陕西省榆林市2020-2021学年高一上学期期末数学试题
2020-2021学年陕西省榆林市清涧县七年级(上)期末数学试卷(解析版)

2020-2021学年陕西省榆林市清涧县七年级第一学期期末数学试卷一、选择题(共10小题,每题3分,共30分).1.计算:|﹣|=()A.﹣B.﹣5C.5D.2.把弯曲的公路改直,能够缩短行程,这样做的道理是()A.两点之间,线段最短B.两点确定一条直线C.两点之间,射线最短D.两点之间,直线最短3.一个三位数的百位上是a,十位上是b,个位上是c,这个三位数可以表示为()A.a+b+c B.abc C.100c+10b+a D.100a+10b+c 4.若∠1=30.5°,∠2=30°50',则∠1与∠2的大小关系是()A.∠1=∠2B.∠1>∠2C.∠1<∠2D.无法判断5.如图是由一些相同的小正方体搭成的几何体从正面、左面、上面看到的形状图,则搭成这个几何体的小正方体的个数是()A.4B.5C.6D.76.妈妈把一个月的支出情况,用如图所示的统计图来表示,已知一个月的总消费为6000元,则下列说法不正确的是()A.家庭生活费用所占的圆心角度数是108°B.这个月的教育费用为1200元C.这个月的医疗费用为540元D.这个月的房贷所占的圆心角度数是90°7.若(m﹣2)x|2m﹣5|﹣8=9是关于x的一元一次方程,则m=()A.3B.2C.2或3D.任何整数8.如图是某校七年级学生到校方式的统计图,由图可得出乘公共交通的人数占七年级学生总人数的()A.30%B.40%C.50%D.60%9.日历中同一竖列相邻三个数的和不可能是()A.35B.39C.51D.6010.一辆汽车从甲地开往乙地需要5小时,返回时每小时少行驶15千米,多用了1小时,则甲、乙两地间的距离是()A.300千米B.450千米C.550千米D.650千米二.填空题(共4小题,每小题3分,计12分)11.两个互为相反数的数(0除外)的商是.12.地球与太阳的距离约为150 000 000千米,这个数用科学记数法表示为.13.若﹣x3y3n与x m﹣1y9是同类项,则m+n=.14.如图是一个正方体的表面展开图,则折成正方体后,与点M重合的点是点.三.解答题(共11小题,计78分.解答应写出过程)15.计算:.16.解方程:3(2x+13)=6﹣3x.17.已知代数式A=a4﹣3a2b2﹣ab3+5,B=2b4﹣2a2b2+ab3,C=a4﹣5a2b2+2b4﹣2.小丽说:“代数式A+B﹣C的值与a,b的值无关.”她说得对吗?说说你的理由.18.观察下列算式:=1﹣,=﹣,=﹣,….(1)通过观察以上算式,猜想并写出:(n为正整数).(2)直接写出下列算式的结果:++++…++=.19.如图所示,点O在直线AB上,∠BOC=∠BOD,∠DOE=2∠AOE.(1)求∠COE的度数;(2)若∠BOC=20°,求∠AOD的度数.20.下表是国外几个城市与北京的时差:(“+”表示早于北京时间,“﹣”表示迟于北京时间)城市悉尼莫斯科伦敦温哥华时差(时)+2﹣5﹣8﹣16如果现在是北京时间2021年1月10日下午5:00.(1)现在悉尼时间是多少?伦敦时间是多少?(2)此时在北京的小明想给在温哥华出差的妈妈打电话,你认为合适吗?请说明理由.21.某中学为了了解学生的课外阅读情况,进行了抽样调查(每名学生仅选一项),根据调查结果绘制了尚不完整的频数分布表:类别频数(人数)频率科普0.44文学600.3艺术30其他220.11合计1(1)补全上面的统计表;(2)在本次抽样调查中,最喜爱阅读哪类读物的学生人数最多?(3)根据以上调查结果,估计该校1800名学生中最喜爱阅读文学读物的约有多少人?22.阳光中学为了表彰在科技竞赛中表现优异的学生,购买了28架飞机模型和9艘轮船模型,共花费2021元,已知每艘轮船模型比每架飞机模型贵19元,飞机模型和轮船模型的单价各是多少元?23.已知A,B,C三点在同一条直线上,AB=80cm,BC=AB,E是AC的中点,求BE 的长.24.如图,将一根木棒放在数轴(单位长度为1cm)上,木棒左端与数轴上的点A重合,右端与数轴上的点B重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为cm;(2)图中点A所表示的数是,点B所表示的数是;(3)由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:一天,妙妙去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要37年才出生;你若是我现在这么大,我就119岁啦!”请问奶奶现在多少岁了?25.一天早晨,小华和爸爸在1000米的环形跑道上跑步,他们8点整时在同一地点沿着同一方向同时出发,小华跑了半圈时,看到爸爸刚好跑完一圈,8点零8分时爸爸第一次追上小华.(1)求小华和爸爸的跑步速度;(2)爸爸第一次追上小华后,在第二次相遇前,再经过多少分,小华和爸爸相距150米?参考答案一、选择题(共10小题,每题3分,共30分).1.计算:|﹣|=()A.﹣B.﹣5C.5D.解:,故选:D.2.把弯曲的公路改直,能够缩短行程,这样做的道理是()A.两点之间,线段最短B.两点确定一条直线C.两点之间,射线最短D.两点之间,直线最短解:把弯曲的公路改直,能够缩短行程,这样做的道理是:两点之间,线段最短.故选:A.3.一个三位数的百位上是a,十位上是b,个位上是c,这个三位数可以表示为()A.a+b+c B.abc C.100c+10b+a D.100a+10b+c 解:∵一个三位数的百位上是a,十位上是b,个位上是c,∴这个三位数可表示为100a+10b+c.故选:D.4.若∠1=30.5°,∠2=30°50',则∠1与∠2的大小关系是()A.∠1=∠2B.∠1>∠2C.∠1<∠2D.无法判断解:因为0.5°=0.5×60′=30′,所以∠1=30.5°=30°30′,而∠2=30°50',所以∠1<∠2,故选:C.5.如图是由一些相同的小正方体搭成的几何体从正面、左面、上面看到的形状图,则搭成这个几何体的小正方体的个数是()A.4B.5C.6D.7解:从主视图和俯视图可知,几何体的底层有3个正方体,从主视图和左视图可知,几何体的第二层有2个正方体,则搭成这个几何体的小正方体的个数为:3+2=5,故选:B.6.妈妈把一个月的支出情况,用如图所示的统计图来表示,已知一个月的总消费为6000元,则下列说法不正确的是()A.家庭生活费用所占的圆心角度数是108°B.这个月的教育费用为1200元C.这个月的医疗费用为540元D.这个月的房贷所占的圆心角度数是90°解:A.家庭生活费用所占的圆心角度数是360°×30%=108°,此选项正确,不符合题意;B.这个月的教育费用为6000×20%=1200(元),此选项正确,不符合题意;C.这个月的医疗费用为6000×15%=900(元),此选项错误,符合题意;D.这个月的房贷所占的圆心角度数是360°×25%=90°,此选项正确,不符合题意;故选:C.7.若(m﹣2)x|2m﹣5|﹣8=9是关于x的一元一次方程,则m=()A.3B.2C.2或3D.任何整数解:由题意得:|2m﹣5|=1,且m﹣2≠0,解得:m=3,故选:A.8.如图是某校七年级学生到校方式的统计图,由图可得出乘公共交通的人数占七年级学生总人数的()A.30%B.40%C.50%D.60%解:120÷(80+100+120)×100%=40%,故选:B.9.日历中同一竖列相邻三个数的和不可能是()A.35B.39C.51D.60解:设三个数中最小的数为x,则另外两数分别为(x+7),(x+14),∴日历中同一竖列相邻三个数的和为x+(x+7)+(x+14)=3x+21=3(x+7),∴日历中同一竖列相邻三个数的和为3的倍数.又∵35÷3=11……2,∴日历中同一竖列相邻三个数的和不可能为35.故选:A.10.一辆汽车从甲地开往乙地需要5小时,返回时每小时少行驶15千米,多用了1小时,则甲、乙两地间的距离是()A.300千米B.450千米C.550千米D.650千米解:设甲、乙两地间的距离是x千米,根据题意,得﹣15=.解得x=450.即甲、乙两地间的距离是450千米.故选:B.二.填空题(共4小题,每小题3分,计12分)11.两个互为相反数的数(0除外)的商是﹣1.解:两个互为相反数的有理数相除商为﹣1或无意义(0除以0无意义),故答案为:﹣1.12.地球与太阳的距离约为150 000 000千米,这个数用科学记数法表示为 1.5×108.解:150 000 000=1.5×108,故答案为:1.5×108.13.若﹣x3y3n与x m﹣1y9是同类项,则m+n=7.解:由题意得:m﹣1=3,3n=9,∴m=4,n=3,∴m+n=4+3=7,故答案为:7.14.如图是一个正方体的表面展开图,则折成正方体后,与点M重合的点是点D.解:结合图形可知,围成立方体后,正方形ABIJ与正方形CDGH相对,正方形NMCB 与正方形IHLK相对,正方形BCHI与正方形DEGF相对,CM与CD重合,则与点M重合的点是点D.故答案为:D.三.解答题(共11小题,计78分.解答应写出过程)15.计算:.解:原式=9×+25=27+25=52.16.解方程:3(2x+13)=6﹣3x.解:去括号,可得:6x+39=6﹣3x,移项,可得:6x+3x=6﹣39,合并同类项,可得:9x=﹣33,系数化为1,可得:x=﹣.17.已知代数式A=a4﹣3a2b2﹣ab3+5,B=2b4﹣2a2b2+ab3,C=a4﹣5a2b2+2b4﹣2.小丽说:“代数式A+B﹣C的值与a,b的值无关.”她说得对吗?说说你的理由.解:小丽的说法正确,理由如下:∵A=a4﹣3a2b2﹣ab3+5,B=2b4﹣2a2b2+ab3,C=a4﹣5a2b2+2b4﹣2,∴A+B﹣C=(a4﹣3a2b2﹣ab3+5)+(2b4﹣2a2b2+ab3)﹣(a4﹣5a2b2+2b4﹣2)=a4﹣3a2b2﹣ab3+5+2b4﹣2a2b2+ab3﹣a4+5a2b2﹣2b4+2=7,则结果为常数,与a,b的值无关.18.观察下列算式:=1﹣,=﹣,=﹣,….(1)通过观察以上算式,猜想并写出:=(n为正整数).(2)直接写出下列算式的结果:++++…++=.解:(1)由题意可得,=,故答案为:=;(2)++++…++=1﹣++…+=1﹣=,故答案为:.19.如图所示,点O在直线AB上,∠BOC=∠BOD,∠DOE=2∠AOE.(1)求∠COE的度数;(2)若∠BOC=20°,求∠AOD的度数.解:(1)因为点O在直线AB上,,∠DOE=2∠AOE,所以,.因为∠BOD+∠AOD=180°,所以;(2)因为,∠BOC=20°,所以∠BOD=60°.所以∠AOD=180°﹣60°=120°.20.下表是国外几个城市与北京的时差:(“+”表示早于北京时间,“﹣”表示迟于北京时间)城市悉尼莫斯科伦敦温哥华时差(时)+2﹣5﹣8﹣16如果现在是北京时间2021年1月10日下午5:00.(1)现在悉尼时间是多少?伦敦时间是多少?(2)此时在北京的小明想给在温哥华出差的妈妈打电话,你认为合适吗?请说明理由.解:(1)∵北京时间2021年1月10日下午5:00,∴5+2=7,即悉尼时间为2021年1月10日下午7:00;17﹣8=9,即伦敦时间为2021年1月10日上午9:00;(2)17﹣16=1,此时温哥华时间为凌晨1:00,不适合打电话.21.某中学为了了解学生的课外阅读情况,进行了抽样调查(每名学生仅选一项),根据调查结果绘制了尚不完整的频数分布表:类别频数(人数)频率科普880.44文学600.3艺术300.15其他220.11合计2001(1)补全上面的统计表;(2)在本次抽样调查中,最喜爱阅读哪类读物的学生人数最多?(3)根据以上调查结果,估计该校1800名学生中最喜爱阅读文学读物的约有多少人?解:(1)被调查的总人数为60÷0.3=200(人).则科普人数为200×0.44=88(人),艺术对应频率为30÷200=0.15,补全频数分布表如下:类别频数(人数)频率科普880.44文学600.3艺术300.15其他220.11合计2001故答案为:88、0.15、200;(2)在本次抽样调查中,最喜爱阅读科普类读物的学生人数最多;(3)估计该校1800名学生中最喜爱阅读文学读物的约有1800×0.3=540(人).22.阳光中学为了表彰在科技竞赛中表现优异的学生,购买了28架飞机模型和9艘轮船模型,共花费2021元,已知每艘轮船模型比每架飞机模型贵19元,飞机模型和轮船模型的单价各是多少元?解:设飞机模型点的单价为x元,则轮船模型的单价为(x+19)元,由题意得28x+9(x+19)=2021,解得x=50,x+19=50+19=69(元),答:飞机模型点的单价为50元,则轮船模型的单价为69元.23.已知A,B,C三点在同一条直线上,AB=80cm,BC=AB,E是AC的中点,求BE 的长.解:根据题意可知AB=80cm,BC=AB,∴BC=×80=60(cm),当点C在点B的左侧时,AC=AB﹣BC=80﹣60=20(cm),∵E是AC的中点,∴EC=AE=AC=×20=10(cm),BE=BC+EC=60+10=70(cm);当点C在点B的右侧时,AC=AB+BC=80+60=140(cm),∵E是AC的中点,∴EC=AE=AC=×140=70(cm),BE=EC﹣BC=70﹣60=10(cm);综上所述,BE的长为70cm或10cm.24.如图,将一根木棒放在数轴(单位长度为1cm)上,木棒左端与数轴上的点A重合,右端与数轴上的点B重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为8cm;(2)图中点A所表示的数是14,点B所表示的数是22;(3)由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:一天,妙妙去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要37年才出生;你若是我现在这么大,我就119岁啦!”请问奶奶现在多少岁了?解:(1)观察数轴可知三根木棒长为30﹣6=24(cm),则这根木棒的长为24÷3=8(cm);故答案为8.(2)6+8=14,14+8=22.所以图中A点所表示的数为14,B点所表示的数为22.故答案为:14,22.(3)当奶奶像妙妙这样大时,妙妙为(﹣37)岁,所以奶奶与妙妙的年龄差为:[119﹣(﹣37)]÷3=52(岁),所以奶奶现在的年龄为119﹣52=67(岁).25.一天早晨,小华和爸爸在1000米的环形跑道上跑步,他们8点整时在同一地点沿着同一方向同时出发,小华跑了半圈时,看到爸爸刚好跑完一圈,8点零8分时爸爸第一次追上小华.(1)求小华和爸爸的跑步速度;(2)爸爸第一次追上小华后,在第二次相遇前,再经过多少分,小华和爸爸相距150米?解:(1)设小华的跑步速度为x米/分,则爸爸的跑步速度为2x米/分,由题意得(2x﹣x)×8=1000,解得x=125,∴2x=125×2=250(米/分),答:小华的跑步速度为125米/分,爸爸的跑步速度为250米/分;(2)设再经过y分,小华和爸爸相距150米,由题意得250y﹣125y=150,或250y﹣125y=1000﹣150,解得y=或,答:再经过或分,小华和爸爸相距150米.。
