中学数学不等式证明方法
利用导数证明数列不等式(含解析)

利用导数证明数列不等式利用导数证明数列不等式,在高考题中能较好的考查学生灵活运用知识的能力,一方面以函数为背景让学生探寻函数的性质,另一方面体现数列是特殊的函数,进而利用恒成立的不等式将没有规律的数列放缩为为有具体特征的数列,可谓一题多考,巧妙地将函数、导数、数列、不等式结合在一起,也是近年来高考的热门题型. 1、常见类型:(1)利用放缩通项公式解决数列求和中的不等问题 (2)利用递推公式处理通项公式中的不等问题 2、恒成立不等式的来源:(1)函数的最值:在前面的章节中我们提到过最值的一个作用就是提供恒成立的不等式.(2)恒成立问题的求解:此类题目往往会在前几问中进行铺垫,暗示数列放缩的方向.其中,有关恒成立问题的求解,参数范围内的值均可提供恒成立不等式. 3、常见恒成立不等式:(1) 对数→多项式 (2) 指数→多项式4、关于前项和的放缩问题:求数列前项公式往往要通过数列的通项公式来解决,高中阶段求和的方法有以下几种:(1)倒序相加:通项公式具备第项与第项的和为常数的特点.(2)错位相减:通项公式为“等差等比”的形式(例如,求和可用错位相减).(3)等比数列求和公式(4)裂项相消:通项公式可裂为两项作差的形式,且裂开的某项能够与后面项裂开的某项进行相消. 注:在放缩法处理数列求和不等式时,放缩为等比数列和能够裂项相消的数列的情况比较多见,故优先考虑.5、大体思路:对于数列求和不等式,要谨记“求和看通项”,从通项公式入手,结合不等号方向考虑放缩成可求和的通项公式.6、在放缩时要注意前几问的铺垫与提示,尤其是关于恒成立问题与最值问题所带来的恒成立不等式,往往提供了放缩数列的方向.7、放缩通项公式有可能会进行多次,要注意放缩的方向:朝着可求和的通项公式进行靠拢(等比数列,裂项相消等).ln 1x x <-1x e x >+n n k 1n k -+⨯2nn a n =⋅n a8、数列不等式也可考虑利用数学归纳法进行证明(有时更容易发现所证不等式与题目条件的联系).【经典例题】1.(2020·江苏省如皋中学高三三模)已知函数()ln f x kx x x =-,k ∈R . (1)当2k =时,求函数()f x 的单调区间;(2)当01x <≤时,()f x k ≤恒成立,求k 的取值范围; (3)设n N *∈,求证:ln1ln 2ln (1)2314n n n n -+++≤+. 2.(2020·四川省内江市第六中学高三三模)已知函数2()ln(1)(0,0),()2x f x ax x a g x x -=+≥>=+. (1)讨论函数()()y f x g x =-的单调性;(2)若不等式()()1f x g x ≥+在[0,)x ∈+∞时恒成立,求实数a 的取值范围; (3)当1a =时,证明:1111+35721n +++<+…*1()(N )2f n n ∈. 3.(2020·安徽合肥·三模)已知函数()x xf x e e ax -=--(e 为自然对数的底数),其中a ∈R.(1)试讨论函数f (x )的单调性;(2)证明:22132ln 2(1)ni n n i i n n =-->+∑. 4.(2020·安徽相山·淮北一中高三三模)已知函数()||ln (0)f x x a x a =-->. (∈)讨论()f x 的单调性;(∈)比较222222ln 2ln 3ln 23n n++⋯+ 与(1)(21)2(1)n n n -++的大小(n N +∈且)2n >,并证明你的结论.5.(2020·云南高三三模)已知函数()1ln f x x a x =-- (1)讨论()f x 的单调性; (2)证明:()*333ln 2ln3ln 1,222332n n N n n n +++<∈≥---.【精选精练】1.(2020·榆林市第二中学高三三模)已知(),()1(xf x eg x x e ==+为自然对数的底数).(1)求证()()f x g x ≥恒成立;(2)设m 是正整数,对任意正整数n ,2111(1)(1)(1)333n m ++⋅⋅⋅+<,求m 的最小值. 2.(2020·广东广州高三三模·)已知函数()()()3214613x f x x ex x g x a x lnx -⎛⎫=-+-=--- ⎪⎝⎭,.(1)求函数()f x 在()0+∞,上的单调区间; (2)用{}max m n ,表示m n ,中的最大值,()f x '为()f x 的导函数,设函数()()(){}h x max f x g x '=,,若()0h x ≥在()0+∞,上恒成立,求实数a 的取值范围; (3)证明:()*11111ln 312313n N n n n n n+++++>∈++-. 3.(2020·安徽蚌埠·高三三模)已知函数()()ln 1x f x x+=.(1)分析函数()f x 的单调性;(2)证明:2111ln 3ln 212n n n ⎛⎫+⎛⎫+++≤ ⎪ ⎪-⎝⎭⎝⎭,2n ≥. 4.(2020·全国高三三模)已知函数2()2ln 1()f x ax x x a =--∈R . (1) 若1x e=时,函数()f x 取得极值,求函数()f x 的单调区间; (2) 证明:()*11111ln(21)3521221nn n n n +++⋯+>++∈-+N . 5.(2020·辽宁沙河口·辽师大附中高三三模)已知函数()()2ln 11f x p x p x =+-+.(1)讨论函数()f x 的单调性;(2)当1p =时,()f x kx ≤恒成立,求实数k 的取值范围; (3)证明:()()*111ln 1123n n N n+<+++⋯+∈.6.(2020·浙江省宁波市鄞州中学高三三模)已知函数()()2f x ax a a R =+∈. (1)讨论函数()f x 的单调性;(2)若()0f x ≤对任意的1x ≥-恒成立,求a 的取值范围;(32600⋅⋅⋅+<.7.(2020·广东广州·高三三模)已知函数()2ln f x a x x =+,其中a R ∈.(1)讨论()f x 的单调性;(2)当1a =时,证明:()21f x x x ≤+-;(3)试比较22222222ln2ln3ln4ln 234n n++++与()()()12121n n n -++ ()*2n N n ∈≥且的大小,并证明你的结论. 8.(2020·黑龙江南岗·哈师大附中三模)已知函数()()2ln 1f x ax bx x =+-+.(∈)当0a =时,函数()f x 存在极值,求实数b 的取值范围;(∈)当1b =时,函数()f x 在()0,∞+上单调递减,求实数a 的取值范围;(∈)求证:()()1*113ln 2122N 14nk n n k =-+<∈-∑. 9.(2020·黑龙江哈尔滨·三模)已知函数()()()()ln 111f x x k x k R =---+∈ (1)求函数()f x 的单调区间;(2)若()0f x ≤恒成立,试确定实数k 的取值范围;(3)证明:()()*1ln 2ln 3ln ,13414n n n n n n -++⋅⋅⋅+<∈>+N . 10.(2020·浙江三模)已知数列{}n a ,112a =,1ln 1n n a a +=-. (1)求证:11n n a a +<<; (2)求证:123201912020a a a a ⋅⋅⋅⋅⋅⋅<.【经典例题】1.(2020·江苏省如皋中学高三三模)已知函数()ln f x kx x x =-,k ∈R . (1)当2k =时,求函数()f x 的单调区间;(2)当01x <≤时,()f x k ≤恒成立,求k 的取值范围; (3)设n N *∈,求证:ln1ln 2ln (1)2314n n n n -+++≤+. 【答案】(1)单调递增区间为(0,)e ,单调递减区间为(,)e +∞;(2)[1,)+∞;(3)证明见解析.【解析】(1)当2k =时,()2ln f x x x x =-,'()1ln f x x =-,由'()0f x >,解得0x e <<;由'()0f x <,解得x e >,因此函数()f x 单调递增区间为(0,)e ,单调递减区间为(,)e +∞.(2)()ln f x kx x x =-,故'()1ln f x k x --=.