高中数学3-3《几何概型》课件苏教版必修

合集下载

高中数学必修3讲义 专题3.3 几何概型

高中数学必修3讲义 专题3.3 几何概型

第三章概率3.3 几何概型1.几何概型(1)几何概型的概念如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.(2)几何概型的特点①试验中所有可能出现的结果(基本事件)有________多个.②每个基本事件发生的可能性________.(3)古典概型与几何概型的异同点相同点:古典概型与几何概型中每一个基本事件发生的可能性都是相等的.不同点:古典概型要求随机试验的基本事件的总数必须是有限多个;几何概型要求随机试验的基本事件的个数是无限的,而且几何概型解决的问题一般都与几何知识有关.2.几何概型的概率公式在几何概型中,事件A的概率的计算公式为:()P A ________________.3.均匀随机数的产生(1)均匀随机数的定义在一定范围内随机产生的数,并且得到这个范围内的每一个数的机会一样,称这样的随机数为均匀随机数.我们常用的是[0,1]上的均匀随机数.(2)均匀随机数的特征由均匀随机数的定义,可得随机数的特征:①随机数是在一定范围内产生的;②在这个范围内的每一个数被取到的可能性相等.(3)[0,1]上的均匀随机数利用计算器的RAND()函数可以产生0~1之间的均匀随机数,试验的结果是区间[0,1]上的任何一个实数,而且出现任何一个实数是等可能的.因此,可以用计算器产生0~1之间的均匀随机数进行随机模拟.用带有PRB功能的计算器产生均匀随机数的方法如图所示:K 知识参考答案:1.(2)①无限 ②相等 2.A 构成事件的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)K —重点 理解几何概型的概念及基本特点,掌握概率的计算公式 K —难点 理解几何概型的概念及基本特点K —易错几何概型中测度的选取容易弄错,导致计算错误1.与长度有关的几何概型的求法求解与长度有关的几何概型的问题的关键是将所有基本事件及事件A 包含的基本事件转化为相应长度,进而求解.此处的“长度”可以是线段的长短,也可以是时间的长短等.注意:在寻找事件A 发生对应的区域时,确定边界点是问题的关键,但边界点能否取到不会影响事件A 的概率.【例1】从区间[]2,2-中随机选取一个实数a ,则函数()1421x x f x a +=-⋅+有零点的概率是A .14B .13C .12D .23【答案】A【解析】()14214221x x x x f x a a +=-⋅+=-⋅+,令20x t =>,则()()221f x g t t at ==-+.若函数()1421x x f x a +=-⋅+有零点,即方程14210x x a +-⋅+=有实根,即方程2210t at -+=有大于零的实根.由根与系数的关系得1210t t =>,故方程的两个根同号,则1220t t a +=>,解得0a >.又因为2440a ∆=-≥,解得1a ≤-或1a ≥.综上所述,满足题意的a 的取值范围是12a ≤≤.故由几何概型可知函数()1421x x f x a +=-⋅+有零点的概率是()211224-=--.故本题正确答案为A【名师点睛】本题考查的是函数的零点和几何概型问题.本题中的函数()1421x x f x a +=-⋅+有零点,通过换元20x t =>,转化为方程2210t at -+=有大于零的实根,由2440a ∆=-≥,1210t t =>且1220t t a +=>,解得12a ≤≤,由几何概型可知函数()1421x x f x a +=-⋅+有零点的概率是14. 2.与面积有关的几何概型的求法求解与面积有关的几何概型的问题的关键是构造出随机事件对应的几何图形,利用图形的几何特征找出两个“面积”,套用几何概型的概率计算公式,从而求得随机事件的概率.“面积比”是求几何概型的一种重要的方法.【例2】已知一个三角形的三边长分别是5,5,6,一只蚂蚁在其内部爬行,若不考虑蚂蚁的大小,则某时刻该蚂蚁距离三角形的三个顶点的距离均超过2的概率是A .π12- B .π13-C .π112-D .π16-【答案】D 【解析】如图,∵三角形的三边长分别是5,5,6,∴三角形的高4AD =,则三角形ABC 的面积164122S =⨯⨯=.易知蚂蚁距离三角形的三个顶点的距离均超过2对应的区域为图中的阴影部分, 三个小扇形的面积之和为一个整圆的面积的12,又圆的半径为2,则阴影部分的面积为21112π2122π2S =-⨯⨯=-,根据几何概型的概率计算公式可得所求的概率为122ππ1126-=-,故选D.【名师点睛】本题主要考查几何概型的概率计算,根据条件求出相应的面积是解决本题的关键,考查转化思想以及计算能力.求出蚂蚁距离三角形的三个顶点的距离均超过2对应图形的面积及三角形的面积,利用几何概型的概率计算公式即可得到结论. 3.与体积有关的几何概型的求法用体积计算概率时,要注意所求概率与所求事件构成的区域的体积的关系,准确计算出所求事件构成的区域的体积,确定出基本事件构成的区域的体积,求体积比即可.一般当所给随机事件是用三个连续变量进行描述或当概率问题涉及体积时,可以考虑用此方法求解.【例3】已知在四棱锥P ABCD -中,PA ⊥底面ABCD ,底面ABCD 是正方形,2PA AB ==,在该四棱锥内部或表面任取一点O ,则三棱锥O PAB -的体积不小于23的概率为______. 【解析】如图,取,,,AD BC PC PD 的中点分别为,,,E F G H ,连接,,,,EF FG GH HE 当点O 在几何体CDEFGH 内部或表面上时,23O PAB V -≥.在几何体CDEFGH 中,易知56CDEFGH G CDEF G DEH V V V --=+=, 又83P ABCDV -=,则所求概率为5568163=.【名师点睛】本题主要考查几何概型、棱锥的体积公式,考查了空间想象能力与计算能力. 4.随机模拟的应用(1)求解不规则图形的面积:利用随机模拟试验可以近似计算不规则图形A 的面积,解题的依据是根据随机模拟估计概率()A P A =随机取的点落在中的随机取点频数的总次数,然后根据()P A =A 随机取点的全部结构成事件的区域面果构成的积区域面积列等式求解.(2)估算随机事件的概率:用计算机或计算器模拟试验的方法称为随机模拟.应用随机模拟方法设计模拟试验,可用计算器产生随机数,通过随机数的特征来估计概率.注意,用随机模拟方法得到的结果只能是概率的近似值或估计值,每次试验得到的结果可能不同,而所求事件的概率是一个确定的数值.【例4】设函数y =f (x )在区间[0,1]上的图象是连续不断的一条曲线,且恒有0≤f (x )≤1,可以用随机模拟方法近似计算由曲线y =f (x )及直线x =0,x =1,y =0所围成区域的面积S .先产生两组(每组N 个)区间[0,1]上的均匀随机数x 1,x 2,…,x N 和y 1,y 2,…,y N ,由此得到N 个点(x i ,y i )(i =1,2,…,N ).再数出其中满足y i ≤f (x i )(i =1,2,…,N )的点数N 1,那么由随机模拟方法可得S 的近似值为__________.