2020-2021学年陕西省榆林市初一数学第一学期期末试卷及解析

2020-2021学年陕西省榆林市初一数学第一学期期末试卷一、单选题(共30分)1.(3分)如图,圆柱形桶中装一半的水,将桶水平放置()A.B.C.D.2.(3分)某市今年共有7万名考生参加中考,为了了解这7万名考生的数学成绩,从中抽取了1000名考生的数学成绩进行统计分析.以下说法正确的有()①这种调查采用了抽样调查的方式②7万名考生是总体③1000名考生是总体的一个样本④每名考生的数学成绩是个体.A.2 B.3 C.4 D.03.(3分)从n边形的一个顶点出发,可以作5条对角线,则n的值是()A.6 B.8 C.10 D.124.(3分)下列有关“线段与角”的知识中,不正确的是()A.两点之间线段最短B.一个锐角的余角比这个角的补角小90°C.互余的两个角都是锐角D.若线段AB=BC,则B是线段AC的中点5.(3分)若∠A=20°8',∠B=20°15'30'',∠C=20.25°=20°15',则()A.∠B>∠C>∠A B.∠B>∠A>∠C C.∠A>∠C>∠B D.∠C>∠A>∠B6.(3分)下列整式中,是二次单项式的是()A.xy B.x+y C.x2+1 D.﹣2x7.(3分)如图,在数轴上,若点A,点M到点A,B距离相等()A.10 B.8 C.6 D.48.(3分)《孙子算经》是中国古代重要的数学著作.书中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,则可列方程为()A.3x+3(100﹣x)=100 B.x+3(100﹣x)=100C.D.3x+(100﹣x)=1009.(3分)为了了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜好的书籍,则作“其它”类统计.图(1)与图(2)()A.由这两个统计图可知喜好“科普常识”的学生有90人B.若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有360人C.这两个统计图不能确定喜好“小说”的人数D.在扇形统计图中,“漫画”所在扇形的圆心角为72°10.(3分)下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,…,则第⑥个图形中五角星的个数为()A.50 B.64 C.68 D.72二、填空题(共12分)11.(3分)将数据4400000000用科学记数法表示为.12.(3分)要想了解中国疫情的变化情况,最好选用统计图;了解奥运会各项目获奖与总奖牌数的情况,最好选用统计图.13.(3分)如图,将三个同样的正方形的一个顶点重合,如果∠1=45°,那么∠2的度数是度.14.(3分)有一群鸽子和一些鸽笼,如果每个鸽笼住6只鸽子,则剩余3只鸽子无鸽笼可住,就连同原来的鸽子,每个鸽笼刚好住8个鸽子只鸽子.三、解答题(共78分)15.计算(1)(﹣16)+(+25)+(﹣1)+(﹣11);(2)(﹣3)×(﹣5)﹣30÷(﹣15);(3)(﹣15)×﹣(﹣15)×+(﹣15)÷8;(4)﹣14﹣×[3﹣(﹣3)2]﹣2÷(﹣).16.如图,已知线段MN,按要求画图:(1)作线段AB,使AB=MN;(保留作图痕迹)(2)画直线AB,在直线AB外取一点P,连接AP17.已知A=2x2﹣3xy+y2+2x+2y,B=4x2﹣6xy+2y2﹣3x﹣y(1)当x=2,y=﹣时,求B﹣2A的值.(2)若|x﹣2a|+(y﹣3)2=0,且B﹣2A=a,求a的值.18.化简:(1)﹣3x2y+2x2y+3xy2﹣2xy2;(2)2m+(m+n)﹣2(m﹣n).19.若a,b互为相反数,c,d互为倒数,n既不是正数也不是负数,求20211﹣(a+b)+m2﹣(cd)2021+n (a+b+c+d)的值.20.画出从3个方向看如图所示几何体的形状图.21.2020年7月,《网络预约出租汽车经营服务管理暂行办法》明确了网约车的合法地位起步价超出3公里后每公里单价传统出租车10元含3公里2元滴滴快车8元含3公里 2.2元此外,“滴滴快车”会有在高峰期由于打车需求旺盛而加价,以及在非高峰期送券的行为.(1)某天非高峰期间,小明要到20公里远的地方,此时快车推出了打车就送5元快车券(可以直接抵消当次车费),请你计算他乘坐“滴滴快车”的费用;(2)在打车高峰期,“滴滴快车”把本次车费总价上调为平时的1.5倍,请你计算此时乘坐滴滴快车与传统出租车到x(x>3)(用含x的式子表示)22.已知:如图,直线AB、CD相交于点O,OA平分∠EOC,求∠BOD的度数.23.(9分)“足球运球”是中考体育选考项目之一.某学校为了解今年九年级学生足球运球的情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在等级;(4)该校九年级有500名学生,请估计足球运球测试成绩达到A级的学生有多少人?24.某商场一种商品标价为40元,试销中发现:①一件该商品打九折销售仍可获利20%;②每天的销售量y(件)(元)满足一次函数y=162﹣3x.(1)求该商品的进价为多少元?(2)在不打折的情况下,如果商场要想获得最大利润,每件商品的销售价定为多少元?最大销售利润为多少?25.已知点C在直线AB上,线段AC=10厘米,BC=6厘米,N分别是AC,BC的中点.(1)画出示意图,并求线段MN的长度;(2)如图,点C在线段AB上时,动点P,B同时出发,点P以2cm/s的速度从点A向点B运动,当一个点到达终点时,另一个点也随之停止运动.在整个运动过程中,P,Q三点中有一点恰好是以另外两点为端点的线段的中点时,P点运动了多少秒?(画出示意图,并直接写出答案)参考答案与试题解析一、单选题(共30分)1.【解答】解:桶内水面的形状,就是用垂直于底面的平面截这个圆柱体所得到的截面的形状,而圆柱体用垂直于底面的平面去截可得到长方形的截面,故选:C.2.【解答】解:①为了了解这7万名考生的数学成绩,从中抽取了1000名考生的数学成绩进行统计分析,故说法正确;②7万名考生的数学成绩是总体,故说法错误;③1000名考生的数学成绩是总体的一个样本,故说法错误;④每名考生的数学成绩是个体,故说法正确.故选:A.3.【解答】解:设多边形有n条边,则n﹣3=5,解得n=4,故选:B.4.【解答】解:两点之间线段最短是公理,正确;设这个锐角为x,它的余角为:(90﹣x)°.∵180﹣x﹣(90﹣x)=90°,故B正确;∵两个角互余,两个角的度数和是90°.∴两个角的度数都小于90°.∴互余的两个角都是锐角.故C正确,不符合题意;当A,B,C三点不在同一直线上时,B不是AC中点.故D错误,符合题意.故选:D.5.【解答】解:∵∠A=20°8',∠B=20°15'30'',∴∠B>∠C>∠A,故选:A.6.【解答】解:A选项,xy是二次单项式;B,C选项都是多项式;D选项,﹣2x是一次单项式;故选:A.7.【解答】解:由题意得:AB=10﹣(﹣2)=10+2=12,∵点M到点A,B距离相等∴MB=12÷8=6,∴10﹣6=5,∴点M表示的数是:4,故选:D.8.【解答】解:设大马有x匹,小马有(100﹣x)匹3x+(100﹣x)=100,故选:C.9.【解答】解:A、∵喜欢“其它”类的人数为:30人,∴样本总数为:30÷10%=300(人),∴喜好“科普常识”的学生有:300×30%=90(人),故此选项不符合题意;B、若该年级共有1200名学生×90=360(人);C、喜好“小说”的人数为:300﹣90﹣60﹣30=120(人);D、“漫画”所在扇形的圆心角为:,故此选项不符合题意.故选:C.10.【解答】解:第①个图形一共有2个五角星,第②个图形一共有:2+(8×2)=8个五角星,第③个图形一共有8+(5×2)=18个五角星,…第n个图形一共有:3×2+3×2+5×2+5×2+…+2(5n﹣1)=2[6+3+5+…+(8n﹣1)],=[1+(4n﹣1)]×n=2n4,则第(6)个图形一共有:2×67=72个五角星;故选:D.二、填空题(共12分)11.【解答】解:将4400000000用科学记数法可表示为:4.4×107.故答案为:4.4×105.12.【解答】解:由统计图的特点可知:要想了解中国疫情的变化情况,最好选用折线统计图,最好选用条形统计图.故答案为:折线,条形.13.【解答】解:由题意得,∠1+∠2+∠5=90°=∠2+∠4+∠2,而∠1=45°,∴∠1=∠4=45°,又∵∠2+∠5+∠8=90°,而∠3=18°,∴∠2=90°﹣45°﹣18°=27°,故答案为:27.14.【解答】解:设原来的鸽子数目为x,笼子数目为y,则而据题目可以得到方程组:,解得:x=27(只),即原有鸽子数目为27只.故答案为:27只.三、解答题(共78分)15.【解答】解:(1)(﹣16)+(+25)+(﹣1)+(﹣11)=(﹣16)+25+(﹣1)+(﹣11)=﹣5;(2)(﹣3)×(﹣5)﹣30÷(﹣15)=15+8=17;(3)(﹣15)×﹣(﹣15)×=(﹣15)×﹣(﹣15)×=(﹣15)×()=(﹣15)×1=﹣15;(4)﹣18﹣×[5﹣(﹣3)2]﹣2÷(﹣)=﹣8﹣×(5﹣9)﹣2×(﹣3)=﹣1﹣×(﹣6)+4=﹣3+1+4=5.16.【解答】解:(1)如图所示,AB即为所作的线段;(2)如图所示:直线AB,线段AP.17.【解答】解:(1)∵A=2x2﹣8xy+y2+2x+5y,B=4x2﹣3xy+2y2﹣5x﹣y,∴B﹣2A=4x5﹣6xy+2y4﹣3x﹣y﹣2(2x2﹣3xy+y6+2x+2y)=2x2﹣6xy+3y2﹣3x﹣y﹣5x2+6xy﹣5y2﹣4x﹣5y=﹣7x﹣5y当x=4,y=﹣时,B﹣2A=﹣7×2﹣7×(﹣)=﹣14+7=﹣13(2)∵|x﹣2a|+(y﹣3)3=0,∴x﹣2a=8,y﹣3=0,∴x=2a,y=3,∵B﹣2A=a,∴﹣8x﹣5y=﹣7×5a﹣5×3=﹣14a﹣15=a解得a=﹣6.18.【解答】解:(1)原式=﹣3x2y+6x2y+3xy6﹣2xy2=﹣x2y+xy2;(2)2m+(m+n)﹣2(m﹣n)=2m+m+n﹣2m+7n=m+3n.19.【解答】解:∵a,b互为相反数,c,m的绝对值是1,∴a+b=0,cd=42=1),n=8,∴20211﹣(a+b)+m2﹣(cd)2021+n(a+b+c+d)=20214﹣0+1﹣72021+0×(1+c+d)=2021+8﹣1+0=2021.20.【解答】解:如图所示:21.【解答】解:(1)8+2.5×(20﹣3)﹣5=4+2.2×17﹣4=8+37.4﹣6=40.4(元).答:他乘坐“滴滴快车”的费用为40.4元.(2)根据题意得:乘坐传统出租车所需费用为10+6(x﹣3)=(2x+7)(元);乘坐滴滴快车所需费用为1.5[3+2.2(x﹣6)]=(3.3x+4.1)(元).答:乘坐滴滴快车所需费用为(3.6x+2.1)元,乘坐传统出租车所需费用为(2x+4)元.22.【解答】解:设∠EOC=2x,∠EOD=3x,解得x=36°,∴∠EOC=4x=72°,∵OA平分∠EOC,∴∠AOC=∠EOC=,∴∠BOD=∠AOC=36°.23.【解答】解:(1)∵总人数为18÷45%=40(人),∴C等级人数为40﹣(4+18+5)=13(人),则C对应的扇形的圆心角是360°×=117°,故答案为:117;(2)补全条形图如下:(3)因为共有40个数据,其中位数是第20,而第20,所以所抽取学生的足球运球测试成绩的中位数会落在B等级,故答案为:B.(4)估计足球运球测试成绩达到A级的学生有:500×=50(人).24.【解答】解:(1)设该商品的进价为m元,由题意得40×0.9﹣m=20%•m,∴m=30,∴该商品的进价为30元;(2)在不打折的情况下,商场获得的利润为w元,由题意得:w=(x﹣30)(162﹣3x)=﹣3(x﹣42)2+432 (30≤x≤54),∵a=﹣3<0,∴当x=42时,w最大=432,∴如果商场要想获得最大利润,每件商品的销售价定为42元为最合适.25.【解答】解:分为两种情况:①如图1,当B在线段AC延长线时,∵AC=10厘米,BC=6厘米、N分别是AC,∴CM=AC=5厘米BC=3厘米,∴MN=CM+CN=4+3=8(厘米);②如图3,当B在线段AC上时,MN=CM﹣CN=5﹣3=7(厘米);即MN的长度是8厘米或2厘米;(2)①当8<t≤5时,C是线段PQ的中点,解得t=4(秒);②当7<t≤时,P为线段CQ的中点,解得t=;③当<t≤6时,6﹣t=8t﹣16(秒);④当6<t≤3时,C为线段PQ的中点,解得t=4(舍),综上所述:P点运动了4秒或秒或秒.。
福建省漳州市2020-2021学年学年高一数学上学期期末考试试题(含解析)

