瑞典圆弧法滑动面的确定

合集下载

瑞典条分法毕肖普条分法基本假设

瑞典条分法毕肖普条分法基本假设

瑞典条分法毕肖普条分法基本假设条形分布荷载下土中应力状计算属于平面应变问题,对路堤、堤坝以及长宽比l/b≥10的条形基础均可视作平面应变问题进行处理。

瑞典条分法基本假设:滑面为圆弧面;垂直条分;所有土条的侧面上无作用力;所有土条安全系数相同。

毕肖普条分法基本假设:(双重叠代可解)滑弧为圆弧面;垂直条分;所有土条安全系数相同;考虑土条的侧向受力。

影响基底压力因素主要有:荷载大小和分布基础刚度基础埋置深度土体性质地基土中附加应力假设:地基连续、均匀、各向同性、是完全弹性体、基底压力是柔性荷载。

应力分布:空间问题——应力是x,y,z 三个坐标轴的函数。

平面问题——应力是x,z 两个坐标的函数。

库仑(C. )1773年建立了库仑土压力理论,其基本假定为:(1)挡土墙后土体为均匀各向同性无粘性土(c=0);(2)挡土墙后产生主动或被动土压力时墙后土体形成滑动土楔,其滑裂面为通过墙踵的平面;(3)滑动土楔可视为刚体。

库仑土压力理论根据滑动土楔处于极限平衡状态时的静力平衡条件来求解主动土压力和被动土压力。

朗肯土压力理论是朗肯于1857年提出的。

它假定挡土墙背垂直、光滑,其后土体表面水平并无限延伸,这时土体内的任意水平面和墙的背面均为主平面(在这两个平面上的剪应力为零),作用在该平面上的法向应力即为主应力。

朗肯根据墙后主体处于极限平衡状态,应用极限平衡条件,推导出了主动土压力和被动土压力计算公式。

临塑荷载及临界荷载计算公式的适用条件(1)计算公式适用于条形基础。

这些计算公式是从平面问题的条形均布荷载情况下导得的,若将它近似地用于矩形基础,其结果是偏于安全的。

(2)计算土中由自重产生的主应力时,假定土的侧压力系数K0=1,这与土的实际情况不符,但这样可使计算公式简化。

(3)在计算临界荷载时,土中已出现塑性区,但这时仍按弹性理论计算土中应力,这在理论上是相互矛盾的,其所引起的误差随着塑性区范围的扩大而扩大。

3.4.2 边坡稳定性分析

3.4.2 边坡稳定性分析
代 入
③力矩平衡:
School of Transportation Southeast University,China
东南大学道路与铁道工程国家重点学科
15
四、曲线滑动面的边坡稳定性分析
7
圆心O,半径R 分条
O
R
C

编号

ai
bB 321
法 计
列表计算 Wi bi i
i
An

变化圆心O和半径R

School of Transportation Southeast University,China
节尾
东南大学道路与铁道工程国家重点学科
四、曲线滑动面的边坡稳定性分析
1、概述
1)简化假定 ①圆弧滑动面假定及其圆心的辅助线法;
②条分法简化;
③刚体假定;
④确定性分析方法。
School of Transportation Southeast University,China
东南大学道路与铁道工程国家重点学科
四、曲线滑动面的边坡稳定性分析
◆2、瑞典圆弧滑动条分法圆心确定 1) 4.5H法
计算之前需要先用圆心辅助线法确定滑动圆弧的圆心位置。 --4.5H法
4.5H法 示意图
四、曲线滑动面的边坡稳定性分析
2、瑞典圆弧滑动条分法圆心确定
2)β1和β2 的确定
School of Transportation Southeast University,China
东南大学道路与铁道工程国家重点学科
界面抗力 界面抗力
R2
School of Transportation Southeast University,China