【解析】这种随机模拟的方法是在[0,1]内生成N 个点,而在曲线y =f (x )及直线x =0,x =1,y =0所围成的区域内的点有N 1个,所以1N S SN ≈矩形,又矩形的面积是1,所以由随机模拟方法得到S 的近似值为1N N. 【名师点睛】用随机模拟的方法构造几何概型求面积,即可求出所求面积的近似值. 【例5】(1)在边长为1的正方形ABCD 内任取一点M ,求事件“||1AM ≤”的概率;(2)某班在一次数学活动中,老师让全班56名同学每人随机写下一对都小于1的正实数x ,y ,统计出两数能与1构成锐角三角形的三边长的数对(,)x y 共有12对,请据此估计π的近似值(精确到0.001). 【解析】(1)如图,在边长为1的正方形ABCD 内任取一点M ,满足条件的点M 落在扇形BAD 内(图中阴影部分),由几何概型的概率计算公式,得π(||1)4ABCDS P AM S ≤==阴影部分正方形, 故事件“||1AM ≤”的概率为π4.(2)以点A 为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴建立平面直角坐标系,如图所示,任取两个小于1的正实数x ,y ,所有基本事件构成区域01(,)|01x x y y Ω⎧⎫<<⎧⎪⎪=⎨⎨⎬<<⎪⎪⎩⎩⎭,即正方形ABCD 内部;事件N =“以x ,y 与1为边长能构成锐角三角形”包含的基本事件构成区域220101(,)|11x y N x y x y x y ⎧⎫<<⎧⎪⎪⎪<<⎪⎪⎪=⎨⎨⎬+>⎪⎪⎪⎪⎪⎪+>⎩⎩⎭,即扇形BAD 以外正方形ABCD 以内的阴影部分. 由(1)知π()14P N =-,全班56名同学每人随机写下一对都小于1的正实数x ,y ,可以看作在区域Ω中任取56个点;满足“以x ,y 与1为边长能构成锐角三角形”的(,)x y 共有12对,即有12个点落在区域N 中,故其概率为1235614=,用频率估计概率,有π31414-≈,即π11414≈,故1122π4 3.143147≈⨯=≈,即π的近似值为3.143.【方法点睛】本题主要考查了几何概型问题,其中解答中涉及几何概型及其概率的计算、几何概型的应用等知识点,试题有一定的难度,属于中档试题,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,此类问题的解答中仔细审题,转化为几何的度量关系是解答的关键. 5.几何概型中测度的选取不正确【例6】在等腰直角三角形ABC 中,直角顶点为C . (1)在斜边AB 上任取一点M ,求AM <AC 的概率;(2)在∠ACB 的内部,以C 为端点任作一条射线CM ,与线段AB 交于点M ,求AM <AC 的概率.(2)在∠ACB 的内部作射线CM ,则所求概率为2AC AC AB AB '==【错因分析】第(2)问的解析中错误的原因在于选择的观察角度不正确,因为在∠ACB 的内部作射线CM 是均匀分布的,所以射线CM 作在任何位置都是等可能的,则涉及的测度应该是角度而不是长度. 【正解】(1)如图所示,在AB 上取一点C ',使AC '=AC ,连接CC '. 由题意,知AB 2 C.由于点M 是在斜边AB 上任取的,所以点M 等可能分布在线段AB 上,因此基本事件的区域应是线段AB . 所以()22AC P AM AC AB AC'<===.(2)由于在∠ACB 内作射线CM ,等可能分布的是CM 在∠ACB 内的任一位置(如图所示),因此基本事件的区域应是∠ACB ,又1(18045)67.52ACC '∠=-=,90ACB ∠=,所以()ACC P AM AC ACB '∠<==∠的角度的角度67.53904=.【名师点睛】在确立几何概型的基本事件时,一定要选择好观察角度,注意判断基本事件的等可能性.1.有四个游戏盘,将它们水平放稳后,向游戏盘上投掷一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是A B C D2.一个圆及其内接正三角形如图所示,某人随机地向该圆内扎针,则针扎到阴影区域的概率为 A 3B 33C 3D 33.在棱长为3的正方体内任取一个点,则这个点到各面的距离都大于1的概率为A .13B .19C .127D .344.在棱长为a 的正方体1111ABCD A B C D -内任取一点P ,则点P 到点A 的距离小于等于a 的概率为A.22B.2π2C.16D.1π65.在长为12 cm的线段AB上任取一点C,现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形的面积大于20 cm2的概率为A.16B.13C.23D.456.在区间[–π,π]内随机取两个实数,分别记为a,b,则使得函数f(x)=x2+2ax–b2+π有零点的概率为A.78B.34C.12D.147.已知事件“在矩形ABCD的边CD上随机取一点P,使△APB的最大边是AB”发生的概率为12,则ADAB=A.12B.14C.3D.78.如图,长方体ABCD–A1B1C1D1中,有一动点在此长方体内随机运动,则此动点在三棱锥A–A1BD内的概率为___________.9.如图所示,在平面直角坐标系内,任作一条射线OA,则射线OA落在阴影内的概率为___________.10.向圆内随机投掷一点,此点落在该圆的内接正n(n≥3,n∈N)边形内的概率为P n,下列论断正确的是A.随着n的增大,P n减小B .随着n 的增大,P n 先增大后减小C .随着n 的增大,P n 增大D .随着n 的增大,P n 先减小后增大11.某同学到公共汽车站乘车去学校,可乘坐8路、23路公共汽车,其中8路车每10分钟一班,23路车每15分钟一班,则该同学等车不超过8分钟的概率为___________.12.一只受伤的丹顶鹤在如图所示(直角梯形)的草原上飞过,其中AD=2,DC=2,BC=1.它可随机落在该草原上任何一处,若落在扇形沼泽区域ADE 以外,丹顶鹤能生还,求该丹顶鹤生还的概率.13.利用计算机随机模拟方法计算y=4x 2与y=4所围成的区域Ω的面积时,可以执行以下算法步骤:第一步,利用计算机产生两个在[0,1]内的随机数a ,b ; 第二步,对随机数a ,b 实施变换:112-14a a b b =⎧⎨=⎩,得到点A (a 1,b 1);第三步,判断点A (a 1,b 1)的坐标是否满足b 1<421a ;第四步,累计所产生的点A 的个数m 及满足b 1<421a 的点A 的个数n ;第五步,判断m 是否小于M (一个设定的数),若是,则回到第一步,否则,输出n 并终止算法. 若设定的M=150,且输出的n=51,请据此用随机模拟方法估计出区域Ω的面积(结果保留到小数点后两位).14.已知|p|≤3,|q|≤3,点(p,q)均匀分布.(1)点M(x,y)的横、纵坐标由掷骰子确定,第一次确定横坐标,第二次确定纵坐标,求点M(x,y)落在上述区域的概率;(2)求方程x2+2px–q2+1=0有两个实数根的概率.15.已知关于x的一元二次方程x2–2(a–2)x–b2+16=0.(1)若a,b是一枚骰子先后投掷两次所得到的点数,求该一元二次方程有两个正实数根的概率;(2)若a∈[2,6],b∈[0,4],求该一元二次方程没有实数根的概率.16.