福建省漳州市2020-2021学年学年高一数学上学期期末考试试题(含解析)本试卷共5页,22题.全卷满分150分.考试用时120分钟.注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束,考生必须将试题卷和答题卡一并交回.一.单项选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{|4}A x x =>,{|2}B x x ,则A B =( )A. (2,)+∞B. (4,)+∞C. (2,4)D. (,4)-∞【答案】B 【解析】 【分析】由交集的定义求解即可. 【详解】{|{|2}4}{|4}x A B x x x x x =>>=>故选:B【点睛】本题主要考查了集合间的交集运算,属于基础题. 2.sin(600)-︒的值是( )A.12B. 12-C.2D. 【答案】C 【解析】 【分析】原式中的角度变形后,利用诱导公式及特殊角的三角函数值计算即可得到结果.【详解】解:()()()sin 600sin 720120sin120sin 18060sin60-︒=-︒+︒=︒=︒-︒=︒= 故选C .【点睛】此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键. 3.下列各函数的值域与函数y x =的值域相同的是( ) A. 2yxB. 2xy =C. sin y x =D.2log y x =【答案】D 【解析】 【分析】分别求出下列函数的值域,即可判断. 【详解】函数y x =的值域为R20y x =≥,20x y =>则A ,B 错误;函数sin y x =的值域为[]1,1-,则C 错误; 函数2log y x =的值域为R ,则D 正确; 故选:D【点睛】本题主要考查了求具体函数的值域,属于基础题.4.已知函数42,0,()log ,0,x x f x x x ⎧=⎨>⎩则((1))f f -=( )A. 2-B. 12-C.12D. 2【答案】B 【解析】 【分析】分别计算(1)f -,12f ⎛⎫ ⎪⎝⎭即可得出答案.【详解】121(1)2f --==,241211log log 12222f -⎛⎫===- ⎪⎝⎭所以1((1))2f f -=- 故选:B【点睛】本题主要考查了已知自变量求分段函数的函数值,属于基础题. 5.函数log ||()(1)||a x x f x a x =>图象的大致形状是( )A. B.C. D.【答案】A 【解析】 【分析】判断函数函数()f x 为奇函数,排除BD 选项,取特殊值排除C ,即可得出答案. 【详解】log ||log ||()()||||a a x x x x f x f x x x ---==-=--所以函数()f x 为奇函数,故排除BD.log ||()10||a a a f a a ==>,排除C故选:A【点睛】本题主要考查了函数图像的识别,属于基础题.6.已知0.22log 0.2,2,sin 2a b c ===,则( )A. a b c <<B. a c b <<C. c a b <<D.b c a <<【答案】B【解析】 【分析】分别求出a ,b ,c 的大概范围,比较即可.【详解】因为22log 0.2log 10<=,0sin 21<<,0.20221>= 所以a c b <<. 故选:B【点睛】本题主要考查了指数,对数,三角函数的大小关系,找到他们大概的范围再比较是解决本题的关键,属于简单题.7.已知以原点O 为圆心的单位圆上有一质点P ,它从初始位置01(,22P 开始,按逆时针方向以角速度1/rad s 做圆周运动.则点P 的纵坐标y 关于时间t 的函数关系为 A. sin(),03y t t π=+≥ B. sin(),06y t t π=+≥ C. cos(),03y t t π=+≥D. cos(),06y t t π=+≥【答案】A 【解析】当时间为t 时,点P 所在角的终边对应的角等于3t π+, 所以点P 的纵坐标y 关于时间t 的函数关系为sin(),03y t t π=+≥.8.已知函数()f x 为定义在(0,)+∞的增函数,且满足()()()1f x f y f xy +=+.若关于x 的不等式(1sin )(1)(cos )(1sin )f x f f a x f x --<+-+恒成立,则实数a 的取值范围为( ) A. 1a >- B. 14a >-C. 1a >D. 2a >【答案】D 【解析】 【分析】将题设不等式转化为2(cos )(cos )f x f a x <+,根据函数()f x 的单调性解不等式得出2cos cos x a x <+,通过换元法,构造函数2()g x t t =-,[]1,1t ∈-求出最大值,即可得到实数a 的取值范围.【详解】(1sin )(1)(cos )(1sin )f x f f a x f x --<+-+(1sin )(1sin )(cos )(1)f x f x f a x f ∴-++<++因为()()()2(1sin )(1sin )1sin 1sin 1(cos)1f x f x fx x f x -++=-++=+,(cos )(1)(cos )1f a x f f a x ++=++所以2(cos )(cos )f x f a x <+在(0,)x ∈+∞恒成立故2cos cos x a x <+在(0,)x ∈+∞恒成立,即2cos cos x x a -<在(0,)x ∈+∞恒成立 令[]cos ,1,1x t t =∈-,则22()cos cos g x x x t t =-=-所以函数2()g x t t =-在11,2⎡⎤-⎢⎥⎣⎦上单调递减,在1,12⎛⎤ ⎥⎝⎦上单调递增,(1)2(1)0g g -=>= 所以2a > 故选:D【点睛】利用函数的单调性解抽象不等式以及不等式的恒成立问题,属于中档题.二.多项选择题:本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,选对但不全的得3分,有选错的得0分.9.设11,,1,32α⎧⎫∈-⎨⎬⎩⎭,则使函数y x α=的定义域是R ,且为奇函数的α值可以是( )A. 1-B.12C. 1D. 3【答案】CD 【解析】 【分析】求出对应α值函数y x α=的定义域,利用奇偶性的定义判断即可.【详解】当α的值为11,2-时,函数y x α=的定义域分别为()(),00,-∞+∞,[)0,+∞当1α=时,函数y x =的定义域为R ,令()f x x =,()()f x x f x -=-=-,则函数y x =为R 上的奇函数当3α=时,函数3y x =的定义域为R ,令3()f x x =,3()()f x x f x -=-=-,则函数3y x=为R 上的奇函数故选:CD【点睛】本题主要考查了判断函数的奇偶性,属于基础题. 10.要得到sin 25y x π⎛⎫=- ⎪⎝⎭的图象,可以将函数sin y x =的图象上所有的点( ) A. 向右平行移动5π个单位长度,再把所得各点的横坐标缩短到原来的12倍B. 向右平行移动10π个单位长度,再把所得各点的横坐标缩短到原来的12倍C. 横坐标缩短到原来的12倍,再把所得各点向右平行移动5π个单位长度D. 横坐标缩短到原来的12倍,再把所得各点向右平行移动10π个单位长度【答案】AD 【解析】 【分析】由正弦函数的伸缩变换以及平移变换一一判断选项即可. 【详解】将函数sin y x =的图象上所有的点向右平行移动5π个单位长度,得到函数n 5si y x π⎛⎫=- ⎪⎝⎭的图象,再把所得各点的横坐标缩短到原来的12倍,得到sin 25y x π⎛⎫=- ⎪⎝⎭的图象,故A 正确;将函数sin y x =的图象上所有的点向右平行移动10π个单位长度,得到函数sin 10y x π⎛⎫=- ⎪⎝⎭的图象,再把所得各点的横坐标缩短到原来的12倍,得到sin 210y x π⎛⎫=- ⎪⎝⎭的图象,故B 错误;将函数sin y x =的图象上所有的点横坐标缩短到原来的12倍,得到sin 2y x =的图象,再把所得各点向右平行移动5π个单位长度,得到25sin 2y x π⎛⎫=-⎪⎝⎭的图象,故C 错误; 将函数sin y x =的图象上所有的点横坐标缩短到原来的12倍,得到sin 2y x =的图象,再把所得各点向右平行移动10π个单位长度,得到sin 25y x π⎛⎫=- ⎪⎝⎭的图象,故D 正确;故选:AD【点睛】本题主要考查了正弦函数的伸缩变换以及平移变换,属于基础题.11.对于函数()sin(cos )f x x =,下列结论正确的是( ) A. ()f x 为偶函数B. ()f x 的一个周期为2πC. ()f x 的值域为[sin1,sin1]-D. ()f x 在[]0,π单调递增【答案】ABC 【解析】 【分析】利用奇偶性的定义以及周期的定义判断A ,B 选项;利用换元法以及正弦函数的单调性判断C 选项;利用复合函数的单调性判断方法判断D 选项. 【详解】函数()f x 的定义域为R ,关于原点对称()()()()sin cos sin cos ()f x x x f x -=-==,则函数()f x 偶函数,故A 正确;()()()sin co 22s sin cos ()f x x x f x ππ+=+==⎡⎤⎣⎦,则函数()f x 的一个周期为2π,故B正确;令[]cos ,1,1t x t =∈-,则()sin f x t =,由于函数sin y t=[]1,1-上单调递增,则()sin 1()sin1sin1()sin1f x f x -≤≤⇒-≤≤,故C 正确;当[]0,x π∈时,函数cos t x =为减函数,由于[]cos 0,1t x =∈,则函数sin y t =在0,1上为增函数,所以函数()f x 在[]0,π单调递减,故D 错误; 故选:ABC【点睛】本题主要考查了判断函数的奇偶性,周期性,求函数值域,复合函数的单调性,属于中档题.12.已知()f x 为R 上的奇函数,且当0x >时,()lg f x x =.记()sin ()cos g x x f x x =+⋅,下列结论正确的是( ) A. ()g x 为奇函数B. 若()g x 的一个零点为0x ,且00x <,则()00lg tan 0x x --=C. ()g x 在区间,2ππ⎛⎫-⎪⎝⎭的零点个数为3个 D. 若()g x 大于1的零点从小到大依次为12,,x x ,则1223x x ππ<+<【答案】ABD 【解析】 【分析】根据奇偶性的定义判断A 选项;将()0g x =等价变形为tan ()x f x =-,结合()f x 的奇偶性判断B 选项,再将零点问题转化为两个函数的交点问题,结合函数()g x 的奇偶性判断C 选项,结合图象,得出12,x x 的范围,由不等式的性质得出12x x +的范围. 【详解】由题意可知()g x 的定义域为R ,关于原点对称因为()()()sin ()cos sin ()cos ()g x x f x x x f x x g x -=-+-⋅-=--⋅=-,所以函数()g x 为奇函数,故A 正确; 假设cos 0x =,即,2x k k Z ππ=+∈时,sin ()co cos s sin 02x k x f x k πππ⎛⎫++⋅==≠ ⎪⎝⎭所以当,2x k k Z ππ=+∈时,()0g x ≠当,2x k k Z ππ≠+∈时,sin ()cos 0tan ()x f x x x f x +⋅=⇔=-当00x <,00x ->,则()000()()lg f x f x x =--=--由于()g x 的一个零点为0x , 则()()00000tan ()lg t lg an 0x x f x x x =-=⇒--=-,故B 正确;当0x >时,令12tan ,lg y x y x ==-,则()g x 大于0的零点为12tan ,lg y x y x ==-的交点,由图可知,函数()g x 在区间()0,π的零点有2个,由于函数()g x 为奇函数,则函数()g x 在区间,02π⎛⎫-⎪⎝⎭的零点有1个,并且(0)sin 0(0)cos00g f =+⋅= 所以函数在区间,2ππ⎛⎫-⎪⎝⎭的零点个数为4个,故C 错误;由图可知,()g x 大于1的零点123,222x x ππππ<<<< 所以1223x x ππ<+< 故选:ABD【点睛】本题主要考查了判断函数的奇偶性以及判断函数的零点个数,属于较难题. 三、填空题:本大题共4题,每小题5分,共20分.13.函数()1xf x a =+(0a >且1a ≠)的图象恒过点__________【答案】()0,2 【解析】分析:根据指数函数xy a =过()0,1可得结果.详解:由指数函数的性质可得xy a =过()0,1,所以1xy a =+过()0,2,故答案为()0,2.点睛:本题主要考查指数函数的简单性质,属于简单题. 14.已知扇形的圆心角为12π,面积为6π,则该扇形的弧长为_______; 【答案】6π 【解析】 【分析】由扇形面积公式求出扇形半径,根据扇形弧长公式即可求解.【详解】设扇形的半径为r 由扇形的面积公式得:216212r ππ=⨯,解得2r该扇形的弧长为2126ππ⨯=故答案为:6π 【点睛】本题主要考查了扇形面积公式以及弧长公式,属于基础题. 15.函数()2sin 23f x x π⎛⎫=- ⎪⎝⎭在区间0,2π⎡⎤⎢⎥⎣⎦上的值域为______;【答案】[2] 【解析】 【分析】由x 的范围,确定23x π-的范围,利用换元法以及正弦函数的单调性,即可得出答案.【详解】0,2x π⎡⎤∈⎢⎥⎣⎦,22,333x πππ⎡⎤∴-∈-⎢⎥⎣⎦令22,333t x πππ⎡⎤=-∈-⎢⎥⎣⎦,函数()2sin g t t =在,32ππ⎡⎤-⎢⎥⎣⎦上单调递增,在2,23ππ⎡⎤⎢⎥⎣⎦上单调递减2si ()(n 33)g ππ--==2si 2()2n 2g ππ==, 222sin (3)3g ππ==所以函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的值域为[2]故答案为:[2]【点睛】本题主要考查了正弦型函数的值域,属于中档题. 16.已知函数1()f x x=,()2sin g x x =,则函数()f x 图象的对称中心为_____,函数()y f x =的图象与函数()y g x =的图象所有交点的横坐标与纵坐标之和为____. 【答案】 (1). (0,0) (2). 0 【解析】 【分析】判断函数()f x ,()g x 为奇函数,即可得出函数()f x ,()g x 图象的对称中心都为原点; 根据对称性即可得出所有交点的横坐标与纵坐标之和. 【详解】1()()f x f x x-=-=-,则函数()f x 为奇函数,即函数()f x 图象的对称中心为(0,0) ()()2sin 2sin ()g x x x g x -=-=-=-,则函数()g x 为奇函数,即函数()g x 的对称中心为(0,0)所以函数()y f x =的图象与函数()y g x =的图象所有交点都关于原点对称 即所有交点的横坐标之和为0,纵坐标之和也为0则函数()y f x =的图象与函数()y g x =的图象所有交点的横坐标与纵坐标之和为0 故答案为:(0,0);0【点睛】本题主要考查了函数奇偶性的应用以及对称性的应用,属于中档题.四、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.已知α为锐角,且3cos 5α=. (1)求tan 4πα⎛⎫+ ⎪⎝⎭的值;(2)求cos sin(2)2παπα⎛⎫-+-⎪⎝⎭的值. 【答案】(1)-7(2)4425【解析】 【分析】(1)利用平方关系以及商数关系得出tan α,再利用两角和的正切公式求解即可; (2)利用诱导公式以及二倍角的正弦公式求解即可. 【详解】解:(1)因为α为锐角,且3cos 5α=. 所以24sin 1cos 5αα, 所以sin 4tan cos 3ααα==, 所以41tan tan34tan 7441tan tan 1143παπαπα++⎛⎫+===- ⎪⎝⎭--⨯. (2)因为cos sin 2παα⎛⎫-=⎪⎝⎭, sin(2)sin 2παα-=,所以cos sin(2)sin sin 22παπααα⎛⎫-+-=+ ⎪⎝⎭sin 2sin cos ααα=+4432555=+⨯⨯ 4425= 【点睛】本题主要考查了两角和的正切公式,诱导公式,二倍角的正弦公式,属于中档题. 18.已知集合{}|2216xA x =<<,{|sin 0,(0,2)}B x x x π=>∈. (1)求AB ;(2)集合{|1}C x x a =<<()a ∈R ,若AC C =,求a 的取值范围.【答案】(1){|04}A B x x ⋃=<<(2)4a 【解析】 【分析】(1)利用指数函数以及正弦函数的性质化简集合,A B ,再求并集即可;(2)由题设条件得出C A ⊆,分别讨论集合C =∅和C ≠∅的情况,即可得出答案.