棋盘山中学八年级数学上册期中测试.doc

合集下载

八年级(上)期中数学试卷 (解析版)

八年级(上)期中数学试卷  (解析版)

2018-2019学年八年级(上)期中数学试卷一、选择题(本大题共12小题,共36分)1.下列每组数分别是三根木棒的长度,能用它们摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cmC.5cm,5cm,11cm D.13cm,12cm,20cm2.下列图形中,不是轴对称图形的是()A.B.C.D.3.将一副直角三角板如图放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠α的度数为()A.75°B.105°C.135°D.165°4.用直尺和圆规作一个角等于已知角的作图痕迹如图所示,则作图的依据是()A.SSS B.SAS C.ASA D.AAS5.如图,已知EB=FC,∠EBA=∠FCD,下列哪个条件不能判定△ABE≌△DCF()A.∠E=∠F B.∠A=∠D C.AE=DF D.AC=DB6.如图OP平分∠AOB,PC⊥OA于C,D在OB上,PC=3,则PD的大小关系是()A.PD≥3 B.PD=3 C.PD≤3 D.不能确定7.如图,△ABC中,AB+BC=10,AC的垂直平分线分别交AB、AC于点D和E,则△BCD的周长是()A.6 B.8 C.10 D.无法确定8.如图,在△ABC中,AB=AC,∠A=30°,以C为圆心,CB的长为半径作圆弧,交AB于点D,连接CD,则∠ACD等于()A.30°B.45°C.60°D.75°9.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=()A.90°B.135°C.150°D.180°10.如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米11.下列说法:①关于某条直线对称的两个三角形是全等三角形②两个全等的三角形关于某条直线对称③到某条直线距离相等的两个点关于这条直线对称④如果图形甲和图形乙关于某条直线对称,则图形甲是轴对称图形其中,正确说法个数是()A.1 B.2 C.3 D.412.如图,是由大小一样的小正方形组成的网格,△ABC的三个顶点均落在小正方形的顶点上.在网格上能画出的三个顶点都落在小正方形的顶点上,且与△ABC成轴对称的三角形共有()A.5个B.4个C.3个D.2个二、填空题(本大题共6小题,共18.0分)13.已知等腰三角形的两个内角之和为100°,顶角度数为.14.如图,DB是△ABC的高,AE是角平分线,∠BAE=26°,则∠BFE=.15.如图,∠A=∠E,AC⊥BE,AB=EF,BE=10,CF=4,则AC=.16.如图,△ABC中,点D在边BC上,若AB=AD=CD,∠BAD=100°,则∠C=度.17.如图,在△ABC中,∠A=64°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;∠A2BC和∠A2CD的平分线交于点A3,则∠A3=.18.如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为.三、解答题(本大题共7小题,共68.0分)19.作图题,求作一点P,使PM=PN,且到∠AOB的两边距离也相等.20.如果一个多边形的内角和是它的外角和的6倍,那么这个多边形是几边形.21.已知:如图,在平面直角坐标系中.(1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1三个顶点的坐标:A1(),B1(),C1();(2)直接写出△ABC的面积为;(3)在x轴上画点P,使PA+PC最小.22.如图,小明在A处看见前面山上有个气象站,仰角为15°,当笔直向山行4千米时,小明看气象站的仰角为30°.你能算处这个气象站离地面的高度CD吗?是多少?23.如图,点E在CD上,BC与AE交于点F,AB=CB,BE=BD,∠1=∠2.(1)求证:△ABE≌△CBD;(2)证明:∠1=∠3.24.如图,四边形ABCD中,∠ABC+∠D=180°,AC平分∠BAD,CE⊥AB,CF⊥AD.试说明:(1)△CBE≌△CDF;(2)AB+DF=AF.25.如图1,在△ABC中,AE⊥BC于E,AE=BE,D是AE上的一点,且DE=CE,连接BD,CD.(1)试判断BD与AC的位置关系和数量关系,并说明理由;(2)如图2,若将△DCE绕点E旋转一定的角度后,试判断BD与AC的位置关系和数量关系是否发生变化,并说明理由;(3)如图3,若将(2)中的等腰直角三角形都换成等边三角形,其他条件不变.①试猜想BD与AC的数量关系,请直接写出结论;②你能求出BD与AC的夹角度数吗?如果能,请直接写出夹角度数;如果不能,请说明理由.参考答案与试题解析一.选择题(共12小题)1.下列每组数分别是三根木棒的长度,能用它们摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cmC.5cm,5cm,11cm D.13cm,12cm,20cm【分析】根据三角形的三边关系,两边之和大于第三边,即两短边的和大于最长的边,即可作出判断.【解答】解:A、3+4<8,故以这三根木棒不可以构成三角形,不符合题意;B、8+7=15,故以这三根木棒不能构成三角形,不符合题意;C、5+5<11,故以这三根木棒不能构成三角形,不符合题意;D、12+13>20,故以这三根木棒能构成三角形,符合题意.故选:D.2.下列图形中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可.【解答】解:A、不是轴对称图形,故此选项符合题意;B、是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项不合题意;故选:A.3.将一副直角三角板如图放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠α的度数为()A.75°B.105°C.135°D.165°【分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠1,再求出∠α即可.【解答】解:由三角形的外角性质得,∠1=45°+90°=135°,∠α=∠1+30°=135°+30°=165°.故选:D.4.用直尺和圆规作一个角等于已知角的作图痕迹如图所示,则作图的依据是()A.SSS B.SAS C.ASA D.AAS【分析】由作法可知,两三角形的三条边对应相等,所以利用SSS可证得△OCD≌△O′C′D′,那么∠A′O′B′=∠AOB.【解答】解:由作法易得OD=O′D',OC=0′C',CD=C′D',那么△OCD≌△O′C′D′,可得∠A′O′B′=∠AOB,所以利用的条件为SSS.故选:A.5.如图,已知EB=FC,∠EBA=∠FCD,下列哪个条件不能判定△ABE≌△DCF()A.∠E=∠F B.∠A=∠D C.AE=DF D.AC=DB【分析】根据判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL进行分析即可.【解答】解:A、可利用ASA判定△ABE≌△DCF,故此选项不合题意;B、可利用AAS判定△ABE≌△DCF,故此选项不合题意;C、不能判定△ABE≌△DCF,故此选项符合题意;D、可利用SAS判定△ABE≌△DCF,故此选项不合题意;故选:C.6.如图OP平分∠AOB,PC⊥OA于C,D在OB上,PC=3,则PD的大小关系是()A.PD≥3 B.PD=3 C.PD≤3 D.不能确定【分析】过点P作PE⊥OB于E,根据角平分线上的点到角的两边距离相等可得PE=PC,再根据垂线段最短解答.【解答】解:如图,过点P作PE⊥OB于E,∵OP平分∠AOB,PC⊥OA,∴PE=PC=3,∵D在OB上,∴PD≥PE,∴PD≥3.故选:A.7.如图,△ABC中,AB+BC=10,AC的垂直平分线分别交AB、AC于点D和E,则△BCD的周长是()A.6 B.8 C.10 D.无法确定【分析】垂直平分线可确定两条边相等,然后再利用线段之间的转化进行求解.【解答】解:∵DE是AC的垂直平分线,∴AD=DC,△BCD的周长=BC+BD+DC=BC+BD+AD=10故选:C.8.如图,在△ABC中,AB=AC,∠A=30°,以C为圆心,CB的长为半径作圆弧,交AB于点D,连接CD,则∠ACD等于()A.30°B.45°C.60°D.75°【分析】根据等腰三角形两底角相等求出∠ABC=∠ACB,再求出∠BCD,然后根据∠ACD =∠ABC﹣∠BCD计算即可得解.【解答】解:∵AB=AC,∠A=30°,∴∠ACB=∠ABC=(180°﹣∠A)=(180°﹣30°)=75°,∵以C为圆心,BC的长为半径圆弧,交AC于点D,∴BC=CD,∴∠BCD=180°﹣2∠ACB=180°﹣2×75°=30°,∴∠ACD=∠ABC﹣∠BCD=75°﹣30°=45°.故选:B.9.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=()A.90°B.135°C.150°D.180°【分析】标注字母,利用“边角边”判断出△ABC和△DEA全等,根据全等三角形对应角相等可得∠1=∠4,然后求出∠1+∠3=90°,再判断出∠2=45°,然后计算即可得解.【解答】解:如图,在△ABC和△DEA中,,∴△ABC≌△DEA(SAS),∴∠1=∠4,∵∠3+∠4=90°,∴∠1+∠3=90°,又∵∠2=45°,∴∠1+∠2+∠3=90°+45°=135°.故选:B.10.如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米【分析】多边形的外角和为360°每一个外角都为24°,依此可求边数,再求多边形的周长.【解答】解:∵多边形的外角和为360°,而每一个外角为24°,∴多边形的边数为360°÷24°=15,∴小华一共走了:15×10=150米.故选:B.11.下列说法:①关于某条直线对称的两个三角形是全等三角形②两个全等的三角形关于某条直线对称③到某条直线距离相等的两个点关于这条直线对称④如果图形甲和图形乙关于某条直线对称,则图形甲是轴对称图形其中,正确说法个数是()A.1 B.2 C.3 D.4【分析】利用轴对称图形的性质逐一分析探讨得出答案即可.【解答】解:①关于某条直线对称的两个三角形是全等三角形,是正确的;②两个全等的三角形不一定组成轴对称图形,原题是错误的;③对应点的连线与对称轴的位置关系是互相垂直,且到这条直线距离相等的两个点关于这条直线对称,原题错误;④如果图形甲和图形乙关于某条直线对称,则图形甲不一定是轴对称图形,原题错误.正确的说法有1个.故选:A.12.如图,是由大小一样的小正方形组成的网格,△ABC的三个顶点均落在小正方形的顶点上.在网格上能画出的三个顶点都落在小正方形的顶点上,且与△ABC成轴对称的三角形共有()A.5个B.4个C.3个D.2个【分析】认真读题,观察图形,根据图形特点先确定对称轴,再根据对称轴找出相应的三角形.【解答】解:如图:与△ABC成轴对称的三角形有:①△FCD关于CG对称;②△GAB关于EH对称;③△AHF关于AD对称;④△EBD关于BF对称;⑤△BCG关于AG的垂直平分线对称.共5个.故选:A.二.填空题(共5小题)13.已知等腰三角形的两个内角之和为100°,顶角度数为20°或80°.【分析】题中没有指明这两个角是都是底角还是一个底角一个顶角,故应该分两种情况进行分析:100°是顶角和一底角的和;100°是两底角的和.【解答】解:①当100°是顶角和一底角的和,则另一个底角=180°﹣100°=80°,所以顶角=100°﹣80°=20°;②当100°是两底角的和,则顶角=180°﹣100°=80°;综上所述,此等腰三角形的顶角为:20°或80°.故答案为:20°或80°14.如图,DB是△ABC的高,AE是角平分线,∠BAE=26°,则∠BFE=64°.【分析】由角平分线的定义可得,∠FAD=∠BAE=26°,而∠AFD与∠FAD互余,与∠BFE 是对顶角,故可求得∠BFE的度数.【解答】解:∵AE是角平分线,∠BAE=26°,∴∠FAD=∠BAE=26°,∵DB是△ABC的高,∴∠AFD=90°﹣∠FAD=90°﹣26°=64°,∴∠BFE=∠AFD=64°.故答案为:64°.15.如图,∠A=∠E,AC⊥BE,AB=EF,BE=10,CF=4,则AC= 6 .【分析】由AAS证明△ABC≌△EFC,得出对应边相等AC=EC,BC=CF=4,求出EC,即可得出AC的长.【解答】解:∵AC⊥BE,∴∠ACB=∠ECF=90°,在△ABC和△EFC中,,∴△ABC≌△EFC(AAS),∴AC=EC,BC=CF=4,∵EC=BE﹣BC=10﹣4=6,∴AC=EC=6;故答案为:6.16.如图,△ABC中,点D在边BC上,若AB=AD=CD,∠BAD=100°,则∠C=20 度.【分析】根据题意可知∠ADB的度数,然后再利用∠ADC是三角形ADC的一个外角即可求得答案.【解答】解:∵若AB=AD=CD,∠BAD=100°,∴∠B=∠ADC=(180°﹣100°)=40°,又∵在等腰三角形ADC中,∠ADB是三角形ADC的外角,∴∠BDA=∠DAC+∠C,又∵∠C=∠DAC,∴∠C=×40°=20°,故答案为:20.17.如图,在△ABC中,∠A=64°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;∠A2BC和∠A2CD的平分线交于点A3,则∠A3=8°.【分析】利用角平分线的性质、三角形外角性质,易证∠A1=∠A,进而可求∠A1,由于∠A1=∠A,∠A2=∠A1=∠A,故∠A3=∠A2=∠A.【解答】解:∵A1B平分∠ABC,A1C平分∠ACD,∴∠A1BC=∠ABC,∠A1CA=∠ACD,∵∠A1CD=∠A1+∠A1BC,即∠ACD=∠A1+∠ABC,∴∠A1=(∠ACD﹣∠ABC),∵∠A+∠ABC=∠ACD,∴∠A=∠ACD﹣∠ABC,∴∠A1=∠A,∴∠A1=×64°=32°,∵∠A1=∠A,∠A2=∠A1=∠A,∴∠A3=∠A2=∠A=×64°=8°.故答案为:8°.18.如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为8 .【分析】连接AD交EF与点M′,连结AM,由线段垂直平分线的性质可知AM=MB,则BM+DM =AM+DM,故此当A、M、D在一条直线上时,MB+DM有最小值,然后依据要三角形三线合一的性质可证明AD为△ABC底边上的高线,依据三角形的面积为12可求得AD的长.【解答】解:连接AD交EF与点M′,连结AM.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=12,解得AD=6,∵EF是线段AB的垂直平分线,∴AM=BM.∴BM+MD=MD+AM.∴当点M位于点M′处时,MB+MD有最小值,最小值6.∴△BDM的周长的最小值为DB+AD=2+6=8.三.解答题(共7小题)19.作图题,求作一点P,使PM=PN,且到∠AOB的两边距离也相等.【分析】利用角平分线的作法以及线段垂直平分线的作法分别得出进而求出其交点即可.【解答】解:如图所示:P点即为所求.20.如果一个多边形的内角和是它的外角和的6倍,那么这个多边形是几边形.【分析】一个多边形的内角和是它的外角和的4倍,而外角和是360°,则内角和是6×360°.n边形的内角和可以表示成(n﹣2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数.【解答】解:设这个多边形有n条边.由题意得:(n﹣2)×180°=360°×6,解得n=14.则这个多边形是十四边形.21.已知:如图,在平面直角坐标系中.(1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1三个顶点的坐标:A1(0,﹣2 ),B1(﹣2,﹣4 ),C1(﹣4,﹣1 );(2)直接写出△ABC的面积为 5 ;(3)在x轴上画点P,使PA+PC最小.【分析】(1)直接利用轴对称图形的性质得出对应点位置进而得出答案;(2)直接利用△ABC所在矩形面积减去周围三角形面积进而得出答案;(3)直接利用轴对称求最短路线的方法得出P点位置.【解答】解:(1)如图所示:A1(0,﹣2),B1(﹣2,﹣4),C1(﹣4,﹣1);故答案为:(0,﹣2),(﹣2,﹣4),(﹣4,﹣1);(2)△ABC的面积为:12﹣×1×4﹣×2×2﹣×2×3=5;故答案为:5;(3)如图所示:点P即为所求.22.如图,小明在A处看见前面山上有个气象站,仰角为15°,当笔直向山行4千米时,小明看气象站的仰角为30°.你能算处这个气象站离地面的高度CD吗?是多少?【分析】由∠A与∠CBD的关系,可求出BC的长,进而可求出高CD的值.【解答】解:∵∠A=15°,∠CBD=30°,∴∠ACB=∠A=15°,∴BC=AB=4千米在直角△BCD中,则CD=BC=2千米.23.如图,点E在CD上,BC与AE交于点F,AB=CB,BE=BD,∠1=∠2.(1)求证:△ABE≌△CBD;(2)证明:∠1=∠3.【分析】(1)由已知角相等,利用等式的性质得到夹角相等,利用SAS即可得证;(2)利用全等三角形对应角相等得到一对角相等,再由对顶角相等及内角和定理即可得证.【解答】证明:(1)∵∠1=∠2,∴∠1+∠CBE=∠2+∠CBE,即∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD(SAS);(2)∵△ABE≌△CBD,∴∠A=∠C,∵∠AFB=∠CFE,∴∠1=∠3.24.如图,四边形ABCD中,∠ABC+∠D=180°,AC平分∠BAD,CE⊥AB,CF⊥AD.试说明:(1)△CBE≌△CDF;(2)AB+DF=AF.【分析】(1)根据角平分线的性质可得到CE=CF,根据余角的性质可得到∠EBC=∠D,已知CE⊥AB,CF⊥AD,从而利用AAS即可判定△CBE≌△CDF.(2)已知EC=CF,AC=AC,则根据HL判定△ACE≌△ACF得AE=AF,最后证得AB+DF=AF即可.【解答】(1)证明:∵AC平分∠BAD,CE⊥AB,CF⊥AD∴CE=CF∵∠ABC+∠D=180°,∠ABC+∠EBC=180°∴∠EBC=∠D∵∠CEB=∠CFD=90°∴△CBE≌△CDF(2)证明:∵CE=CF,AC=AC∴△ACE≌△ACF∴AE=AF∴AB+DF=AB+BE=AE=AF25.如图1,在△ABC中,AE⊥BC于E,AE=BE,D是AE上的一点,且DE=CE,连接BD,CD.(1)试判断BD与AC的位置关系和数量关系,并说明理由;(2)如图2,若将△DCE绕点E旋转一定的角度后,试判断BD与AC的位置关系和数量关系是否发生变化,并说明理由;(3)如图3,若将(2)中的等腰直角三角形都换成等边三角形,其他条件不变.①试猜想BD与AC的数量关系,请直接写出结论;②你能求出BD与AC的夹角度数吗?如果能,请直接写出夹角度数;如果不能,请说明理由.【分析】(1)延长BD交AC于F,求出∠AEB=∠AEC=90°,证出△BED≌△AEC,推出BD=AC,∠DBE=∠CAE,根据∠EBD+∠BDE=90°推出∠ADF+∠CAE=90°,求出∠AFD=90°即可;(2)求出∠BED=∠AEC,证出△BED≌△AEC,推出BD=AC,∠BDE=∠ACE,根据∠ACE+∠EOC=90°求出∠BDE+∠DOF=90°,求出∠DFO=90°即可;(3))①如图3中,结论:BD=AC,只要证明△BED≌△AEC即可;②求出∠BED=∠AEC,证出△BED≌△AEC,推出∠BDE=∠ACE,根据三角形内角和定理求出∠DFC即可.【解答】解:(1)BD=AC,BD⊥AC,理由是:延长BD交AC于F.∵AE⊥BC,∴∠AEB=∠AEC=90°,在△BED和△AEC中,,∴△BED≌△AEC,∴BD=AC,∠DBE=∠CAE,∵∠BED=90°,∴∠EBD+∠BDE=90°,∵∠BDE=∠ADF,∴∠ADF+∠CAE=90°,∴∠AFD=180°﹣90°=90°,∴BD⊥AC;(2)不发生变化.理由:∵∠BEA=∠DEC=90°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC,∴BD=AC,∠BDE=∠ACE,∵∠DEC=90°,∴∠ACE+∠EOC=90°,∵∠EOC=∠DOF,∴∠BDE+∠DOF=90°,∴∠DFO=180°﹣90°=90°,∴BD⊥AC;(3)①如图3中,结论:BD=AC,理由是:∵△ABE和△DEC是等边三角形,∴AE=BE,DE=EC,∠EDC=∠DCE=60°,∠BEA=∠DEC=60°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC,∴BD=AC.②能.∵△ABE和△DEC是等边三角形,∴AE=BE,DE=EC,∠EDC=∠DCE=60°,∠BEA=∠DEC=60°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC,∴∠BDE=∠ACE,∴∠DFC=180°﹣(∠BDE+∠EDC+∠DCF)=180°﹣(∠ACE+∠EDC+∠DCF)=180°﹣(60°+60°)=60°,即BD与AC所成的角的度数为60°.。