城市公交车的数量太多容易造成资源的浪费,太少又难以满足乘客的需求,为此,某市公交公司在某站台的60名候车的乘客中随机抽取15人,将他们的候车时间作为样本分成五组,如下表所示:组别一二三四五候车时间/min [0,5)[5,10)[10,15) [15,20) [20,25)人数 2 6 4 2 1(1)估计这15名乘客的平均候车时间;(2)估计这60名乘客中候车时间少于10 min的人数;(3)若从第三、四组的6人中选2人进行进一步的问卷调查,求抽到的2人恰好来自不同组的概率.17.(2018•新课标Ⅰ)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,A C.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 318.(2017•新课标Ⅰ)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .8πC .12D .4π 19.(2017•江苏)记函数f (x )=26x x +-定义域为D .在区间[–4,5]上随机取一个数x ,则x ∈D 的概率是__________.1 2 3 4 5 6 7 10 17 18 ABCDCBDCAB1.【答案】A【解析】四个选项中小明中奖的概率分别为3111,,,8433,故应选A 中的游戏盘.2.【答案】B【解析】设正三角形的边长为a ,圆的半径为R ,则R=33a ,所以正三角形的面积为34a 2,圆的面积S=πR2=13πa2.由几何概型的概率计算公式,得针扎到阴影区域的概率P=22341π3aa=334π,故选B.4.【答案】D【解析】点P到点A的距离小于等于a可以看作是随机的,点P到点A的距离小于等于a可视作构成事件的区域,棱长为a的正方体1111ABCD A B C D-可视作试验的所有结果构成的区域,可用“体积比”公式计算概率.3314π183π6aPa⨯==,故选D.5.【答案】C【解析】设AC=x cm,则BC=(12–x)cm,若矩形的面积大于20 cm2,则x(12–x)>20,解得2<x<10,故所求概率P=10-212=23.6.【答案】B【解析】由题意,知点(a,b)在边长为2π的正方形边上及内部.要使函数f(x)=x2+2ax–b2+π有零点,需满足4a2+4b2–4π≥0,即a2+b2≥π,a2+b2≥ππ阴影部分所示,所以其面积为4π2–π2=3π2,所以函数f(x)有零点的概率为223π4π=34.8.【答案】16【解析】设事件M 为“此动点在三棱锥A –A 1BD 内”,则P (M )=11111--A A BD ABCD A B C D V V 三棱锥长方体=11111--A ABD ABCD A B C D V V 三棱锥长方体=11111-1·3ABDABCD A B C D AA S V 长方体=1111·32·ABCDABCD AA S AA S 矩形矩形=16.9.【答案】16【解析】以O 为起点的射线OA 等可能地落在坐标系中,区域角度为360°,而射线OA 落在阴影内的区域角度为60°,所以射线OA 落在阴影内的概率是60360︒︒=16. 10.【答案】C【解析】根据几何概型的概率计算公式有P n =n S S 正边形圆,而圆的面积固定,正n 边形的面积随n 的增大而增大,所以P n 也增大. 11.【答案】6875【解析】设该同学到站x 分钟后23路车到站,y 分钟后8路车到站,则0≤x ≤15,0≤y ≤10,如图.若等车不超过8分钟,即8分钟内乘坐8路车或23路车,记为事件M ,则事件M 所对应的区域(如图中阴影部分)的面积为8×8+2×8+7×8=136,整个区域(矩形OABC )的面积为10×15=150,所以所求概率P (M )=136150=6875.12.【答案】1–π10. 【解析】过点D 作DF ⊥AB 于点F ,如图所示.在Rt △AFD 中,因为AD=2,DF=BC=1,所以AF=1,∠A=45°,所以梯形ABCD 的面积S 1=12×(2+2+1)×1=52. 扇形DAE 的面积S 2=π×(2)2×45360︒︒=π4.根据几何概型的概率计算公式,得丹顶鹤生还的概率P=121S S S -=5π2452-=1–π10.13.【答案】S Ω≈5.28.【解析】因为0101a b ≤≤⎧⎨≤≤⎩,且11214a a b b =-⎧⎨=⎩,所以111104a b -≤≤⎧⎨≤≤⎩,依题意区域Ω为如图所示的阴影部分,设区域Ω的面积为S Ω,则ABCDS S Ω矩形≈150-51150, 所以42S Ω⨯≈99150,解得S Ω≈5.28. 14.【答案】(1)14.(2)36π36-.【解析】(1)点M (x ,y )的横、纵坐标由掷骰子确定,第一次确定横坐标,第二次确定纵坐标, 共有36个不同的坐标,而落在已知区域的点M 有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3), (3,1),(3,2),(3,3),共9个,所以点M(x,y)落在已知区域的概率P1=936=14.(2)因为方程x2+2px–q2+1=0有两个实数根,所以Δ=(2p)2–4(–q2+1)≥0,解得p2+q2≥1,又|p|≤3,|q|≤3,故由图易知满足条件的点(p,q)所在区域的面积为36–π,所以方程x2+2px–q2+1=0有两个实数根的概率P2=36π36.(2)试验的全部结果构成区域Ω={(a,b)|2≤a≤6,0≤b≤4},其面积为S(Ω)=16.设“该一元二次方程没有实数根”为事件B,则构成事件B的区域Ω'={(a,b)|2≤a≤6,0≤b≤4,(a–2)2+b2<16},其面积为S(Ω')=14×π×42=4π,故所求的概率为P(B)=4π16=π4.【名师点睛】几何概型和古典概型中每个基本事件发生的可能性都是相等的,古典概型要求基本事件有有限个,而几何概型要求基本事件有无限个,且几何概型多与事件的区域面积(长度或体积)有关.16.【答案】(1)10.5(min).(2)32.(3)8 15.【解析】(1)这15名乘客的平均候车时间约为115×(2.5×2+7.5×6+12.5×4+17.5×2+22.5×1)=115×157.5=10.5(min ). (2)这15名乘客中候车时间少于10 min 的频率为2615+=815,所以这60名乘客中候车时间少于10 min 的人数大约为60×815=32.17.【答案】A【解析】如图:设BC =2r 1,AB =2r 2,AC =2r 3,∴r 12=r 22+r 32,∴S Ⅰ=12×4r 2r 3=2r 2r 3,S Ⅲ=12×πr 12–2r 2r 3,S Ⅱ=12×πr 32+12×πr 22–S Ⅲ=12×πr 32+12×πr 22–12×πr 12+2r 2r 3=2r 2r 3,∴S Ⅰ=S Ⅱ,∴P 1=P 2,故选A . 18.【答案】B【解析】根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,则黑色部分的面积S =2π,则对应概率P =24π=8π,故选B .19.【答案】59【解析】由6+x –x 2≥0得x 2–x –6≤0,得–2≤x ≤3,则D =[–2,3],则在区间[–4,5]上随机取一个数x , 则x ∈D 的概率P =()()3254----=59,故答案为:59.。