土石坝设计实例

土石坝设计实例

土石坝设计实例基本资料某水库总库容31420m 万,灌溉农田面积5.4万亩。

水库正常蓄水位m 70.116,设计洪水标准采用100 年一遇(%1=p ),设计洪水位m 90.117,相应下游水位m 30.84,设计下泄流量s m 3110;校核洪水标准采用2500年一遇(%2.0=p ),校核洪水位m 60.119,相应下游水位m 70.84,最大下泄流量s m 3150。

水库死水位m 60.93,死库容3115m 万。

於沙高程m 94.91,於沙库容398m 万。

灌溉控制水位m 902.91。

涵管设计流量s m 34,加大流量s m 38.4。

坝基为砂卵石,层厚m 8~4,渗透系数s cm 2108-⨯。

砂卵石下为花岗片麻岩,微风化层深m 2~1,两岸为花岗片麻岩,微风化层深m 2~1。

库区多年平均最大风速s m 0.15,吹程m 2000。

地震烈度5度。

库区雨季较长。

坝址附件沙砾料储量为3600m 万,粘土储量为330m 万,均分布在坝址上、下游各一半,料场距大坝km 3,交通运输方便。

天然状态下粘土的物理力学指标为:粘粒含量%40~%30,天然含水量4%2~3%2,塑性指数71~51,不均匀系数50,有机质含量.4%0,水溶盐含量%2,塑限9%1~7%1,比重72.2~.72;扰动后主要物理力学指标:干容重350.16m kN ,饱和容重360.20m kN ,浮容重360.10m kN ,渗透系数s cm 6102-⨯。

砂砾石物理力学指标:渗透系数s cm 3103-⨯,内摩擦角:水上︒=291ϕ(总应力强度指标),︒=321ϕ(有效应力强度指标);水下:水上︒=272ϕ(总应力强度指标),︒=302ϕ(有效应力强度指标)。

比重7.2,不均匀系数15=η。

坝轴线处河床底高程m 20.82。

浆砌块石容重取为354.22m kN .坝顶无交通要求。

大坝的设计1.枢纽等别与建筑物级别根据水库总库容31420m 万,查表10-,为三等工程;根据灌溉面积5.4万亩,查表10-为四等工程,按最高级别确定为三等工程。

边坡工程第4章-边坡稳定性极限平衡条分法(冶金出版社)

边坡工程第4章-边坡稳定性极限平衡条分法(冶金出版社)
(7) 边坡稳定性系数定义为滑动面所能提供的最大抗滑力矩与滑体所受
到的最大下滑力矩之比,力矩的矩心均为滑动圆弧对应的圆心。
αi
Ni
忽略所有条间作用力:
2(n-1)+(n-1) = 3n-3
假定滑动面上作用点位置:n
未知数: 2n+1
方程数: 4n
4n-3
4.2 瑞典条分法
计算分析
滑面法向力平衡:
平衡条件:
条间合力方向为条块顶部倾角和底部倾角的均值
2n-2
Spencer法
条间力比值(X/E)为常数,力矩及力平衡
2n-2
Morgenstern-Price法
条间力比值(X/E)与水平方向坐标之间存在函数关系X/E=λf(x)
2n-2
通用条分法(GLE法)
假定条间力函数f(x)
2n-2
Sarma法
条间力满足强度准则
滑动面上的力+作用点位置=3n
6n-2
安全系数 F =1
可建立方程:
平衡方程:
超静定问题,为求解此种超静定问题,
解决办法有三种:
(1) 引入变形协调条件,增加方程数;
4n
摩尔–––库仑准则:
已知量:4n个
未知量:6n-2个
相 差:2n-2个
(2) 引入未知量之间的关系式,增加方程数;
(3) 对边坡模型进行一定的简化,忽略部分考
74.212
➢ 只考虑条间法向力,满足垂直方向力的平衡及整体力矩平衡,
90.228
力多边形基本闭合;
➢ 虽然是一种非严格条分法,但国内外大量的边坡稳定性计算工
程实例表明:通过该方法算出的边坡安全系数与Morgenstern-
56.384

