七年级数学下册9_1_1不等式及其解集1教案新版新人教版

合集下载

人教版数学七年级下册《9.1.1不等式及其解集》教学设计

人教版数学七年级下册《9.1.1不等式及其解集》教学设计

人教版数学七年级下册《9.1.1不等式及其解集》教学设计一. 教材分析人教版数学七年级下册《9.1.1不等式及其解集》是学生在学习了整式、分式等基础知识后,引入的一种新的数学表达形式。

本节课主要让学生了解不等式的概念,学会用不等号表示两个数的大小关系,以及如何求解不等式的解集。

教材中通过丰富的实例,引导学生探究不等式的性质,培养学生的逻辑思维能力。

二. 学情分析七年级的学生已经具备了一定的数学基础,对数学符号和运算规则有一定的了解。

但学生在学习新知识时,可能对不等式的概念和性质理解不够深入,需要在教学过程中加以引导和巩固。

此外,学生对实际问题中不等式的应用还不够熟练,需要通过大量的练习来提高。

三. 教学目标1.了解不等式的概念,掌握不等式的基本性质。

2.学会求解不等式的解集,并能解决一些实际问题。

3.培养学生的逻辑思维能力,提高学生解决数学问题的能力。

四. 教学重难点1.重难点:不等式的概念、性质以及求解不等式的解集。

2.难点:对不等式性质的理解和应用,求解不等式时的运算技巧。

五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究不等式的性质。

2.利用多媒体辅助教学,生动展示不等式的图形表示,帮助学生形象理解。

3.运用实例分析,让学生体会不等式在实际问题中的应用。

4.注重练习,让学生在实践中巩固所学知识。

六. 教学准备1.教学课件:制作课件,包括不等式的概念、性质、例题及练习题。

2.教学素材:收集一些实际问题,用于引导学生应用不等式解决问题。

3.练习题:准备一些不等式的练习题,用于课堂练习和课后作业。

七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,引导学生思考如何用数学符号表示两个数的大小关系。

通过讨论,引出不等式的概念。

2.呈现(10分钟)介绍不等式的基本性质,如对称性、传递性等。

通过实例演示,让学生直观地感受不等式的性质。

3.操练(15分钟)让学生分组讨论,尝试解决一些不等式问题。

人教版七年级数学下册_9.1.1不等式及其解集

人教版七年级数学下册_9.1.1不等式及其解集

A.5
B.4
C.3
D.2
感悟新知
知识点 3 不等式的解集的表示方法
在数轴上表示不等式的解集:
特别提醒 在数轴上表示不等式的解集时,
大于向右画, 小于向左画;界点处 用空心圆圈圈住该点.
知3-讲
感悟新知
知3-讲
不等式的解集表示的是未知数的取值范围,所以不等
式的解集可以在数轴上直观地表示出来. 一般地,利用数
C. 3
D. 2
感悟新知
例2 用不等式表示: (1)a 的一半与3 的和大于5; (2)x 的3 倍与1 的差小于2; (3)a 的 1 与1 的差是正数;
2
(4)m 与2 的差是负数.
知1-练
解题秘方:紧扣不等关系中的关键词语列出不等式.
感悟新知
解:(1) 1 a+3>5.
2
(2)3x-1<2.
第9章 不等式与不等式组
9.1 不等式
9.1.1 不等式及其解集
学习目标
1 课时讲解 2 课时流程
不等式 不等式的解与解集 不等式的解集的表示方法
逐点 导讲练
课堂 小结
作业 提升
感悟新知
知识点 1 不等式
知1-讲
1. 定义:用符号“<”或“>”表示大小关系的式子叫做不等
式. 用符号“≠”表示不等关系的式子也是不等式.
轴表示不等式的解集通常有以下四种情况(设a>0):
不等式的解集 x>a
x>-4a
x<a
x<-a
数轴表示
感悟新知
知3-练
例4 在数轴上表示下列不等式的解集: (1)x>2 (2)x<-2 解题秘方:紧扣不等式解集在数轴上的表示方法, 看清不等号和端点值是解决问题的关键.