八年级上册期中测试试卷01(原卷版)

八年级上册期中测试试卷01(原卷版)

2022—2023学年八年级上学期期中测试卷(1)一、选择题(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的,请用2B铅笔把答题卡上对应题目答案标号涂黑)1.(4分)2022年北京冬奥会冰雪运动项目的图标中,是轴对称图形的是()A.B.C.D.2.(4分)在平面直角坐标系中,点A(﹣3,4)关于x轴的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限3.(4分)等腰三角形底边长为5,一腰上的中线把周长分成两部分的差为3,则腰长为()A.2B.8C.2或8D.104.(4分)如图,△ABC中,AD⊥BC,AE平分∠BAC,若∠B=72°,∠C=38°,则∠DAE=()第4题第6题第7题A.7°B.12°C.17°D.22°5.(4分)若3和9是一个三角形的两边长,且第三边长为偶数,则该三角形的周长为()A.20B.21C.21或22D.20或226.(4分)如图,五边形ABCDE是正五边形,F,G是边CD,DE上的点,且BF∥AG.若∠CFB=57°,则∠AGD=()A.108°B.36°C.129°D.72°7.(4分)如图,在△ABC中,∠B=∠C,M,N,P分别是边AB,AC,BC上的点,且BM=CP,CN=BP,若∠MPN=44°,则∠A的度数为()A .44°B .88°C .92°D .136°8.(4分)如图,在△ABC 中,∠BAC 和∠ABC 的角平分线交于点O ,AB =6cm ,BC =9cm ,△ABO 的面积为18cm 2,则△BOC 的面积为( )cm 2.第8题 第9题 第10题A .27B .54C .227D .1089.(4分)如图,△AOB ≌△ADC ,点B 和点C 是对应顶点,∠O =∠D =90°,记∠OAD =α,∠ABO =β,∠ABC =∠ACB ,当BC ∥OA 时,α与β之间的数量关系为( )A .α=βB .α=2βC .α+β=90°D .α+2β=180°10.(4分)如图,在△ABC 中,顶点A 在x 轴的负半轴上,且∠BAO =45°,顶点B 的坐标为(﹣1,3),P 为AB 边的中点,将△ABC 沿x 轴向右平移,当点A 落在(1,0)上时,点P 的对应点P ′的坐标为( )A .(3,25)B .(3,23)C .(23,23)D .(25,23) 11.(4分)如图,线段AB ,DE 的垂直平分线交于点C ,且∠ABC =∠EDC =72°,∠AEB =92°,则∠EBD 的度数为( )第11题 第12题A .168°B .158°C .128°D .118°12.(4分)如图,在四边形ABCD 中,AD ∥BC .若∠DAB 的角平分线AE 交CD 于E ,连接BE ,且BE 边平分∠ABC ,得到如下结论:①∠AEB =90°;②BC +AD =AB ;③BE =21CD ;④BC =CE ;⑤若AB =x ,则BE 的取值范围为0<BE <x ,那么以上结论正确的是( )A .①②③B .②③④C .①④⑤D .①②⑤二、填空题(本题共4个小题,每小题4分,共16分,答题请用黑色墨水笔或签字笔直接答在答题卡相应的位置上)13.(4分)如图,将△ABC 沿DE 、HG 、EF 翻折,三个顶点均落在点O 处,若∠1=129°,则∠2的度数为 .第13题 第15题 第16题14.(4分)已知等腰三角形的三边长为a ,b ,c ,满足073=-+-b a ,那么三角形周长是 .15.(4分)如图,在等腰△ABC 中,底边BC 的长为5cm ,面积是20cm 2,腰AB 的垂直平分线EF 分别交AB ,AC 于点E ,F ,若点D 为边BC 的中点,点M 为线段EF 上一动点,则BM +DM 的最小值为 cm .16.(4分)如图,△ABC 中,∠ACB =90°,AC =6cm ,BC =8cm .点P 从A 点出发沿A →C →B 路径向终点运动,终点为B 点;点Q 从B 点出发沿B →C →A 路径向终点运动,终点为A 点.点P 和Q 分别以每秒1cm 和3cm 的运动速度同时开始运动,当一个点到达终点时另一个点也停止运动,在某时刻,分别过P 和Q 作PE ⊥l 于E ,QF ⊥l 于F .设运动时间为t 秒,则当t = 秒时,△PEC 与△QFC 全等.三、解答题(本题共8个小题,共86分,答题请用黑色墨水笔或签字笔直接答在答题卡相应的位置上,解答时应写出必要的文字说明、证明步骤或演算步骤.)17.(8分)已知a ,b ,c 是△ABC 的三边长,a =4,b =6,设△ABC 的周长是x .(1)求c 与x 的取值范围;(2)若x 是小于18的偶数,试判断△ABC 的形状.18.(8分)如图,点A,B在射线CA,CB上,CA=CB.点E,F在射线CD上,∠BEC=∠CF A,∠BEC+∠BCA=180°.(1)求证:△BCE≌△CAF;(2)试判断线段EF,BE,AF的数量关系,并说明理由.19.(10分)如图,在△ABC中,PE垂直平分边BC,交BC于点E,AP平分∠BAC的外角∠BAD,PG⊥AD,垂足为点G,PH⊥AB,垂足为点H.(1)求证:∠PBH=∠PCG;(2)如果∠BAC=90°,求证:点E在AP的垂直平分线上.20.(10分)【概念认识】如图①,在∠ABC中,若∠ABD=∠DBE=∠EBC,则BD,BE叫做∠ABC的“三分线”.其中,BD是“邻AB三分线”,BE是“邻BC三分线”.【问题解决】(1)如图②,在△ABC中,∠A=70°,∠B=44°,若∠C的三分线CD交AB于点D,求∠BDC的度数;(2)如图③,在△ABC中,BP,CP分别是∠ABC邻BC三分线和∠ACB邻BC三分线,若∠A=63°,求∠BPC的度数.21.(12分)(1)①在图1中画出与△ABC关于直线l成轴对称的△AB′C′;②△ABC的面积为.③在直线l上找到一点P,使PB+PC最短.(2)如图2,已知,在Rt△ABC中,∠ABC=90°,AC=5,用尺规在BC边上求作一点D,使D到AC的距离等于DB的长;若BD=3,则△ACD的面积=.22.(12分)如图,(1)动手操作:如图①,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C'处,折痕为EF,若∠ABE=20°,那么∠EFC'的度数为;(2)观察发现:小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图②);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图③).小明认为△AEF是等腰三角形,你同意吗?请说明理由.23.(12分)如图,在五边形ABCDE中,AB=AE,BC=CD=DE,∠C=∠D=120°,AB⊥BC,AE⊥ED,请根据要求作答.(1)如图1,求∠A的度数;(2)如图2,连接AC,AD,小明发现该图形是轴对称图形.①除已知条件外再找出1组相等的线段和2组相等的角,(不再添加辅助线);②请你用无刻度尺画出它的对称轴;(3)如图3,连接BE,已知∠ABE=∠AEB,请说明BE∥CD.24.(14分)在直线m上依次取互不重合的三个点D,A,E,在直线m上方有AB=AC,且满足∠BDA=∠AEC=∠BAC=α.(1)如图1,当α=90°时,猜想线段DE,BD,CE之间的数量关系是;(2)如图2,当0<α<180时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由;(3)拓展与应用:如图3,当α=120°时,点F为∠BAC平分线上的一点,且AB=AF,分别连接FB,FD,FE,FC,试判断△DEF的形状,并说明理由.。