瑞典圆弧法

瑞典圆弧法

C
7
分条:b=R/10
编号:过圆心垂 线为0条中线
列表计算 li Wi i A
Fs (C l W cos tg ) W sin
i i i i i i i
3
Wi Ti
变化圆心O和半径R
Fs最小
END
i
Ni
3 粘性土坡-瑞典条分法
4. 瑞典简单条分法的讨论
2 1 -2 -1 0
3 粘性土坡-条分法基本原理
2. 条分法中的求解条件
第 i 条 土 的 作 用 力
Hi+1 Pi hi Hi
O
s 2 1 -2 -1 0
R b 3 B 4 5
Wi
Pi+1 hi+1 Ti Ni ti A
C
6
7
3 粘性土坡-条分法基本原理
2. 条分法中的求解条件
n条土条的未知量数目 Hi+1 •Wi是已知的 Wi •作用在土条体底部的力与作用点: Pi+1 Pi hi+1 Ni Ti ti 共3n个 hi •作用在条间上的力及作用点: Hi Ti Pi Hi hi 共3(n-1)个 Ni (两端边界是已知的) •假设总体安全系数为Fs (且每条Fs都相等) ti Fs 共1个 •未知数合计=3n+3(n-1)+1=6n-2
1 瑞典圆弧法 2 瑞典条分法 3 简化Bishop条分法 4 普遍条分法(Janbu法) 思考题: 为什么粘性土坡通 常不会发生表面滑 动?
O R
3 粘性土坡-瑞典圆弧法
二、整体圆弧法(瑞典圆弧法)
圆弧滑动法由 瑞典工程师提 出的。冰川沉 积厚层软粘土
3 粘性土坡-瑞典圆弧法
二、整体圆弧法(瑞典圆弧法)

土质路基边坡临界滑动面的确定计算分析

土质路基边坡临界滑动面的确定计算分析

2020.22科学技术创新土质路基边坡临界滑动面的确定计算分析陈臣(重庆交通大学,重庆400074)土质路基边坡的失稳滑塌在公路建设和运营中属于一种常见地质灾害,边坡稳定性定量分析是边坡加固设计和治理的研究基础,任何有效的加固处理措施都源自对边坡稳定安全系数和临界滑动面位置的合理确定[1]。

一般将土质类边坡的稳定性问题假定为平面应变问题,将土质边坡的滑裂面简化为圆弧曲面[2]。

通常采用极限平衡分析理论,利用瑞典法(Fellenius )、Bishop 法、Janbu 法、Spencer 法、Morgenstern-Price 法[3]。

这些方法最大的差异在于条间相互作用力的考虑不同,会影响计算所得边坡的稳定性安全系数[4]。

文中利用GEO-SLOPE 软件包中的SLOPE/W 程序对土质边坡的稳定性进行计算分析,确定路基边坡的潜在滑动面,采取有效的加固治理措施,将潜在的威胁扼杀在初步阶段。

1计算分析理论利用极限平衡理论计算分析边坡的稳定性时,认为土体遵从Mohr-Coulomb 破坏准则,由极限状态下土条受力和力矩的平衡来分析边坡稳定性[5]。

极限平衡理论条分法的基本原理如下:取单位长度土质边坡按平面问题计算,假设土质路基边坡潜在的圆弧滑动面,如图1所示。

圆弧滑裂面为AD ,圆心为O ,半径为R ,将滑坡土体ABCD 分成若干个土条,任一土条的受力情况,如图1所示。

图1条分法计算土质边坡稳定由土条的受力情况可知,作用在土条上的力由5个,但只能建立3个平衡方程,因此必须做适当的假设求得F i 和N i 。

瑞典条分法不考虑土条间相互作用力(即,X i =X i+1和Y i =Y i+1)。

简化的Bishop 法只是考虑了土条间水平方向的相互作用力,忽略了竖向的作用力,并假定各土条底部滑动面上的抗滑系数均相同,为平均安全系数。

Janbu 法假定相邻土条间力合力作用点位置已知,这样就减少了n-1个未知量。

边坡稳定性分析方法简介

边坡稳定性分析方法简介

边坡稳定性分析方法简介介绍了边坡稳定性分析的极限平衡法:瑞典圆弧法、简化Bishop法、简化Janbu法、Morgenstern&Price法、Spencer法以及嚴格Janbu法;以及边坡稳定的可靠性分析方法:蒙特卡洛法、可靠指标法、统计矩法、模糊可靠度分析法以及随机有限元法。