人教版数学七年级下册9.1.1《不等式及其解集》教学设计1

人教版数学七年级下册9.1.1《不等式及其解集》教学设计1

人教版数学七年级下册9.1.1《不等式及其解集》教学设计1一. 教材分析《不等式及其解集》是人教版数学七年级下册第9.1.1节的内容,主要包括不等式的概念、不等式的解集及其表示方法。

本节内容是学生学习不等式的基础,对后续不等式变形、解不等式组等内容有重要影响。

教材通过例题和练习题,帮助学生理解和掌握不等式的基本概念和解集的表示方法。

二. 学情分析学生在七年级上册已经学习了有理数的概念,对数轴有了一定的了解。

但他们对不等式的概念和解集的表示方法可能还比较陌生。

因此,在教学过程中,需要通过具体例子和实际操作,帮助学生理解和掌握不等式的基本概念和解集的表示方法。

三. 教学目标1.了解不等式的概念,理解不等式解集的含义。

2.学会用数轴表示不等式的解集。

3.能够解简单的不等式。

四. 教学重难点1.不等式的概念及其与等式的区别。

2.不等式解集的含义及其表示方法。

3.解简单的不等式。

五. 教学方法1.采用问题驱动的教学方法,通过提出问题,引导学生思考和探索。

2.利用数轴和实际例子,帮助学生理解和掌握不等式的基本概念和解集的表示方法。

3.通过练习题和小组讨论,巩固所学知识,提高解题能力。

六. 教学准备1.教学PPT或黑板。

2.练习题和答案。

3.数轴和标记工具。

七. 教学过程1.导入(5分钟)通过提出问题,引导学生思考和探索不等式的概念。

例如:“在日常生活中,你遇到过哪些不等式?”让学生举例说明,并解释不等式的含义。

2.呈现(15分钟)讲解不等式的概念,介绍不等式与等式的区别。

通过数轴和实际例子,帮助学生理解和掌握不等式的基本概念和解集的表示方法。

例如,展示数轴,并在数轴上标出不同不等式的解集,让学生观察和理解。

3.操练(15分钟)让学生练习解简单的不等式。

给出一些具体的不等式,要求学生将其解集用数轴表示出来。

例如,解不等式3x > 6,将其解集用数轴表示出来。

4.巩固(10分钟)通过小组讨论和练习题,巩固所学知识。

9.1.1 不等式及其解集(教案)人教版数学七年级下册

9.1.1 不等式及其解集(教案)人教版数学七年级下册

9.1.1 不等式及其解集教学目标【知识与技能】1.掌握不等式的概念;2.理解不等式的解、解集;会在数轴上表示不等式的解集;3.掌握一元一次不等式的概念;4.会列出简单实际问题中的不等式.【过程与方法】从实例出发,引出不等式的概念,类比于方程的解理解不等式的解.进而理解不等式的解集,并学会在数轴上表示不等式的解集,类比于一元一次方程的概念理解一元一次不等式的概念.【情感态度】不等式是现实世界中普遍存在的关系,体验数学来源于实际生活又反过来服务于实际生活,提高同学们学习兴趣.教学重难点【教学重点】不等式的概念,不等式表示大小关系,不等式的解、解集的概念,在数轴上表示不等式的解集.【教学难点】理解不等式的解集及在数轴上表示不等式的解集.教学过程一、提出问题问题1:童老师家住在距离学校2.5千米的江山帝景,7:14童老师骑电动车从家出发前往学校,要在7:20准时到达学校,问童老师骑电动车的平均速度应满足什么条件?解:设车速为x千米/小时,则从路程:这个速度行驶6分钟的路程要刚好 2.5千米从时间:以这个速度行驶2.5千米所用的时间刚好6分钟问题2:童老师家住在距离学校2.5千米的江山帝景,7:14童老师骑电动车从家出发前往学校,要在7:20提前到达学校,问童老师骑电动车的平均速度应满足什么条件?解:设车速为x千米/小时,则从路程:这个速度行驶6分钟的路程要大于2.5千米从时间:以这个速度行驶2.5千米所用的时间小于6分钟说一说:你们了解的日常生活中有哪些数量的不等关系?(1)身高高矮的例子(2)巧克力的配料表中的不等关系:可可固形物含量≥28%,总乳固体含量≥14% 二、概念形成(一)像上述这样用不等号连接,表示大小关系的式子,叫做不等式.三、概念形成(二)虽然 , 不等式0.1x<2.2表示了车速应满足的条件,但是我们希望更明确地得出x 应取哪些值? 问:(1)方程0.1x=2.5的解x=25,那什么是方程的解?(2)那对于这个不等式来说,不等式中的x 可以取哪些值呢?(3)类比方程的解的定义,思考什么是不等式的解?i 你能给不等式的解下个定义吗?(3)如何判断一个值是否是不等式的解?你能再举出一个不等式0.1x>25的解?(4)你还能举出其他的解吗?3.由此得不等式的解集的定义.四、概念深化1.不等式0.1x>25解集的表示形式有:大于25的数(文字形式);x>25符号形式),那还可以用什么形式表示呢?2.先思考方程:方程0.1x=2.5的解x=25如何表示在图形上,应该用什么图形表示比较恰当?3.思考:不等式0.1x>25的解集x>25如何表示在数轴上,表示在数轴上是什么图形?4.在学生思考的基础上说明x>25在数轴上的表示方法的注意点:(1)不包括25这个数,则在25表示的点上画空心圈(2)大于向右,小于向左5.总结用图形表示不等式解集的一般步骤:画数轴,找界点,定方向6.不等式的几种表示方法体现了数学中常用的什么思想方法?五、问题解决问题1:童老师家住在距离学校2.5千米的江山帝景,7:14童老师骑电动车从家出发前往学校,要在7:20 之前到达学校,问童老师骑电动车的平均速度应满足什么条件?解:设车速为 x千米/小时,则0.1x>2.5x>25答:车速必须大于25千米/小时老师发现我们班的许多同学,早上都是由家长骑电动车载来学校的,那请问我们中学生可以骑电动车吗?你知道电动车的最高限速是多少吗?长沙又出台了哪些电动车驾驶的新规定呢?大家一定要在平常的生活当中一定不能骑电动车,同时也要提醒父母安全驾驶,带好头盔注意安全。