八年级(上)期中数学模拟试卷含答案

八年级(上)期中数学模拟试卷含答案

八年级(上)期中数学模拟试卷一、选择题(每题3分,共30分)1.以下列长度的三条线段为边,能组成三角形的是()A.3,3,3 B.3,3,6 C.3,2,5 D.3,2,62.下列图案中,不是轴对称图形的是()A.B.C.D.3.在平面直角坐标系中,点P(﹣1,2)关于x轴的对称点的坐标为()A.(﹣1,﹣2)B.(1,2)C.(2,﹣1)D.(﹣2,1)4.从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是()A.n B.(n﹣1)C.(n﹣2)D.(n﹣3)5.平面内点A(﹣1,2)和点B(﹣1,6)的对称轴是()A.x轴B.y轴C.直线y=4 D.直线x=﹣16.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC7.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA8.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE9.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角10.如图,点A、B、C、D、E、F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F的度数是()A.180°B.360°C.540°D.720°二、填空题(每题3分,共24分)11.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=度.12.若等腰三角形的两边长分别为3cm和8cm,则它的周长是.13.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.14.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D到线段AB的距离是cm.15.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC的面积是.16.已知点A(a,4)关于y轴的对称点B的坐标为(﹣2,b),则a+b=.17.如图,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为度.18.图是平面镜里看到背向墙壁的电子钟示数,这时的实际时间应该是.三、解答题(共46分)19.如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.20.如图所示,在△ABC中:(1)画出BC边上的高AD和中线AE.(2)若∠B=30°,∠ACB=130°,求∠BAD和∠CAD的度数.21.如图,已知E是∠AOB的平分线上的一点,EC⊥OA,ED⊥OB,垂足分别是C,D.求证:OE垂直平分CD.22.已知:如图,AC=AB,∠1=∠2,∠3=∠4.求证:AE=AD.23.已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,试问:DE和DF相等吗?说明理由.24.如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.25.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.(1)求证:△ADC≌△CEB.(2)AD=5cm,DE=3cm,求BE的长度.参考答案与试题解析一、选择题(每题3分,共30分)1.以下列长度的三条线段为边,能组成三角形的是()A.3,3,3 B.3,3,6 C.3,2,5 D.3,2,6【考点】三角形三边关系.【分析】三角形的三条边必须满足:任意两边之和>第三边,任意两边之差<第三边.【解答】解:A中,3+3>3,能构成三角形;B中,3+3=6,不能构成三角形;C中,3+2=5,不能构成三角形;D中,3+2<6,不能构成三角形.故选A.【点评】本题主要考查对三角形三边关系的理解应用.判断是否可以构成三角形,只要判断两个较小的数的和<最大的数就可以.2.下列图案中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、不是轴对称图形,故正确;D、是轴对称图形,故错误.故选C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.在平面直角坐标系中,点P(﹣1,2)关于x轴的对称点的坐标为()A.(﹣1,﹣2)B.(1,2)C.(2,﹣1)D.(﹣2,1)【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【解答】解:点P(﹣1,2)关于x轴对称的点的坐标为(﹣1,﹣2).故选:A.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是()A.n B.(n﹣1)C.(n﹣2)D.(n﹣3)【考点】多边形的对角线.【分析】可根据n边形从一个顶点引出的对角线与边的关系:n﹣3,可分成(n﹣2)个三角形直接判断.【解答】解:从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是(n﹣2).故选C.【点评】多边形有n条边,则经过多边形的一个顶点的所有对角线有(n﹣3)条,经过多边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形.5.平面内点A(﹣1,2)和点B(﹣1,6)的对称轴是()A.x轴B.y轴C.直线y=4 D.直线x=﹣1【考点】坐标与图形变化-对称.【分析】观察两坐标的特点,发现横坐标相同,所以对称轴为平行与x轴的直线,即y=纵坐标的平均数.【解答】解:∵点A(﹣1,2)和点B(﹣1,6)对称,∴AB平行与y轴,所以对称轴是直线y=(6+2)=4.故选C.【点评】本题主要考查了坐标与图形变化﹣﹣对称特;解此类问题的关键是要掌握轴对称的性质:对称轴垂直平分对应点的连线.利用此性质可在坐标系中得到对应点的坐标或利用对应点的坐标求得对称轴.6.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC【考点】全等三角形的判定.【分析】本题可以假设A、B、C、D选项成立,分别证明△ABC≌△DEF,即可解题.【解答】解:∵AB∥DE,AC∥DF,∴∠A=∠D,(1)AB=DE,则△ABC和△DEF中,,∴△ABC≌△DEF,故A选项错误;(2)∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故B选项错误;(3)EF=BC,无法证明△ABC≌△DEF(ASS);故C选项正确;(4)∵EF∥BC,AB∥DE,∴∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故D选项错误;故选:C.【点评】本题考查了全等三角形的不同方法的判定,注意题干中“不能”是解题的关键.7.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA【考点】全等三角形的应用.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选D.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.8.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE【考点】全等三角形的性质.【分析】根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D.【点评】本题主要考查了全等三角形的性质,根据已知的对应角正确确定对应边是解题的关键.9.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角【考点】全等三角形的应用.【分析】由已知可以得到∠ABC=∠BDE,又CD=BC,∠ACB=∠DCE,由此根据角边角即可判定△EDC≌△ABC.【解答】解:∵BF⊥AB,DE⊥BD∴∠ABC=∠BDE又∵CD=BC,∠ACB=∠DCE∴△EDC≌△ABC(ASA)故选B.【点评】本题考查了全等三角形的判定方法;需注意根据垂直定义得到的条件,以及隐含的对顶角相等,观察图形,找着隐含条件是十分重要的.10.如图,点A、B、C、D、E、F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F的度数是()A.180°B.360°C.540°D.720°【考点】三角形内角和定理.【分析】先根据三角形外角的性质得出∠A+∠B=∠1,∠E+∠F=∠2,∠C+∠D=∠3,再根据三角形的外角和是360°进行解答.【解答】解:∵∠1是△ABG的外角,∴∠1=∠A+∠B,∵∠2是△EFH的外角,∴∠2=∠E+∠F,∵∠3是△CDI的外角,∴∠3=∠C+∠D,∵∠1、∠3、∠3是△GIH的外角,∴∠1+∠2+∠3=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故选B.【点评】本题考查的是三角形外角的性质及三角形的外角和,熟知三角形的外角和是360度是解答此题的关键.二、填空题(每题3分,共24分)11.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=270度.【考点】三角形内角和定理;多边形内角与外角.【专题】应用题.【分析】根据三角形的内角和与平角定义可求解.【解答】解:如图,根据题意可知∠5=90°,∴∠3+∠4=90°,∴∠1+∠2=180°+180°﹣(∠3+∠4)=360°﹣90°=270°.【点评】本题主要考查了三角形的内角和定理和内角与外角之间的关系.要会熟练运用内角和定理求角的度数.12.若等腰三角形的两边长分别为3cm和8cm,则它的周长是19cm.【考点】等腰三角形的性质;三角形三边关系.【分析】题中没有指出哪个底哪个是腰,故应该分情况进行分析,注意应用三角形三边关系进行验证能否组成三角形.【解答】解:当3cm是腰时,3+3<8,不符合三角形三边关系,故舍去;当8cm是腰时,周长=8+8+3=19cm.故它的周长为19cm.故答案为:19cm.【点评】此题主要考查等腰三角形的性质及三角形三边关系的运用;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.13.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=55°.【考点】全等三角形的判定与性质.【分析】求出∠BAD=∠EAC,证△BAD≌△EAC,推出∠2=∠ABD=30°,根据三角形的外角性质求出即可.【解答】解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△EAC中,∴△BAD≌△EAC(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.【点评】本题考查了全等三角形的性质和判定,三角形的外角性质的应用,解此题的关键是推出△BAD≌△EAC.14.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D到线段AB的距离是3cm.【考点】角平分线的性质.【分析】求D点到线段AB的距离,由于D在∠BAC的平分线上,只要求出D到AC的距离CD即可,由已知可用BC减去BD可得答案.【解答】解:CD=BC﹣BD,=8cm﹣5cm=3cm,∵∠C=90°,∴D到AC的距离为CD=3cm,∵AD平分∠CAB,∴D点到线段AB的距离为3cm.故答案为:3.【点评】本题考查了角平分线的性质;知道并利用CD是D点到线段AB的距离是正确解答本题的关键.15.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC的面积是31.5.【考点】角平分线的性质.【分析】连接OA,作OE⊥AC,OF⊥AB,垂足分别为E、F,将△ABC的面积分为:S△ABC=S△OBC+S△OAC+S△OAB,而三个小三角形的高OD=OE=OF,它们的底边和就是△ABC的周长,可计算△ABC的面积.【解答】解:作OE⊥AC,OF⊥AB,垂足分别为E、F,连接OA,∵OB,OC分别平分∠ABC和∠ACB,OD⊥BC,∴OD=OE=OF,∴S△ABC=S△OBC+S△OAC+S△OAB=×OD×BC+×OE×AC+×OF×AB=×OD×(BC+AC+AB)=×3×21=31.5.故填31.5.【点评】此题主要考查角平分线的性质;利用三角形的三条角平分线交于一点,将三角形面积分为三个小三角形面积求和,发现并利用三个小三角形等高是正确解答本题的关键.16.已知点A(a,4)关于y轴的对称点B的坐标为(﹣2,b),则a+b=6.【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得a与b的值.【解答】解:∵点A(a,4)关于y轴的对称点B的坐标为(﹣2,b),∴a=2,b=4,∴a+b=2+4=6,故答案为:6.【点评】此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标的变化规律.17.如图,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为108度.【考点】翻折变换(折叠问题).【分析】连接OB、OC,根据角平分线的定义求出∠BAO,根据等腰三角形两底角相等求出∠ABC,再根据线段垂直平分线上的点到线段两端点的距离相等可得OA=OB,根据等边对等角可得∠ABO=∠BAO,再求出∠OBC,然后判断出点O是△ABC的外心,根据三角形外心的性质可得OB=OC,再根据等边对等角求出∠OCB=∠OBC,根据翻折的性质可得OE=CE,然后根据等边对等角求出∠COE,再利用三角形的内角和定理列式计算即可得解.【解答】解:如图,连接OB、OC,∵∠BAC=54°,AO为∠BAC的平分线,∴∠BAO=∠BAC=×54°=27°,又∵AB=AC,∴∠ABC=(180°﹣∠BAC)=(180°﹣54°)=63°,∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=27°,∴∠OBC=∠ABC﹣∠ABO=63°﹣27°=36°,∵AO为∠BAC的平分线,AB=AC,∴△AOB≌△AOC(SAS),∴OB=OC,∴点O在BC的垂直平分线上,又∵DO是AB的垂直平分线,∴点O是△ABC的外心,∴∠OCB=∠OBC=36°,∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE,∴∠COE=∠OCB=36°,在△OCE中,∠OEC=180°﹣∠COE﹣∠OCB=180°﹣36°﹣36°=108°.故答案为:108.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,综合性较强,难度较大,作辅助线,构造出等腰三角形是解题的关键.18.图是平面镜里看到背向墙壁的电子钟示数,这时的实际时间应该是20:51.【考点】镜面对称.【分析】注意镜面对称的特点,并结合实际求解.【解答】解:根据镜面对称的性质,因此12:05的真实图象应该是20:51.故答案为20:51.【点评】解决此类问题要注意所学知识与实际情况的结合.三、解答题(共46分)19.如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.【考点】全等三角形的判定与性质.【专题】证明题.【分析】可通过证△ABF≌△DCE,来得出∠A=∠D的结论.【解答】证明:∵BE=FC,∴BE+EF=CF+EF,即BF=CE;又∵AB=DC,∠B=∠C,∴△ABF≌△DCE;(SAS)∴∠A=∠D.【点评】此题考查简单的角相等,可以通过全等三角形来证明,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.20.如图所示,在△ABC中:(1)画出BC边上的高AD和中线AE.(2)若∠B=30°,∠ACB=130°,求∠BAD和∠CAD的度数.【考点】作图—复杂作图.【分析】(1)延长BC,作AD⊥BC于D;作BC的中点E,连接AE即可;(2)可根据三角形的内角和定理求∠BAC=20°,由外角性质求∠CAD=40°,那可得∠BAD=60°.【解答】解:(1)如图:(2)∵∠B=30°,∠ACB=130°,∴∠BAC=180°﹣30°﹣130°=20°,∵∠ACB=∠D+∠CAD,AD⊥BC,∴∠CAD=130°﹣90°=40°,∴∠BAD=20°+40°=60°.【点评】此题是计算与作图相结合的探索.考查学生运用作图工具的能力,以及运用直角三角形、三角形内角和外角等基础知识解决问题的能力.21.如图,已知E是∠AOB的平分线上的一点,EC⊥OA,ED⊥OB,垂足分别是C,D.求证:OE垂直平分CD.【考点】角平分线的性质;全等三角形的判定与性质;线段垂直平分线的性质.【专题】证明题.【分析】先根据E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA得出△ODE≌△OCE,可得出OD=OC,DE=CE,OE=OE,可得出△DOC是等腰三角形,由等腰三角形的性质即可得出OE是CD 的垂直平分线.【解答】证明:∵E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,∴DE=CE,OE=OE,在Rt△ODE与Rt△OCE中,,∴Rt△ODE≌Rt△OCE(HL),∴OD=OC,∴△DOC是等腰三角形,∵OE是∠AOB的平分线,∴OE是CD的垂直平分线.【点评】本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.22.已知:如图,AC=AB,∠1=∠2,∠3=∠4.求证:AE=AD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据∠1=∠2求出∠EAC=∠DAB,根据ASA推出△EAC≌△DAB即可.【解答】证明:∵∠1=∠2,∴∠1+∠BAC=∠2+∠BAC,∴∠EAC=∠DAB,在△EAC和△DAB中,,∴△EAC≌△DAB(ASA),∴AE=AD.【点评】本题考查了全等三角形的性质和判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.全等三角形的对应边相等,对应角相等.23.已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,试问:DE和DF相等吗?说明理由.【考点】全等三角形的判定与性质.【专题】常规题型.【分析】连接AD,易证△ACD≌△ABD,根据全等三角形对应角相等的性质可得∠EAD=∠FAD,再根据∠AED=∠AFD,AD=AD,即可证明△ADE≌△ADF,根据全等三角形对应边相等的性质可得DE=DF.【解答】证明:连接AD,在△ACD和△ABD中,,∴ACD≌△ABD(SSS),∵DE⊥AE,DF⊥AF,∴∠AED=∠AFD=90°,∴在△ADE和△ADF中,,∴△ADE≌△ADF,∴DE=DF.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角、对应边相等的性质.24.如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.【考点】全等三角形的判定.【专题】证明题.【分析】(1)根据题目所给条件可分析出△ABE≌△CDF,△AFD≌△CEB;(2)根据AB∥CD可得∠1=∠2,根据AF=CE可得AE=FC,然后再证明△ABE≌△CDF即可.【解答】解:(1)△ABE≌△CDF,△AFD≌△CEB;(2)∵AB∥CD,∴∠1=∠2,∵AF=CE,∴AF+EF=CE+EF,即AE=FC,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS).【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.25.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.(1)求证:△ADC≌△CEB.(2)AD=5cm,DE=3cm,求BE的长度.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)根据全等三角形的判定定理AAS推知:△ADC≌△CEB;(2)利用(1)中的全等三角形的对应边相等得到:AD=CE=5cm,CD=BE.则根据图中相关线段的和差关系得到BE=AD﹣DE.【解答】(1)证明:如图,∵AD⊥CE,∠ACB=90°,∴∠ADC=∠ACB=90°,∴∠BCE=∠CAD(同角的余角相等).在△ADC与△CEB中,,∴△ADC≌△CEB(AAS);(2)由(1)知,△ADC≌△CEB,则AD=CE=5cm,CD=BE.如图,∵CD=CE﹣DE,∴BE=AD﹣DE=5﹣3=2(cm),即BE的长度是2cm.【点评】本题考查了全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.。

八年级上册数学期中测试题及答案

八年级上册数学期中测试题及答案

八年级上册数学期中测试题(总分:120分时间:120分钟)班级:姓名:分数: .1、在△ABC和△DEF中,AB=DE, ∠B=∠E,补充条件后仍不能证△ABC≌△DEF,则补充的条件是()A、BC=EFB、∠A=∠DC、AC=DFD、∠C=∠F2、下面各组线段中,能组成三角形的是()A.1,2,3 B.1,2,4 C.3,4,5 D.4,4,83、下列图形中具有不稳固性的是()A、长方形B、等腰三角形C、直角三角形D、锐角三角形4、在△ABC中,∠A=39°,∠B=41°,则∠C的度数为()A.70° B. 80°C.90 ° D. 100°5、如右图所示,AB∥CD,∠A=45°,∠C=29°,则∠E的度数为()A.22.5° B. 16°C.18 ° D. 29 °6、点P(1,-2)关于x轴的对称点是P1,P1关于y轴的对称点坐标是P2,则P2的坐标为()A、(1,-2)B、(-1,2)C、(-1,-2)D、(-2,-1)7、如图所示,∠A+∠B+∠C+∠D+∠E的结果为(B)A.90° B. 180°C.360° D. 无法确信8、正多边形的一个内角等于144°,则该多边形是正几边形()A.8 B.9 C.10 D.119、如图所示,BO,CO别离是∠ABC,∠ACB的两条角平分线,∠A=100°,则∠BOC的度数为()A.80°B.90°C.120°D.140°10、如图,△ABC中,∠A=90°,AB=AC,BD平分∠ABC交AC于D,DE⊥BC 于点E,且BC=6,则△DEC的周长是()A.12 cm B.10 cm C.6cm D.以上都不对第10题第14题二、填空题11、已知三角形两边长别离为4和9,则第三边的取值范围是 .12、等腰三角形的周长为20cm,一边长为6cm,则底边长为.13、已知在△ABC中,∠A=40°,∠B-∠C=40°,则∠B= ,∠C= .14、如图,所示,在△ABC中,D在AC上,连结BD,且∠ABC=∠C=∠1,∠A=∠3,则∠A 的度数为 .15、把边长相同的正三角形和正方形组合镶嵌,若用2个正方形,则还需要个正三角形才能够镶嵌.16、若是一个多边形的内角和为1260°,那么从那个多边形的一个极点能够连条对角线.17、如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是 .18、已知△ABC的三边长a、b、c,化简│a+b-c│-│b-a-c│的结果是 .第17题第19题三、解答题19、如图,A、B两村在一条小河的同一侧,要在河边建一水厂向两村供水.(1)若要使自来水厂到两村的距离相等,厂址P应选在哪个位置?(2)若要使自来水厂到两村的输水管用料最省,厂址Q应选在哪个位置?请将上述两种情形下的自来水厂厂址标出,并保留作图痕迹.20、如图,△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm. 求△ABC的周长.21、已知:如图AE=AC,AD=AB,∠EAC=∠DAB.求证:△EAD≌△CAB .22、已知:E是∠AOB的平分线上一点,EC⊥OA ,ED⊥OB ,垂足别离为C、D.求证:(1)∠ECD=∠EDC ;(2)OE是CD的垂直平分线。