精品课件:几何概型

精品课件:几何概型

(2)先求点 P 到点 O 的距离小于或等于 1 的概率,圆柱的体积 V 圆柱
=π×12×2=2π,以 O 为球心,1 为半径且在圆柱内部的半球的体积
2 V 半球=12×43π×13=32π.则点 P 到点 O 的距离小于或等于 1 的概率为32ππ
=13,故点 P 到点 O 的距离大于 1 的概率为 1-13=23.
无限多
• 2.特点:
均匀
• (1)无限性:试验中所有可能出现的结果
(P基(A)本= 事试验件的构全)成有部事结件果A所的构区成域的长区度域个面长积度.或面体积积或 体积 . • (2)等可能性:试验结果在每一个区域内
• 几何概型是与古典概型最为接近的一种概 率模型,两者的共同点是基本事件的发生 是等可能的,不同点是基本事件的个数前 者是无限的(基本事件可以抽象为点),后 者是有限的.对于几何概型而言,这些点 尽管是无限的,但它们所占据的区域是有 限的,可以利用相关几何知识求概率.
• (1)与三角形、矩形、圆等平面图形面积有 关的问题.
• (2)与线性规划知识交汇命题的问题. • (3)与平面向量的线性运算交汇命题的问
题.
• 角度一 与三角形、矩形、圆等平面图形 面积有关的问题
• 1.如图,在圆心角为直角的扇形OAB中, 分别以OA,OB为直径作两个半圆.在扇 形OAB内随机取一点,则此点取自阴影部 分的概率是( )
如图,S1=01exdx=ex|10=e1-e0=e-1. ∴S 总阴影=2S 阴影=2(e×1-S1)=2[e-(e-1)]=2, 故所求概率为 P=e22.
答案:e22
规律方法 数形结合为几何概型问题的解决提供了简捷直观的解 法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域, 由题意将已知条件转化为事件 A 满足的不等式,在图形中画出事件 A 发 生的区域,通用公式:P(A)=试验的构全成部事结件果A所的组区成域的的区测域度的测度.

必修三第3章第3节几何概型

必修三第3章第3节几何概型

年 级 高二 学 科 数学版 本苏教版课程标题 必修三第3章第3节 几何概型编稿老师 褚哲 一校 黄楠二校张琦锋审核孙永涛一、学习目标1. 正确理解几何概型的概念。

2. 掌握几何概型的概率计算公式。

二、重点、难点几何概型的概念、概率计算公式及应用三、考点分析本讲内容在高考中所占比重较小,近几年的高考对概率相关知识的要求降低,主要是以现实生活为背景,以几何图形为载体,重点考查几何概型的概率的求法,多以选择题、填空题形式出现。

其中与长度、面积(体积)有关的几何概型更为重要。

1. 几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型。

几何概型的特点:(1)试验中所有可能出现的结果(基本事件)有无限多个;(2)每个基本事件出现的可能性相等。

2. 几何概型的概率公式: P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A知识点一:几何概型与古典概型的区别例1 判断下列试验中事件A 发生的概率属于古典概型,还是几何概型。

(1)抛掷两颗骰子,求出现两个“4点”的概率;(2)有一个转盘,甲乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜,求甲获胜的概率。

思路分析:本题考查几何概型与古典概型的特点。

古典概型具有有限性和等可能性,而几何概型则是在试验中会出现无限多个结果,且与构成事件的区域长度(面积或体积)有关。

解题过程:(1)抛掷两颗骰子,出现的可能结果有6×6=36种,且它们都是等可能的,因此属于古典概型;(2)游戏中转盘指针指向B 区域时有无限多个结果,且不难发现“指针落在阴影部分”,所求概率可以用B 区域的面积与总面积的比来衡量,即与区域面积有关,因此属于几何概型。

解题后反思:要注意几何概型与古典概型的区别:古典概型具有有限性和等可能性,而几何概型则是在试验中会出现无限多个结果,且与构成事件的区域长度(面积或体积)有关。

2018-2019学年高中数学第3章概率3.3几何概型3.4互斥事件课件苏教版必修3

2018-2019学年高中数学第3章概率3.3几何概型3.4互斥事件课件苏教版必修3

2.某城市有甲、乙两种报纸供居民们订阅,记事件A:“只订甲 报”,事件B:“至少订一种报”,事件C:“至多订一种报”,事件D: “不订甲报”,事件E:“一种报也不订”.判断下列每对事件是不是互斥 事件,如果是,再判断它们是不是对立事件. (1)A与C;(2)B与E;(3)B与D;(4)B与C;(5)C与E.
[解析] (1)在一次射击中射中10环或9环,即射中10环和射中9环,由互 斥事件的概率公式,再分别相加即可;(2)在一次射击中至少射中7环,即射 中10环,9环,8环,7环,再将对应的概率相加即可 ;(3)在一次射击中射 中环数不是8环,即射中7环和7环以下,再将对应的概率相加即可.
[解] 设“射中10环”“射中9环”“射中8环”“射中7环”“射中7环 以下”的事件分别为A、B、C、D、E,则 (1)P(A+B)=P(A)+P(B)=0.24+0.28=0.52, 即射中10环或9环的概率为0.52. (2)P(A+B+C+D) =P(A)+P(B)+P(C)+P(D) =0.24+0.28+0.19+0.16=0.87. 即至少射中7环的概率为0.87. 另解P(A+B+C+D)=1-P(E)=1-0.13=0.87. (3)P(D+E)=P(D)+P(E)=0.16+0.13=0.29, 即射中环数不足8环的概率为0.29.
1 2 [易知A,B不是互斥事件,所以不能直接套用互斥事件的概率加法公 5 1 式.事件A+B包含了5个基本事件,即抽到1,3,5,7,9,则P一次射击中射中10环、9环、8环、7环、7环以下的概率分 别为0.24,0.28,0.19,0.16,0.13,计算这个射手在一次射击中: (1)射中10环或9环的概率; (2)至少射中7环的概率; (3)射中环数不足8环的概率. 【导学号:20132183】

苏教版必修3高中数学3.3《几何概率》ppt课件

苏教版必修3高中数学3.3《几何概率》ppt课件

考虑第一个问题, 如图, 记 "剪得两段绳长都不
小于1 m" 为事件 A.
1
1
把经绳子三等分,于是
3
当剪断位置处在中间一段上时,事件 A发生.
由于中间一段的长度等于绳长的1 3
,
所以事件 A
发生的概率PA