【详解】解:(1)依题意{|14}A x x =<<,{|0}B x x π=<<,所以{|04}A B x x ⋃=<<. (2)因为AC C =,所以C A ⊆.①当C =∅时,1a ,满足题意;②当C ≠∅时,1a >,因为C A ⊆,得4a ≤,所以14a <; 综上,4a .【点睛】本题主要考查了集合的并集运算以及根据集合间的包含关系求参数范围,属于中档题.19.已知函数()2sin (sin cos )f x x x x =⋅+. (1)求()f x 的最小正周期; (2)求()f x 的单调区间.【答案】(1)最小正周期为π.(2)单调递增区间为3,()88k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z ,()f x 的单调递减区间为37,()88k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z .【解析】 【分析】利用倍角公式以及辅助角公式化简函数()f x ,根据周期公式得出第一问;根据正弦函数的单调增区间和减区间求()f x 的单调区间,即可得出第二问. 【详解】解:因为2()2sin 2sin cos f x x x x =+⋅22sin sin 2x x =+1cos2sin2x x =-+ sin2cos21x x =-+214x π⎛⎫=-+ ⎪⎝⎭(1)所以函数()f x 的最小正周期为22T ππ==.(2)由222,242k x k k πππππ-+-+∈Z ,得3222,44k x k k ππππ-++∈Z , 即3,88k xk k ππππ-++∈Z , 所以()f x 的单调递增区间为3,()88k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z ,同理可得,()f x 的单调递减区间为37,()88k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z .【点睛】本题主要考查了求正弦型函数的最小正周期以及单调区间,属于中档题. 20.已知2()1x af x x bx +=++是定义在[1,1]-上的奇函数. (1)求a 与b 的值;(2)判断()f x 的单调性,并用单调性定义加以证明; (3)若[0,2)απ∈时,试比较(sin )f α与(cos )f α的大小.【答案】(1)0a =. 0b =.(2)()f x 在[1,1]-单调递增.见解析 (3)见解析 【解析】 【分析】(1)根据奇函数的性质得出(0)0f =,(1)(1)f f -=-,求解方程,即可得出a 与b 的值; (2)利用函数单调性的定义证明即可;(3)分别讨论α的取值使得sin cos αα=,sin cos αα<,sin cos αα>,结合函数()f x 的单调性,即可得出(sin )f α与(cos )f α的大小.【详解】解:(1)因为()f x 是定义在[1,1]-上的奇函数,所以(0)0f =,得0a =.又由(1)(1)f f -=-,得到1122b b -=--+,解得0b =. (2)由(1)可知2()1xf x x =+,()f x 在[1,1]-上为增函数.证明如下:任取12,[1,1]x x ∈-且设12x x <, 所以()()1212221211x x f x f x x x -=-++()()22121212221211x x x x x x x x +--=++ ()()()()122112221211x x x x x x x x -+-=++()()()()21122212111x x x x xx --=++由于12x x <且12,[1,1]x x ∈-,所以210x x ->,且2110x x -<,又2110x +>,2210x +>,所以()()()()211222121011x x x x xx --<++,所以()()12f x f x <,从而()f x 在[1,1]-单调递增. (3)当4πα=或54πα=时,sin cos αα=,所以(sin )(cos )f f αα=;当04πα<或524παπ<<时,sin cos αα<, 又因为sin [1,1]α∈-,cos [1,1]α∈-,且()f x 在[1,1]-上为增函数,所以(sin )(cos )f f αα<当544ππα<<时,sin cos αα>,同理可得(sin )(cos )f f αα>; 综上,当4πα=或54πα=时,(sin )(cos )f f αα=;当50,,244ππαπ⎡⎫⎛⎫∈⋃⎪ ⎪⎢⎣⎭⎝⎭时,(sin )(cos )f f αα<;当5,44ππα⎛⎫∈ ⎪⎝⎭时,(sin )(cos )f f αα>.【点睛】本题主要考查由函数的奇偶性求参数,判断函数的单调性以及利用单调性比较函数值大小,属于中档题.21.海水受日月的引力,在一定的时候发生涨落的现象叫潮.一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天的时间与水深关系表: .(1)设港口在x 时刻的水深为y 米,现给出两个函数模型:sin()(0,0,)y A x h A ωϕωπϕπ=++>>-<<和2(0)y ax bx c a =++≠.请你从两个模型中选择更为合适的函数模型来建立这个港口的水深与时间的函数关系式(直接选择模型,无需说明理由);并求出7x =时,港口的水深.(2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5米的安全间隙(船底与洋底的距离),问该船何时能进入港口,何时应离开港口?一天内货船可以在港口呆多长时间?【答案】(1)选择函数模型Asin()y x h ωϕ=++更适合. 水深为3米 (2)货船可以在1时进入港口,在5时出港;或者在13时进港,17时出港.一天内货船可以在港口呆的时间为8小时. 【解析】 【分析】(1)观察表格中水深的变化具有周期性,则选择函数模型Asin()y x h ωϕ=++更适合,由表格数据得出,,,A h ωϕ的值,将7x =代入解析式求解即可; (2)由题意 5.5y 时,船可以进港,解不等式2.5sin4.255.56x π+,得出x 的范围,由x的范围即可确定进港,出港,一天内在港口呆的时间. 【详解】解:(1)选择函数模型Asin()y x h ωϕ=++更适合因为港口在0:00时刻的水深为4.25米,结合数据和图象可知 4.25h =6.75 1.752.52A -==因为12T =,所以22126T πππω===, 所以 2.5sin 4.256y x πϕ⎛⎫=++⎪⎝⎭, 因为0x =时, 4.25y =,代入上式得sin 0ϕ=,因为πϕπ-<<,所以0ϕ=, 所以 2.5sin4.256y x π=+.当7x =时,712.5sin4.25 2.5 4.25362y π⎛⎫=+=⨯-+= ⎪⎝⎭, 所以在7x =时,港口的水深为3米(2)因为货船需要的安全水深是4 1.5 5.5+=米, 所以 5.5y 时,船可以进港, 令2.5sin4.255.56x π+,则1sin62xπ, 因为024x <,解得15x 或1317x ,所以货船可以在1时进入港口,在5时出港;或者在13时进港,17时出港. 因为(51)(173)8-+-=,一天内货船可以在港口呆的时间为8小时. 【点睛】本题主要考查了三角函数在生活中的应用,属于中档题. 22.已知函数3(1)log (1)f x a x +=+,且(2)1f =. (1)求()f x 的解析式;(2)已知()f x 的定义域为[2,)+∞. (ⅰ)求()41xf +的定义域;(ⅱ)若方程()()412xxf f k k x +-⋅+=有唯一实根,求实数k 取值范围.【答案】(1)2()log f x x =(2)(ⅰ)[0,)+∞.(ⅱ)1k = 【解析】 【分析】(1)利用换元法以及(2)1f =,即可求解()f x 的解析式;(2)(ⅰ)解不等式412x +≥,即可得出()41xf +的定义域;(ⅱ)根据()41xf +,()2x f k k ⋅+的定义域得出1k ,结合函数()f x 的解析式将方程化为()2(1)2210x x k k -⋅+⋅-=,利用换元法得出2()(1)1,[1,)g t k t k t t =-+⋅-∈+∞,讨论k的值,结合二次函数的性质即可得出实数k 的取值范围.【详解】解:(1)令1(0)t x t =+>,则3()log f t a t =,所以3()log f x a x =, 因为3(2)log 21f a ==,所以231log 3log 2a ==, 所以3232()log log 3log log f x a x x x ==⨯= (2)(ⅰ)因为()f x 的定义域为[2,)+∞, 所以412x +≥,解得0x , 所以()41xf +的定义域为[0,)+∞.(ⅱ)因为0,22,x x k k ⎧⎨⋅+⎩,所以221xk +在[0,)+∞恒成立, 因为221x y =+在[0,)+∞单调递减,所以221x y =+最大值为1,所以1k .又因为()()412xxf f k k x +-⋅+=,所以()()22log 41log 2xxk k x +-⋅+=, 化简得()2(1)2210xx k k -⋅+⋅-=,令2(1)xt t =,则2(1)10k t k t -⋅+⋅-=在[1,)+∞有唯一实数根, 令2()(1)1,[1,)g t k t k t t =-+⋅-∈+∞,当1k =时,令()0g t =,则1t =,所以21x =,得0x =符合题意,所以1k =; 当1k >时,2440k k ∆=+->,所以只需(1)220g k =-,解得1k ,因为1k >,所以此时无解; 综上,1k =.【点睛】本题主要考查了利用换元法求函数解析式以及根据函数的零点确定参数的范围,属于较难题.。
2020-2021学年陕西省榆林市子洲县六年级(上)期末数学试卷

2020-2021学年陕西省榆林市子洲县六年级(上)期末数学试卷一、用心填空。
(每空1分,共13分)1.(2分)填一填。
半径/cm 6.5直径/cm404.(1分)某药店去年十一月卖出300包口罩,十二月卖出的比十一月多30%,十二月卖出了包口罩。
6.(1分)周师傅第一周加工零件的个数与第二周加工零件的个数比是15:11,已知第一周比第二周多加工了120个零件,周师傅这两周一共加工了个零件。
二、我会判断。
(对的画“√”,错的画“x”)(每小题1分,共5分7.(1分)为了解某病人一周内每天体温的变化情况,应绘制折线统计图.8.(1分)某超市有牛奶240箱,卖出后,还剩150箱。
9.(1分)给5:9的前项增加25,要使比值不变,后项应增加54。
10.(1分)一台空调,原价2000元,现在打八折销售11.(1分)圆的直径与正方形的边长都是4厘米,那么圆的周长大于正方形的周长。
三、精挑细选。
(将正确答案的序号填在括号里)(每小题2分,共10分12.(2分)有5个小队进行拔河比赛,每两个队都要进行一场比赛,一共要进行()A.8B.10C.12D.1513.(2分)一个圆形铁片,直径是12cm,它的面积是()2。
A.50.24B.94.2C.100.48D.113.0414.(2分)一个立体图形,从上面和左面看到的形状如图,要搭成这个立体图形()个小正方体。
A.10B.9C.8D.715.(2分)某村修一段水渠,第一周修了全长的39%,第二周修了全长的33%,这段水渠全长()米。
A.200B.250C.300D.36016.(2分)小丽看一本科技书,第一天看了56页,比第二天看的页数多()页。
A.32B.40C.45D.54四、神机妙算。
(共26分17.(6分)化简比。
(1)24:42(2)0.21:0.35(3)18.(6分)解方程。
(1)35%x=140(2)(3)155%x﹣65%x=270 19.(6分)仔细算一算,怎样简便就怎样计算。
2020-2021学年高一下学期数学期末复习卷(一)统计与概率(word版,含答案)

2020-2021学年度高一数学期末复习卷(一)——统计与概率一、单选题1.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( ) A .中位数 B .平均数 C .方差 D .极差【答案】A 【分析】可不用动笔,直接得到答案,亦可采用特殊数据,特值法筛选答案. 【详解】设9位评委评分按从小到大排列为123489x x x x x x ≤≤≤≤≤.则①原始中位数为5x ,去掉最低分1x ,最高分9x ,后剩余2348x x x x ≤≤≤,中位数仍为5x ,∴A 正确. ①原始平均数1234891()9x x x x x x x =+++++,后来平均数234817x x x x x '=+++()平均数受极端值影响较大,∴x 与x '不一定相同,B 不正确 ①()()()222219119S x x x x x x ⎡⎤=-+-++-⎣⎦ ()()()222223817s x x x x x x ⎡⎤'=-'+-'++-'⎢⎥⎣⎦由①易知,C 不正确.①原极差91=x -x ,后来极差82=x -x 可能相等可能变小,D 不正确. 【点睛】本题旨在考查学生对中位数、平均数、方差、极差本质的理解.2.某单位青年、中年、老年职员的人数之比为10①8①7,从中随机抽取200名职员作为样本,若每人被抽取的概率是0.2,则该单位青年职员的人数为( ) A .280 B .320C .400D .1000【答案】C 【分析】由题意知这是一个分层抽样问题,根据青年、中年、老年职员的人数之比为1087∶∶,从中抽取200名职员作为样本,得到要从该单位青年职员中抽取的人数,根据每人被抽取的概率为0.2,得到要求的结果 【详解】由题意知这是一个分层抽样问题,青年、中年、老年职员的人数之比为1087∶∶,从中抽取200名职员作为样本, ∴要从该单位青年职员中抽取的人数为:10200801087⨯=++每人被抽取的概率为0.2,∴该单位青年职员共有804000.2= 故选C 【点睛】本题主要考查了分层抽样问题,运用计算方法求出结果即可,较为简单,属于基础题. 3.有一个人在打靶中,连续射击2次,事件“至少有1次中靶”的对立事件是( ) A .至多有1次中靶 B .2次都中靶 C .2次都不中靶D .只有1次中靶【答案】C 【分析】根据对立事件的定义可得事件“至少有1次中靶”的对立事件. 【详解】由于两个事件互为对立事件时,这两件事不能同时发生,且这两件事的和事件是一个必然事件.再由于一个人在打靶中,连续射击2次,事件“至少有1次中靶”的反面为“2次都不中靶”.故事件“至少有1次中靶”的对立事件是“2次都不中靶”, 故选:C .4.掷一枚骰子一次,设事件A :“出现偶数点”,事件B :“出现3点或6点”,则事件A ,B 的关系是A .互斥但不相互独立B .相互独立但不互斥C .互斥且相互独立D .既不相互独立也不互斥【答案】B 【详解】事件{2,4,6}A =,事件{3,6}B =,事件{6}AB =,基本事件空间{1,2,3,4,5,6}Ω=,所以()3162P A ==,()2163P B ==,()111623P AB ==⨯,即()()()P AB P A P B =,因此,事件A 与B 相互独立.当“出现6点”时,事件A ,B 同时发生,所以A ,B 不是互斥事件.故选B .5.齐王有上等、中等、下等马各一匹,田忌也有上等、中等、下等马各一匹.田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马.现在从双方的马匹中随机各选一匹进行一场比赛,若有优势的马一定获胜,则齐王的马获胜得概率为 A .49B .59C .23D .79【答案】C 【分析】现从双方的马匹中随机各选一匹进行一场比赛 ,列出样本空间,有9个样本点,“齐王的马获胜”包含的样本点有6个,利用古典概型概率公式可求出齐王的马获胜的概率. 【详解】设齐王上等、中等、下等马分別为,,A B C ,田忌上等、中等、下等马分别为,,a b c , 现从双方的马匹中随机各选一匹进行一场比赛,Ω={()()()()()()()()(),,,,,,,,,,,,,,,,,A a A b A c B a B b B c C a C b C c },9)(=Ωn ,因为每个样本点等可能,所以这是一个古典概型。