当1k时,因为01x <≤,所以10ln k x -≥≥,因此'()0f x ≥恒成立,即()f x 在(]0,1上单调递增,所以()(1)f x f k ≤=恒成立.当1k <时,令'()0f x =,解得1(0,1)k x e -=∈.当1(0,)k x e -∈,'()0f x >,()f x 单调递增;当1(,1)k x e -∈,'()0f x <,()f x 单调递减; 于是1(1))(k f ef k -=>,与()f x k ≤恒成立相矛盾.综上,k 的取值范围为[1,)+∞.(3)由(2)知,当01x <≤时,ln 1x x x -≤. 令x =21n *()n N ∈,则21n +22nln 1n ≤,即22ln 1n n -≤, 因此ln 1n n +≤12n -. 所以ln1ln 2ln 011(1) (2312224)n n n n n --+++≤+++=+. 2.(2020·四川省内江市第六中学高三三模)已知函数2()ln(1)(0,0),()2x f x ax x a g x x -=+≥>=+. (1)讨论函数()()y f x g x =-的单调性;(2)若不等式()()1f x g x ≥+在[0,)x ∈+∞时恒成立,求实数a 的取值范围; (3)当1a =时,证明:1111+35721n +++<+…*1()(N )2f n n ∈.【答案】(1)见解析;(2)[1,+∞);(3)证明见解析. 【解析】(1)求导数可得2224441(2)(1)(2)a ax a y ax x ax x +-'=-=++++, 当1a 时,0y ',∴函数()()y f x g x =-在[)0+∞,上单调递增; 当01a <<时,由0y '>可得x > ∴函数在⎡⎫∞⎪⎢⎪⎣⎭上单调递增,在0⎡⎢⎣上单调递减; (2)由(1)知当1a 时,函数()()y f x g x =-在[)0+∞,上单调递增, ()()(0)(0)1f x g x f g ∴--=,即不等式()()1f x g x +在[)0x ∈+∞,时恒成立, 当01a <<时,函数在0⎡⎢⎣上单调递减,存在00x ⎡∈⎢⎣使得00()()(0)(0)1f x g x f g -<-=, 即不等式00()()1f x g x +不成立, 综上可知实数a 的取值范围为[1,)+∞;(3)由(2)得当1a 时,不等式()()1f x g x >+在(0,)x ∈+∞时恒成立, 即2(1)2x ln x x +>+,12(1)12ln k k∴+>+,*()k N ∈. 即11[(1)]122ln k lnk k <+-+, ∴11(21)32ln ln <-,11(32)52ln ln <-,11(43)72ln ln <-,11[(1)]212ln n lnn n ⋯<+-+, 将上述式子相加可得11111111(1)(1)()357212222lnn ln lnn ln n f n n +++⋯+<-=<+=+ 原不等式得证.3.(2020·安徽合肥·三模)已知函数()x xf x e e ax -=--(e 为自然对数的底数),其中a ∈R.(1)试讨论函数f (x )的单调性;(2)证明:22132ln 2(1)ni n n i i n n =-->+∑. 【答案】(1)答案见解析(2)证明见解析.【解析】(1)因为()x xf x e ea -'=+-,且2x x e e -+≥,所以当2a ≤时,()0f x '≥,所以()f x 在R 上为增函数,当2a >时,由()0f x '>,得0x x e e a -+->,所以2()10x xe ae -+>,所以22()124x a a e ->-,所以2x ae ->或2xa e -<,所以2xa e +>2xa e -<,所以24ln2aa x 或24ln2aa x ,由()0f x '<,得0x x e e a -+-<,解得2244ln22aa aax ,所以()f x 在ln 22a a ⎛⎫⎪ ⎪⎝⎭上递减,在,ln2a ⎛--∞ ⎪⎝⎭和ln 2a ⎛⎫++∞ ⎪ ⎪⎝⎭上递增.(2)由(1)知,当2a =时,()2xxf x e e x -=--在R 上为增函数,所以1()(ln )2ln g x f x x x x==--在(0,)+∞上为增函数, 所以当*n N ∈且2n ≥时,13()(2)22ln 2ln 422g n g ≥=--=-=32ln 04e >, 即12ln 0n n n-->,所以212211ln 1(1)(1)11n n n n n n n >==---+-+, 所以211111ln 2ln 23ln 34ln 4ln ni i i n n==++++∑ 1111111121213131414111n n >-+-+-++--+-+-+-+ 111121n n =+--+2322(1)n n n n --=+, 所以22132ln 2(1)ni n n i i n n =-->+∑.4.(2020·安徽相山·淮北一中高三三模)已知函数()||ln (0)f x x a x a =-->. (∈)讨论()f x 的单调性;(∈)比较222222ln 2ln 3ln 23n n++⋯+ 与(1)(21)2(1)n n n -++的大小(n N +∈且)2n >,并证明你的结论.【答案】(I )见解析;(II )见解析 【解析】(∈)函数()f x 可化为ln ,()ln ,0x x a x af x a x x x a --≥⎧=⎨--<<⎩,当0x a <<时,1()10f x x '=--<,从而()f x 在(0,)a 上总是递减的, 当x a ≥时,11()1x f x x x'-=-=,此时要考虑a 与1的大小.若1a ≥,则()0f x '≥,故()f x 在[,)a +∞上递增,若01a <<,则当1a x ≤<时,()0f x '<,当1x >时,()0f x '>,故()f x 在[,1)a 上递减, 在(1,)+∞上递增,而()f x 在x a =处连续,所以 当1a ≥时,()f x 在(0,)a 上递减,在[,)a +∞上递增; 当01a <<时,()f x 在(0,1)上递减,在[1,)+∞上递增.(∈)由(∈)可知当1a =,1x >时,1ln 0x x -->,即ln 1x x >-,所以ln 11x x x <-.所以 222222ln 2ln 3ln 23n n+++22211111123n <-+-+-222111123n n ⎛⎫=--+++⎪⎝⎭11112334(1)n n n ⎛⎫<--+++⎪⨯⨯+⎝⎭11121n n ⎛⎫=--- ⎪+⎝⎭1(1)2(1)n n n -=--+ 2221(1)(21)2(1)2(1)n n n n n n --+-+==++.5.(2020·云南高三三模)已知函数()1ln f x x a x =-- (1)讨论()f x 的单调性;(2)证明:()*333ln 2ln3ln 1,222332n n N n n n +++<∈≥---. 【答案】(1)当0a 时,()f x 在(0,)+∞内单调递增;当0a >时,()f x 在(0,)a 内单调递减,在(,)a +∞内单调递增.(2)证明见解析 【解析】(1)解:()1ln (0)f x x a x x =-->,()1af x x'∴=-.∈若0a ,则()0f x '>,()f x ∴在(0,)+∞内单调递增;∈若0a >,则()f x '在(0,)+∞内单调递增,且()0f a '=,∴当(0,)x a ∈时,()0f x '<;当(,)x a ∈+∞时,()0f x '>,()f x ∴在(0,)a 内单调递减,在(,)a +∞内单调递增.综上所述,当0a 时,()f x 在(0,)+∞内单调递增;当0a >时,()f x 在(0,)a 内单调递减,在(,)a +∞内单调递增.(2)证明:当1a =时,()1ln =--f x x x .由(1)知()(1)0f x f =,ln 1x x ∴-,当且仅当1x =时,等号成立, 令()*,2x n n N n =∈,ln 1n n ∴<-,33ln 1111(1)1n n n n n n n n n n -∴<==---++. 