1 3
.
再看第二个问题.如图, 记
"射中黄心"为事件B ,由于 中靶点随机地落在面积为
122cm
在 第 二 个 试 验 中, 射 中 靶 面 每 一 点 都 是 一个 基 本 事 件, 这 一 点 可 以 是 靶 面 直 径为122 cm的 大 圆 内 的 任 意 一 点.
在这两个问题中, 基 本 事 件有无限多个,虽然
类似于古典概型的"等可能性"还存在着, 但是
显然不能用古典概型的方法求解.怎么办呢?
一点,该区域中每一点被取到的机会都一样; 而一个随 机事件的发生则理解为恰好取到上述区域内的某个指
定区域中的点.这里的区域可以是线段、平面图形、立
体图形等.用这种方法处理随机试验, 称为几何概型
geometric probability mod el .
一般地, 在几何区域D中随机地取一点, 记事件"该点落在
3.3 几 何 概 率
黄建忠制作
我们来看下面的问题:
1取一根长度为3m的绳子, 拉直后在任意位置剪断,
那么剪得两段的长都不小于1m的概率有多大?
2 射箭比赛的箭靶涂有五个彩色的分环.从外向内为
白色、黑色、蓝色、红色, 靶心是金色.金色靶心叫"黄 心", 奥运会的比赛靶面直径为122 cm, 靶 心直径为12.2 cm.运 动员在70 m外射箭.假 设 射箭都能中靶, 且 射中 靶面内任一点都 是等可能的,那么射中黄心的概 率为 多少? 在第一个试验中, 从 每 一个位置剪断都 是一个 基 本 事件,剪断位置可以是长度为3m的绳子上任意一点.

苏教版高中数学必修33.3几何概型第2课时

苏教版高中数学必修33.3几何概型第2课时

0<r<a
a
由此可见,当r接近a, p接近于0; 而当r接近0, p接近于1.
若r>a, 你还愿意玩这个游戏吗?
例4. (会面问题)甲、乙二人约定在 12 点到 17点之
间在某地会面,先到者等一个小时后即离去设二人在
这段时间内的各时刻到达是等可能的,且二人互不影 响.求二人能会面的概率.
解: 以 X , Y 分别表示甲乙二人到达的时刻,于是
C
解: 在AB上截取AC’=AC,
故AM<AC的概率等于
AM<AC’的概率.
A
记事件A为“AM小于AC”,
M
C’ B
P( A) AC AC AC 2 AB AB 2AC 2
答:AM<AC的概率等于
2 2
例3. 抛阶砖游戏.
“抛阶砖”是国外游乐场的典型游戏之一.参与者 只须将手上的“金币”(设“金币”的直径为 r)抛 向离身边若干距离的阶砖平面上,抛出的“金币”若 恰好落在任何一个阶砖(边长为a的正方形)的范围 内(不与阶砖相连的线重叠),便可获奖.
• 1、适当选择观察角度,转化为几何概型, • 2、把基本事件转化为与之对应的区域, • 3、把随机事件A转化为与之对应的区域, • 4、利用概率公式计算。 • 5、要注意基本事件是等可能的。
3.3 几何概型
(第2课时)黄建忠制作 Nhomakorabea题讲解: 例1.在1L高产小麦种子中混入了一粒带麦锈病
的种子,从中随机取出10mL,含有麦锈病种子的概 率是多少?
(1)基本事件有无限多个;
(2)基本事件发生是等可能的.
一般地,在几何区域D中随机地取一点,记“该点落 在其内部一个区域d内”为事件A,则事件A发生的概率:

高中数学《几何概型》课件


剪断,那么剪得两段的长度都不小于3米的概率
是多少?
解:记“剪得两段彩带都不小于3m” 为事件A.
把彩带三等分,于是当剪断位置处在中间一段上时,
事件A发生.由于绳子上各点被剪断是等可能的,且中间
一段的长度等于彩带的 1 . 即P A 1
3
3
PA
构成事件 A的区域长度 试验的全部结果所构成 的区域长度
问题2 某列岛周围海域面积约为17万平方公里,
如果在此海域里有面积达0.1万平方公里的大 陆架蕴藏着石油,假设在这个海域里任意选 定一点钻探,则钻出石油的概率是多少?
解:记“钻出石油”为事件A,则
PA 0.1 1
17 170
P
A
构成事件 A的区域面积 试验的全部结果所构成 的区域面积
问题3 有一杯1升的水, 其中含有1个细菌, 用
P(A) ACC 60 2 2 ACB 90 3 3
答:这时AM小于AC的概率为 .
练习题:
1.在等腰直角△ABC中,过直角顶点C任作一
条射线L与斜边AB交于点M,求AM小于AC的
概率.
3
4
2.在等腰直角△ABC中,在斜边AB上任取一点
M,求使△ACM为钝角三角形的概率. 1
2
3.在等腰直角△ABC中,在斜边AB上任取一点
p
A
m A m
数学理论:
古典概型的本质特征: 1、样本空间中样本点个数有限, 2、每一个样本点都是等可能发生的. 将古典概型中的有限性推广到无限性,而保留等
可能性,就得到几何概型.
几何概型的本质特征: 1、有一个可度量的几何图形S;
2、试验E看成在S中随机地投掷一点;
3、事件A就是所投掷的点落在S中的可度量图形A中.

高中数学精品课件3-3-1几何概型课件

P( A) 0.5 = 1 20 40
答:取出的球中含有这个水晶球的概率为0.025.
1.在△ABC内任取一点P,则△ABP与△ABC的面积比大于0.5的概率 是多少?
1
4
C
P
A
B
1.在△ABC内任取一点P,则△ABP与△ABC的面积比大于0.5的概率 是多少?
1
4
C
P
A
B
2.已知地铁站每隔10分钟有一班列车到达,每辆列车在车站停1分钟, 则乘客到达站台立即乘上车的概率是多少?
P( A) m m 4m .
n
4n
n
3. 一个20立方米的海洋球池里混入了一颗水晶球,现从中取出0.5立方米, 含有水晶球的概率是多少?
解:记“取出的0.5m³中含有这个水晶球”为事 件A,水晶球在海洋球池里的分布可以看成是随机 的.
P( A) 0.5 = 1 20 40
答:取出的球中含有这个水晶球的概率为0.025.
撒豆试验:向正方形内撒n颗豆子,统计落在内切圆内的豆子数, 为m颗.
P( A) m m 4m .
n
4n
n
3. 一个20立方米的海洋球池里混入了一颗水晶球,现从中取出0.5立方米, 含有水晶球的概率是多少?
解:记“取出的0.5m³中含有这个水晶球”为事 件A,水晶球在海洋球池里的分布可以看成是随机 的.
P( A)

线段PQ长度 线段MN 长度
=
1 3
P( A)
圆的面积 羊村面积
=
1 100
几何概型的定义: 基本事件: 在几何区域D内任取一点,
取在每一点都是等可能的,
随机事件A: 在几何区域d内任取一点, (d D)