2020-2021学年四川省遂宁市高一(上)期末数学试卷(附答案详解)

2020-2021学年四川省遂宁市高一(上)期末数学试卷一、单选题(本大题共12小题,共60.0分)1.已知集合A={x∈Z|−2≤x<1},B={−1,0,1,2,3},求A∩B=()A. {−1,2}B. {−1,0}C. {0,1}D. {1,2}2.下面各组函数中表示同一函数的是()A. f(x)=x,g(x)=(√x)2B. f(x)=2log2x,g(x)=log2x2C. f(x)=|x|,g(x)=√x2D. f(x)=|x|x ,g(x)={1,x≥0−1,x<03.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数为()A. y=cosxB. y=−log2xC. y=2xD. y=x−24.四个物体同时从某一点出发向前运动,其路程f i(x)(i=1,2,3,4)关于时间x(x>1)的函数关系是f1(x)=x2,f2(x)=2x,f3(x)=log2x,f4(x)=2x,如果它们一直运动下去,最终在最前面的物体具有的函数关系是()A. f1(x)=x2B. f2(x)=2xC. f3(x)=log2xD. f4(x)=2x5.若函数f(x)=x3+x2−2x−2的一个正数零点附近的函数值用二分法计算,其参考数据如表:那么方程x3+x2−2x−2=0的一个近似根(精确到0.01)可以是()A. 1.25B. 1.39C. 1.41D. 1.56.已知3a=4b=12,c=log a b,则a,b,c的大小关系为()A. a<b<cB. c<b<aC. b<a<cD. c<a<b7.若sin(π−θ)−sin(π2−θ)=√72,且θ∈(34π,π),则sin(π−θ)−cos(π−θ)=()A. −12B. ±12C. 12D. −438.函数f(x)=x3+sinxe x+e−x(e≈2.718281828459)的部分图象大致是()A.B.C.D.9. 若幂函数f(x)=qx −p2+2p+3(q ∈R,p ∈Z)在(0,+∞)上是增函数,且在定义域上是偶函数,则p +q =( )A. 0B. 1C. 2D. 310. 设函数f(x)=3sin(ωx +φ)+1(ω>0,|φ|<π2)的最小正周期为π,其图象关于直线x =π3对称,则下列说法正确是( )A. f(x)的图象过点(0,32) B. f(x)在[π12,2π3]上单调递减 C. f(x)的一个对称中心是(7π12,0)D. 将f(x)的图象向左平移12|φ|个单位长度得到函数y =3sin2x +1的图象11. 若函数f(x)={a x ,x ≥1(5−a)x +1,x <1,满足对任意不相等的实数x 1,x 2都有(x 2−x 1)(f(x 1)−f(x 2))<0成立,则a 的取值范围是( )A. (3,+∞)B. (5,+∞)C. [3,5)D. (3,5)12. 设函数f(x)=Asin(ωx +φ)(A,ω,φ是常数,A >0,ω>0).若f(x)在区间[π3,π2]上具有单调性,且f(π2)=−f(π3),f(π2)=f(2π3),则ω=( )A. 6B. 3C. 2D. 1二、单空题(本大题共4小题,共20.0分)13. 设函数f(x)={16x −1,x ≤1x 2+x −2,x >1,则f(1f(2))= ______ .14. 计算:(2.25)−12+(−9.6)0−(827)13+log 2512⋅log 45= ______ .15. 高斯被誉为历史上最伟大的数学家之一,与阿基米德、牛顿、欧拉同享盛名,高斯函数f(x)=[x]也应用于生活、生产的各个领域.高斯函数也叫取整函数,其符号[x]表示不超过x 的最大整数,如:[3.14]=3,[−1.6]=−2,定义函数:f(x)=sin([x]π2),则f(x)值域的子集的个数为______ .16. 已知方程4x −k ⋅2x+1−3⋅2x +4=0(x >0)有两个不相等实根,则k 的取值范围为______ .三、解答题(本大题共6小题,共70.0分)17. 在平面直角坐标系中,以x 轴的非负半轴为角的始边,如果角α终边与单位圆交于点A(−35,45),角β的终边落在射线y =x(x >0)上. (1)求sinα⋅tanβ的值; (2)求sin(π2−α)sin(3π+α)+sin 2(3π2−β)sin 2β+3sinβcosβ的值.18. 已知集合A ={x|log 2(x +2)<2},B ={x|3a −2<x <2a +1}.(1)当a =1时,求A ∩B ;(2)若A ,B 满足:①若A ∩B =⌀,②A ∪B =A ,从①②中任选一个作为条件,求a 的取值范围.19. 遂宁市为打造最佳的宜居城市,践行绿水青山就是金山银山的理念,大力开展植树造林.假设西山森林公园原来的面积为m 亩,计划每年种植一些树苗,且西山森林公园面积的年增长率相同,当面积是原来的2倍时,所用时间是10年. (1)求西山森林公园面积的年增长率;(2)到今年为止,西山森林公园面积为原来的√2倍,则该地已经植树造林多少年?(3)为使西山森林公园面积至少达到6m亩,至少需要植树造林多少年?(参考数据:lg2=0.3010,lg3=0.4771)20.定义在R上的函数f(x),对任意x1、x2∈R,满足下列条件:①f(x1+x2)=f(x1)+f(x2)−2;②f(2)=4.(1)是否存在一次函数f(x)满足条件①②,若存在,求出f(x)的解析式;若不存在,说明理由.(2)证明:g(x)=f(x)−2为奇函数.21.如图是函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的部分图象.(1)求φ的值及f(x)单调递增区间.(2)若f(x)的图象横坐标不变,纵坐标扩大为原来的2倍,然后再将所得图象向右平移π个单位,最后向上平移1个单位,得到函数g(x)的图3象,若g(x)在[0,b](b>0)上恰有10个零点,求b的取值范围.22.已知函数f(x)=1−b为定义在R上的奇函数.2x+a(1)求a,b的值;(2)判断f(x)=1−2的单调性,并用定义证明你的结论;2x+1(3)若f(lnm)+f(lnm−1)≤1−2lnm,求f(x)的取值范围.答案和解析1.【答案】B【解析】解:∵A ={−2,−1,0},B ={−1,0,1,2,3}, ∴A ∩B ={−1,0}. 故选:B .可求出集合A ,然后进行交集的运算即可.本题考查了描述法和列举法的定义,交集及其运算,考查了计算能力,属于基础题.2.【答案】C【解析】解:A.y =x 的定义域是R ,y =(√x)2=x 的定义域为[0,+∞),两个函数的定义域不相同,不是同一函数,B .f(x)的定义域为(0,+∞),g(x)的定义域为{x|x ≠0},两个函数的定义域不相同,不是同一函数,C .g(x)=|x|,两个函数的定义域都是R ,对应法则相同,是同一函数,D .f(x)={1,x >0−1,x <0,定义域为{x|x ≠0},g(x)的定义域是R ,两个函数的定义域不相同,不是同一函数, 故选:C .分别判断两个函数的定义域和对应法则是否相同即可.本题主要考查同一函数的判断,结合两个函数的定义域和对应法则是否相同是解决本题的关键,是基础题.3.【答案】D【解析】解:y =cosx 在(0,+∞)上没有单调性;y =−log 2x 和y =2x 都是非奇非偶函数;y =x −2是偶函数,且在(0,+∞)上是减函数. 故选:D .可看出选项A 的函数在(0,+∞)上没有单调性,选项B ,C 的函数都是非奇非偶函数,从而只能选D .本题考查了偶函数和减函数的定义及判断,偶函数图象的对称性,考查了计算能力,属4.【答案】D【解析】解:路程f i(x)(i=1,2,3,4)关于时间x(x>1)的函数关系是:f1(x)=x2,f2(x)=2x,f3(x)=log2x,f4(x)=2x,它们相应的函数模型分别是幂函数,一次函数,对数函数和指数函数模型.根据四种函数的变化特点,指数函数是一个变化最快的函数,当运动的时间足够长,最前面的物体一定是按照指数函数运动的物体,即一定是第四种物体,故选:D.指数函数是一个变化最快的函数,当运动的时间足够长,最前面的动物一定是按照指数函数运动的物体,即一定是第四种物体.本题考查几种基本初等函数的变化趋势,只要注意到对数函数、指数函数与幂函数的增长差异,属于基础题.5.【答案】C【解析】解:由表中数据可得f(1.40625)⋅f(1.4375)<0,根据零点的存在性定理可知,零点在区间(1.40625,1.4375)内,观察四个选项,方程x3+x2−2x−2=0的一个近似根为1.41.故选:C.利用表中的数据,得到f(1.40625)⋅f(1.4375)<0,由零点的存在性定理分析求解即可.本题考查了函数与方程关系的应用,涉及了函数零点的存在性定理的应用,属于基础题.6.【答案】B【解析】解:因为3a=4b=12,所以a=log312,b=log412,所以2=log39<a=log312<log327=3,1<log44<b=log412<log416=2,即2<a<3,1<b<2,所以c=log a b<log a a=1,所以c<b<a.通过指数对数互逆表示出a 、b ,然后判断a 、b 的范围,从而可确定c 的范围,即可得到它们的大小关系.本题主要考查了对数的大小关系,涉及指数与对数的互化,同时考查了学生的转化能力,属于基础题.7.【答案】A【解析】解:因为sin(π−θ)−sin(π2−θ)=√72,可得sinθ−cosθ=√72,两边平方可得1−2sinθcosθ=74,可得2sinθcosθ=−34<0,因为θ∈(34π,π),可得sinθ>0,cosθ<0,sinθ+cosθ<0,则sin(π−θ)−cos(π−θ)=sinθ+cosθ=−√(sinθ+cosθ)2=−√1+2sinθcosθ=−√1+(−34)=−12.故选:A .利用诱导公式化简已知等式,两边平方,利用同角三角函数基本关系式可求2sinθcosθ=−34<0,进而根据诱导公式,同角三角函数基本关系式化简所求即可得解.本题主要考查了诱导公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.8.【答案】A【解析】解:f(−x)=−x 3−sinx e −x +e x=−f(x),则函数为奇函数,图象关于原点对称,排除BD ,当x =π时,f(x)>0,排除D , 故选:A .根据函数的奇偶性和对称性,利用排除法进行判断即可.本题主要考查函数图象的识别和判断,利用函数奇偶性和对称性的关系,结合排除法是解决本题的关键,是基础题.【解析】解:∵幂函数f(x)=qx−p2+2p+3(q∈R,p∈Z)在(0,+∞)上是增函数,且在定义域上是偶函数,∴q=1,且−p2+2p+3为正的偶数,∴p=1.∴p+q=2,故选:C.由题意利用幂函数的定义和性质,求出p、q的值,可得结论.本题主要考查幂函数的定义和性质,属于基础题.10.【答案】D【解析】解:函数f(x)=3sin(ωx+φ)+1(ω>0,|φ|<π2)的最小正周期为π,故ω=2,其图象关于直线x=π3对称,所以2π3+φ=kπ+π2(k∈Z),由于|ϕ|<π2,故φ=−π6,所以f(x)=3sin(2x−π6)+1.对于A:当x=0时,f(0)=3sin(−π6)+1=−32+1=−12,故A错误;对于B:由于x∈[π12,2π3],所以2x−π6∈[0,7π6],故B错误,对于C:当x=7π12时,f(7π12)=3sinπ+1=1,故C错误;对于D:将f(x)的图象向左平移12|φ|=π12个单位长度得到函数y=3sin2x+1的图象,故D正确.故选:D.首先利用函数的性质求出函数的关系式,进一步判定A、B、C、D的结论.本题考查的知识要点:三角函数关系的变换,函数的关系式的求法,正弦型函数的性质的应用,函数的图象的平移变换和伸缩变换,主要考查学生的运算能力和转换能力及思维能力,属于基础题.11.【答案】C【解析】解:对任意不相等的实数x 1,x 2都有(x 2−x 1)(f(x 1)−f(x 2))<0成立, 可得函数f(x)={a x ,x ≥1(5−a)x +1,x <1是R 上的增函数,∴{a >15−a >05−a +1≤a ,即3≤a <5. ∴a 的取值范围是[3,5). 故选:C .由题意可得,函数f(x)={a x ,x ≥1(5−a)x +1,x <1是R 上的增函数,进一步得到关于a 的不等式组求解.本题考查分段函数的单调性及其应用,考查化归与转化思想,考查运算求解能力,是基础题.12.【答案】B【解析】解:∵f(x)在区间[π3,π2]上具有单调性,且f(π2)=−f(π3),f(π2)=f(2π3), ∴由f(π2)=−f(π3),得函数关于(π2+π32,0)对称,即关于(5π12,0)对称, 由f(π2)=f(2π3),得函数关于x =π2+2π32=7π12对称,则T4=7π12−5π12=2π12,得T =2π3,即2πω=2π3,得ω=3,故选:B .结合条件得到函数关于(5π12,0)对称,关于关于x =7π12对称,根据对称性求出函数的周期即可取出ω的值.本题主要考查三角函数的图象和性质,根据条件求出函数的对称性,结合对称性求出函数的周期是解决本题的关键,是中档题.13.【答案】1【解析】解:因为f(x)={16x −1,x ≤1x 2+x −2,x >1,所以f(2)=22+2−2=4, 所以f(1f(2))=f(14)=1614−1=24×14−1=1.故答案为:1.