从而3ln 2112223<--, 3ln 3113334<-- …3ln 111n n n n n <--+, 累加可得333ln 2ln3ln 11223321n n n n ++⋯+<----+, 111212n -<+, 333ln 2ln3ln 122332n n n ∴++⋯+<---,证毕.【精选精练】1.(2020·榆林市第二中学高三三模)已知(),()1(x f x e g x x e ==+为自然对数的底数).(1)求证()()f x g x ≥恒成立;(2)设m 是正整数,对任意正整数n ,2111(1)(1)(1)333n m ++⋅⋅⋅+<,求m 的最小值. 【答案】(1)证明见解析;(2) 2.【解析】(1)令()()()1xF x f x g x e x =-=--,则()1xF x e '=-∴当(),0x ∈-∞时,()0F x '<;当()0,x ∈+∞时,()0F x '>()F x ∴在(),0-∞上单调递减;在()0,∞+上单调递增()()0min 0010F x F e ∴==--=,即()()()0F x f x g x =-≥恒成立 ()()f x g x ∴≥恒成立(2)由(1)知:13113n n e +≤221111113333332111111333n n n e e e e++⋅⋅⋅+⎛⎫⎛⎫⎛⎫∴++⋅⋅⋅+≤⋅⋅⋅⋅= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭又211111111133********13nn n⎛⎫⨯- ⎪⎛⎫⎝⎭++⋅⋅⋅+==⨯-<⎪⎝⎭- 11112322111111333n n e e ⎛⎫⨯- ⎪⎝⎭⎛⎫⎛⎫⎛⎫∴++⋅⋅⋅+≤< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭又2111111333n m ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭恒成立 12m e ∴≥ m 为正整数 m ∴的最小值为:22.(2020·广东广州高三三模·)已知函数()()()3214613x f x x ex x g x a x lnx -⎛⎫=-+-=--- ⎪⎝⎭,.(1)求函数()f x 在()0+∞,上的单调区间; (2)用{}max m n ,表示m n ,中的最大值,()f x '为()f x 的导函数,设函数()()(){}h x max f x g x '=,,若()0h x ≥在()0+∞,上恒成立,求实数a 的取值范围; (3)证明:()*11111ln 312313n N n n n n n+++++>∈++-. 【答案】(1)()f x 单调递增区间为()3+∞,;() f x 单调递减区间为()03,;(2)43a ≥;(3)详见解析. 【解析】(1)因为()()3246x f x x ex x -=-+-,所以()()()()3332632x x f x x ex x e --=-+-='-+,令()0f x '=得3x =,当3x >时,()0f x '>,()f x 单调递增; 当03x <<时,()0f x '<,()f x 单调递减;所以函数()f x 在()0+∞,上的单调递增区间为()3+∞,,单调递减区间为()03,; (2)由(1)知()()()332x f x x e-'=-+,当3x ≥时,()0f x '≥恒成立,故()0h x ≥恒成立;当3x <时,()0f x '<,又因为()()(){}0h x max f x g x '=≥,恒成立,所以()0g x ≥在()03,上恒成立, 所以11ln 03a x x ⎛⎫---≥ ⎪⎝⎭,即11ln 3xa x+-≥在()03,上恒成立, 令()()1ln 03x F x x x +=<<,则()13max a F x -≥, 由()()221ln 1ln x xF x x x-+-'==, 令()0F x '=得1x =,易得()F x 在()01,上单调递增,在[)13,上单调递减,所以()()11max F x F ==,所以113a -≥,即43a ≥, 综上可得43a ≥.(3)证明:设()()10xm x e x x =-->,则()10xm x e '=->,所以()m x 在()0+∞,上单调递增,所以()()00m x m >=,即1x e x >+, 所以1111111111312312333112313n n n nn n n nn n n n n ee eeen n n n n++++++++++++=⋅⋅⋅⋅⋅⋅⋅>⋅⋅⋅⋅⋅⋅⋅⋅++- 123331231n n n nn n n n +++>⋅⋅⋅⋅⋅⋅⋅=++-,所以11111ln 312313n n n n n+++++>++-. 3.(2020·安徽蚌埠·高三三模)已知函数()()ln 1x f x x+=.(1)分析函数()f x 的单调性;(2)证明:2111ln 3ln 212n n n ⎛⎫+⎛⎫+++≤ ⎪ ⎪-⎝⎭⎝⎭,2n ≥. 【答案】(1)()f x 在区间()–1,0和()0,∞+上单调递减;(2)证明见解析. 【解析】(1)由题意得:()f x 的定义域为()()–1,00,+∞,且()()2ln 11xx x f x x -++'=,令()()ln 11x g x x x=-++则()()21x g x x -'=+,()–1,0x ∈时,()0g x '>; ()0,x ∈+∞时,()0g x '<.即()g x 在()–1,0上单调递增,在()0,∞+上单调递减.因为()00g =,则在()–1,0和()0,∞+上()0g x <. 因为20x >,所以在()–1,0和()0,∞+上()0f x '<, 即函数()f x 在区间()–1,0和()0,∞+上单调递减. (2)由(1)可知,当02x <≤时,()()ln 322x f f =≥,即()ln 3ln 12x x +≥, 当2n ≥时,2021n <≤-,则2ln 3ln 111n n ⎛⎫+≥⎪--⎝⎭, 即()()2ln 3ln 1ln 1ln 111n n n n ⎛⎫+=+--≥ ⎪--⎝⎭, 所以()()()ln 1ln 1ln ln 2ln 4ln 2ln3ln1n n n n +--+--++-+-111ln 31122n n ⎛⎫≥++++ ⎪--⎝⎭整理得:()111ln 1ln ln 2ln1ln 31122n n n n ⎛⎫++--≥++++⎪--⎝⎭, 即2111ln 3ln 212n n n ⎛⎫+⎛⎫+++≤ ⎪ ⎪-⎝⎭⎝⎭,2n ≥,不等式得证.4.(2020·全国高三三模)已知函数2()2ln 1()f x ax x x a =--∈R . (1) 若1x e=时,函数()f x 取得极值,求函数()f x 的单调区间; (2) 证明:()*11111ln(21)3521221nn n n n +++⋯+>++∈-+N . 【答案】(1)见解析;(2)见解析【解析】(1)由题意可得,()'222(0,)f x ax lnx x a R =-->∈,由1x e =时,函数()f x 取得极值知12'220af e e ⎛⎫=+-= ⎪⎝⎭,所以0a =. 所以()()21,'22(0)f x xlnx f x lnx x =--=-->, 所以10x e <<时,()'0f x >;1x e>时,()'0f x <; 所以()f x 的单调增区间10e ⎛⎫ ⎪⎝⎭,,单调减区间为1e⎛⎫+∞ ⎪⎝⎭,. (2)当1a =时,()221f x x xlnx =--,所以()()'22221f x x lnx x lnx =--=--,令()ln 1g x x x =--,则()11'1x g x x x-=-=,当01x <<时,()'0g x <;当1x >时,()'0g x >,()g x 的单调减区间为()01,,单调增区间为()1+∞,, 所以()()10g x g ≥=,所以()'0f x ≥,()f x 是增函数,所以1x >时,()()22ln 110f x x x x f =-->=,所以1x >时,12ln x x x->, 令*211,21n x n N n +=>∈-,得2121212ln 212121n n n n n n +-+->-+- 即2221112ln 212121n n n n +⎛⎫+--> ⎪-+-⎝⎭ 所以1121111ln 2122122121n n n n n +⎛⎫>+- ⎪---+⎝⎭上式中123n =,,,…,n ,然后n 个不等式相加, 得到()11111...ln 213521221nn n n ++++>++-+ 5.