人教版七年级数学下册9.1.1《不等式及其解集》教学设计

人教版七年级数学下册9.1.1《不等式及其解集》教学设计

人教版七年级数学下册9.1.1《不等式及其解集》教学设计一. 教材分析《不等式及其解集》是人教版七年级数学下册第9.1.1节的内容,本节内容是在学生已经掌握了整数、分数、小数的基本运算的基础上,引入不等式的概念,让学生了解不等式的定义、性质和求解方法,为后续学习不等式的应用打下基础。

本节教材主要包括以下几个部分:1.不等式的定义:介绍不等式的概念,让学生了解不等式是由不等号连接的两个表达式构成的数学句子。

2.不等式的性质:讲解不等式的基本性质,包括同向不等式的相加、相减、乘除等运算规律。

3.不等式的解集:介绍不等式的解集的概念,讲解求解不等式解集的方法。

二. 学情分析七年级的学生已经具备了基本的数学运算能力,对于新知识有一定的接受能力,但是对不等式的概念和性质可能比较难以理解,需要通过具体的例子和实际操作来帮助学生理解和掌握。

三. 教学目标1.了解不等式的概念,能够正确书写不等式。

2.掌握不等式的基本性质,能够进行简单的同向不等式运算。

3.了解不等式的解集的概念,能够求解简单的不等式解集。

四. 教学重难点1.不等式的定义和性质。

2.不等式的解集的求解方法。

五. 教学方法采用问题驱动的教学方法,通过具体的例子和实际操作,引导学生主动探索和发现不等式的性质和求解方法,注重学生的参与和实践,提高学生的学习兴趣和能力。

六. 教学准备1.教学PPT或者黑板。

2.教学素材和例子。

3.练习题和测试题。

七. 教学过程1.导入(5分钟)通过一个实际问题引入不等式的概念,例如:“小明比小红高,小华比小明高,请问谁最高?”让学生思考并回答,引导学生认识到不等式的概念。