八年级上数学期中试题

八年级上数学期中试题

2022学年第一学期期中考试八年级数学试题卷一、选择题(本大题有10个小题,每小题3分,共30分)1.下面有4个汽车标志图案,其中不是轴对称图形的是 ( )2.若有两条线段长分别为3cm 和4cm ,则下列长度的线段能与其组成三角形的是( ) A .1cmB .5cmC .7cmD .9cm3. 已知a <b ,下列式子正确的是( )A .a +3>b +3B .a ﹣3<b ﹣3C .﹣3a <﹣3bD .a 3>b 34.如图,AC 与DB 相交于E ,且AE =DE ,如果添加一个条件还不能..判定△ABE △△DCE ,则添加的这个条件是( )A .AB =DC B .△A =△D C .△B =△CD .AC =DB5.如图,在△ABC 中,∠ACB =90°,点D 是AB 的中点.连接CD ,若CD +AB=7.5,则CD 的长度是( ) A .1.5B .2C .2.5D .56.如图,点D 在BC 的延长线上,DE △AB 于点E ,交AC 于点F .若△A =35°,△D =15°,则△ACB 的度数为( ) A .85°B .75°C .70°第4题图A B CDE第5题图ABCD第6题图ABCDEFD .65°7.如图,有一个绳索拉直的木马秋千,绳索AB 的长度为5米.若将它往水平方向向前推进3米(即DE =3米),且绳索保持拉直的状态,则此时木马上升的高度为( ) A. 1米 B.2米 C. 2米 D. 4米8. “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b ,若ab =8,大正方形的面积为25,则小正方形的边长为( )A. 9B.6C. 4D.39. 在△ABC 中,△BAC =90°,点D 在边BC 上,AD =AB . ( )A .若AC =2AB ,则△C =30° B .若AC =2AB ,则3BD =2CD C .若△B =2△C ,则AC =2AB D .若△B =2△C ,则S △ABD =2△ACD10.如图,在Rt△ABC 中,△ABC =90°,CD 平分△ACB ,过点B 作BD △CD ,垂足为点D ,连接AD ,若AB =3,BC =4,则△ABD 的面积为( ) A .1 B .53 C .21D .22二、填空题(本大题有6个小题,每小题4分,共24分)11.把命题“对顶角相等”改写成“如果…,那么…”的形式: . 12.如图,在△ABC 中,△ACB =90°,CE 是△ABC 的角平分线,△AEC =105°,则△B = .第8题图ABCD第9题图OADCDCBA第10题图13.如图,△C =90°,AD 平分△BAC 交BC 于D ,若BC =7cm ,BD =4cm ,则点D 到AB的距离为 cm.14.已知等腰三角形的一个内角度数等于70度,则其顶角的度数为 . 15. 如图,已知O 为△ABC 三边垂直平分线的交点,且△A =50°,则△BOC 的度数为 度.16.如图,在四边形ABCD 中,△A =90°,AD ∥BC ,AB =4,点P 是线段AD 上的动点,连接BP ,CP ,若△BPC 周长的最小值为16,则BC 的长为 .三、解答题(本题有7小题,共66分)17.(本题满分6分)用直尺和圆规:作出△ABC 的角平分线BD 和AB 边上的中线.18.(本题满分8分)如图,在△ABC 中,△B =40°,△C =80°. (1)求∠BAC 的度数;(2)AE 平分∠BAC 交BC 于E ,AD ⊥BC 于D ,求∠EAD 的度数.ECBA 第12题图DC BA第13题图CBA19. (本题满分8分)如图是由36个边长为1的小正方形拼成的网格图,请按照下列要求作图. (1)在图1中画出一个以AB 为边的ABC Rt ∆; (2)在图2中画出一个以AB 为底边的等腰ABC ∆.图1 图220. (本题满分10分)如图所示,在△ABC 中,AB =AC ,CD ∥AB ,E 是AC 上一点,且∠ABE =∠CAD ,延长BE 交AD 于点F .(1)求证:△ABE ≌△CAD .(2)如果∠ACB =65°,∠ABE =20°,求∠D 的度数.21. (本题满分10分)已知:如图,在△ABC 中,AB =AC ,D 为CA 延长线上一点,DE △BC ,交AB 于点F . (1)求证:△ADF 为等腰三角形.ADF(2)若AC =20,BE =6,F 为AB 中点,求DF 的长.22.(本题满分12分)如图,已知Rt△ABC 中,△C =Rt△.点D 在边AB 上,AD =AC ,过点D 作PD △AB 交BC 于点P .(1)求证:点P 在△BAC 的角平分线上; (2)若AC =6,BC =8,求线段PC 的长.23. (本题满分12分)(1)如图1,已知线段AD 、E C 相交于点F ,连接AE 、DC .若△E =△D =90°, 求证:△A =△C ;(2)如图2,△ABC 中, AD △BC 垂足为点D ,CE △AB 垂足为点E ,∠BAC=45°.PDC B A求证:BE=EF;(3)如图3,在(2)的前提下,若AB=AC,求AFCD的值.AE FD CFED C BA图1图2图3。

最新人教版八年级数学(上)期中测试题及答案[1]

最新人教版八年级数学(上)期中测试题及答案[1]

最新人教版八年级数学(上)期中测试题及答案(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(最新人教版八年级数学(上)期中测试题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为最新人教版八年级数学(上)期中测试题及答案(word版可编辑修改)的全部内容。

第1题图新人教版八年级数学(上)月考测试卷(考试用时:120分钟 ; 满分: 120分)一、选择题(共12小题,每小题3分,共36分. 在每小题给出的四个选项中只有一项是符合要求的,请将正确答案的序号填入对应题目后的括号内)1.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是( ).2. 对于任意三角形的高,下列说法不正确的是( )A .锐角三角形有三条高B .直角三角形只有一条高C .任意三角形都有三条高D .钝角三角形有两条高在三角形的外部3. 一个三角形的两边长为3和8,第三边长为奇数,则第三边长为( )A. 5或7 B 。