(2020·辽宁沙河口·辽师大附中高三三模)已知函数()()2ln 11f x p x p x =+-+.(2)当1p =时,()f x kx ≤恒成立,求实数k 的取值范围; (3)证明:()()*111ln 1123n n N n+<+++⋯+∈. 【答案】(1) 见详解;(2)1k;(3)证明见解析.【解析】(1)()f x 的定义域为()0 +∞,,()()()221'21p x p p f x p x x x-+=+-=,当1p >时,()'0f x >,故()f x 在()0,∞+单调递增; 当0p ≤时,()'0f x <,故()f x 在()0,∞+单调递减;当10p -<<时,令()'0f x =,解得x =则当x ⎛∈ ⎝时,()'0f x >; x ⎫∈+∞⎪⎪⎭,时,()'0f x <.故()f x 在⎛ ⎝单调递增,在 ⎫+∞⎪⎪⎭,单调递减. (2)因为0x >,所以:当1p =时,()f x kx ≤恒成立11ln ln kx xx k x+⇔+≤⇔≥, 令()1ln xh x x +=,则()max k x h ≥, 因为()2ln 'xh x x-=,由()'0h x =得x =1, 且当()0,1x ∈时,()'0h x >;当()1,x ∈+∞时,()'0h x <.所以()h x 在()0,1上递增,在()1,+∞上递减,所以()()max 11h x h ==, 故1k .(3)取,则代入由题设可得,取,并将上述各不等式两边加起来可得()()*111ln 1123n n N n+<+++⋯+∈.6.(2020·浙江省宁波市鄞州中学高三三模)已知函数()()2f x ax a a R =+∈.(2)若()0f x ≤对任意的1x ≥-恒成立,求a 的取值范围;(32600⋅⋅⋅+<. 【答案】(1)()f x 在211,14a ⎛⎫-- ⎪⎝⎭上单增;在211,4a ⎛⎫-+∞ ⎪⎝⎭上单减;(2)1,2⎛⎤-∞- ⎥⎝⎦;(3)证明见解析. 【解析】()'f x a =+.(1)当0a ≥时,()'0f x ≥,所以()f x 在()1,-+∞上单调递增; 当0a <时,由()'0f x >解得21114x a -<<-, 所以()f x 在211,14a ⎛⎫-- ⎪⎝⎭上单调递增;在211,4a ⎛⎫-+∞ ⎪⎝⎭上单调递减.(2)当0a ≥时,()()2000f x a x =+≥+=,故不合题意;当0a <时,由(∈)知()max 21104x f f a ⎛⎫=-≤ ⎪⎝⎭,211(21)(21)20141244a a f a a a a a a +-⎛⎫=-+- ⎪⎝-+=≤⎭102a a <∴≤-,综上,a 的取值范围为1,2⎛⎤-∞- ⎥⎝⎦.(3)由(2)知,取12a =-112x ≤+成立.当()1,2,3,,20482020kx k ==时,1111220204040k k =≤⨯+=⨯+,⋅⋅⋅+()11234204820484040++++++<20491024204826004040⨯=+<.7.(2020·广东广州·高三三模)已知函数()2ln f x a x x =+,其中a R ∈. (1)讨论()f x 的单调性;(2)当1a =时,证明:()21f x x x ≤+-;(3)试比较22222222ln2ln3ln4ln 234n n++++与()()()12121n n n -++ ()*2n N n ∈≥且的大小,并证明你的结论. 【答案】(1)见解析;(2)见解析;(3)见解析【解析】(1)函数()f x 的定义域为:()0,∞+,()'f x = 222a a x x x x++=∈当0a ≥时,()'0f x >,所以()f x 在()0,∞+上单调递增∈当0a <时,令()'0f x =,解得x =当0x <<时,220a x +<,所以()'0f x <, 所以()f x 在⎛ ⎝上单调递减;当x >220a x +>,所以()'0f x >,所以()f x 在⎫+∞⎪⎪⎭上单调递增. 综上,当0a ≥时,函数()f x 在()0,∞+上单调递增;当0a <时,函数()f x 在⎛ ⎝上单调递减,在⎫+∞⎪⎪⎭上单调递增. (2)当a 1=时,()2ln f x x x =+,要证明()21f x x x ≤+-,即证ln 1x x ≤-,即证:ln 10x x -+≤. 设()g ln 1x x x =-+,则()g'x =1xx-,令()0g x '=得,1x =. 当()0,1x ∈时,()0g x '>,当()1,x ∈+∞时,()0g x '<. 所以1x =为极大值点,且()g x 在1x =处取得最大值.所以()()10g x g ≤=,即ln 10x x -+≤.故()21f x x x ≤+-.(3)证明:ln 1x x ≤-(当且仅当1x =时等号成立),即11lnx x x≤-, 则有2222ln +22222222223111111111n 132323ln lnn n n n ⎛⎫+⋯+<-+-+⋯+-=--++⋯+ ⎪⎝⎭()111n 123341n n ⎛⎫<--++⋯+ ⎪ ⎪⨯⨯+⎝⎭ ()()()12111111111n 1n 1233412121n n n n n n -+⎛⎫⎛⎫=---+-+⋯+-=---=⎪ ⎪+++⎝⎭⎝⎭, 故:2222ln +()()()22221213321n n ln lnn n n -++⋯+<+ 8.(2020·黑龙江南岗·哈师大附中三模)已知函数()()2ln 1f x ax bx x =+-+.(∈)当0a =时,函数()f x 存在极值,求实数b 的取值范围;(∈)当1b =时,函数()f x 在()0,∞+上单调递减,求实数a 的取值范围;(∈)求证:()()1*113ln 2122N 14nk n n k =-+<∈-∑. 【答案】(∈)0b >;(∈)12a ≤-;(∈)证明见解析. 【解析】(∈)当0a =时,()()()ln 11f x bx x x =-+>-,()()1111bx b f x b x x --'=-=++, ∈当0b ≤时,()0f x '<,则()f x 在()1,-+∞递减,无极值; ∈当0b >时,令()1'0,11f x x b==->-, 1()0,(1,1),()f x x f x b '<∈--单调递减,1()0,(1,),()f x x f x b '>∈-+∞单调递增,所以11,()x f x b=-取得极小值.综上可知:0b >.(∈)当1b =时,()()()2ln 10f x ax x x x =+-+>,()1212011x f x ax ax x x '=+-=+≤++恒成立 121a x ⇔-≥+对一切()0,x ∈+∞恒成立, ∈11x +>,∈1011x <<+,∈21a -≥,∈12a ≤-.(∈)由(∈)知:当12a =-时,()()21ln 12f x x x x =-+-+在()0,∞+递减,∈()()00f x f ≤=,即:()2ln 12x x x -+<,令221x n =-,则()22212ln 212121n n n n +-<---, 当2n ≥时,()2222122ln 212144121n n n n n n +-<=---+- ()21114121n n n n ⎛⎫<=- ⎪--⎝⎭,∈23ln 2ln 311-=- 2511ln 13322⎛⎫-<- ⎪⎝⎭ 27111ln 55223⎛⎫-<- ⎪⎝⎭……221111ln 212121n n n n n +⎛⎫-<- ⎪---⎝⎭累加得,()11112ln 212ln 31212nk n k n =⎛⎫⋅-+<-+- ⎪-⎝⎭∑ 5153ln3ln32222n =--<-<, 当1n =时,131ln 324-<,即:1ln 32>,综上,()1113ln 212124nk n k =-+<-∑. 