2019年苏教版数学必修三第3章 3.3 几何概型 3.4 互斥事件

3.3 几何概型(新课程标准合格考不作要求,略)3.4 互斥事件学习目标:1.了解互斥事件及对立事件的概念,能判断两个事件是否是互斥事件,进而判断它们是否是对立事件.(重点、难点)2.了解两个互斥事件概率的加法公式,知道对立事件概率之和为1的结论.会用相关公式进行简单概率计算.(重点)3.注意学生思维习惯的培养,在顺向思维受阻时,转向逆向思维.[自主预习·探新知]1.互斥事件与对立事件的定义(1)一次试验中,不能同时发生的两个事件称为互斥事件,如果事件A和事件B互斥,是指事件A和事件B在一次试验中不能同时发生,也就是说,事件A 和事件B同时发生的概率为0.如果事件A1,A2,…,A n中的任意两个事件都互斥,就称事件A1,A2,…,A n彼此互斥,从集合的角度看,n个事件彼此互斥是指各个事件所含结果的集合彼此不相交.(2)一次试验中,两个互斥事件必有一个发生,则称这两个事件为对立事件.事件A的对立事件记为A.从集合的角度看,事件A的对立事件是全集中由事件A所含结果组成的集合的补集.2.概率加法公式(1)如果事件A,B互斥,那么事件A+B发生的概率,等于事件A,B分别发生的概率的和,P(A+B)=P(A)+P(B).(2)一般地,如果事件A1,A2,…,A n两两互斥,那么P(A1+A2+…+A n)=P(A1)+P(A2)+…+P(A n),即彼此互斥事件和的概率等于每个事件概率的和.3.对立事件的一个重要公式对立事件A与A必有一个发生,故A+A是必然事件,从而P(A)+P(A)=P(A+A)=1.由此,我们可以得到一个重要公式:P(A)=1-P(A).[基础自测]1.给出以下结论:①互斥事件一定对立;②对立事件一定互斥;③互斥事件不一定对立;④事件A与B的和事件的概率一定大于事件A的概率;⑤事件A与B互斥,则有P(A)=1-P(B).其中正确的命题有________.②③[对立必互斥,互斥不一定对立,∴②③正确,①错;又当A∪B=A 时,P(A∪B)=P(A),∴④错;只有A与B为对立事件时,才有P(A)=1-P(B),∴⑤错.]2.抽查10件产品,设A={至少两件次品},则A为________.【导学号:20132182】至多有一件次品[“至少两件次品”的对立事件是“至多有一件次品”.] 3.甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率为90%,则甲、乙两人下成和棋的概率为________.50%[甲不输棋包含甲获胜或甲、乙两人下成和棋,则甲、乙两人下成和棋的概率为90%-40%=50%.]4.在10张卡片上分别写上0,1,2,3,4,5,6,7,8,9后,任意叠放在一起,从中任取一张,设“抽到大于3的奇数”为事件A,“抽到小于7的奇数”为事件B,则P(A+B)=________.12[易知A,B不是互斥事件,所以不能直接套用互斥事件的概率加法公式.事件A+B包含了5个基本事件,即抽到1,3,5,7,9,则P(A+B)=510=12.]5.某射手在一次射击中射中10环、9环、8环、7环、7环以下的概率分别为0.24,0.28,0.19,0.16,0.13,计算这个射手在一次射击中:(1)射中10环或9环的概率;(2)至少射中7环的概率;(3)射中环数不足8环的概率.【导学号:20132183】[解析](1)在一次射击中射中10环或9环,即射中10环和射中9环,由互斥事件的概率公式,再分别相加即可;(2)在一次射击中至少射中7环,即射中10环,9环,8环,7环,再将对应的概率相加即可;(3)在一次射击中射中环数不是8环,即射中7环和7环以下,再将对应的概率相加即可.[解]设“射中10环”“射中9环”“射中8环”“射中7环”“射中7环以下”的事件分别为A、B、C、D、E,则(1)P(A+B)=P(A)+P(B)=0.24+0.28=0.52,即射中10环或9环的概率为0.52.(2)P(A+B+C+D)=P(A)+P(B)+P(C)+P(D)=0.24+0.28+0.19+0.16=0.87.即至少射中7环的概率为0.87.另解P(A+B+C+D)=1-P(E)=1-0.13=0.87.(3)P(D+E)=P(D)+P(E)=0.16+0.13=0.29,即射中环数不足8环的概率为0.29.[合作探究·攻重难]判断下列每对事件是不是互斥事件,如果是,再判断它们是不是对立事件.(1)“恰有1名男生”与“恰有2名男生”;(2)“至少有1名男生”与“全是男生”;(3)“至少有1名男生”与“全是女生”;(4)“至少有1名男生”与“至少有1名女生”.[解析]判断两个事件是否互斥,就是要判断它们能不能同时发生.判断两个互斥事件是否对立,就是要判断它们是否必有一个发生.[解](1)因为“恰有1名男生”与“恰有2名男生”不可能同时发生,所以它们是互斥事件.当恰有2名女生时它们都不发生,所以它们不是对立事件.(2)因为恰有2名男生时“至少有1名男生”与“全是男生”同时发生,所以它们不是互斥事件.(3)因为“至少有1名男生”与“全是女生”不可能同时发生,所以它们是互斥事件.由于它们必有一个发生,所以它们是对立事件.(4)当选出的是1名男生、1名女生时,“至少有1名男生”与“至少有1名女生”同时发生,所以它们不是互斥事件.[规律方法] 1.要判断两个事件是不是互斥事件,只需要分别找出各个事件包含的所有结果,看它们之间能不能同时发生.在互斥的前提下,看两个事件的并事件是否为必然事件,从而可判断是否为对立事件.2.考虑事件的结果间是否有交事件,可考虑利用Venn图分析,对于较难判断的关系,也可考虑列出全部结果,再进行分析.[跟踪训练]1.从40张扑克牌(红桃、黑桃、方块、梅花,点数从1~10各10张)中,任取一张.(1)“抽出红桃”与“抽出黑桃”;(2)“抽出红色牌”与“抽出黑色牌”;(3)“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”.判断上面给出的每对事件是否为互斥事件,是否为对立事件,并说明理由.【导学号:20132184】[解析]解决这类问题搞清互斥事件与对立事件的区别和联系,互斥事件是指事件A与事件B在一次试验中不会同时发生,而对立事件是指事件A与事件B 有且仅有一个发生.[解](1)是互斥事件,不是对立事件.理由是:从40张扑克牌中任意抽取1张,“抽出红桃”和“抽出黑桃”是不可能同时发生的,所以是互斥事件.同时,不能保证其中必有一个发生,这是由于还可能抽出“方块”或者“梅花”,因此,二者不是对立事件.(2)既是互斥事件,又是对立事件.理由是:从40张扑克牌中,任意抽取1张,“抽出红色牌”与“抽出黑色牌”,两个事件不可能同时发生,但其中必有一个发生,所以它们既是互斥事件,又是对立事件.(3)不是互斥事件,当然不可能是对立事件.理由是:从40张扑克牌中任意抽取1张,“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”这两个事件可能同时发生,如抽得牌点数为10,因此,二者不是互斥事件,当然不可能是对立事件.2.某城市有甲、乙两种报纸供居民们订阅,记事件A:“只订甲报”,事件B:“至少订一种报”,事件C:“至多订一种报”,事件D:“不订甲报”,事件E:“一种报也不订”.判断下列每对事件是不是互斥事件,如果是,再判断它们是不是对立事件.(1)A与C;(2)B与E;(3)B与D;(4)B与C;(5)C与E.[解析]对于互斥事件要抓住如下特征进行理解:(1)互斥事件研究的是两个事件之间的关系;(2)所研究的两个事件是在一次试验中涉及的;(3)两个事件互斥是由试验的结果不能同时出现确定的.[解](1)由于事件C“至多订一种报”中有可能“只订甲报”,即事件A 与C有可能同时发生,故A与C不是互斥事件.(2)事件B“至少订一种报”与事件E“一种报也不订”是不可能同时发生的,故B与E是互斥事件,又由于事件B与E必有一个发生,故B与E是对立事件.(3)事件B“至少订一种报”中有可能只订乙报,即有可能不订甲报,从而事件B与D有可能同时发生,故B与D不是互斥事件.(4)事件B“至少订一种报”中有这些可能:“只订甲报”“只订乙报”“订甲、乙两种报”.事件C“至多订一种报”中有这些可能:“一种报也不订”“只订甲报”“只订乙报”.由于这两个事件可能同时发生,故B与C 不是互斥事件.(5)由(4)知,事件E“一种报也不订”只是事件C的一种可能,故C与E 有可能同时发生,故C与E不是互斥事件.(1)[10,18];(2)[8,14).【导学号:20132185】[解析]首先明确所求事件包含哪些子事件,然后利用互斥事件的概率加法公式求解.[解]记此处河流的年最高水位在[8,10),[10,12),[12,14),[14,16),[16,18]范围内分别为事件A,B,C,D,E,则这5个事件是彼此互斥的,由互斥事件的概率加法公式可得:(1)此处河流的年最高水位在[10,18]的概率是P(B+C+D+E)=P(B)+P(C)+P(D)+P(E)=0.90.(2)此处河流的年最高水位在[8,14)的概率是P(A+B+C)=P(A)+P(B)+P(C)=0.76.[规律方法] 1.将一个事件拆分为若干个互斥事件,分别求出各事件的概率,然后用加法公式计算结果.2.在运用互斥事件的概率加法公式解题时,首先要分清事件间是否互斥,同时要会把一个事件拆分成几个互斥事件,做到不重不漏.3.