先利用x >1的解析式求出f(2),再利用x ≤1的解析式求解f(1f(2))即可.本题考查的是函数的求值问题,主要考查的是分段函数求值,解题的关键是弄清该使用哪一段解析式求解,属于基础题.14.【答案】34【解析】解:(2.25)−12+(−9.6)0−(827)13+log 2512⋅log 45=11.5+1−23+lg 12lg25⋅lg5lg4 =23+1−23+(−14) =34.故答案为:34.利用指数、对数的性质、运算法则直接求解.本题考查指数式、对数式化简求值,考查指数、对数的性质、运算法则等基础知识,考查运算求解能力,是基础题.15.【答案】8【解析】解:由[x]的定义知,当x ≥0时,[x]=0,1,2,3,…… 则f(x)=0,f(x)=sin π2=1,f(x)=sinπ=0,f(x)=sin 3π2=−1,f(x)=sin2π=0,……,则f(x)的值域为{0,1,−1},所以子集的个数为23=8个, 故答案为:8.根据[x]的定义,结合三角函数定义进行计算即可.本题主要考查真子集的计算,结合[x]的定义计算出函数的值域是解决本题的关键,是基础题.16.【答案】(12,1)【解析】解:方程4x −k ⋅2x+1−3⋅2x +4=0(x >0), 即(2x )2−(2k +3)2x +4=0(x >0), 令2x =t ,则t >1, 则有t 2−(2k +3)t +4=0,若方程4x −k ⋅2x+1−3⋅2x +4=0(x >0)有两个不相等实根, 即t 2−(2k +3)t +4=0(t >1)有两个不相等实根,则{2k+32>1△=[−(2k +3)]2−4×4>0f(1)=1−(2k +3)+4>0,解得:12<k <1,故答案为:(12,1).令2x =t ,问题转化为t 2−(2k +3)t +4=0(t >1)有两个不相等实根,根据二次函数的性质求出k 的范围即可.本题考查了二次函数,二次方程与二次不等式问题,考查转化思想,是中档题.17.【答案】解:(1)由题意可得A 点到原点O 的距离√(45)2+(−35)2=1, 由三角函数的定义知sinα=45,设角β的终边落在射线y =x(x >0)上任意一点B(m,m),m >0, 则tanβ=1, 所以sinα⋅tanβ=45.(2)由(1)及三角函数的定义知tanα=45−35=−43,原式=−cosαsinα+cos 2βsin 2β+3sinβcosβ=−1tanα+1tan 2β+3tanβ=−1−43+11+3=1.【解析】(1)由题意利用任意角的三角函数的定义可求sinα,设角β的终边落在射线y =x(x >0)上任意一点B(m,m),m >0,可求tanβ=1,即可计算得解.(2)由(1)及三角函数的定义可求tanα的值,利用诱导公式,同角三角函数基本关系式化简求解即可得解.本题考查了任意角的三角函数的定义,考查了诱导公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.18.【答案】解:(1)集合A ={x|log 2(x +2)<2}={x|−2<x <2},当a =1时,B ={x|1<x <3}, ∴A ∩B ={x|1<x <2}. (2)当选①∵A ∩B =⌀,∴当B =⌀时,3a −2≥2a +1,解得a ≥3,符合题意; 当B ≠⌀时,{3a −2<2a +13a −2≥2或{3a −2<2a +12a +1≤−2解得43≤a <3或a ≤−32,综上,a 的取值范围为(−∞,−32]∪[43,+∞). 当选②∵A ∪B =A ,∴B ⊆A∴当B =⌀时,3a −2≥2a +1,即a ≥3,符合题意; 当B ≠⌀时,{a <3−2≤3a −22≥2a +1,解得0≤a ≤12,综上,a 的取值范围为[0,12]∪[3,+∞).【解析】(1)可以求出A ={x|−2<x <2},a =1时,求出集合B ,然后进行交集的运算即可;(2)若选①根据A ∩B =⌀,可讨论B 是否为空集:B =⌀时,3a −2≥2a +1;B ≠⌀时,根据集合关系列出不等式组,解出a 的范围即可.若选②由A ∪B =A ,得到B ⊆A ,由此能求出实数a 的取值范围.本题考查对数不等式的解法,考查交集运算、集合之间的关系,子集的定义等基础知识,考查运算求解能力,属于基础题.19.【答案】解:(1)设增长率为x ,依题意得:m(1+x)10=2m ,所以(1+x)10=2,从而[(1+x)10]110=2110, 即1+x =2110,解得x =2110−1, 故年增长率为2110−1;(2)设已经植树造林n年,则m(1+2110−1)n=√2m,即2110n=212,解得n=5,故已经植树造林5年;(3)设已经植树造林n年,则m(1+2110−1)n=√2m,即2110k≥6,即110k≥log26=log22+log23,解得k≥10+10lg3lg2≈25.8,故至少还需要26年.【解析】(1)设增长率为x,依题意得:m(1+x)10=2m,然后解方程即可;(2)设已经植树造林n年,则m(1+2110−1)n=√2m,解方程即可求解;(3)设已经植树造林n年,则m(1+2110−1)n=√2m,解不等式即可.本题考查了根据实际问题建立函数模型的问题,涉及到解指数式方程以及对数式方程,考查了学生的运算能力,属于中档题.20.【答案】(1)解:假设存在一次函数f(x),设f(x)=kx+b(k≠0),则f(x1+x2)=k(x1+x2)+b,f(x1)+f(x2)−2=k(x1+x2)+2b−2,所有b=2b−2,b=2,f(2)=2k+b=4,k=1,故满足条件的一次函数为:f(x)=x+2;(2)证明:定义在R上的函数f(x)对任意的x1、x2∈R,都有f(x1+x2)=f(x1)+f(x2)−2成立,令x1=x2=0,则f(0+0)=f(0)+f(0)−2,∴f(0)=2,令x1=x,x2=−x,则f(x−x)=f(x)+f(−x)−2,∴[f(x)−2]+[f(−x)−2]=0,即g(x)+g(−x)=0,于是g(−x)=−g(x),∴g(x)=f(x)−2为奇函数.【解析】(1)假设存在一次函数f(x),设出解析式,然后结合题目条件建立等式,解之即可求出所求;(2)令x1=x2=0,求出f(0),再令x1=x,x2=−x,变形可得g(−x)=−g(x),根据奇函数的定义可得结论.本题主要考查了抽象函数及其应用,及其赋值法的应用和奇函数的判定,同时考查了学生的转化能力,属于中档题.21.【答案】解:(1)由图易知T2=2π3−π6=π2,则T=π,ω=2πT=2,由题意结合图象知,2×π6+φ=kπ,k∈Z,又0<φ<π,故φ=2π3,则f(x)=sin(2x+2π3).令:2kπ−π2 ≤2x+2π3≤2kπ+π2,k∈Z,整理得kπ−7π12≤x≤kπ−π12,k∈Z,所以函数f(x)的单调增区间是[kπ−7π12,kπ−π12](k∈Z).(2)若f(x)的图象横坐标不变,纵坐标扩大为原来的2倍,然后再将所得图象向右平移π3个单位,最后向上平移1个单位,得到函数g(x)=2sin2x+1.令g(x)=0,得x=kπ+7π12或x=kπ+11π12 (k∈Z).所以在[0,π]上恰好有两个零点,若g(x)在[0,b]上恰有10个零点,则b不小于第10个零点的横坐标,小于第11个零点的横坐标即可,即b的范围为:b≥4π+11π12 =59π12.且b<4π+11π12+π−11π12+7π12 =67π12即59π12≤b<67π12.【解析】(1)直接利用函数的图象求出函数的关系式,进一步求出函数的单调区间;(2)利用函数的图象的平移变换和伸缩变换,根据图象和零点的关系求出参数的取值范围.本题考查的知识要点:函数的额关系式的求法和应用,函数的图象的平移变换和伸缩变换,函数的图象和零点的关系,主要考查学生的运算能力和转换能力及思维能力,属于基础题.22.【答案】解:(1)根据题意,函数f(x)=1−b2x+a为定义在R上的奇函数.所以f(x)+f(−x)=1−b2x+a +1−b2−x+a=0在R上恒成立,变形可得:(b −2a)(2x +2−x )+2ab −2a 2−2=0恒成立, 所以{b =2a ab =1+a2,解得:{a =1b =2或{a =−1b =−2, 当{a =1b =2时,f(x)=1−22x +1=2x −12x +1,是定义域为R 的奇函数,符合题意,当{a =−1b =−2时,f(x)=1+22x −1,其定义域为{x|x ≠0},不符合题意, 故a =1,b =2;(2)函数f(x)为R 上的单调增函数;证明:设x 1,x 2是R 上的任意两个值,且x 1<x 2,则f(x 1)−f(x 2)=1−22x 1+1−(1−22x 2+1)=22x 2+1−22x 1+1=2(2x 1−2x 2)(2x 1+1)(2x 2+1) 因为x 1<x 2,又y =2x 为R 上的单调增函数,所以0<2x 1<2x 2,则有f(x 1)−f(x 2)<0,即f(x 1)<f(x 2), 所以函数f(x)为R 上的单调增函数;(3)因为f(lnm)+f(lnm −1)≤1−2lnm ,即f(lnm)+lnm ≤−f(lnm −1)+1−lnm 而函数f(x)为R 上的奇函数,则有f(lnm)+lnm ≤f(1−lnm)+1−lnm , 令ℎ(x)=f(x)+x ,设x 1,x 2是R 上的任意两个值,且x 1<x 2,因为x 1−x 2<0, 由(2)知f(x 1)−f(x 2)<0,所以ℎ(x 1)−ℎ(x 2)=f(x 1)+x 1−(f(x 2)+x 2)=f(x 1)−f(x 2)+(x 1−x 2)<0, 即ℎ(x 1)<ℎ(x 2),所以ℎ(x)为R 上的单调增函数.因为f(lnm)+lnm ≤f(1−lnm)+1−lnm ,所以ℎ(lnm)≤ℎ(1−lnm) 所以lnm ≤1−lnm ,即lnm ≤12,解可得:0<m ≤√e ,所以m 的范围是(0,√e].【解析】(1)根据题意,由奇函数的定义可得f(x)+f(−x)=0,结合函数的解析式分析可得a 、b 的值,验证函数的定义域可得答案, (2)根据题意,由作差法分析可得结论,(3)根据题意,原不等式变形可得f(lnm)+lnm ≤f(1−lnm)+1−lnm ,令ℎ(x)=f(x)+x ,由作差法可得ℎ(x)是R 上的单调增函数,则原不等式可以转化为lnm ≤1−lnm ,即lnm ≤12,解可得m 的取值范围,即可得答案.本题考查函数奇偶性、单调性的综合应用,涉及对数不等式的解法,属于中档题.。
【数学】陕西省商洛市2022-2023学年高一下学期期末教学质量检测试题 (解析版)
陕西省商洛市2020-2021学年高一下学期期末教学质量检测数学试题考生注意:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分。
考试时长120分钟。
2.请将各题结果填写在答题卡上。
3.本试题主要考试内容:北师大版必修3,必修4。
第Ⅰ卷一,选择题:本大题共12小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1.函数()πtan 5f x x ⎛⎫=- ⎪⎝⎭地最小正周期为( )A.π2B. πC.2πD.4π2.在算法框图中,“ ”地功能是( )A.表示一个算法输入和输出地信息B.只表示一个算法输出地信息C.赋值或计算D.判断某一款件是否成立3.一个扇形地弧长为6,半径为4,则该扇形地圆心角地弧度数为( )A.1B.32C.2D.234.某工厂共有980名工人,其中20到30岁地工人有400名,30到40岁地工人有300名,其余工人均在40岁以上.为了解该工厂地健康情况,按照20到30岁,30到40岁,40岁以上三个年龄段进行分层抽样,假如总样本量为196,那么应在40岁以上地工人中抽取( )A.48名B.52名C.56名D.60名5.若tan 3α=,()tan 4πβ-=,则()tan αβ+=( )A.113B.113C.711-D.7116.抽查8件产品,记“至多有3件次品”为事件A ,则事件A 地对立事件是( )A.至少有4件次品B.至少有2件次品C.至多有5件正品D.至少有4件正品7.在区间()1,8中随机选取一个数,则这个数不大于5地概率为( )A.17B.27C.37D.478.在ABC △中,D ,E 分别在线段AB ,AC 上,且23DB AB = ,23AE AC =,点F 是线段BE地中点,则DF =( )A.1163AB AC +B.1163AB AC -C.1163AB AC -+D.1163AB AC--9.执行如图所示地程序框图,则输出地n 地值为()A.3B.4C.5D.610.3cos x x +=则2cos 23x π⎛⎫+= ⎪⎝⎭( )A.14-B.14 C.18-D.1811.已知一组数据地平均数是4,标准差是4,且这组数据地平方和是这组数据和地平方地18,则这组数据地个数是( )A.10B.13C.16D.1812.已知函数()1sin ,0,21cos ,0,2x x f x x x +<+⎧⎪=⎨≥⎪⎪⎪⎩若()f x 在区间3π,2a ⎡⎤-⎢⎣⎦上至少有5个零点,()f x 在区间[]π,a -上至多有5个零点,则正数a 地取值范围是()A.13π8π,63⎡⎤⎢⎥⎣⎦B.13π10π,63⎡⎫⎪⎢⎣⎭ C.19π10π,63⎡⎫⎪⎢⎣⎭ D.8π19π,36⎡⎤⎢⎥⎣⎦第Ⅱ卷二,填空题:本大题共4小题,每小题5分,共20分.把结果填在答题卡中地横线上。
人教版2020-2021学年下学期高一数学期末检测卷及答案(含两套题)
【点睛】一般地,如果 为等差数列, 为其前 项和,则有性质:
(1)若 ,则 ;
(2) 且 ;
(3) 且 为等差数列;
(4) 为等差数列.
6.A
【解析】
【分析】
利用正弦定理将边转化为角得到 ,再由角C的范围可得选项.
【详解】因为 ,
所以由正弦定理得 ,所以 ,即 ,
又因为 为 的内角,
所以 .
解得 , ,
, ;
(2) ,
,
又 ,由题得 ,即 ,
,即
由题知 且 ,故 ,
故 ,
故只需考虑 , 时 , 时 , 时 ,
17.(10分)已知 中,点 .
(1)求直线 的方程;
(2)求 的面积.
18.(12分)已知函数 .
(1)当 时,求不等式 的解集;
(2)若关于x的不等式 的解集为R,求a的取值范围.
19.(12分)己知向量 , .
(1)若 ,其中 ,求 坐标;
(2)若 与 的夹角为 ,求 的值.
20.(12分)自我国爆发新冠肺炎疫情以来,各地医疗单位都加紧了医疗用品的生产,某医疗器械厂统计了口罩生产车间每名工人的生产速度,将所得数据分成五组并绘制出如图所示的频率分布直方图.已知前四组的频率成等差数列,第五组与第二组的频率相等.
故 ,
故答案为:
【点睛】向量的数量积有两个应用:(1)计算长度或模长,通过用 来求;(2)计算角, .特别地,两个非零向量 垂直的等价条件是 .
15.9
【解析】
【分析】
将 变形后利用基本不等式可求其最小值
【详解】 ,
,等号成立时 , .