9.(2020·黑龙江哈尔滨·三模)已知函数()()()()ln 111f x x k x k R =---+∈ (1)求函数()f x 的单调区间;(2)若()0f x ≤恒成立,试确定实数k 的取值范围;(3)证明:()()*1ln 2ln 3ln ,13414n n n n n n -++⋅⋅⋅+<∈>+N . 【答案】(1)答案不唯一,具体见解析;(2)[)1,+∞;(3)证明见解析. 【解析】(1)函数()()()ln 111f x x k x =---+的定义域为()1,+∞,且()11f x k x '=--. ∈当0k ≤时,()0f x '>恒成立,故函数()y f x =在()1,+∞上为增函数; ∈当0k >时,令()0f x '<,得1k x k +>时,即函数()y f x =在1,k k +⎛⎫+∞⎪⎝⎭上单调递减, 令()0f x '>,得11k x k +<<时,即函数()y f x =在11,k k +⎛⎫⎪⎝⎭上单调递增.综上:当0k ≤时,函数()y f x =在()1,+∞上为增函数; 当0k >时,函数()y f x =在11,k k +⎛⎫ ⎪⎝⎭上为增函数,在1,k k +⎛⎫+∞⎪⎝⎭上为减函数; (2)当0k ≤时,()211f k =-+≥,显然()0f x ≤不恒成立; 当0k >时,()max 11ln 0k f x f k k +⎛⎫==≤⎪⎝⎭,即1k .综上:实数k 的取值范围是[)1,+∞;(3)由(2)可知,当1k =时()0f x ≤恒成立,即()ln 12x x -<-,()ln 121x x x-∴<-, ()()22ln ln 11121212n n n n n n n --=<=+++,可得出ln 2132<,ln 3242<,,ln 112n n n -<+, ()()*1ln 2ln 3ln 121,23412224n n n n n N n n --∴+++<+++=∈≥+. 10.(2020·浙江三模)已知数列{}n a ,112a =,1ln 1n n a a +=-. (1)求证:11n n a a +<<; (2)求证:123201912020a a a a ⋅⋅⋅⋅⋅⋅<. 【答案】(1)证明见解析;(2)证明见解析. 【解析】(1)∈先利用数学归纳法证明1n a <. (∈)当1n =时,1112a =<成立; (∈)假设n k =时1k a <成立,则1ln 10k k a a +=-<,11k a +∴<. 综上所述,对任意的n *∈N ,1n a <; ∈利用导数证明1x e x -≥,设()1x f x ex -=-,则()1e 1x f x -'=-,当1x <时,()0f x '<,此时函数()y f x =单调递减; 当1x >时,()0f x '>,此时函数()y f x =单调递增.所以,()()0110f x f e ≥=-=,即1x e x -≥,当且仅当1x =时,等号成立.1n a <,()()10n f a f ∴>=,即1n a n e a ->,1ln 1n n a a +=-,11n a n n a e a -+∴=>,综合∈∈可知11n n a a +<<;(2)利用数学归纳法证明1n n a n ≤+. ∈当1n =时,112a =满足1n n a n ≤+;∈假设n k =时成立,即1k ka k ≤+,则由1ln 1n n a a +=-,得111111k k a k k k a eee---+++==≤,要证1112k k ek -++<+,令11,012t k ⎛⎫-=∈- ⎪+⎝⎭,则要证11012t e t t ⎛⎫<-<< ⎪-⎝⎭,21 / 21 构造()11x f x e x =+-,1,02x ⎛⎫∈- ⎪⎝⎭,()()()()22211111x x e x f x e x x --'=-=--,令()()211x h x e x =--,1,02x ⎛⎫∈- ⎪⎝⎭,则()()()()2212110x x x h x e x e x e x '=-+⋅-=-<, 所以,函数()y f x '=在1,02⎛⎫- ⎪⎝⎭上单调递减,()()00f x f ''∴>=,所以,函数()y f x =在1,02⎛⎫- ⎪⎝⎭上单调递增,()()00f x f ∴<=,即11x e x <-成立,即1112k k e k -++<+,112k k a k ++∴<+, 综上1n na n ≤+,当且仅当1n =时等号成立,由于1ln 1n n a a +=-,可知0n a >, 所以,1102a <≤,2203a <<,,2019201902020a <<,1220191232019123420202020a a a ⋅⋅⋅⋅<⨯⨯⨯⋅⋅⨯=.。
利用函数凹凸性质证明不等式

利用函数的凹凸性质证明不等式内蒙古包头市第一中学 张巧霞摘要:本文主要利用函数的凹凸性来推导和证明几个不等式.首先介绍了凹凸函数的定义,描述了判定一个函数具有凹凸性质的充要条件,并且给出了凸函数的一个重要性质——琴生不等式.通过巧妙构造常见的基本初等函数,利用这些函数的凹凸性推导几个重要不等式,如柯西不等式,均值不等式,柯西赫勒德尔不等式,然后再借助这些函数的凹凸性及其推导出来的重要不等式证明一些初等不等式和函数不等式. 关键词:凸函数;凹函数;不等式.一. 引言在数学分析和高等数学中,利用导数来讨论函数的性态时,经常会遇到一类特殊的函数——凹凸函数.凹凸函数具有一些特殊的性质,对于某些不等式的证明问题如果灵活地运用函数的凹凸性质就可以简洁巧妙地得到证明.二. 凹凸函数的定义及判定定理(1)定义 设)(x f 是定义在区间I 上的函数,若对于I 上的任意两点21,x x 及实数()1,0∈λ总有()()()()21211)1(x f x f x x f λλλλ-+≤-+则称)(x f 为I 上的凸函数(下凸函数);反之,如果总有不等式()()()()21211)1(x f x f x x f λλλλ-+≥-+则称)(x f 为I 上的凹函数(上凸函数).特别地,取21=λ,则有()()().2)2(2121x f x f x x f +≥≤+ 若上述中不等式改为严格不等式,则相应的函数称为严格凸函数或严格凹函数.(2)判定定理 若函数)(x f 在区间 I 上是二阶可微的,则函数)(x f 是凸函数的充要条件是0)("≥x f ,函数)(x f 是凹函数的冲要条件是.0)("≤x f三.关于凸函数的一个重要不等式——琴生不等式设)(x f 是定义在区间I 上的一个凸函数,则对()1,0,,,2,1,1=≥=∈∀∑=ni ii i n i I x λλ 有().)(11i ni i i n i i x f x f ∑∑==≤λλ特别地,当(),,,2,11n i ni ==λ有 ()()().2)2(2121n n x f x f x f x x x f +++≤+++琴生不等式是凸函数的一个重要性质,因为每个凸函数都有一个琴生不等式,因此它在一些不等式的证明中有着广泛的应用.四. 应用凸函数和琴生不等式证明几个重要不等式.(1)(调和——几何——算术平均不等式) 设(),,,2,1,0n i a i =≥则有naa a nni inn i i ni i ∑∏∑===≤⎪⎪⎭⎫ ⎝⎛≤11111当且仅当n a a a === 21时,等号成立.证明 设,ln )(x x f -=因为(),,0,01)("2+∞∈>=x xx f 所以)(x f 是()+∞,0上的凸函数,那么就有().)