7或9 C 。

7 D. 9 4. 等腰三角形的一个角是80°,则它的底角是( )A 。

50°B 。

80° C. 50°或80° D. 20°或80° 5. 点M (3,2)关于y 轴对称的点的坐标为 ( )。

A.(—3,2) B.(-3,-2) C. (3,-2) D 。

(2,-3)6。

如图,∠B=∠D=90°,CB=CD ,∠1=30°,则∠2=( )。

A .30° B. 40° C. 50° D 。

八年级上册数学期中测试卷附答案详解

八年级上册数学期中测试卷附答案详解一.填空题(共3小题)1.如图,在△ABC中,AB=AC,∠BAC=58°,∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠BEO的度数是.2.如图,△ABC中,AB=AC,∠BAC=54°,点D为AB中点,且OD⊥AB,∠BAC 的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为度.3.如图所示,在△ABC中,AB=AC,∠BAC=80°,P在△ABC内,∠PBC=10°,∠PCB=30°,则∠PAB=.二.解答题(共27小题)4.化简:﹣÷.5.化简并求值:(+)÷,其中x,y满足|x﹣2|+(2x﹣y﹣3)2=0.6.解分式方程:+=1.7.2013年4月20日,雅安发生7.0级地震,某地需550顶帐篷解决受灾群众临时住宿问题,现由甲、乙两个工厂来加工生产.已知甲工厂每天的加工生产能力是乙工厂每天加工生产能力的1.5倍,并且加工生产240顶帐篷甲工厂比乙工厂少用4天.①求甲、乙两个工厂每天分别可加工生产多少顶帐篷?②若甲工厂每天的加工生产成本为3万元,乙工厂每天的加工生产成本为2.4万元,要使这批救灾帐篷的加工生产总成本不高于60万元,至少应安排甲工厂加工生产多少天?8.已知(a+b)2=25,(a﹣b)2=9,求ab与a2+b2的值.9.阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22013+22014将下式减去上式得2S﹣S=22014﹣1即S=22014﹣1即1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n(其中n为正整数).10.若x+y=3,且(x+2)(y+2)=12.(1)求xy的值;(2)求x2+3xy+y2的值.11.已知=3,求分式的值.12.已知,求的值.13.已知:,求代数式的值.14.比较3555,4444,5333的大小.15.分解因式:(1)(a﹣b)(a﹣4b)+ab(2)(a﹣b)(a2﹣ab+b2)+ab(b﹣a)16.如图,在△ABC中,BE平分∠ABC,CE平分∠ACD,BE,CE相交于点E.求证:∠E=∠A.17.如图,在△ABC中,∠B=32°,∠C=55°,AD⊥BC于D,AE平分∠BAC交BC 于E,DF⊥AE于F,求∠ADF的度数.18.如图,BE⊥AC于点D,且AD=CD,BD=ED,若∠A=54°,求∠E的度数.19.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,△ABC面积是27cm2,AB=10cm,AC=8cm.(1)求证:DE=DF;(2)求DE的长.20.如图,△ABC中,AD⊥BC于D,若BD=AD,BF=AC.求证:∠FBD=∠CAD.21.如图,在梯形ABCD中,AD∥BC,E为CD中点,连接AE并延长AE交BC 的延长线于点F(1)求证:CF=AD;(2)若AD=2,AB=8,当BC为多少时,点B在线段AF的垂直平分线上,为什么?22.认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+,理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线∴∴又∵∠ABC+∠ACB=180°﹣∠A∴∴∠BOC=180°﹣(∠1+∠2)=180°﹣(90°﹣∠A)=探究2:如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.探究3:如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(只写结论,不需证明)结论:.23.如图,在△ABC中,∠A=70°,∠B=50°,CD平分∠ACB,求∠ACD的度数.24.将两块大小不一的透明的等腰直角三角板ABC和DCE如图所示摆放,直角顶点C重合,三角板DCE的一个顶点D在三角板ABC的斜边BA的延长线上,连结BE.(1)求证:BE=AD;(2)求证:BE⊥AD.25.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC,交CD于K,交BC于E,F是BE上一点,且BF=CE,求证:FK∥AB.26.如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OC=OD;(3)OE是线段CD的垂直平分线.27.如图,在Rt△ABC中,∠C=90°,AC=BC,AD平分∠CAB,DE⊥AB于E.若△DBE的周长为15cm,求AB的长.28.已知∠MAN=120°,AC平分∠MAN,点B、D分别在AN、AM上.(1)如图1,若∠ABC=∠ADC=90°,请你探索线段AD、AB、AC之间的数量关系,并证明之;(2)如图2,若∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,给出证明;若不成立,请说明理由.29.如图,在△ABC中,已知∠B=∠C,AB=AC=10厘米,BC=8厘米,点D为AB 的中点.点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q 在线段CA上由C点向A点运动.(1)若点Q的运动速度与点P的运动速度相等,则经过1s,△BPD与△CQP是否全等?请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?30.如图,在△ABC中,∠ACB=90°,D是BC延长线上一点,E是BD的垂直平分线与AB的交点,连接DE交AC于点F.求证:点E在AF的垂直平分线上.八年级上册数学期中测试卷附答案详解参考答案与试题解析一.填空题(共3小题)1.如图,在△ABC中,AB=AC,∠BAC=58°,∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠BEO的度数是64°.【解答】解:连结OB,∵∠BAC=58°,∠BAC的平分线与AB的中垂线交于点O,∴∠OAB=∠ABO=29°,∵AB=AC,∠BAC=58°,∴∠ABC=∠ACB=61°,∵OD垂直平分AB,∴OA=OB,∴∠OBA=∠OAB=29°,∴∠1=61°﹣29°=32°,∵AB=AC,OA平分∠BAC,∴OA垂直平分BC,∴BO=OC,∴∠1=∠2=32°,∵点C沿EF折叠后与点O重合,∴EO=EC,∴∠2=∠3=32°,∴∠OEC=180°﹣32°﹣32°=116°.∴∠BEO=180°﹣116°=64°.故答案为64°.2.(2013•烟台)如图,△ABC中,AB=AC,∠BAC=54°,点D为AB中点,且OD ⊥AB,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为108度.【解答】解:如图,连接OB、OC,∵∠BAC=54°,AO为∠BAC的平分线,∴∠BAO=∠BAC=×54°=27°,又∵AB=AC,∴∠ABC=(180°﹣∠BAC)=(180°﹣54°)=63°,∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=27°,∴∠OBC=∠ABC﹣∠ABO=63°﹣27°=36°,∵AO为∠BAC的平分线,AB=AC,∴△AOB≌△AOC(SAS),∴OB=OC,∴点O在BC的垂直平分线上,又∵DO是AB的垂直平分线,∴点O是△ABC的外心,∴∠OCB=∠OBC=36°,∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE,∴∠COE=∠OCB=36°,在△OCE中,∠OEC=180°﹣∠COE﹣∠OCB=180°﹣36°﹣36°=108°.故答案为:108.3.(2011•鄂州校级模拟)如图所示,在△ABC中,AB=AC,∠BAC=80°,P在△ABC内,∠PBC=10°,∠PCB=30°,则∠PAB=70°.【解答】解:在BC下方取一点D,使得三角形ABD为等边三角形,连接DP、DC∴AD=AB=AC,∠DAC=∠BAC﹣∠BAD=20°,∴∠ACD=∠ADC=80°,∵AB=AC,∠BAC=80°,∴∠ABC=∠ACB=50°,∴∠CDB=140°=∠BPC,又∠DCB=30°=∠PCB,BC=CB,∴△BDC≌△BPC,∴PC=DC,又∠PCD=60°,∴△DPC是等边三角形,∴△APD≌△APC,∴∠DAP=∠CAP=∠DAC=20=10°,∴∠PAB=∠DAP+∠DAB=10°+60°=70°.故答案为:70°.二.解答题(共27小题)4.(2015•巴中)化简:﹣÷.【解答】解:原式=﹣•=﹣=.5.(2013•乐山)化简并求值:(+)÷,其中x,y满足|x﹣2|+(2x﹣y﹣3)2=0.【解答】解:(+)÷=•=,∵|x﹣2|+(2x﹣y﹣3)2=0,∴,解得.∴原式==1.6.(2015•甘孜州)解分式方程:+=1.【解答】解:方程两边同乘(x﹣3),得:2﹣x﹣1=x﹣3,整理解得:x=2,经检验:x=2是原方程的解.7.(2013•眉山)2013年4月20日,雅安发生7.0级地震,某地需550顶帐篷解决受灾群众临时住宿问题,现由甲、乙两个工厂来加工生产.已知甲工厂每天的加工生产能力是乙工厂每天加工生产能力的1.5倍,并且加工生产240顶帐篷甲工厂比乙工厂少用4天.①求甲、乙两个工厂每天分别可加工生产多少顶帐篷?②若甲工厂每天的加工生产成本为3万元,乙工厂每天的加工生产成本为2.4万元,要使这批救灾帐篷的加工生产总成本不高于60万元,至少应安排甲工厂加工生产多少天?【解答】解:①设乙工厂每天可加工生产x顶帐篷,则甲工厂每天可加工生产1.5x顶帐篷,根据题意得:﹣=4,解得:x=20,经检验x=20是原方程的解,则甲工厂每天可加工生产1.5×20=30(顶),答:甲、乙两个工厂每天分别可加工生产30顶和20顶帐篷;②设甲工厂加工生产y天,根据题意得:3y+2.4×≤60,解得:y≥10,则至少应安排甲工厂加工生产10天.答:至少应安排甲工厂加工生产10天.8.(2016春•西藏校级期末)已知(a+b)2=25,(a﹣b)2=9,求ab与a2+b2的值.【解答】解:∵(a+b)2=25,(a﹣b)2=9,∴a2+2ab+b2=25①,a2﹣2ab+b2=9②,∴①+②得:2a2+2b2=34,∴a2+b2=17,①﹣②得:4ab=16,∴ab=4.9.(2013•张家界)阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22013+22014将下式减去上式得2S﹣S=22014﹣1即S=22014﹣1即1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n(其中n为正整数).【解答】解:(1)设S=1+2+22+23+24+ (210)将等式两边同时乘以2得:2S=2+22+23+24+…+210+211,将下式减去上式得:2S﹣S=211﹣1,即S=211﹣1,则1+2+22+23+24+…+210=211﹣1;(2)设S=1+3+32+33+34+…+3n①,两边同时乘以3得:3S=3+32+33+34+…+3n+3n+1②,②﹣①得:3S﹣S=3n+1﹣1,即S=(3n+1﹣1),则1+3+32+33+34+…+3n=(3n+1﹣1).10.(2015•张家港市模拟)若x+y=3,且(x+2)(y+2)=12.(1)求xy的值;(2)求x2+3xy+y2的值.