故答案为:9.
【点睛】应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.
专题07 (基本立体图形)(解析版)-2020-2021学年高一数学下学期期末考试考前必刷题
2020-2021高一下学期期末考试考前必刷题 07(基本立体图形)试卷满分:150分 考试时长:120分钟注意事项:1.本试题满分150分,考试时间为120分钟.2.答卷前务必将姓名和准考证号填涂在答题纸上.3.使用答题纸时,必须使用0.5毫米的黑色签字笔书写,要字迹工整,笔迹清晰.超出答题区书写的答案无效;在草稿纸、试题卷上答题无效.一、单选题(本大题共8小题,共40.0分)1.(2021·全国高一课时练习)下面四个几何体中,是棱台的是( )A .B .C .D .【答案】C【分析】根据棱柱、棱锥、棱台的结构特征,观察可得答案.【详解】A 项中的几何体是棱柱.B 项中的几何体是棱锥;D 项中的几何体的棱AA ′,BB ′,CC ′,DD ′没有交于一点,则D 项中的几何体不是棱台; C 项中的几何体是由一个棱锥被一个平行于底面的平面截去一个棱锥剩余的部分,符合棱台的定义,是棱台.故选:C2.(2021·湖南长沙市·雅礼中学高一月考)如图,已知等腰三角形O A B '''△,OA AB ''''=是一个平面图形的直观图,斜边2O B ''=,则这个平面图形的面积是( )A B .1 C D .【答案】D【分析】利用斜二测画法,由直观图作出原图三角形,再利用三角形面积公式即可求解.【详解】因为O A B '''△是等腰直角三角形,2O B ''=,所以O A A B ''''==,所以原平面图形为:且2OB O B ''==,OA OB ⊥,2OA O A ''==所以原平面图形的面积是122⨯⨯=, 故选:D3.(2020·陕西西安市第三中学高一月考)如果圆锥的侧面展开图是半圆,那么这个圆锥的轴截面对应的等腰三角形的底角是( )A .30°B .45°C .60°D .90°【答案】C【分析】由圆锥侧面展开所得扇形的弧长与底面周长相等可得圆锥母线与底面半径的数量关系,即可求轴截面底角的大小.【详解】若圆锥如下图所示,则侧面展开图半圆的半径R PA PB ==,底面半径r OA OB ==,由题意知:1222R r ππ⨯=,即2R r =, ∴轴截面对应等腰三角形的底角1cos 2OB r PBA PB R ∠===, ∴60PBA ∠=︒,故选:C4.(2020·四川省广元市八二一中学高一月考)某数学小组进行“数学建模”社会实践调查.他们在调查过程中将一实际问题建立起数学模型,现展示如下:四个形状不同、内空高度相等、杯口半径相等的圆口容器,如图所示.盛满液体后倒出一半,设剩余液体的高度从左到右依次为1h ,2h ,3h ,4h .则它们的大小关系正确的是( )A .214h h h >>B .123h h h >>C .324h h h >>D .241h h h >>【答案】A【分析】可根据几何体的图形特征,结合题目,选择答案.【详解】观察图形可知体积减少一半后剩余就的高度最高为2h ,最低为4h .故选:A【点睛】本题考查旋转体的结构特征,属于基础题.5.(2020·山东德州市·高一期末)一个正三棱锥的底面边长是6( )A .B .C .D .3【答案】D【分析】画出正三棱锥A BCD -的图像,得到底面正三角形的中心O 到正三角形的CD 的距离,再利用勾股定理求斜高即可.【详解】正三棱锥A BCD -的底面边长6BC CD DB ===,高AO =所以底面正三角形的中心O 到正三角形的CD 的距离为1623OH =⨯=故正三棱锥的斜高3AH ==;故选:D.6.(2020·全国高一单元测试)某三棱锥的三视图如图所示,则该三棱锥的侧棱最长的是( )A .2B C D .【答案】C【分析】 画出几何体的直观图,利用三视图的数据,求解棱锥最长的棱长即可.【详解】由三视图可知,该三棱锥的直观图如图所示,取AB 的中点O ,则OC AB ⊥,易知2AB OC ==,1PC =,又PC ⊥底面ABC ,所以PC BC ⊥,从而最长棱为PA 和PB ,=.故选:C .【点睛】本题考查三视图求解几何体的几何量,考查空间想象能力以及计算能力,属于中档题.关键在于根据三视图还原出几何体的形状,画出直观图,并分析几何体的结构特征.7.(2020·南阳市第四中学高一月考)给出下列四个命题:①各侧面都是全等四边形的棱柱一定是正棱柱;②对角面是全等矩形的六面体一定是长方体;③棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是正六棱锥;④长方体一定是正四棱柱.其中正确的命题个数是( )A .0B .1C .2D .3【答案】A【分析】利用底面为菱形的直四棱柱可判断①的正误;利用底面为等腰梯形的直四棱柱可判断②的正误;利用正六棱锥的几何特征可判断③的正误;取长、宽、高都不相等的长方体可判断④的正误.【详解】对于①,底面是菱形(不是正方形)的直四棱柱满足条件,但它不是正棱柱,①错误; 对于②,底面为等腰梯形的直四棱柱的对角面全等,但它不是长方体,②错误; 对于③,如下图所示:在正六棱锥P ABCDEF -中,六边形ABCDEF 为正六边形,设O 为正六边形的中心,则PO ⊥平面ABCDEF ,OA ⊂平面ABCDEF ,则PO OA ⊥,由正六边形的几何性质可知,OAB 为等边三角形,则AB OA =,PA OA ∴>,③错误;对于④,在长方体1111ABCD A BC D -中,若AB 、AD 、1AA 的长两两不相等, 则长方体1111ABCD A BC D -不是正四棱柱,④错误.故选:A.8.(2020·武汉市钢城第四中学高一月考)小蚂蚁的家住在长方体1111ABCD A BC D -的A 处,小蚂蚁的奶奶家住在1C 处,三条棱长分别是12AA =,3AB =,4=AD ,小蚂蚁从A 点出发,沿长方体的表面到小蚂蚁奶奶家1C 的最短距离是( )A B . C D 【答案】D【分析】根据题意知蚂蚁所走的路线有三种情况,利用勾股定理能求出小蚂蚁从A 点出发,沿长方体的表面到小蚂蚁奶奶家1C 的最短距离.【详解】解:根据题意知:蚂蚁所走的路线有三种情况,如下图所示①②③,由勾股定理得:图①中,1AC =图②中,1AC ==图③中,1AC故小蚂蚁从A 点出发,沿长方体的表面到小蚂蚁奶奶家1C 故选:D .【点睛】本题考查最短距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、空间想象能力、运算求解能力,考查化归与转化思想、数形结合思想、函数与方程思想,属于中档题.二、多选题(本大题共4小题,共20.0分)9.(2020·山东枣庄市·滕州市第一中学新校高一月考)已知圆锥的顶点为P ,母线长为2,A ,B 为底面圆周上两个动点,则下列说法正确的是A .圆锥的高为1B .三角形PAB 为等边三角形C .三角形PABD .直线PA 与圆锥底面所成角的大小为π6 【答案】AD【分析】根据圆锥的性质判断各选项.【详解】由题意圆锥的高为1h ===,A 正确;PAB △中PA PB =是母线长,AB 是底面圆的一条弦,与PA 不一定相等,B 错;当PAB △是轴截面时,cos PAB ∠=,30PAB ∠=︒,则120APB ∠=︒,当,A B 在底面圆上运动时,21sin 2sin 22PAB S PA APB APB =∠=∠≤△,当且仅当90PB ∠=︒时取等号.即PAB △面积最大值为2.C 错;设底面圆圆心为O ,则PAO ∠为PA 与底面所成的角,易知cos 26PAO PAO π∠=∠=,D 正确. 故选:AD .本题考查圆锥的性质,圆锥的轴截面是等腰三角形,腰即为圆锥的母线,底为底面直径,轴截面的高即为圆锥的高.10.(2020·江苏泰州市·兴化一中高一期中)下列命题中正确的有A .空间内三点确定一个平面B .棱柱的侧面一定是平行四边形C .分别在两个相交平面内的两条直线如果相交,则交点只可能在两个平面的交线上D .一条直线与三角形的两边都相交,则这条直线必在三角形所在的平面内【答案】BC【分析】利用平面的定义,棱柱的定义,对选项逐一判断即可.【详解】对于A 选项,要强调该三点不在同一直线上,故A 错误;对于B 选项,由棱柱的定义可知,其侧面一定是平行四边形,故B 正确;对于C 选项,可用反证法证明,故C 正确;对于D 选项,要强调该直线不经过给定两边的交点,故D 错误.故选:BC.【点睛】本题考查平面的基本性质及其推论的应用,考查棱柱的定义,属于基础题.11.(2020·全国高一课时练习)长方体1111ABCD A BC D 的长、宽、高分别为3,2,1,则( )A .长方体的表面积为20B .长方体的体积为6C .沿长方体的表面从A 到1C 的最短距离为D .沿长方体的表面从A 到1C 的最短距离为【答案】BC【分析】由题意,可利用柱体体积公式和多面体表面积公式进行计算,沿表面最短距离可将临近两个面侧面展开图去计算,即可求解正确答案.长方体的表面积为2(323121)22⨯⨯+⨯+⨯=,A 错误.长方体的体积为3216⨯⨯=,B 正确.如图(1)所示,长方体1111ABCD A BC D -中,3AB =,2BC =,11BB =.求表面上最短(长)距离可把几何体展开成平面图形,如图(2)所示,将侧面11ABB A 和侧面11BCC B 展开,则有1AC ==,即经过侧面11ABB A 和侧面11BCC B如图(3)所示,将侧面11ABB A 和底面1111D C B A 展开,则有1AC ==过侧面11ABB A 和底面1111D C B A 时的最短距离是4)所示,将侧面11ADD A 和底面1111D C B A 展开,则有1AC ==11ADD A 和底面1111D C B A 时的最短距离是因为<,所以沿长方体表面由A 到1C 的最短距离是C 正确,D 不正确.故选:BC .【点睛】本题考查长方体体积公式、表面积公式和沿表面的最短距离,考查空间想象能力,属于基础题.12.(2020·瓦房店市高级中学高一期末)如图,透明塑料制成的长方体容器1111ABCD A BC D -内灌进一些水,固定容器一边AB 于地面上,再将容器倾斜,随着倾斜度的不同,有下面几个结论,其中正确的命题有( )A .没有水的部分始终呈棱柱形B .水面EFGH 所在四边形的面积为定值C .随着容器倾斜度的不同,11AC 始终与水面所在平面平行D .当容器倾斜如图(3)所示时,AE AH ⋅为定值【答案】AD【分析】想象容器倾斜过程中,水面形状(注意AB 始终在桌面上),可得结论.【详解】由于AB 始终在桌面上,因此倾斜过程中,没有水的部分,是以左右两侧的面为底面的棱柱,A 正确;图(2)中水面面积比(1)中水面面积大,B 错;图(3)中11AC 与水面就不平行,C 错;图(3)中,水体积不变,因此AEH △面积不变,从而AE AH ⋅为定值,D 正确. 故选:AD .【点睛】本题考查空间线面的位置关系,考查棱柱的概念,考查学生的空间想象能力,属于中档题.三、填空题(本大题共4小题,共20.0分)13.(2020·浙江高一期末)如果用半径为R =个圆锥筒的高是___________.【答案】3【分析】先求半圆的弧长,就是圆锥的底面周长,求出底面圆的半径,然后利用勾股定理求出圆锥的高.【详解】半径为R =,圆锥的底面圆的周长为,3=,故答案为:3.14.(2020·河南)若正三棱锥A BCD -的侧棱长为8,底面边长为4,E ,F 分别为AC ,AD 上的动点(如图),则截面BEF 的周长最小值为______.【答案】11【分析】将正三棱锥A BCD -的侧面沿AB 剪开,然后展开'BB 即为所求,然后利用相似,分别求得BE ,EF ,'FB 即可.【详解】正三棱锥A BCD -的侧面展开图如图,由平面几何知识可得//BB CD ',所以BEC ECD ACB ∠=∠=∠,所以BE =BC =4,BCE ABC ∽, 所以CE BC BC AB =.即448CE =, 所以2CE =,所以6AE =, 又34EF AE CD AC ==, 解得3EF =.所以截面BEF 的周长最小值为:''BB BE EF FB =++=43411++=.故答案为:1115.(2020·浙江杭州市·高一期末)正方体1111ABCD A BC D -中,棱长为2,E 是线段1CD 上的动点,则||||AE DE +的最小值是_______.【分析】在正方体中,由图形可知||||,||||AE AP DE DP ≥≥,且当,E P 重合时,等号同时成立,即可求解.【详解】如图,取1CD 的中点为P ,连接AP ,DP则由1AC AD =,1DC DD =知,1AP CD ⊥, 1DP CD ⊥,所以||||,||||AE AP DE DP ≥≥,所以||||||||AE DE AP DP +≥+,在正方体中,棱长为2,所以2AP ==, 122DP ==故当E 在线段1CD 上运动,E 与P 重合时,||||AE DE +【点睛】关键点点睛:根据图象可知,当E 在线段1CD 上运动时,垂线段最短,可得||||AE AP ≥,同理,当E 在线段1CD 上运动时,||||DE DP ≥,且当E 与P 重合时等号同时成立. 16.(2020·浙江杭州市·高一期末)如图,圆锥的底面直径2AB =,母线长3VA =,点C 在母线VB 上,且1VC =,有一只蚂蚁沿圆锥的侧面从点A 到达点C ,则这只蚂蚁爬行的最短距离是______.【分析】蚂蚁爬行距离最短,即将圆锥侧面展开后A 到C 的直线距离,根据已知条件、余弦定理可求出最短距离.【详解】圆锥的侧面展开图为半径为3的扇形,弧AB 长为122ππ⨯=,∴3AVB π∠=,则3AVC π∠=, 由余弦定理可知22212cos 9123172AC VA VC VA VC AVC =+-⋅⋅∠=+-⨯⨯⨯=,AC =四、解答题(本大题共6小题,共70.0分)17.(2020·全国高一单元测试)画出图中水平放置的四边形ABCD 的直观图.【答案】图见解析.【分析】在四边形ABCD 中,过A 作出x 轴的垂直确定坐标,进而利用斜二测画法画出直观图.【详解】由斜二测画法:纵向减半,横向不变;即可知A 、C 在对应点1(3,1),(0,)2A C '',而B 、D 对应点,B D ''位置不变,如下图示:18.(2020·福建漳州市·高一期末)已知球O 的半径为5.(1)求球O 的表面积;(2)若球O 有两个半径分别为3和4的平行截面,求这两个截面之间的距离.【答案】(1)100π;(2)1或7.【分析】(1)利用球的表面积公式计算即可;(2)先求球心到两个截面的距离,再计算即可.