(11ini iin i i x f x f ∑∑==≤λλ现取(),,,2,1,1,n i na x i i i ===λ 则有 (),ln ln 11ln 1111⎪⎪⎭⎫ ⎝⎛-=-≤⎪⎭⎫ ⎝⎛-∏∑∑===n i n i i n i n i i a a n a n 得 ,ln 1ln 111⎪⎪⎭⎫ ⎝⎛≥⎪⎭⎫⎝⎛∏∑==n i n i n i i a a n由x ln 的递增性可得nni i i n i a a n 1111⎪⎪⎭⎫ ⎝⎛≥∏∑== (1) 同理,我们取01>=ii a x ,就有,1ln 1ln 111ln 1111⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛-≤⎪⎪⎭⎫ ⎝⎛-∏∑∑===ni n i i n i n i i a a n an 即nni i ni i a a n1111⎪⎪⎭⎫ ⎝⎛≤∏∑== (2) 由(1),(2)两式可得naa a nni inn i i ni i ∑∏∑===≤⎪⎪⎭⎫⎝⎛≤11111(2)柯西——赫勒德尔不等式qni q i pn i p i i n i i b a b a 11111⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛≤∑∑∑=== 其中()n i b a i i ,,2,1,, =是正数,又,1,0≠>p p p 与q 共轭,即111=+qp . 证明 首先构造函数()1,>=p x x f p 时,()()0,0">>x x f 所以()px x f =是()+∞,0上的凸函数,则有pi ni i pn i i i i ni i x x x f ∑∑∑===≤⎪⎭⎫ ⎝⎛=111)(λλλ 令 ,1∑==ni iii pp λ这里()n i p i ,,2,1,0 =>,则 ∑∑∑∑====≤⎪⎪⎪⎪⎭⎫ ⎝⎛ni ini p ii pni i ni ii pxp p x p 1111即 1111-===⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛≤⎪⎭⎫ ⎝⎛∑∑∑p ni i n i p i i pn i i i p x p x p由题设知111=+qp ,得1-=p pq ,所以 qni i pni p i i n i i i p x p x p 11111⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛≤⎪⎭⎫⎝⎛∑∑∑===, 现取qi i i pi i p b x p a 11,==,()n i ,,2,1 = 则pi p i i i i qii pi i i a x p x p p x p b a ===,11,代入上式得qni q i pni p i i n i i b a b a 11111⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛≤∑∑∑=== 命题得证.在柯西赫勒德尔不等式中,若令2==q p 时,即得到著名的不等式——柯西不等式211221121⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛≤∑∑∑===ni i ni i i n i i b a b a ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛≤∑∑∑===n i i n i i i ni i b a b a 121221)(这里()n i b a i i ,,2,1,, =为两组正实数,当且仅当i i b a =时等号成立.五.凸函数及重要不等式在证明初等不等式和函数不等式中的应用.例1.求证在圆的内接n 边形中,以正变形的面积最大.证明 设圆的半径为r ,内接n 边形的面积为S ,各边所对的圆心角分别为n θθθ,,,21 ,则(),sin sin sin 21212n r S θθθ+++=因为()0sin "<-=x x f , 所以()x x f sin =是[]π,0上的凹函数,由琴生不等式可得().1)(11i ni ni if nn f θθ∑∑==≥ 即 nnni ini i∑∑-=≥11s i ns i nθθnn ni i πθ2sinsin 1≤∑= 上式只有在n θθθ=== 21时等号才成立,也即正n 边形的面积最大.特别地,若A,B,C 为三角形的三个内角时,由上式可得323sin sin sin =++C B A . 例2 求证对任意的0,0>>y x ,下面的不等式2ln )(ln ln yx y x y y x x ++≥+成立.证明 我们根据所要证明的不等式构造相应的函数,令()0,ln >=t t t t f ,因().01">=tt f 故()t t t f ln =是()+∞,0上的凸函数, 所以有()()(),,0,,22+∞∈∀+≤⎪⎭⎫ ⎝⎛+y x y f x f y x f 即(),ln ln 212ln 2y y x x y x y x +≤++ (),ln ln 2ln )(y y x x yx y x +≤++所以在利用凸函数证明不等式时,关键是如何巧妙地构造出能够解决问题的函数,然后列出琴生不等式就可以简洁,巧妙地得到证明.例3 设i i i i d c b a ,,,都是正实数,证明∑∑∑∑∑=====≤⎪⎭⎫ ⎝⎛ni i n i i n i i n i i n i i i i i d c b a d c b a 1414141441.分析 本题所要证明的结论看上去接近于柯西不等式,但是这里是4次方的情形,所以想办法将其变成标准形式。
中学数学不等式证明的常用策略与技巧

: ・在函数问题中, 分类 讨论. 思想体顼的尤
为明显 , 特别 是在 解决有 关反 比例 函数的 相
: 问题 时, 关 更是 要经 常用到分类讨论 的思 想。 :在这里 , 者不再一一举例 , 只要我们 能针 笔 但
: 问题 准 确 、 当 、 妙 地 分 类 , 题 则 可 迎 刃 对 恰 巧 问
— —
+
题。不等式证 明技 巧多样 , 方法灵 活, 难度较
+ 一 = ± +兰 + ± = 一 一 ± L C a b ’ n 6. +— + c h 。 2 ’ 2 v z 2
达到证 明的 目的 , 种方法我们取 名为“ 这 放缩 大, 我们在本文中总结一些求解不等式证 明的 法” 比较形象也容易记忆与应用。 , 常片 方法 和策略 , j 以便 于同学们学习参考。 = 例 . 证 1 — :. —: +… + — :. 2) 3 求 +— =+— — = >
:而解 。 此 类 问 题 , 样 鲜 明 地 体现 出 了 分 类 同
() 2 当第三边 为直角边时 , 4为斜边长 , 讨 论思想在解题 中的重要作用 。只有准确 、 则 巧 由勾股定理得 , ̄4-1解得 : / 。 x 23, 、丁
长为 4m 的等 腰 三 角彤 纸 片 , 着 地 边 上 的 中 c 沿
例. 若直线 )- + - 2与 两坐 标轴 围成的 三 -  ̄ 角形 的面积是 6令平方单位 , 蠡的值。 求 分析: 一般情况下, 学生容易设直线与。 2  ̄ 底 O或 0 。
:
, 轴交与 A、 口两点 , 易得 点坐标为( ,) 由 02 , 分 析 : 了 准 确 拼 出需 要 的 图 形 , 为 应按 边 ’
4-5-2第2课时 不等式的证明与柯西不等式

选考部分· 选修4-5· 第2课时
课 前 自 助 餐 授 人 以 渔
授人以渔
注:综合法、分析法、数学归纳法见本书第十二章.
题型一 放缩法证明不等式
例1 (2010·江苏卷,理)设a,b是非负实数,
3 3 2 2
求证:a +b ≥ ab(a +b ). 【解析】
3 3
由a,b是非负实数,作差得
2 2 2 2
高考调研 · 新课标高考总复习
选考部分· 选修4-5· 第2课时
课 前 自 助 餐 授 人 以 渔
第2课时
不等式的证明与柯西不等式
课 时 作 业
高三数学(人教版)
高考调研 · 新课标高考总复习
选考部分· 选修4-5· 第2课时
课 前 自 助 餐 授 人 以 渔
2011· 考纲下载
1.了解证明不等式的基本方法:比较法、综合法、分析法、放缩法、数
学归纳法.
2.了解柯西不等式、排序不等式以及贝努利不等式,能利用均值不等式、 柯西不等式求一些特定函数的极值.
课 时 作 业
高三数学(人教版)
高考调研 · 新课标高考总复习
选考部分· 选修4-5· 第2课时
课 前 自 助 餐 授 人 以 渔
请注意!
不等式的证明是中学数学的难点.柯西不等式只要求会简单应用.