【解答】解:(1)∵x+y=3,(x+2)(y+2)=12,∴xy+2x+2y+4=12,∴xy+2(x+y)=8,∴xy+2×3=8,∴xy=2;(2)∵x+y=3,xy=2,∴x2+3xy+y2=(x+y)2+xy=32+2=11.11.(2013秋•祁阳县校级期中)已知=3,求分式的值.【解答】解:∵∴y﹣x=3xy∴x﹣y=﹣3xy∴====.12.(2013秋•高安市校级期末)已知,求的值.【解答】解:将两边同时乘以x,得x2+1=3x,===.13.(2010春•禅城区校级月考)已知:,求代数式的值.【解答】解:设t=,则x=2t ①y=3t ②z=4t ③将①②③代入代数式,得==,所以,代数式的值是.14.(2016秋•宜阳县校级月考)比较3555,4444,5333的大小.【解答】解:∵3555=35×111=(35)111=243111,4444=44×111=(44)111=256111,5333=53×111=(53)111=125111,又∵256>243>125,∴256111>243111>125111,即4444>3555>5333.15.(2015秋•和平区期末)分解因式:(1)(a﹣b)(a﹣4b)+ab(2)(a﹣b)(a2﹣ab+b2)+ab(b﹣a)【解答】解:(1)原式=a2﹣4ab﹣ab+4b2+ab=a2﹣4ab+4b2=(a﹣2b)2;(2)原式=(a﹣b)(a2﹣ab+b2)﹣ab(a﹣b)=(a﹣b)(a2﹣2ab+b2)=(a﹣b)3.16.(2016春•淮阴区期末)如图,在△ABC中,BE平分∠ABC,CE平分∠ACD,BE,CE相交于点E.求证:∠E=∠A.【解答】证明:∵∠ACD=∠A+∠ABC,∴∠ECD=(∠A+∠ABC).又∵∠ECD=∠E+∠EBC,∴∠E+∠EBC=(∠A+∠ABC).∵BE平分∠ABC,∴∠EBC=∠ABC,∴∠ABC+∠E=(∠A+∠ABC),∴∠E=∠A.17.如图,在△ABC中,∠B=32°,∠C=55°,AD⊥BC于D,AE平分∠BAC交BC 于E,DF⊥AE于F,求∠ADF的度数.【解答】解:∵∠B=32°,∠C=55°,∴∠BAC=93°.∵AE平分∠BAC交BC于E,∴∠BAE=∠BAC=46.5°,∴∠AED=∠B+∠BAE=78.5°.∵AD⊥BC,DF⊥AE,∴∠ADF=∠AED=78.5°.18.(2012秋•郴州期末)如图,BE⊥AC于点D,且AD=CD,BD=ED,若∠A=54°,求∠E的度数.【解答】解:∵BE⊥AC,∴∠ADB=∠BDC=90°,∵∠A=54°,∴∠ABD=90°﹣∠A=36°,在△ABD和△CED中,,∴△ABD≌△CED(SAS),∴∠E=∠ABD=36°.19.(2016秋•龙海市期中)如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB 于点E,DF⊥AC于点F,△ABC面积是27cm2,AB=10cm,AC=8cm.(1)求证:DE=DF;(2)求DE的长.【解答】解:(1)∵AD为∠BAC的平分线,∴∠BAD=∠CAD,在△ADE与△AFD中,,∴△AED≌△AFD,∴DE=DF;(2)∵AD为∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,∵△ABC的面积是27cm2,AB=10cm,AC=8cm,∴×10•DE+×8•DF=27,解得DE=3cm.20.(2016秋•重庆期中)如图,△ABC中,AD⊥BC于D,若BD=AD,BF=AC.求证:∠FBD=∠CAD.【解答】证明:∵AD⊥BC,∴△BDF和△ACD都是直角三角形,在Rt△△BDF和Rt△ADC中,,∴Rt△△BDF≌Rt△ADC(HL),∴∠FBD=∠CAD.21.(2008•广安)如图,在梯形ABCD中,AD∥BC,E为CD中点,连接AE并延长AE交BC的延长线于点F(1)求证:CF=AD;(2)若AD=2,AB=8,当BC为多少时,点B在线段AF的垂直平分线上,为什么?【解答】(1)证明:∵AD∥BC,∴∠F=∠DAE.(1分)又∵∠FEC=∠AED,∴∠ECF=∠ADE,∵E为CD中点,∴CE=DE,在△FEC与△AED中,∵,∴△FEC≌△AED.(3分)∴CF=AD;(4分)(2)解:当BC=6时,点B在线段AF的垂直平分线上,(6分)其理由是:∵BC=6,AD=2,AB=8,∴AB=BC+AD.(7分)又∵CF=AD,BC+CF=BF,∴AB=BF.(8分)∴△ABF是等腰三角形,∴点B在AF的垂直平分线上.(9分)22.(2011•青海)认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+,理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线∴∴又∵∠ABC+∠ACB=180°﹣∠A∴∴∠BOC=180°﹣(∠1+∠2)=180°﹣(90°﹣∠A)=探究2:如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.探究3:如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(只写结论,不需证明)结论:∠BOC=90°﹣∠A.【解答】解:(1)探究2结论:∠BOC=∠A,理由如下:∵BO和CO分别是∠ABC和∠ACD的角平分线,∴∠1=∠ABC,∠2=∠ACD,又∵∠ACD是△ABC的一外角,∴∠ACD=∠A+∠ABC,∴∠2=(∠A+∠ABC)=∠A+∠1,∵∠2是△BOC的一外角,∴∠BOC=∠2﹣∠1=∠A+∠1﹣∠1=∠A;(2)探究3:∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),∠BOC=180°﹣∠0BC﹣∠OCB,=180°﹣(∠A+∠ACB)﹣(∠A+∠ABC),=180°﹣∠A﹣(∠A+∠ABC+∠ACB),结论∠BOC=90°﹣∠A.23.(2005•宁德)如图,在△ABC中,∠A=70°,∠B=50°,CD平分∠ACB,求∠ACD的度数.【解答】解:∵∠A=70°,∠B=50°,∴∠ACB=180°﹣70°﹣50°=60°(三角形内角和定义).∵CD平分∠ACB,∴∠ACD=∠ACB=×60°=30°.24.(2013•蜀山区校级三模)将两块大小不一的透明的等腰直角三角板ABC和DCE如图所示摆放,直角顶点C重合,三角板DCE的一个顶点D在三角板ABC 的斜边BA的延长线上,连结BE.(1)求证:BE=AD;(2)求证:BE⊥AD.【解答】证明:(1)∵△DCE和△ACB是等腰直角三角形,∴DC=CE,AC=CB,∠DCE=∠ACB=90°,∴∠DCE﹣∠7=∠ACB﹣∠7,∴∠5=∠6,在△DAC和△EBC中,,∴△DAC≌△EBC(SAS),∴BE=AD;(2)∵△DAC≌△EBC,∴∠1=∠2,∵∠DCE=90°,∴∠1+∠3=90°,∵∠3=∠4,∴∠2+∠4=90°,∴∠EBD=180°﹣90°=90°,即BE⊥AD.25.(2012春•平湖市校级月考)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC,交CD于K,交BC于E,F是BE上一点,且BF=CE,求证:FK∥AB.【解答】证明:过点K作MK∥BC,∵AE平分∠BAC,∴∠BAE=∠CAE,又∵∠ACB=90°,CD⊥AB,∴∠BAE+∠DKA=∠CAE+∠CEA=90°,∴∠DKA=∠CEA,又∵∠DKA=∠CKE,∴∠CEA=∠CKE,∴CE=CK,又CE=BF,∴CK=BF(4分)而MK∥BC,∴∠B=∠AMK,∴∠BCD+∠B=∠DCA+∠BCD=90°,∴∠AMK=∠DCA,在△AMK和△ACK中,∴∠AMK=∠ACK,AK=AK,∠MAK=∠CAK,∴△AMK≌△ACK,(4分)∴CK=MK,∴MK=BF,MK∥BF,四边形BFKM是平行四边形,(2分)∴FK∥AB.(2分)26.(2013秋•盐都区期末)如图,点E是∠AOB的平分线上一点,EC⊥OA,ED ⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OC=OD;(3)OE是线段CD的垂直平分线.【解答】证明:(1)∵OE平分∠AOB,EC⊥OA,ED⊥OB,∴ED=EC,即△CDE为等腰三角形,∴∠ECD=∠EDC;(2)∵点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,∴∠DOE=∠COE,∠ODE=∠OCE=90°,OE=OE,∴△OED≌△OEC(AAS),∴OC=OD;(3)∵OC=OD,且DE=EC,∴OE是线段CD的垂直平分线.27.(2013秋•黄山校级期末)如图,在Rt△ABC中,∠C=90°,AC=BC,AD平分∠CAB,DE⊥AB于E.若△DBE的周长为15cm,求AB的长.【解答】解:∵AD是∠BAC的平分线,DE⊥AB,∠C=90°,∴△ACD≌△AED,∴CD=DE,AE=AC,∴△DBE的周长=BD+EB+DE=BD+EB+CD=BC+EB=AC+EB=AE+EB=AB=15cm,∴AB=15cm.28.(2013•北京模拟)已知∠MAN=120°,AC平分∠MAN,点B、D分别在AN、AM上.(1)如图1,若∠ABC=∠ADC=90°,请你探索线段AD、AB、AC之间的数量关系,并证明之;(2)如图2,若∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,给出证明;若不成立,请说明理由.【解答】(1)关系是:AD+AB=AC(1分)证明:∵AC平分∠MAN,∠MAN=120°∴∠CAD=∠CAB=60°又∠ADC=∠ABC=90°,∴∠ACD=∠ACB=30°(2分)则AD=AB=AC(直角三角形一锐角为30°,则它所对直角边为斜边一半)(4分)∴AD+AB=AC(5分);(2)仍成立.证明:过点C分别作AM、AN的垂线,垂足分别为E、F(6分)∵AC平分∠MAN∴CE=CF(角平分线上点到角两边距离相等)(7分)∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°∴∠CDE=∠ABC又∠CED=∠CFB=90°,∴△CED≌△CFB(AAS)(10分)∵ED=FB,∴AD+AB=AE﹣ED+AF+FB=AE+AF(11分)由(1)知AE+AF=AC(12分)∴AD+AB=AC(13分)29.如图,在△ABC中,已知∠B=∠C,AB=AC=10厘米,BC=8厘米,点D为AB 的中点.点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)若点Q的运动速度与点P的运动速度相等,则经过1s,△BPD与△CQP是否全等?请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?【解答】解:(1)点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD 与△CQP全等,理由是:∵AB=AC=10厘米,点D为AB的中点,∴∠B=∠C,BD=5厘米,∵BP=CQ=3t厘米=3厘米,∴CP=8厘米﹣3厘米=5厘米=BD,在△DBP和△PCQ中,,∴△DBP≌△PCQ(SAS);(2)设当点Q的运动速度为x厘米/时,时间是t小时,能够使△BPD与△CQP 全等,∵BD=5厘米,BP=3t厘米,CP=(8﹣3t)厘米,CQ=xt厘米,∠B=∠C,∴当BP=CQ,BD=CP或BP=CP,BD=CQ时,△BPD与△CQP全等,即①3t=xt,5=8﹣3t,解得:x=3(不合题意,舍去),②3t=8﹣3t,5=xt,解得:x=,即当点Q的运动速度为厘米/时时,能够使△BPD与△CQP全等.30.如图,在△ABC中,∠ACB=90°,D是BC延长线上一点,E是BD的垂直平分线与AB的交点,连接DE交AC于点F.求证:点E在AF的垂直平分线上.【解答】解:∵EG是线段BD的垂直平分线,∴∠DEG=∠BEG,∵∠ACB=90°,∴AC∥EG,∴∠AFE=∠DEG,∠A=∠BEG,∴∠A=∠AFE,即点E在AF的垂直平分线上.。

