡ n −1 ( λt )i − λt ⎤ m ( t ) = ∑ Fn (t ) = ∑ ⎢1 − ∑ e ⎥ i ! n =1 n =1 ⎢ i =0 ⎥ ⎣ ⎦ i i ∞ ⎡ ∞ ( λt ) e− λt − n−1 ( λt ) e− λt ⎤ = ∑ ⎢∑ ⎥ ∑ i i ! ! n =1 ⎢ i = 0 i =0 ⎥ ⎣ ⎦
∞ ∞
= ∑∑
n =1 i = n − λt
∞
∞
( λt ) e − λt =
i
i!
∑∑
i =1 n =1 ∞
∞
i
( λt ) e − λt
i
i!
=e
∑
i =1
∞
( λt ) i
i!
i
=e
i
− λt
( λt ) λt ∑ i =1 ( i − 1) !
随机过程 北京理工课件
π
2 2
2
3 2 2
P
π F (x; ) = 4
1 3
0, 1 , 3 2 , 3 1,
1 3
x < 2 2
1 3
∴
2 ≤ x < 2 2 ≤ x < x ≥ 3 2 2 3
2 2 2
X(
π
2
) = A cos π
∴
0, π F ( x, ) = 2 1,
4
随机过程 的有限维分布族
对任意固定的t∈ , 是一维随机变量, 对任意固定的 ∈T,X(t)是一维随机变量 其分 是一维随机变量 布函数是P{X(t)≤x}, 记为 记为F(x; t), 即 布函数是 F(x; t)= P{X(t)≤x}, 为随机过程X(t)的一维分布函数。 的一维分布函数。 称F(x; t)为随机过程 为随机过程 的一维分布函数 如对任意两个固定t 是二个随 如对任意两个固定 1 , t2∈T , X(t1) , X(t2)是二个随 机变量, 机变量,称 F(x1, x2 ; t1, t2) = P{X(t1)≤x1, X(t2) ≤x2} 为随机过程X(t) 的二维分布函数; 的二维分布函数; 为随机过程 一般地,对任意固定的t 一般地,对任意固定的 1, t2, … , tn∈T。X(t1), 。 个随机变量, X(t2) , … , X(tn)是n个随机变量,称 是 个随机变量 F(x1, …, xn ; t1, …, tn) = P{X(t1)≤x1, …, X(tn)≤xn} 5 为随机过程X(t) 的n 维分布函数 维分布函数. 为随机过程
= 0 取值仅一个0,且知 P ( X ( ) = 0) = 1 取值仅一个0 2 2
北大随机过程课件泊松过程PPT
事件先于第二个过程的第一个事件的概率,即
Pr{ x<y}。
2018/11/10
泊松分布相关的问题
(5). (续)
1 x 2 x dx e e 1 0 1 dx ( 1 2 )e ( ( 1 2 ) 0
1 2 ) x
泊松分布的母函数
( t ) t n t (1 s ) (s) Pn s e s e n! n 0 k 0
n n
2018/11/10
泊松过程的统计特征
泊松过程的均值:
E N (t ) nP{N (t ) n}
n 0
d ( z ) dz z 1 d t (1 z ) e dz z 1 t
se s e (t s ) s t t te
2018/11/10
泊松分布相关的问题
(5).有两个相互独立的泊松过程{N1(t), t>0}及
{N2(t), t>0},它们在单位时间内出现事件的平
均数分别是λ1 、λ2,设x,y分别是两个过程出
现第一次事件的时刻,求第一个过程的第一个
2018/11/10
泊松分布相关的问题
(5).(续)
( 1 x ) 1 x 2 x 0 dx 1 (k 1)! e e
fTn (t ) e
t
(t 0)
2018/11/10
泊松分布相关的问题
(3). 泊松过程{N(t), t>0}的第n个 事件到达时间t的概率密度分布 .
0 ~ t 到达n-1个, 即: t ~ t t 内有一 个到达。
( ) f ( ) e (n 1)!
Pr{ x<y}。
2018/11/10
泊松分布相关的问题
(5). (续)
1 x 2 x dx e e 1 0 1 dx ( 1 2 )e ( ( 1 2 ) 0
1 2 ) x
泊松分布的母函数
( t ) t n t (1 s ) (s) Pn s e s e n! n 0 k 0
n n
2018/11/10
泊松过程的统计特征
泊松过程的均值:
E N (t ) nP{N (t ) n}
n 0
d ( z ) dz z 1 d t (1 z ) e dz z 1 t
se s e (t s ) s t t te
2018/11/10
泊松分布相关的问题
(5).有两个相互独立的泊松过程{N1(t), t>0}及
{N2(t), t>0},它们在单位时间内出现事件的平
均数分别是λ1 、λ2,设x,y分别是两个过程出
现第一次事件的时刻,求第一个过程的第一个
2018/11/10
泊松分布相关的问题
(5).(续)
( 1 x ) 1 x 2 x 0 dx 1 (k 1)! e e
fTn (t ) e
t
(t 0)
2018/11/10
泊松分布相关的问题
(3). 泊松过程{N(t), t>0}的第n个 事件到达时间t的概率密度分布 .
0 ~ t 到达n-1个, 即: t ~ t t 内有一 个到达。
( ) f ( ) e (n 1)!
随机过程获奖示范课课件
2 4 9)( 2
1)
d
1
2
2
j[Res( ( 2
2 4 9)( 2 1)
e j
,
j)
Res(
(
2
2 4 9)( 2
1)
e
j
,
3
j)]
j( 3 e 5 e3 ) 3 e 5 e3
16 j 48 j
16 48
Res( ( 2
2 4 9)( 2 1)
e
j
,
j)
lim(
j
j)
阐明信号旳总能量等于能谱密度在全频域上旳积分. 右式也是总能量旳谱体现式.
因为实际中诸多信号(函数)旳总能量是无限旳, 不满足绝对可积旳条件,所以一般研究x(t)在 (-∞,+ ∞)上旳平均功率,即
lim 1 T x2 (t)dt
T 2T T
为了能利用Fouier变换给出平均功率旳谱体现式, 构造一种截尾函数:
x(t)[
1
2
Fx ()e jtd]dt
1
2
[Fx ()
x(t)e jtdt]d
1
2
2
Fx () d
即
x2 (t)dt 1
2
2
Fx () d
( Parseval等式)
即
x2(t)dt 1
2
2
Fx () d
左边为x(t)在(-,+)上的总能量
右边的被积式 Fx () 2 称为信号x(t)的能谱密度.
T x2 (t)dt lim 1
T
T 4T
2
Fx (,T ) d
1
2
1
lim
T 2T