2 2
因为m,n>0,利用柯西不等式,
a b 2 得(m+n)( + )≥(a+b) , m n
2 2 a b (a+b) 所以 + ≥ . m n m+n 2
课 时 作 业
高三数学(人教版)
高考调研 · 新课标高考总复习
选考部分· 选修4-5· 第2课时
课 前 自 助 餐 授 人 以 渔
用二项式定理证明不等式

18
中 等 数 学
=2 - 1 =
n
2 - 1 2- 1
2 3
n- 1
n
1. 试证 : 对于每一个 n ∈N 都有
2n n+1 ( a + b) n - an - bn ≥ 2 - 2 .
= 1 + 2 + 2 + 2 + …+ 2 > n
n
( 1988 ,全国高中数学联赛)
2002 年第 4 期
17
专题 写作
用二项式定理证明不等式
李家煜
( 四川省南部县建兴中学 ,637305)
3
二项式定理 ( a + b) n = C0n an + C1n a n - 1 b + …+ Cnn bn , 由于结构比较复杂 , 多年来在竞赛中未能充 分展现应有的知识 ; 而有些不等式 , 通过观 察、 分析题目的特点 , 构造二项式模型 , 经过 放缩等手段便可使问题迅速求解 .
3 构造二项式定理
证明 : a = 0 或 b = 0 或 n = 1 时 , 等号成 立. 构造二项式 ,作变换 a+ b a- b a+ b a- b a= + ,b = . 2 2 2 2 n n a + b ∵ 2 n n 1 a+ b a- b a+ b a- b = + + 2 2 2 2 2 n n- 2 2 a+ b a+ b a- b 2 = + Cn +… 2 2 2 n a+ b > , 2 n n n a + b a+ b ∴ ≥ . 2 2 以上可看出 , 用二项式定理证明对于指 数是整数的不等式 , 或含有多项式的不等式 比较有效 ; 通过直接展开 , 或联想 、 构造二项 式定理模型 , 结合放缩 、 基本不等式等手段 , 可简捷获证 .
十种非常规策略证明不等式

只需证:l z x Il + +X, + +y <1 Z + z + I
即 证:l + + z一 + + l 0 z v l I + , + 1 <
只 需证 : ( z x +y + X X + + ) y —x x + y z Z + +Y z 1 xz y y (
肖志军 河 北省保 定外 国语 学校 (7 00 0 10 )
题 思路 . 1 .优 化假 设 当题 中变 元 之 间 的关 系具 多 种可 能 性 ,并 且 各
一
.
不 等 式 证 明 是 中 学 数 学 中 的 重 点 与 难 点 之 由于 不 等 式形 式与 结 构千 变 万化 ,使 其证 明方
・ . .
l b≥口 l a 2 I_ 2 1 l
- .
日
4 .利用“ 待定系数法” 拼凑” 或“ 的方法将欲证的 不等式用 已知的不等式线性表出后再证 明
证明
l】 , <州 显然有
> > I; 0 I 6 I
例 4 设 fx=x+ + ( a c,当 l 1 ) x 时总 有 l I l1 求证:l2 7 厂) . ( 厂) . (I 证明 ’ X 1 . l 时总有l ≤ , ’ ≤ 当I _) 1 厂 I ( 10 = I1 _1=a b c 1 ) I ,I ) I +l , (I c 厂I + (
・
.
.
同理 : ( 一 ) ≤4. a 6
拆分为几个证明思路比较清晰的不等式后再证明
例 6
又( l 日+ 2 b (+ ) a b , + 1= 6+ lI 口 6 或(- ) b ) a= (lI 4 . lI 2 . lr+ f3 J+ 1≤ f+ f f+ lI . ab ) ab a bc
中学数学不等式证明的方法

8 7
证明 :因为 a b c = 1 且a , b , C 为互不相容的正数 ,
所以 + I+ - b c + a c + a b = 丁 b c + a c+
一
个范 围,所以不等式 的证 明是 非常有趣 和富有挑战的。文章例谈 了初等数学 中不等式 的一些证 明方法 , 关键词 :不等式 ;中学 数学 ;方 法
通过学习这些证 明方法 ,可以帮助我们培养逻辑推理论证能力和抽象思维 的能力。
不等式作为一个重要的分析工具和分析手段 ,在数学 中具有举足轻重 的作用和地位 ,不等式 的证明可分为推理性 问题和探索性问题 ,推理性问题是指在特定条件下 ,阐释证明过程 ,解释内 在规律 ,基本方法有 比较法、分析法 、综合法 ; 探索性问题大多是与 自 然数有关的证明问题 ,常 采用观察一归纳一猜想—证 明的方法思路 ,以数学归纳法完成证 明。
第2 3 卷第 2 期
2 0 1 3 年 6月
临沧师范高等专科学校学报
J o u r n a l o f L i n c a n gT e a c h e r s ’C o U e g e
V0 1 . 2 3 No . 2
J u n e . 2 01 3
中学数学不等式证明的方法
2 综合法
综合法是由题设条件出发 ,根据不等式的性质 ,推导 出要证的不等式 。综合法利用 已知事实 作为基础 ,借助不等式 的性质和有关定理 ,经过逐步 的逻辑推理 ,最后推出所要证明的不等式 , 其特点和思路是 “ 由因导果” ,从 “ 已知”看 “ 需知” ,逐步推出 “ 结论” 。 例2 a , b , c 为互不相容的正数 ,且 a b c = l ,
均值不等式证明的推导方法

均值不等式证明的推导方法均值不等式证明的推导方法均值不等式是数学的公式,这类的公式是怎么证明的呢?证明的过程是的呢?下面就是店铺给大家整理的均值不等式证明内容,希望大家喜欢。
均值不等式证明方法一已知x,y为正实数,且x+y=1 求证xy+1/xy≥17/41=x+y≥2√(xy)得xy≤1/4而xy+1/xy≥2当且仅当xy=1/xy时取等也就是xy=1时画出xy+1/xy图像得01时,单调增而xy≤1/4∴xy+1/xy≥(1/4)+1/(1/4)=4+1/4=17/4得证继续追问:拜托,用单调性谁不会,让你用均值定理来证补充回答:我真不明白我上面的`方法为不是用均值不等式证的均值不等式证明方法二证xy+1/xy≥17/4即证4(xy)²-17xy+4≥0即证(4xy-1)(xy-4)≥0即证xy≥4,xy≤1/4而x,y∈R+,x+y=1显然xy≥4不可能成立∵1=x+y≥2√(xy)∴xy≤1/4,得证∵同理0xy+1/xy-17/4=(4x²y²-4-17xy)/4xy=(1-4xy)(4-xy)/4xy≥0∴xy+1/xy≥17/4均值不等式证明方法三已知a>b>c,求证:1/(a-b)+1/(b-c)+1/(c-a)>0a-c=(a-b)+(b-c)≥2√(a-b)*(b-c)于是c-a≤-2√(a-b)*(b-c)<0即:1/(c-a)≥-1/【2√(a-b)*(b-c)】那么1/(a-b)+1/(b-c)+1/(c-a)≥1/(a-b)+1/(b-c)-1/【2√(a-b)*(b-c)】≥2/【√(a-b)*(b-c)】-1/【2√(a-b)*(b-c)】=(3/2)/【2√(a-b)*(b-c)】>0三、1、调和平均数:Hn=n/(1/a1+1/a2+...+1/an)2、几何平均数:Gn=(a1a2...an)^(1/n)3、算术平均数:An=(a1+a2+...+an)/n4、平方平均数:Qn=√ (a1^2+a2^2+...+an^2)/n 这四种平均数满足Hn≤Gn≤An≤Qn 的式子即为均值不等式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中学不等式证明方法探究 摘 要 不等式,渗透在中学数学各个分支中,有着十分广泛的应用。因此不等式应用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用。在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明。而不等式的证明,方法灵活多样,还和很多内容结合,它既是中学数学教学中的难点,也是数学竞赛培训的难点,近年也演变为竞赛命题的热点,因其证明不仅蕴涵了丰富的逻辑推理、非常讲究的恒等和不等变形技巧,而且证明过程千姿百态,极易出错,因此,有必要对不等式的证明方法和技巧进行总结归纳并与大家一起分享交流。本文通过对不等式的进一步研究,同时在前人的基础上对不等式的证明方法进行再探讨,得出了几点新方法,再有就是对于一些题目,很多人都是用一些常用的方法来解决,而笔者则是通过另外的一种方法来解,并且解题过程相对简单,在正文的例题当中,我用方法二给出了我的证明过程,以飨读者。