常用步骤:(1)确定诸事件彼此互斥;(2)诸事件中有一个发生;(3)先求诸事件分别发生的概率,再求和.[跟踪训练]3.盒子里装有6个红球,4个白球,从中任取3个球.设事件A 表示“3个球中有1个红球,2个白球”,事件B 表示“3个球中有2个红球,1个白球”.已知P (A )=310,P (B )=12,求“3个球中既有红球又有白球”的概率.[解析] 记事件C 为“3个球中既有红球又有白球”,分别计算出每个基本事件发生的概率,再利用概率的加法公式进行计算.[解] 本题应先判断事件“3个球中既有红球又有白球”,则它包含事件A (“3个球中有1个红球,2个白球”)和事件B (“3个球中有2个红球,1个白球”),而且事件A 与事件B 是互斥的,所以P (C )=P (A +B )=P (A )+P (B )=310+12=45.4.某家庭电话在家中有人时,打进的电话响第1声时被接的概率为0.1,响第2声时被接的概率为0.3,响第3声时被接的概率为0.4,响第4声时被接的概率为0.1,那么电话在响前4声内被接的概率是多少?[解析] 直接利用互斥事件的概率加法公式求得结果.[解] 记“响第1声时被接”为事件A ,“响第2声时被接”为事件B ,“响第3声时被接”为事件C ,“响第4声时被接”为事件D ,“响前4声内被接”为事件E ,则易知A ,B ,C ,D 互斥,且E =A +B +C +D ,所以由互斥事件的概率加法公式,得P (E )=P (A +B +C +D )=P (A )+P (B )+P (C )+P (D )=0.1+0.3+0.4+0.1=0.9.一个袋中装有4个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机抽取2个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取1个球,该球的编号为m,将球放回袋中,再从袋中随机取1个球,该球的编号为n,求n<m+2的概率.【导学号:20132186】[解析](1)利用列举法求出基本事件的总数,进而求出概率;(2)是有放回抽样,所取的编号有先后次序之分,基本事件的总数为16,利用“正难则反”思想求解.[解](1)从袋子中随机取2个球,其一切可能的结果组成的基本事件有1和2,1和3,1和4,2和3,2和4,3和4,共6个.从袋中随机取出的球的编号之和不大于4的事件有1和2,1和3,共2个.因此所求事件的概率为26=13.(2)先从袋中随机取1个球,记下编号为m,放回后,再从袋中随机取1个球,记下编号为n,其一切可能的结果(m,n)有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1)(4,2),(4,3),(4,4),共16个.满足条件n≥m+2的结果为(1,3),(1,4),(2,4),共3个.所以满足条件n≥m+2的事件的概率P=3 16,故满足条件n<m+2的事件的概率为1-P=1-316=1316.[规律方法] 1.当直接计算符合条件的事件个数较多时,可先计算其对立事件的概率,再由公式P A=间接地求出符合条件的事件的概率.2.应用公式时,一定要分清事件的对立事件到底是什么事件,不能重复或遗漏,该公式常用于“至多”“至少”型问题的求解.[跟踪训练]5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为________.78[每位同学有2种选法,基本事件的总数为24=16,其中周六、周日中有一天无人参加的基本事件有2个,根据对立事件的概率公式知,周六、周日都有同学参加公益活动的概率为1-216=78.]6.玻璃球盒中装有各色球12只,其中5红、4黑、2白、1绿,从中任取1球,求:(1)得到红球或黑球的概率;(2)得到红球或黑球或白球的概率.[解析]转化为互斥事件或对立事件来计算概率.[解]记事件A1:从12只球中任取1球得红球;A2:从12只球中任取1球得黑球;A3:从12只球中任取1球得白球;A4:从12只球中任取1球得绿球,则P(A1)=512,P(A2)=412=13,P(A3)=212=16,P(A4)=112.(1)取出红球或黑球的对立事件为取出白球或绿球,即A1+A2的对立事件为A3+A4,所以取出红球或黑球的概率为:P(A1+A2)=1-P(A3+A4)=1-P(A3)-P(A4)=1-212-112=912=34.(2)A1+A2+A3的对立事件为A4.P(A1+A2+A3)=1-P(A4)=1-112=1112.这6个数字),求:(1)落地时向上的数是偶数的概率;(2)落地时向上的数是奇数的概率;(3)落地时向上的数不小于5的概率;(4)落地时向上的数大于1的概率;(5)落地时向上的数最大或最小的概率.[解析]落地时向上的数分别是1,2,3,4,5,6,这6个事件彼此互斥,且概率之和为1.[解]列表如下:(1)P(x是偶数)=P(x=2)+P(x=4)+P(x=6)=16+16+16=12.(2)P(x是奇数)=P(x=1)+P(x=3)+P(x=5)=16+16+16=12,或P(x是奇数)=1-P(x是偶数)=1-12=12.(3)P(x≥5)=P(x=5)+P(x=6)=16+16=13.(4)P(x>1)=P(x=2)+P(x=3)+P(x=4)+P(x=5)+P(x=6)=16×5=56,或P(x>1)=1-P(x≤1)=1-P(x=1)=1-16=56.(5)P(x最大或最小)=P(x=6)+P(x=1)=16+16=13.所以:(1)落地时向上的数是偶数的概率是1 2;(2)落地时向上的数是奇数的概率是1 2;(3)落地时向上的数不小于5的概率是1 3;(4)落地时向上的数大于1的概率是5 6;(5)落地时向上的数最大或最小的概率是1 3.[规律方法]“互斥”和“对立”都是针对两个事件而言.“互斥”是指两个事件不能同时发生;“对立”是指两个互斥事件有且仅有一个发生.,对于求复杂事件的概率通常有两种方法:一是将所求事件转化为彼此互斥的事件的和;二是先求出所求事件的对立事件的概率,进而再求所求事件的概率.[跟踪训练]7.掷一枚骰子的试验,事件A表示“小于5的偶数点出现”,事件B表示“小于5的点数出现”,则事件A+B发生的概率为________.23[事件A发生的概率为P(A)=26=13,事件B发生的概率为P(B)=46=23,所以事件B发生的概率为P(B)=1-P(B)=1-23=13,易知事件A与事件B互斥,故P(A+B)=P(A)+P(B)=13+13=23.]8.甲、乙两人下棋,和棋的概率为12,乙获胜的概率为13,求:(1)甲获胜的概率;(2)甲不输的概率.【导学号:20132187】[解析]甲获胜和乙不输是对立互斥事件,甲不输与乙获胜是对立互斥事件,根据概率公式计算即可.[解](1)“甲获胜”和“和棋或乙获胜”是对立事件,所以“甲获胜”的概率P=1-12-13=16.即甲获胜的概率是1 6 .(2)法一:设事件A为“甲不输”,可看成是“甲获胜”“和棋”这两个互斥事件的并事件,所以P(A)=16+12=23.法二:设事件A为“甲不输”,可看成是“乙获胜”的对立事件,所以P(A)=1-13=23.即甲不输的概率是23.[当堂达标·固双基]1.某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,那么互斥不对立的两个事件是________.①至少有1名男生与全是女生;②至少有1名男生与全是男生;③至少有1名男生与至少有1名女生;④恰有1名男生与恰有2名女生.④[①是对立事件,②③均不是互斥事件.]2.同时抛掷两枚骰子,没有5点或6点的概率是49,则至少一个5点或6点的概率是________.【导学号:20132188】59[由对立事件的概率公式,得所求的概率为1-49=59.]3.抛掷一骰子,观察出现的点数,设事件A为“出现1点”,事件B为“出现2点”,已知P(A)=P(B)=16,则出现1点或出现2点的概率为________.13[设事件C为“出现1点或出现2点”,∵事件A、B是互斥事件,由C=A∪B可得P(C)=P(A)+P(B)=16+16=13,∴出现1点或出现2点的概率是1 3.]4.一商店有奖促销活动中有一等奖与二等奖两个奖项,其中中一等奖的概率为0.1,中二等奖的概率为0.25,则不中奖的概率为________.0.65[中奖的概率为0.1+0.25=0.35,中奖与不中奖互为对立事件,所以不中奖的概率为1-0.35=0.65.]5.高一(2)班数学兴趣小组有男生和女生各3名,现从中任选2名学生去参加数学竞赛,计算下列事件的概率:(1)恰有一名参赛学生是男生;(2)至少有一名参赛学生是男生;(3)至多有一名参赛学生是男生.【导学号:20132189】[解析](1)利用古典概型知识求解,(2)(3)利用对立事件处理较为简单.[解]从数学兴趣小组的6名学生中任选2名学生去参加数学竞赛,共有15(种)等可能的结果.(1)恰有一名参赛学生是男生,即从3名男生中任选1人,从3名女生中任选1人,有3×3=9(种)结果,所以恰有一名参赛学生是男生的概率为915=35.(2)“至少有一名参赛学生是男生”的对立事件为“两名参赛学生都是女生”,从3名女生中任选2人有3(种)结果,所以至少有一名参赛学生是男生的概率为1-315=45.(3)“至多有一名参赛学生是男生”的对立事件为“两名参赛学生都是男生”,从3名男生中任选2人有3(种)结果,所以至多有一名参赛学生是男生的概率为1-315=45.。