上学期初中八年级数学期中试题

上学期初中八年级数学期中试题大家要好好的学习一下我们的数学,学习不好会很严重的,今天小编就给大家来看看八年级数学,下滑的来收藏一下哦初中八年级数学上册期中试题1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是A. B. C. D.2.下列各组条件中,能够判定△ABC≌△DEF的是A.∠A=∠D,∠B=∠E,∠C=∠FB.AB=DE,BC=EF,∠A=∠DC.∠B=∠E=90°,BC=EF,AC=DFD.∠A=∠D,AB=DF,∠B=∠E3.下列计算错误的是A.2m + 3n=5mnB.C.D.4.计算-2a(a2-1)的结果是A. -2a3-2aB.-2a3+2aC.-2a3+aD.-a3+2a5.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的A点与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是A.SSSB.ASAC.AASD.SAS6.如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B=第5题图第6题图第8题图第10题图A.25°B.45°C.30°D.20°7.已知(x-m)(x+n)=x2-3x-4,则m-n的值为A.1B.-3C.-2D.38.如图,在△ADE中,线段AE,AD的中垂线分别交直线DE于B和C两点,∠B=β,∠C=α,则∠DAE的度数分别为A. B. C. D.9.已知10x=5,10y=2,则103x+2y-1的值为A.18B.50C.119D.12810.如图,D为等腰Rt△ABC的斜边AB的中点,E为BC边上一点,连接ED并延长交CA的延长线于点F,过D作DH⊥EF交AC于G,交BC的延长线于H,则以下结论:①BE=CG;②DF=DH;③BH=CF;④AF=CH.其中正确的是A.①②③④B.①②④C.①③④D.②③④得分评卷人二、填空题(每题3分,共18分)11.已知点P关于y轴的对称点P1的坐标是(-1,2),则点P的坐标是.12.计算: = .13.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=3,AB=10,则△ABD的面积是.13题图 14题图 15题图 16题图14.如图,在平面直角坐标系中,△ABC是以C为直角顶点的直角三角形,且AC=BC,点A的坐标为(-2,0),点B的坐标为(0,6),则点C的坐标为.15.如图,在平面直角坐标系中,点A(2,0),B(0,4),作△BOC,使△BOC与△ABO全等(不与△ABO重合),则点C的坐标为。

初二(上)数学期中复习训练题(含答案).docx

1.如图,将矩形纸片ABCD (图1)按如下步骤操作:(1)以过点A的直线为折痕折叠纸片,使点B恰好落在AD边上,折痕与BC边交于点E (如图2);(2)以过点E的直线为折痕折叠纸片,使点A落在BC边上,折痕EF交AD边于点F (如图3);(3)将纸片收展平,那么ZAFE的度数为()A DA D F D 7/KB C E C: E C图①图②图③D. 75°2.如图,在AABC中,ZBAC=130°, AB、AC的垂直平分线分别交BC于D、E,则ZDAE=( )3.如图,Z\ABC 屮,ZC=90°, AC=BC, AD 平分ZCAB 交BC 于点D, DE丄AB,垂足为E,且AB=6cm,贝IJADEB 的周氏为()A. 4cmB. 6cmC. 8cmD. 10cm5.如图,平面直角坐标系xOy中,己知定点A (1, 0)和B (0, 1),若动点C在x轴上运动,则使AABC为等腰三角形的点C有()个.C. 70°D. 80°4. 如图,设ZiABC和ACDE都是正三角形,且ZEBD=62°, 则ZAEB的度数是(B. 122°C. 120°D. 118°C7. 如图,在厶ABC 屮,AB 二AC, ZBAC=90°,直角ZEPF 的顶点P 是BC 的屮点,两边PE 、PF 分别交AB 、AC 于点E 、F,连接EF 交AP 于G.给出四个结论:①AE=CF ;②EF=AP ; @AEPF 是等腰直角三角形; ④ZAEP 二ZAGF.其中正确的结论有()A. 1个B. 2个C. 3个D. 4个8. 如图,AABC 是等腰直角三角形,ADEF 是一个含30。