关键词:不等式;证明方法;证明技巧;换元法;微分法 证明不等式的方法灵活多样,内容丰富、技巧性较强要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.在证明不等式前,要依据题设和待证不等式的结构特点、内在联系,选择适当的证明方法.通过等式或不等式的运算,将待证的不等式化为明显的、熟知的不等式,从而使原不等式得到证明;反之亦可从明显的、熟知的不等式入手,经过一系列的运算而导出待证的不等式,前者是“执果索因”,后者是“由因导果”,为沟通联系的途径,证明时往往联合使用分析综合法,两面夹击,相辅相成,达到欲证的目的. 通过不等式的基本知识、基本方法在代数、三角函数、数列、复数、立体几何、解析几何等各部分知识中的应用,深化数学知识间的融汇贯通,从而提高分析问题解决问题的能力.在应用不等式的基本知识、方法、思想解决问题的过程中,提高学生数学素质及创新意识. 1、比较法 比较法是证明不等式的一种最基本的方法,也是最常用的的方法,基本不等式就是用比较法证明的。其难点在第二步的“变形”上,变形的目的是有利于第三步判断,求差比较法变形的方向主要是分解因式、配方。 1)作差比较法的理论依据有: .0,0,0babababababa 2)作商比较法的理论依据有: .1,0babab
3)作差(商)比较法的步骤: 作差(商)变形判断符号(与1的大小)
例1:求证:234221xxx
证明:法一:)2()21(234xxx
2342222333
2210]21)21(2[)1()122()1()122)(1()12)(1()1)(1()1(2xxxxxxxxxxxxxxxxxxx
法二:)2(21234xxx 2342222242342210)1()(122xxxxxxxxxxx
说明:法一的变形主要是因式分解,其难点在于分解123xx的因式,判断1222xx
的符号除用配方法外,还可用判别式法(此法我们后面再述)。证法二的变形主要是配方法,难点在于拆项,此法笔者又将其归纳为裂项法。通过本例,可以了解求差比较法的全貌,以及关键的第二步变形。 例2:已知0,1a,求证:)2(log)(log)(aaaa
证明:aaaaaaaa)()()(log)2(log)(log)2(log•
).(log)2(log,0)(log1]2)(log[]2)2(log[]2)2(log[]2log)2(log[)(22)(22)(2)(2)()(aaaaaaaaaaaaaaaaaa又 说明:观察不等式的特点,a充当了真数和底,联想到aNNalog1log,进而用了作商比较法,作商比较法的变形主要是利用某些运算性质和性质,如函数的单调性等,我们再看: 例3:若0cba,求证:
(1)babaabba
(2)bacacbcbacbacba222
证明:(1)0cba,babababaabba)( 又0,1,0bababa
abbaababbabababababababa0,1,1)(又即
(2)由(1)的结果,有 0,0,0caacbccbabbaacaccbcbbaba 两边分别相乘得 bacacbcbacabcabaccbbacbacbaaccbbaaccbba••••222 2、综合法 利用某些证明过的不等式作为基础,再运用不等式的性质,推导出所求证的不等式,这种证明方法叫做综合法,综合法的思考路线是“由因导果”。 例4:(1)已知证:为不全相等的正数,求cba,, 3ccbabbacaacb
(2)已知1,,abccba为不相等正数,且, 求证:cbacba111 证明:(1)证法一:3)()()(accacbbcbaab左式
2,222,,•caaccbbcbaabbaabcba同理:为不全相等的正数
且上面三个等号不能同时成立, 3363)()()accacbbcbaab( 得证;
证法二:)2()2()2(ccbabcbaacba左式
36961336)111)(,,6)111)((33abcabccbacbacbacbacba(为不全等正数 得证。 (2)证法一:1,,abccba为不等正数,且
cbabaaccbabcabccba111211211211111
证法二:1,,abccba为不正数,且 cbaabccabbcabcacbcabacababacbccba222222111 得证。 说明:(1)题两种方法的差别主要在于对不等式左边施行不同的恒等变形,其目的都是为了有效地利用基本不等式,灵活地运用均值不等式,这也是综合法证明不等式的主要技巧之一; (2)题是条件不等式的证明,要找出条件与结论之间的内在联系,分析已知与求证,不等式左边与右边的差异与联系,去异求存同,找到证题的切入口,本题合理运用条件1abc的不同变形。 3、分析法 从求证的不等式出发,分析使这个不等式成立的充分条件,把证明这个不等式的问题转化为判断这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可判定所求证的不等式成立,这种证明方法叫做分析法,分析法的思路是“执果索因”。 例5:已知函数)21,0(),11lg()(xxxf,若.)21,0(,2121xxxx且
求证:)2()]()([212121xxfxfxf 证明:要证原不等式成立,只需证明22121)12()11)(11(xxxx 事实上,2121,210xxxx
)2()]()([21)12lg()]11)(11lg[()12()11)(11(0)()1()(4)(4111)12()11)(11(21212212122121221212122121221212122121xxfxfxfxxxxxxxxxxxxxxxxxxxxxxxxxxxx故即是 得证。 4、换元法 换元法是数学中的一个基本方法。在不等式的证明过程中,按照所证不等式的结构特点,将不等式中的变量作适当的代换,可使不等式的结构明朗,从而使不等式变得容易证明,这种方法称为换元法。换元法的目的是把合命题化简、化熟,把复杂的、不熟悉的命题化为简单的、熟悉的命题。 换元法在许多实际问题的解决中可以起到化难为易、化繁为简的作用,有些问题直接证明较为困难,但若通过换元法的思想与方法来解就很方便,换元法多用于条件不等式的证明中,一般有增量换元、三角换元、和差换元、向量换元、利用对称性换元、借助几何图形换元等几种方法。 1)增量换元 对对称式(任意互换两个字母,代数式不变)和给定字母顺序的不等式,常用增量换元,换元的目的是通过换元达到减元,使问题化难为易,化繁为简。 例6:已知.411,cacbbacba求证:
分析:考虑到)()(cbbaca,由此可以令,0,0cbybax这时问题转
化为“yxyxyx411,0,证明若”。
证明:令yxcacbybax,0,0,下面只要证明:yxyx411即可。 取等号)即当且仅当cabyxyxxyyxxyyxyxyx2,,(4222))(11(,0,成立。即cacbbayxyx411,411
例7:若.2,0222abababba求证: 分析:如何利用已知不等式0ba是证明本题的关键, 因为)0()0(0hhbahhbababa,这样可把已知的不等式关系换成相等关系。 证明:),0(,0hhbaba设
.222)()(2222222222222abababahbbhhnhbbhbbhbbbabab则
得证。