苏教版数学高一苏教版必修33.3几何概型

高中数学-打印版3.3 几何概型一览众山小诱学·导入材料:1777年法国科学家普丰做了一个投针试验.他在一张大纸上画了一些平行线,且相邻两条平行线间的距离都相等.再把长度等于平行线间距离一半的针投到纸上,并记录投针的总次数及针落到纸上后与平行线相交的次数,共计投针2 212次,其中与平行线相交的有704次,发现它们的商2 212÷704≈3.142 045,与π非常接近.以后又有多位数学家重复做过投针试验,也得到了类似的结果.问题:投针试验为什么能算出π的近似值呢?导入:这是一个颇为奇妙的方法:只要设计一个随机试验,使一个事件的概率与某一未知数有关,然后通过重复试验,以频率近似概率,即可求得未知数的近似解.而要想求针与平行线相交的概率,由于针落的位置有无限种可能,所以古典概型已经不适用,但针上的每一点是否落在平行线组的某一根上机会却是均等的,也就是等可能性依然保存,这正是几何概率的模型,需要利用几何概型的公式计算.温故·知新1.初中数学课上,大家都玩过转盘游戏吧,现有两种游戏:甲和乙一起玩转盘游戏(1),如图3-3-1中(1)所示,主持游戏的人转动转盘两次,如果两次转盘指针指向相同的字母,那么甲就得1分,如果转盘指针指向不相同的字母,那么乙得1分,转动转盘50次,获得较高分数的游戏者赢,与同伴一起玩转盘游戏(2),规定同(1),这两个转盘游戏都是公平的吗?图3-3-1游戏中指针指向B区域时有无限多个结果,而且不难发现“指针落在阴影部分”,概率可以用阴影部分的面积与总面积的比来衡量,游戏(1)中甲、乙得分的概率相同,是公平的,而游戏(2)中甲得分的概率小于乙得分的概率,所以不是公平的.2.在一个面积为SΩ的区域Ω中,等可能地任意取一点,这里“等可能”的确切意义是怎样的?等可能地任意取一点意味着该区域中每一点被取到的机会都一样,点在这个区域均匀分布.严谨地说:设在区域Ω中有任意一个小区域A,如果它的面积为S A,则点取在A中的可能性的大小与S A成正比,而与A的位置及形状无关.最新版高中数学。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档