2.呈现(10分钟)呈现不等式的定义和性质,通过具体的例子和实际操作,让学生理解和掌握不等式的概念和性质。

3.操练(10分钟)让学生进行不等式的书写和运算练习,老师进行指导和讲解,帮助学生巩固不等式的概念和性质。

4.巩固(10分钟)通过一些练习题,让学生自己独立解决不等式问题,巩固所学的不等式的概念和性质。

人教版初中数学七年级下册9.1.1《不等式及其解集》教案

人教版初中数学七年级下册9.1.1《不等式及其解集》教案
学生列出不等式,教师注意纠正错误
明确验证解的方法,引入不等式的解集概念
解析:解集是个范围
例3 下列说法中正确的是( )
A.x=3是不是不等式2x>1的解
B.x=3是不是不等式2x>1的唯一解;
C.x=3不是不等式2x>1的解;
D.x=3是不等式2x>1的解集
注意:1.实心点表示包括这个点,空心点表示不包括这个点
例2 下列各数中,哪些是不等是x+1<3的解?哪些不是?
-3,-1,0,1,1.5,2.5,3,3.5
解:略.
练习:1.判断数:-3,-2,-1,0,1,2,3,是不是不等式2x+3<5 的解?再找出另外的小于0的解两个.
2.下列各数:-5,-4,-3,-2,-1,0,1,2,3,4,5中,同时适合x+5<7和2x+2>0的有哪几个数?
情境导入
导出新知
一.问题探知
两个体重相同的孩子正在跷跷板上做游戏.现在换了一个胖子上去,跷跷板发生了倾斜,这个游戏还能继续下去吗?
某班同学去植树,原计划每位同学植树4棵,但由于某组的10名同学另有任务,未能参加植树,其余同学每位植 树6棵,结果仍未能完成计划任务,若以该班同学的人数为x,此时的x应满足怎样的关系式?
含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式.
分析不等关系,渗透不等式的列法
2.不等式解集的表示方法
例4 在数轴上表示下列不等式的解集
(1)x>-1;(2)x≥-1;(3)x<-1;(4)x≤-1
分析:按画数轴,定界点,走方向的步骤答
解:
学生交流后,师生归纳:两者的条件和结论正好相反:

七年级数学下册9.1.1不等式及其解集教案1新版新人教版

《不等式及其解集》教学目标:一、知识与能力:了解不等式概念;明白得不等式的解集;能用数轴表示不等式的解集;二、进程与方式:经历由具体实例成立不等模型的进程,经历探讨不等式解与解集的不同意义的进程,渗透数形结合思想;三、情感、态度与价值观:通过对不等式、不等式解与解集的探讨,引导学生在独立试探的基础上踊跃参与对数学问题的讨论,培育他们的合作交流意识;让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域.教学重点:正确明白得不等式及不等式解与解集的意义,把不等式的解集正确地表示到数轴上. 教学难点:正确明白得不等式解集的意义.教具:课件教学进程:一、创设情景,导入新课一、很多人在自己的童年生活中,都做过跷跷板的游戏,当一个大人和一个小孩同时坐上等臂长的跷跷板的两边时会发生什么现象呢?这是什么缘故呢?二、一辆匀速行驶的汽车在11:20时距离A 地50千米,要在12:00抵达A 地,车速应该具有什么条件?若是要在12:00之前驶过A 车速又应该知足什么条件?问题一:汽车能在12:00准时抵达A 地问题二:汽车能在12:00之前抵达A 地(用意:从实际问题引入不等式,同时从等式自然的过度到不等式)二、探讨新知 50x 32或32x 50==32x 50〈50x 32〉(一)不等式的概念上面的两组式子有什么不同点.在学生对照的基础,师生一起归纳得出,用不等符号连接表示不等关系的式子叫不等式 练习1:以下式子是不是是不等式?(1)-2<5 (2)x +3>2x (3)4x -2y <0 (4)a -2b(5)x 2-2x +1<0 (6)a +b ≠c (7)5m +3=8 (8)x ≤-4练习2:用不等式表示:(1)a 与1的和是正数;(2)a 是非负数;(3)a 与b 的和不小于7;(4)a 与2的差大于-1;(5)a 的4倍不大于8;(6)a 的一半小于3.(二)不等式的解、不等式的解集x +3>7中x =5知足不等式吗?咱们把x =5带入不等式发觉,左侧=8右边=7 8>7成立,因此5是不等式x +3>7的解,不等式x +3>7还有其它的解吗?什么是不等式的解?学生总结:一、不等式的解确实是能使不等式成立的未知数的值;二、不等式的解不止一个;师生归纳:一样的,一个含有未知数的不等式的所有的解组成那个不等式的解集.求不等式的解集的进程叫解不等式练习3.以下说法正确的选项是( )=3是2x >1的解 =3是2x >1的唯一解=3不是2x >1的解 =3是2x >1的解集4.以下数值哪些是不等式x +3>6的解?你能确信它的解集吗?-4, , 0, 1, , 3, , , 8, 12(三)解集的表示方式 50x 32或3250==x 32x 50〈50x 32〉第一种:用式子(如x>2),即用最简形式的不等式(如x>a或x<a)第二种:用数轴,标出数轴上某一区间,其中的点对应的数值都是不等式的解.⑴用数轴表示不等式的解集的步骤:①画数轴;②定边界点;③定方向.⑵用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画;有等号(≥ ,≤)画实心点,无等号(>,<)画空心圆.尝试练习:5.那些是不等式的解集6.写出以下数轴所表示的不等式的解集.7.用数轴表示以下不等式的解集.(四)一元一次不等式想一想:咱们明白2x+1=5叫做一元一次方程,那么你感觉不等式2x+1>5应该如何命名吗?概念:类似于一元一次方程,含有一个未知数且未知数的次数是1的不等式叫做一元一次不等式.尝试练习:判定一个式子是不是一元一次不等式,必需知足四个条件:①式中只含有一个未知数;②未知数的次数是1;③式子用不等号连接④分母中不含未知数练习8.以下式子是一元一次不等式的是()①2x+3y>7;②3z-3≤5;③3a=36;④⑤三、小结:说说你的收成和体会1.不等式2.不等式的解3.不等式的解集4.不等式解集的表示方式5.一元一次不等式四、布置作业:必做题:教科书习题9.1,第一、2题选做题:教科书习题9.1,第3题.五、板书设计:六、教学跋文:23> +x6322=+x。