标签:边坡稳定性滑坡极限平衡法可靠性分析方法一、引言滑坡是指人工或自然边坡在外界因素的诱发下丧失自身稳定性而发生滑移的地质现象,是一种严重的地质灾害,长期以来给人类造成了巨大的财产损失和人生伤害,是人类面临的三大自然灾害之一。

我国是滑坡多发国家之一,据《中国地质环境公报》有关数据显示,我国2012年全国共发生各类地质灾害18751起,全年共造成人员伤亡1021人,其中发生滑坡灾害8971起,造成人员伤亡379人,分别占地质灾害总数的47.8%和37.1%。

因此研究边坡稳定的影响因素及滑坡的发生机理,探索滑坡的防治技术具有极高的社会价值。

鉴于此,人类对边坡稳定的研究已有将近百年的历史,这使得边坡稳定性分析的方法也极大的丰富了起来。

二、边坡稳定的极限平衡分析方法极限平衡法假定边坡出现滑动面且处于极限平衡状态,然后将边坡离散成有垂直边界的土条,假设土条为刚体(即不考虑土条的变形),建立土条的静力平衡方程,通过求解静力平衡方程得到边坡的安全系数。

1776年法国工程师库仑提出了计算挡土墙土压力的方法,标志着土力学雏型的产生;1857年朗肯在假设墙后土体各点处于极限平衡状态的基础上,建立了计算主动和被动土压力的方法;库仑和朗肯在分析土压力时采用的方法后来被推广到边坡稳定分析中,形成了一个边坡稳定性评价体系,这就是极限平衡法。

在过去将近一个世纪中,这一方法逐步从一种经验性的简化方法发展成一个具有完整理论体系、较为成熟的分析方法。

(1)瑞典圆弧法。

瑞典人Fellenius提出了边坡稳定分析的圆弧滑动分析方法,即瑞典圆弧法,它是边坡稳定分析领域中最早的一种方法。

整体圆弧滑动法

整体圆弧滑动法

无黏性土的土坡稳定-有渗流作用时的无粘性土土坡分析
Tf
JT N
G
稳定条件:Tf>T+J
K Tf T J
顺坡出流情况:
J w sin
K Tf G cos tan cos tan tan T J G sin J sin w sin sat tan
O
R
i
d
c
i A
da b
c
Pi+1Xi+1
Gi
Xi
Pi
b
a Ti Ni
li
条分法分析步骤I
C B
1.按比例绘出土坡剖面
2.任选一圆心O,确定滑动
面,将滑动面以上土体分成 几个等宽或不等宽土条
H
3.每个土条的受力分析
i

Ni li

1 li
Gi
cosi
i
Ti li

1 li
Gi
sin i
B
β1 β
B
4.5H
=0
>0
H 2H E
黏性土的土坡稳定-整体圆弧滑动法
稳定系数法
c
N s h
泰勒(Taylor,D.W,1937)用图表表达影响因素的相互关系:根据不同的 绘出 与Ns的关系曲线
①已知坡角及土的指标c、、,求稳定的坡高h ②已知坡高h及土的指标c、、,求稳定的坡角 ③已知坡角、坡高H及土的指标c、、,求稳定安全系数K
概述
天然土坡 人工土坡 滑坡 圆弧滑动法
坡顶
坡底
坡脚
坡角
坡高
土坡稳定分析问题
概述-天然土坡
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