角的直角三角形,将D 放在BC 的屮点上,转动ADEF, 设DE, DF 分另恢AC, BA 的延长线于E, G,则下列结论:① AG 二CE ② DG 二 DE③BG - AC=CE®S ABDG - S ACDE =^S AABC其中总是成立的是 ( )A.①②③B.①②③④C.②③④D.①②④9.如图,AABC 中,ZACB=90°, D 为AB ±任一点,过D 作AB 的垂线,分别交边AC 、BC 的延长线于E 、F 两点,ZBAC 、ZBFD 的平分线交于点1, AI 交DF 于点M, FI 交AC 于点N,连接BI.下列结论:①ZBAC=ZBFD ; ②ZENI=ZEMI ;③AI 丄FI ;④ZABI=ZFBI ;其中正确结论的个数是( )D. 4个6.如图,在Z\ABC 屮,ZBAC=90°, AD 丄BC 于D, BE 平分ZABC 交AD 于F,作EG 丄DC 于G,则下列结论其中正确结论的个数为()10. 如图,RtAACB+, ZACB=90° , AABC 的角平分线AD 、BE 相交于点P,过P 作PF 丄AD 交BC 的延长线于点F, 交AC 于点H,则下列结论:①ZAPB=135° ;②BF=BA ;③PH=PD ;④连接CP, CP 平分ZACB,其中正确的是 () A.①②③B.①②④C.①③④D.①②③④11. 在ZXABC 中,ZB=2ZC, AD 丄BC 于D, AE 平分ZBAC,则下列结论:①AB+BD 二CD ;②S AABE : S AAEC =AB : AC ;③AC - AB=BE ;④ZB=4ZDAE 其屮正确的是( )12. 如图,在△八BC 中,ZABC=45° , AD, BE 分别为BC 、AC 边上的高,AD 、BE 相交于点P,下列结论: ①ZPCD 二45° ,②AE=EC, ®SAABP : SAAPC=BD : CD,④若 BP=2EC,则APDC 周长等于 AB 的长.正确的是13. 如图,C 为线段AE 上一动点(不与点A, E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE, AD 与BE 交于点0, AD 与BC 交于点P, BE 与CD 交于点Q,连接PQ.以下五个结论:①AD-BE ;②PQ 〃AE ;③AP 二BQ ;④DE 二DP ; ⑤ZA0B 二60° •其中正确的结论的个数是( )A. 2个B. 3个C. 4个D. 5个A.①②③④B.①③④C.②③④D.①②③A.①②B.①③C.①④D.①③④B DC ()14.如图:AABC 中,ZACB=90° , ZCAD二30° , AC=BC=AD, CE丄CD,且CE二CD,连接BD, DE, BE,则下列结论:@ZECA=165° ' @BE=BC;③AD丄BE;喑•其中正确的是<)A.①②③B.①②④C.①③④D.①②③④15.如图,将30°的直角三角尺ABC绕直角顶点A逆吋针旋转到ADE的位置,使B点的对应点D落在BC边上,连接EB、EC,则下列结论:①ZDAC二ZDCA;②ED为AC的垂直平分线;③EB平分ZAED;④ED二2AB.其中正确的是()A.①②③B.①②④C.②③④D.①②③④16.如图,AABC是等边三角形,F、G分别为AC和BC的中点,D在线段BG ±,连接DF,以DF为边在DF的右侧作等边ADFE, ED的延长线交AB于H,连接EC,则以下结论:①BF丄AC;②ZAHD+ZAFD二180°;③ZBCE=60°;④当D在线段BG上(不与G点重合)运动时,DOFC+CE.其中正确的是()A.只有①③④B.只有①②④C.①②③④D.只有①②③E17.如图,AABC 中,AC二BC, ZACB=90° , AE 平分ZBAC 交BC 于E, BD丄AE 于D, DM丄AC 于连CD.下列结论: @AC+CE=AB;②CD冷楓③RAW。

八年级数学上册期中试卷(含答案)

-第一学期考试八年级数学试卷题号 一 二 三 四 五 六 总分 得分一、选择题(每题3分,共30分)1、在△ABC 和△DEF 中,AB =DE , ∠B =∠E ,如果补充一个条件后不一定能使△ABC ≌△DEF ,则补充的条件是( )A 、BC =EFB 、∠A =∠DC 、AC =DFD 、∠C =∠F 2、下列命题中正确个数为( )①全等三角形对应边相等;②三个角对应相等的两个三角形全等; ③三边对应相等的两个三角形全等; ④有两边对应相等的两个三角形全等.A .4个B 、3个C 、2个D 、1个 3、已知△ABC ≌△DEF ,∠A =80°,∠E =40°,则∠F 等于 ( )A 、 80°B 、40°C 、 120°D 、 60°4、已知等腰三角形其中一个内角为70°,那么这个等腰三角形的顶角度数为( ) A 、70° B 、70°或55° C 、40°或55° D 、70°或40°5、如右图,图中显示的是从镜子中看到背后墙上的电子钟读数,由此你可以推断这时的实际时间是( )A 、10:05B 、20:01C 、20:10D 、10:02 6、等腰三角形底边上的高为腰的一半,则它的顶角为( )A 、120°B 、90°C 、100°D 、60°7、点P (1,-2)关于x 轴的对称点是P 1,P 1关于y 轴的对称点坐标是P 2,则P 2的坐标为( ) A 、(1,-2) B 、(-1,2) C 、(-1,-2) D 、(-2,-1) 8、已知=0,求y x 的值( )A 、-1B 、-2C 、1D 、29、如图,DE 是△ABC 中AC 边上的垂直平分线,如果BC =8cm ,AB =10cm ,则△EBC 的周长为( ) A 、16 cm B 、18cm C 、26cm D 、28cm()221x y -++班级 姓名 座位号……………………………装………………………订………………………线………………………10、如图,在△ABC 中,AB =AC ,AD 是BC 边上的高,点E 、F 是AD 的三等分点,若△ABC 的面积为12,则图中阴影部分的面积为( )A 、2cm ²B 、4cm²C 、6cm²D 、8cm²二、填空题(每题4分,共20分) 11、等腰三角形的对称轴有 条. 12、(-0.7)²的平方根是 . 13、若,则x -y = .14、如图,在△ABC 中,∠C =90°AD 平分∠BAC ,BC =10cm ,BD =6cm ,则点D 到AB 的距离为__ . 15、如图,△ABE ≌△ACD ,∠ADB =105°,∠B =60°则∠BAE = . 三、作图题(6分)16、如图,A 、B 两村在一条小河的同一侧,要在河边建一水厂向两村供水. (1)若要使自来水厂到两村的距离相等,厂址P 应选在哪个位置? (2)若要使自来水厂到两村的输水管用料最省,厂址Q 应选在哪个位置? 请将上述两种情况下的自来水厂厂址标出,并保留作图痕迹.四、求下列x 的值(8分)2cm 2)(11y x x x +=-+- EDABCFED CBAEDCB AABCD第9题图 第10题图 第14题图第15题图•A •B17、 27x ³=-343 18、 (3x -1)²=(-3)²五、解答题(5分)19、已知5+的小数部分为a ,5-的小数部分为b ,求 (a +b )2012的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

棋盘山中学八年级数学上册期中测试
一、选择题(30分):
1・下列图形是轴对称图形的有( )

10.下列叙述正确的语句是
()
A.等腰三角形两腰上的高相等
C. 顶角相等的两个等腰三角形全等

班级: _______
姓名: _________ 成绩: ___________

D.5个
2. 如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去
配一块完全一样的玻璃,那么最省事的办法是( )
A、带①去 B、带②去 C、带③去 D、带①和②去
3. 等腰三角形的两边分别为3和6,则这个三角形的周长是
()
A. 12 B. 15 C. 9 D.12 或 15

4. 等
A. 50° B. 50°或 65。 C
5•和点P (2, -5)关于x轴对称的点是'
A (—2, -5) B (2, -5)
6.下列各组图形中,是全等形的是(
A.两个含60。角的宜角三角形
C.边长为3和4的两个等腰三角形

80°. D、65°

C (2, 5) D ( -2, 5)

B. 腰对应相等的两个等腰直角三角形
D.—个钝角相等的两个等腰三角形
7.如图 1, AD = AE,
BD=CE, ZX
AEC =100°
BAE =70%下列结论错误的是

图2
8. 如图2,从下列四个条件:①BC=Bf C,
®AB=Af B
f
中,任取三个为条件,余下的一个为结论, 的个

数是( )A. 1个 B. 2个

B.等腰三角形的高、中线、角平分线互相重合
D.两腰相等的两个等腰三角形全等

C. 3个
9. 将一张
长方形纸片按如图3所示的方式折叠,BC, 为折
痕,

CB,
则最多可以构成正确的结论
D. 4个

则ZCBD的度数为( )
C. 90°
D. 95°

C.4个
A. /\ABE^/\ACD
B. /\ABD^/\ACE

D. ZC^30°
二、填空题(30分):
1. 若点P在x轴上,则点P关于x轴对称的点为 ____________________
2. 一个多边形的每一个外角都等于36°,则该多边形的内角和等于 _________________
3. ________________________________________ 如图 1,
PM二PN, Z8OC=30。,则ZAOB二 _______________

4. 如图3,在ZMBC和△FED, M)=FC, AB=FE,当添加条件
得到只需填写一个你认为正确的条件)
5. ______________________________________________________________ 如图4,
已知AB=AC, ZA=50°
/

AB的垂直平分线/VW交AC于点D,则ZDBC= ______________ 度.

6. 如图(5):点P为ZAOB内一点,分别作出P点关于OA、OB的对称点Pi,P2,连接
P1P2交OA于M,交OB于N, PiP2=15cm,则△PMN的周长为 ______________
7. 如图(6),已知BD是ZABC的内角平分线,CD是ZACB的外角平分线,由D岀发,作

点D到BC、AC和AB的垂线DE、DF和DG,垂足分别为E、F、G,则DE、DF、DG的关系
是 ______________
0


4

P2

4
8•如图⑺,AE=AF, AB=AC, EC 与 BF 交于点 0, ZA=60°, ZB = 25°,则ZEOB 的度数
为: _______
O

9. ______________________________________________________ 在AABC 中,
AB=AC, AD 为中线,ZB二50° ,则ZCAD二 ________________________

10. 如图,AABD、AACE都是正三角形,BE和CD交于O点,则ZBOC=
三、解答题(40分)
1、如图所示,107国道0A和320国道0B在某市相交于0点,在ZA0B的内部有工厂C 和
D,现要建一个货站P,使P到OA和0B的距离相等,
且使PC二PD,用尺规作出P点的 位置,(不写作
法,保留作图痕迹,写出结论)
(共5分)

2.如图,已知AD、BC相交于点0, AB-CD, AD = CE .
求证:

Z/\=ZC
(6 分)

3•如图所示,5ADF和ABCE中,Z/\=ZB,点D, E, F, C
在同一直线上, 有如下三个关系

式:①&D二BC;②DE二CF;③BE//AF・
(1)请用其中两个关系式作为条件,另一个作为结论,并说明它正确的理 由.(7
分)
4•女 FlISI 8,在 屮,ZACB = 90°, AC = BC,BE 丄 CE 于 E, AD 丄 CE 于 D
(1)求证:AADC^ACEB・(2) AD = 5cm, DE = 3cm ,求 BE 的长度.(8 分)

5•如图:E在ZXABC的AC边的延长线上,D点在AB边上,DE交BC于点F, DF二EF,
BD二CE

求证:ZSABC是等腰三角形。(7分)

6. RtAABC 中,ZBAC二90° , AB=AC, D 是 BC 的中点,AE=BF 求证:ADEF
为等腰宜角三

角形。(7分)

A

B D

相关文档
最新文档