人教版数学七年级下册教案9.1.1《 不等式及其解集》

人教版数学七年级下册教案9.1.1《不等式及其解集》一. 教材分析《不等式及其解集》是人教版数学七年级下册的教学内容,这部分内容是学生继学习算术运算后,进一步理解代数表达式的性质,认识不等式的概念及其应用。

通过学习不等式,学生能更好地理解数学中的限制条件,并能运用不等式解决实际问题。

二. 学情分析学生在之前的学习中已经掌握了算术运算的基本规则,对代数表达式有一定的理解。

但他们对不等式的概念和性质可能比较陌生,因此需要通过实例和练习来逐步建立不等式的基本概念,并理解不等式的解集。

三. 教学目标1.了解不等式的概念,理解不等式的基本性质。

2.学会解一元一次不等式,并能求出其解集。

3.能够应用不等式解决实际问题。

四. 教学重难点1.教学重点:不等式的概念,不等式的基本性质,一元一次不等式的解法。

2.教学难点:不等式的解集的表示方法,不等式的应用。

五. 教学方法采用问题驱动法,通过实例引入不等式的概念,引导学生探究不等式的性质,再通过练习和应用来巩固所学知识。

六. 教学准备1.教学PPT,包含不等式的定义,不等式的性质,一元一次不等式的解法等内容。

2.练习题,包括简单的不等式题目和实际应用题目。

七. 教学过程导入(5分钟)通过一个实际问题引入不等式的概念:某班级有40人,男生和女生的人数之和为40,男生比女生多3人,请问男生和女生各有多少人?让学生尝试用数学表达式来表示这个问题,并引入不等式的概念。