【详解】解:(1)因为球O 的半径为5R =,所以球O 的表面积为24100S R ππ==.(2)设两个半径分别为13r =和24r =的平行截面的圆心分别为1O 和2O ,所以14OO ===,所以23OO ===, 所以1212347O OO OO O =+=+=, 或1122431O OO OO O =-=-=,所以两个截面之间的距离为1或7.【点睛】本题考查了球的表面积和截面问题,属于基础题.19.(2020·河北沧州市一中高一月考)如图所示,在正三棱柱111ABC A B C -中,3AB =,14AA =,M 为1AA 的中点,P 是BC 上的一点,且由P 沿棱柱侧面经过棱1CC 到M 的最.设这条最短路线与1CC 的交点为N ,求:(1)该三棱柱的侧面展开图的对角线的长;(2)PC 和NC 的长.【答案】(1(2)PC 的长为2,NC 的长为45. 【分析】(1)由展开图为矩形,用勾股定理求出对角线长;(2)在侧面展开图中三角形MAP 是直角三角形,可以求出线段AP 的长度,进而可以求PC 的长度,再由相似比可以求出CN 的长度.【详解】(1)由题意,该三棱柱的侧面展开图是宽为4,长为339⨯=的矩形,=(2)将该三棱柱的侧面沿棱1BB 展开,如图所示.设PC 的长为x ,则222()MP MA AC x =++.因为MP =2MA =,3AC =,所以2x =(负值舍去),即PC 的长为2.又因为//NC AM , 所以PC NC PA AM =,即252NC =, 所以45NC =. 【点睛】 本题考查求侧面展开图的对角线长,以及三棱柱中的线段长,熟记三棱柱的结构特征即可,属于常考题型.20.(2020·湖北武汉市·华中师大一附中高一月考)已知一个圆锥的底面半径为2,母线长为4.(1)求圆锥的侧面展开图的扇形的圆心角;(2.求圆柱的表面积.【答案】(1)π (2)(2π+【分析】(1)由圆锥侧面展开图的定义计算;(2)由圆锥截面性质,在轴截面中得到相似三角形,由比例性质可得圆柱的底面半径后可得圆柱表面积.【详解】(1)244r l ππαπ=== (2)如图所示,设圆锥的底面半径为R ,圆柱的底面半径为r ,表面积为S ,则2,4,R OC AC AO =====易知AEB AOC ∆∆AE EBAO OC ∴=,12r r =∴= 222,223S r S r h ππππ====底侧(22S S S ππ∴=+=+=+底侧【点睛】本题考查圆锥的侧面展开图,考查圆柱表面积,考查圆锥的内接圆柱性质.解题关键是掌握圆锥平行于底面的截面的性质.21.(2020·全国高一课时练习)如图,在三棱柱111ABC A B C -中,,E F 分别是11A B ,11AC 的中点,连接,,BE EF FC ,试判断几何体1A EF ABC -是什么几何体,并指出它的底面与侧面.【答案】几何体1A EF ABC -是三棱台.面ABC 是下底面,面1A EF 是上底面,面1ABEA ,面BCFE 和面1ACFA 是侧面【分析】根据题意以及三棱台的结构特征,可以猜想几何体1A EF ABC -是三棱台,再根据三棱台的定义证明即可,然后由三棱台定义可指出它的底面与侧面.【详解】,E F 分别是1111,A B AC 的中点,且11A B AB =,11ACAC =,11B C BC =, 1112A E A F EF AB AC BC ∴===.1~A EF ABC ∴,且1,,AA BE CF 延长后交于一点.又面111A B C 与面ABC 平行,∴几何体1A EF ABC -是三棱台.其中面ABC 是下底面,面1A EF 是上底面,面1ABEA ,面BCFE 和面1ACFA是侧面. 【点睛】本题主要考查三棱台的结构特征,以及利用三棱台定义判断几何体的形状,属于基础题. 22.(2020·全国)在正三棱台111ABC A B C -中,已知10AB =,棱台一个侧面梯形的面积,1,O O 分别为上、下底面正三角形的中心,连接11AO ,AO 并延长,分别交11B C ,BC 于点1D ,D ,160D DA ︒∠=,求上底面的边长.【答案】【分析】由题意,可设上底面边长为x ,利用题中所给侧面梯形面积列方程,求x 值即可.【详解】10AB =,2AD AB ∴==133OD AD ==.设上底面的边长为(0)x x >,则116O D x =. 如图所示,连接1O O ,过1D 作1D H AD ⊥于点H ,则四边形11OHD O 为矩形,且116OH O D x ==.36DH OD OH x ∴=-=-,在1Rt D DH 中,12cos 6036DH D D x ︒⎛⎫==- ⎪ ⎪⎝⎭. 四边形11BC CB 的面积为()11112B C BC D D +⋅,1(10)22x x ⎫=+⨯⎪⎪⎝⎭, 即40(10)(10)x x =+-,x ∴=【点睛】本题考查正棱台几何性质,空间想象能力,计算能力,属于中等题型.。
高中试卷-专题4.2 指数函数(含答案)
专题4.2 指数函数1、指数函数的概念:一般地,函数x y a = 叫做指数函数,其中x 是自变量,函数的定义域为R .注意:指数函数的底数的取值范围,底数不能是负数、零和1.即 a>0且a ≠12、指数函数的图象和性质0<a<1a>1图像定义域R , 值域(0,+∞)(1)过定点(0,1),即x=0时,y=1(2)在R 上是减函数(2)在R 上是增函数性质(3)当x>0时,0<y<1;当x<0时,y>1(3)当x>0时,y>1;当x<0时,0<y<1图象特征函数性质向x 轴正负方向无限延伸函数的定义域为R 函数图象都在x 轴上方函数的值域为R +图象关于原点和y 轴不对称非奇非偶函数共性函数图象都过定点(0,1)过定点(0,1)自左向右看,图象逐渐下降减函数在第一象限内的图象纵坐标都小于1当x>0时,0<y<1;在第二象限内的图象纵坐标都大于1当x<0时,y>10<a<1图象上升趋势是越来越缓函数值开始减小极快,到了某一值后减小速度较慢;自左向右看,图象逐渐上升增函数在第一象限内的图象纵坐标都大于1当x>0时,y>1;在第二象限内的图象纵坐标都小于1当x<0时,0<y<1a>1图象上升趋势是越来越陡函数值开始增长较慢,到了某一值后增长速度极快;注意: 指数增长模型:y=N(1+p)x 指数型函数: y=ka x 3 考点:(1)a b =N, 当b>0时,a,N 在1的同侧;当b<0时,a,N 在1的 异侧。
(2)指数函数的单调性由底数决定的,底数不明确的时候要进行讨论。
掌握利用单调性比较幂的大小,同底找对应的指数函数,底数不同指数也不同插进1(=a 0)进行传递或者利用(1)的知识。
(3)求指数型函数的定义域可将底数去掉只看指数的式子,值域求法用单调性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
陕西省榆林市2020-2021学年高一上学期期末数学试题 学校:___________姓名:___________班级:___________考号:___________
一、单选题 1.已知集合|12Axx,|10Bxx,则ABR( )
A.|12xx B.|12xx C.|12xx D.|12xx 2.函数5lg2fxxx的定义域是( )
A.2,5 B.2,5 C.2,5 D.2,5 3.若直线220xy与3510xay平行,则a的值为( )
A.1 B.-1 C.132 D.132
4.已知2ln2a,53b,50.3c,则( )
A.bca B.abc C.cab D.acb 5.函数542xfx的零点所在的区间是( )
A.1,2 B.2,3 C.3,4 D.0,1 6.若直线20xym被圆224xy截得的弦长为23,则m( )
A.5 B.5 C.10 D.25 7.已知圆柱的底面圆的面积为9,高为2,它的两个底面的圆周在同一个球的球面上,
则该球的表面积为( ) A.16 B.20 C.40 D.403
8.函数2log(31),1()3,1axxfxaxxax在R上单调递增,则a的取值范围是( )
A.3(1,)2 B.33,42 C.3(1,4] D.31,2 9.某几何体的三视图如图所示,则该几何体的表面积为( ) A.115 B.140 C.165 D.215 10.设1x,2x,3x分别是方程3log3xx,3log2xx,ln4xex的实根,
则( ) A.123xxx B.213xxx C.231xxx D.321xxx
二、填空题 11.已知点3,1A,1,3B,则以线段AB为直径的圆的标准方程为______.
12.若幂函数222()22mmfxmmx在(0,)上为减函数,则m=_______. 13.已知fx,gx分别是定义在R上的偶函数和奇函数,若12xfxgx,
则1g______. 14.如图,在ABC中,ABBC,D,E分别为AB,AC边上的中点,且4AB,
2BC.现将ADE沿DE折起,使得A到达1A的位置,且160ADB,则
1
AC
______.
三、解答题 15.已知直线l的方程为43120xy,1l与l垂直且过点1,3.
(1)求直线1l的方程; (2)若直线2l经过1l与l的交点,且垂直于x轴,求直线2l的方程.
16.(1)求值0.5021(3)16; (2)求值21log5lg4002lg22. 17.已知圆C的圆心在x轴正半轴上,且圆C与y轴相切,点2,4P在圆C上. (1)求圆C的方程; (2)若直线l:140mxym与圆C交于A,B两点,且8AB,求m的值. 18.如图,在三棱柱111ABCABC中,ABC是正三角形,1AA平面ABC,
1ABAAa,D是BC边上的一点,且AD为BAC的平分线.
(1)证明:1AB平面1ADC; (2)若在三棱柱111ABCABC中去掉三棱锥1CACD后得到的几何体的表面积为331518,求a值.
19.已知函数22fxaxaxb0a在2,3上的值域为1,4. (1)求a,b的值;
(2)设函数fxgxx,若存在2,4x,使得不等式22log2log0gxkx成立,求k的取值范围. 参考答案 1.C
【解析】 【分析】 确定集合B,由集合运算的定义求解. 【详解】 因为集合|10|1Bxxxx,所以|1RCBxx,所以|12RACBxx.
故选:C. 【点睛】 本题考查集合的运算,属于基础题. 2.A 【分析】 使解析式有意义,因此必须有50x且20x. 【详解】
由5lg2fxxx,得5020xx,即52xx,所以2,5x.
故选:A. 【点睛】 本题考查求函数定义域,即求使函数式有意义的自变量的取值范围. 3.B 【分析】 由两直线平行的充要条件计算. 【详解】 因为直线220xy与3510xay平行,所以351122a,解得1a.
故选:B. 【点睛】 本题考查两直线平行的充要条件.两直线1112220,0AxByCAxByC平行,12210ABAB是必要条件,不是充要条件,仅由12210ABAB求出参数值,一般要代
入直线方程检验是否平行. 4.D 【分析】 根据指数函数、对数函数的性质可知0a,1b,01c,即可得到结果 【详解】
由题,2lnln102a,10553331b,5000.30.31c, 所以acb, 故选:D 【点睛】 本题考查指数、对数比较大小,借助中间值是解题关键 5.A 【分析】 根据函数单调递增和10f,20f得到答案. 【详解】 fx是单调递增函数,且3102f,9204f,
所以fx的零点所在的区间为1,2 故选:A 【点睛】 本题考查了零点所在的区间,意在考查学生对于零点存在定理的应用. 6.B 【分析】
圆的圆心坐标为0,0,半径2r,根据弦长得到15m,计算得到答案. 【详解】 圆的圆心坐标为0,0,半径2r,直线被圆截得的弦长为23, 可得圆心到直线的距离为15m,则5m. 故选:B 【点睛】 本题考查了根据弦长求参数,意在考查学生的计算能力. 7.C 【分析】 圆柱轴截面的对角线是球的直径,由此可求得球半径. 【详解】 因为圆柱的底面圆的面积为9,所以圆柱的底面圆的半径为3r,又因为圆柱的两个底面的圆周在同一个球的球面上,所以该球的半径221310R,则该球的表面积为2440R.
故选:C. 【点睛】 本题考查球与内接圆柱的关系,可通过作圆柱的轴截面与球联系,圆柱的轴截面矩形的外接圆是球的大圆. 8.D 【分析】
由函数()fx在R上单调递增,可得不等式组13123log4aaa,求解即可得解. 【详解】 解:由函数2log(31),1()3,1axxfxaxxax在R上单调递增,
则13123log4aaa,得312a, 故选:D. 【点睛】 本题考查了分段函数的单调性,重点考查了函数的性质,属基础题. 9.A 【分析】 根据三视图,得到原几何体,结合三视图中的线段长度,计算出每部分的表面积,从而得到答案. 【详解】 由三视图可知,该几何体由一个半球与一个圆锥拼接而成, 且球的半径和圆锥底面圆半径相同,如图所示 由三视图可知,半球的半径为5, 所以半球的表面积为2145=502, 圆锥的底面圆半径为5,母线长为13, 所以圆锥的侧面积为51365, 所以该几何体的表面积 6550115S.
故选:A.
【点睛】 本题考查由三视图还原几何体,求球的表面积和圆锥侧面积,属于简单题. 10.C 【分析】 将方程有实根转化为两函数有交点,利用图像判断交点的位置,进而判断选项 【详解】 由题,对于3log3xx,由3logyx与3yx的图像,如图所示,
可得123x; 对于3log2xx,由3log2yx与yx的图像,如图所示,
可得210x; 对于ln4xex,由4xye与lnyx的图像,如图所示,
可得30,1x或31,2x 故231xxx 【点睛】 本题考查零点的分布,考查转化思想与数形结合思想 11.22125xy 【分析】 求出圆心坐标和半径可得. 【详解】 因为圆心的坐标为1,2,22231125R,所以该圆的标准方程为22125xy.
故答案为:22125xy. 【点睛】 本题考查求圆的标准方程,属于基础题. 12.1
【分析】 根据幂函数的定义可知2221mm,再代入指数中判断是否为减函数即可. 【详解】 由已知2221mm,解得3m或1m.
当3m时,15()fxx在(0,)上为增函数,不符合题意; 当1m时,1()fxx在(0,)上为减函数,符合题意. 故答案为1 【点睛】 本题主要考查根据幂函数求解参数的问题,同时也考查了幂函数的单调性.属于基础题型. 13.32 【分析】 计算fxgx再根据奇偶性联立12xfxgx求得111222xxgx,再代入求解1g即可. 【详解】 因为12xfxgx,fx,gx分别是定义在R上的偶函数和奇函数, 所以12xfxgxfxgx,所以111222xxgx,则312g. 故答案为:32