您所在的位置是:课程学习》第四章》第三节 曲线滑动面的边坡稳定性分析
第三节 曲线滑动面的边坡稳定性分析

1、适用范围
土的粘力使边坡滑动面多呈现曲面,通常假定为圆弧滑动面。
圆弧法适用于粘土,土的抗力以粘聚力为主,内摩擦力力较小。边坡破坏时,破
裂面近似圆柱形。

2、分析方法
(1)瑞典法(Wolmar Fellenius法)
(2)简化的Bishop法
(3)传递系数法

3、圆弧滑动面的分析法
假定滑动面为圆柱面,截面为圆弧,利用
土体极限平衡条件下的受力情况,滑动面
上的最大抗滑力矩与滑动力矩之比:

饱和粘土,不排水剪条件下,

4、圆弧滑动面的条分法
(1)瑞典圆弧滑动法假设
①假设圆弧滑动面确定圆心和半径
②把滑动土体分成若干条(条分法)
③建立土条的静力平衡方程求解(取单位厚度计算)

(2)瑞典圆弧滑动法平衡公式
假设(静定化条件)各土条间的合力Si,Si+1平
行于滑动面,并且相等(Si=Si+1)。



建立土条垂直于滑动面的静力平衡方程:

(3)瑞典圆弧滑动法原理-顶面有开裂

粘性土土坡滑动前,坡顶常常出现竖向裂缝,
深度近似采用土压力临界深度,

;裂缝的出现将使滑弧长度由
AC减小到,如果裂缝中积水,还要考虑静
水压力对土坡稳定的不利影响。

5、瑞典圆弧滑动条分法——圆心确定
(1)4.5H法
计算之前需要先用圆心辅助线法确定滑动圆弧的圆心位置。
(2)其他辅助方法-36°线法
(3)最危险滑动面圆心的确定
确定最危险滑动面圆心位置
①当土的内摩擦角=0时,最危险圆
弧滑动面为一通过坡脚的圆弧,其圆
心为D点。
②当土的内摩擦角>0时,最危险圆
弧 滑动面也为一通过坡脚的圆弧,
其圆心在ED的延长线上。
(4)条分法基本思路
滑动力矩:;
抗滑力矩:;
又因为:;;
所以:;
由,

所以可得:。
(5)瑞典圆弧滑动条分法总示意图
其中:——各土条的法向应力;
——各土条的切向应力;
——各土条重心与圆心连接线对竖轴y的夹角;
——滑动面圆弧全长;
——圆心角。

(6)条分法分析步骤
①按比例绘出土坡剖面
②任选一圆心O,确定滑动面,将滑动面以上土体分成几个等宽或不等宽土条
③每个土条的受力分析


假设两组合力静力平衡:;,于是

;。
④滑动面的总滑动力矩:;

⑤滑动面的总抗滑力矩:;
⑥确定安全系数:。
条分法是一种试算法,应选取不同圆心位置和不同半径进行计算,求最小的安全
系数。

6、存在问题
(1)简便法在力学上的矛盾(计算假定引起)

(2)相临土条的si不相等

7、简化的Bishop法
(1)建立土条侧面力平衡方程,土条i:

又:;
所以:

(2)按滑动体整体力矩平衡
忽略成对条间力产生的力矩
又因为:,
可得一般式:
又且;
所以;则;

所以可得简化式;
(3)迭代法求Ks

通常迭代3~4次就可满足精度要求。
8、公路路基设计规范验算方法
路堤稳定性分析包括路堤堤身的稳定性、路堤和地基的整体稳定性、路堤沿
斜坡地基或软弱层带滑动的稳定性内容。

路堤堤身的稳定性、路堤和地基的
整体稳定性宜采用Bishop法进行分析,稳
定安全系数按下式计算:

(1)当土条滑弧位于地基中时
(2)当土条滑弧位于路堤中时

9、不平衡推力法
路堤沿斜坡地基或软弱层带滑动的稳定性可采用不平衡推力法分析计算。

上一页 下一页 返回上一级

相关文档
最新文档