呈现(10分钟)通过PPT呈现不等式的定义和基本性质,让学生直观地理解不等式的形式和意义。

同时,通过例题来展示不等式的解法和解集的表示方法。

操练(15分钟)让学生独立完成一些简单的不等式题目,如解一元一次不等式,求解集等。

教师在旁边巡回指导,解答学生的疑问。

巩固(10分钟)通过一些实际应用题目,让学生运用不等式来解决问题。

如购物问题,时间安排问题等,让学生感受不等式在实际生活中的应用。

拓展(10分钟)让学生尝试解决一些复杂的不等式问题,如多变量的不等式,不等式的组合等。

人教版初中数学七年级下册9.1.1《不等式及其解集》教案设计

9.1.1《不等式及其解集》教学设计【内容】人教版七年级数学下第九章第一节【知识与技能】1.能够从现实问题中抽象出不等式,理解不等式的意义,会根据给定条件列不等式.2.正确理解“非负数”、“不小于”、“不大于”等数学术语.3.理解不等式的解、解集的意义,能举出一个不等式的几个解并且会检验一个数是否是某个不等式的解.4.能用数轴表示不等式的解集.【过程与方法】经历由具体实例建立不等式模型的过程,进一步发展学生的符号感和数学化的能力,体会在解决问题的过程中与他人合作的重要性.【情感、态度与价值观】使学生能独立克服困难,运用知识解决问题,树立学好数学的自信心;在独立思考的基础上,积极参与讨论,在合作交流中有一定收获.教学重点理解不等式、不等式的解和解集,能正确列出不等式.教学难点准确应用不等号,理解不等式的解和解集的意义.学情与教材分析一、学情分析学生在小学对不等量关系、数量大小的比较等知识已经有所了解,但对含有未知数的不等式还是第一次接触,本节就是对“不等式”这一概念进一步明确,使它成为一种有效的数学工具.学生在列不等式时,对数量关系中的“不大于”、“不小于”、“负数”、“非负数”等数学术语的含义不能准确理解,在把用文字语言表述的不等关系转化为用符号表示的不等式时有一定困难,对不等式的解、不等式的解集两个概念容易混淆.二、教材分析不等式是解决实际问题的一种数学模型,它不仅是初中阶段学习的重点内容,而且也是后面学习函数等知识的基础.它是在学习了一元一次方程、二元一次方程组之后的后续内容,贯穿于数学学习的始终,起着承上启下的作用.本节是本章的第一课时,主要学习四个概念:不等式、不等式的解、解集。

同时渗透建模、类比、分类等思想方法.教学方法:引导发现法教学准备:教具:圆规、三角尺、多媒体及课件。

学具:圆规、三角尺。

教学过程:一创设情景引入新知(一)动画演示情景激趣:两个体重相同的孩子正在跷跷板上做游戏,现在换了一个大人上去,跷跷板发生了倾斜,游戏无法继续进行下去了,这是什么原因呢?设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣问题1:出示图片(多媒体演示): 若设大象的体重为x吨,你能用式子表示图片中两个小朋友的对话吗?问题2:一辆匀速行驶的汽车在11:20时距离A地50千米。

人教版七年级数学下册9.1.1《不等式及其解集》说课稿

人教版七年级数学下册9.1.1《不等式及其解集》说课稿一. 教材分析《不等式及其解集》是人教版七年级数学下册第9.1.1节的内容,主要包括不等式的概念、不等式的解集及其表示方法。

本节内容是学生学习不等式的基础,对于培养学生的逻辑思维和解决问题的能力具有重要意义。

在教材中,不等式的概念是通过具体的例子引入的,让学生感受不等式在实际生活中的应用。

不等式的解集是指满足不等式的所有实数的集合,可以用数轴或区间表示。

教材通过例题和练习题的形式,帮助学生理解和掌握不等式及其解集的概念和表示方法。

二. 学情分析学生在学习本节内容前,已经学习了有理数、一元一次方程等基础知识,对于数学符号和概念有一定的理解。

但学生对于不等式的概念和解集的表示方法可能较为陌生,需要通过具体的例子和练习来逐步理解和掌握。

同时,学生可能对于数轴和区间的表示方法有一定的了解,但需要进一步学习和应用到不等式的解集中。

因此,在教学过程中,教师需要注重概念的引入和学生的实际操作,帮助学生建立起不等式和解集的知识体系。

三. 说教学目标1.知识与技能目标:学生能够理解不等式的概念,掌握不等式的解集及其表示方法。

2.过程与方法目标:学生能够通过具体的例子和练习,培养逻辑思维和解决问题的能力。

3.情感态度与价值观目标:学生能够体验数学在实际生活中的应用,激发学习数学的兴趣和积极性。

四. 说教学重难点1.教学重点:不等式的概念及其解集的表示方法。

2.教学难点:理解不等式和解集之间的关系,能够运用解集的表示方法解决实际问题。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作学习法,引导学生主动参与课堂,培养学生的逻辑思维和解决问题的能力。

2.教学手段:利用多媒体课件和黑板,进行图文并茂的讲解和演示,帮助学生直观地理解和掌握不等式及其解集的概念和表示方法。

六. 说教学过程1.导入新课:通过具体的例子,引入不等式的概念,激发学生的兴趣和好奇心。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式及其解集
二次备课
教学过程
一、自主学习
1、什么样的式子叫做等式?就个例子。

2、什么样的式子叫做不等式?举个例子。

3、下列式子中哪些是不等式?
(1)a+b=b+a (2)-3>-5 (3)x≠l
(4)x十3>6 (5) 2m< n (6)2x-3
4、用不等式表示下列数量关系:
①a比1大;
②x与一3的差是正数;
③x的4倍与5的和是负数
二、深入学习
1、不等式、一元一次不等式的概念
情景:生活中有大量的等量关系,当然也存在着不等关系,如:
我们看到的跷跷板(因为体重不等);乒乓球和篮球(体积不同)你
能例举几个不等的实例吗?
我们观看大屏看看米老鼠和唐老鸭的对话,看看他们说的是什么
的不同?
(1)在学生充分发表自己意见的基础上,师生共同归纳得出:
用“<”或“>”“≤”“≥”“≠”表示大小关系的式子叫做不等式;
用“并”表示不等关系的式子也是不等式。

测试:(2)判断下列式子中哪些是不等式?
(1)a+b=b+a (2)-3>-5 (3)x≠l
(4)x十3>6 (5) 2m< n (6)2x-3
我们还可以用不等式表示语言文字
用不等式表示下列数量关系:
①a比1大;
②x与一3的差是正数;
③x的4倍与5的和是负数
上述不等式中,有些不含未知数,有些含有未知数.我们把那些类似于一元一次方程,含有一个未知数且未知数的次数是1的不等式,叫做一元一次不等式.
(3)小组交流:说说生活中的不等关系.
分组活动.先独立思考,然后小组内互相交流并做记录,最后各组选派代表发言,在此基础上引出不等号“≥”和“≤”.补充说明:用“≥”和“≤”表示不等关系的式子也是不等式.
2、不等式的解、不等式的解集
问题1.要想满足x >3.5你可以举出几个这样的数呢?0,1,1.25行不行?为什么?
问题3.我们曾经学过“使方程两边相等的未知数的值就是方程的解”,我们也可以把使不等式成立的未知数的值叫做不等式的解.刚才同学们所说的这些数,哪些是不等式
x 3
2 > 50的解? 问题4,数中哪些是不等式x > 3.5的解:
6,3,7.9,8,7.4. 9,7.1,9,3.5,
你能找出这个不等式其他的解吗?它到底有多少个解?你从中发现了什么规律?
讨论后得出:当x > ,3.5时,不等式x > 3.5成立;当x < 3.5 或x=3.5时,不等式不成立。

这就是说,任何一个大于3.5的数都是不等式 x> 3.5的解,这样的解有无数个。

因此,x >3.5表示了能使不等式x > 3.5成立的“x ”的取值范围。

我们把它叫做不等式x >
3.5的解的集合,简称解集.这个解集还可以用数轴来表示(教师示范表示方法).
一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集.求不等式的解集的过程叫做解不等式
所以我们一般表示不等式的解集,像等式的解(x=a )(x >a ,x <a ,x ≥a ,x ≤a )
检测:下列哪些是不等式x +3 > 6的解?哪些不是?
-4,-2. 5,0,1,2.5,3,3.2,4.8,8,12
3、在数轴上表示解集:
(1)x > 6(2)x < -2(3)x≥0(步骤:画数轴--找点--确定方向,划线--写解集)
检测:小册:49页7和8题
三、课堂检测
1、在-4,-2,-1,0,1,3中,找出使不等式成立的x值:(1)x+5 > 3,(2) 3x < 5
2、直接想出不等式的解集,并在数轴上表示出来:
x -2> 6(2)x < 3+2(3)2x≥10(4)x/2≤4
(注意:1、最后的解集的不等号基本上和题中的一样
2、先思考等式如:因为8-2=6,所以x>8,你会了吗?)
3、在数轴上表示下列不等式的解集:(提示:可以检验,找到你画的范围中的一个数,带人不等式看看能不能满足,如果不能说明你的方向画错了。


① x < 2 ② x >-3
拓展:
6、不等式x < 5有多少个解?有多少个正整数解?
7、某开山工程正在进行爆破作业.已知导火索燃烧的速度是每秒0.8厘米,人跑开的速度是每秒4米.为了使放炮的工人在爆炸时能跑到100米以外的安全地带,导火索的长度应超过多少厘米?
四、课堂小结
1、不等式与一元一次不等式的概念;
2、不等式的解与不等式的解集;
3、不等式的解集在数轴上的表示
作业布置1、必做题:教科书第119页习题9.1第1、2题
2、选做题:教科书第120页习题9. 1第3题.
3、预习:“不等式的性质”
4、试解:x+3>6
板书设计§9.1.1不等式及其解集(1)
1、不等式与一元一次不等式的概念;
2、不等式的解与不等式的解集;
3、不等式的解集在数轴上的表示
教学反思。

相关文档
最新文档