高考数学一轮复习理数通用版:高考达标检测(二十一) 平面向量的基本运算

合集下载

2021年新高考数学一轮复习题型归纳与达标检测:29 平面向量基本定理及坐标表示(原卷版)

2021年新高考数学一轮复习题型归纳与达标检测:29 平面向量基本定理及坐标表示(原卷版)

『高考复习·精推资源』『题型归纳·高效训练』第29讲 平面向量基本定理及坐标表示(讲)思维导图知识梳理1.平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算(1)向量的加法、减法、数乘向量及向量的模: 设a =(x 1,y 1),b =(x 2,y 2), 则a +b =(x 1+x 2,y 1+y 2), a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21. (2)向量坐标的求法:①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB ―→=(x 2-x 1,y 2-y 1), |AB ―→|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b ⇔x 1y 2-x 2y 1=0.题型归纳题型1 平面向量基本定理及其应用【例1-1】(2020春•荆州期末)ABC ∆中,AD DC =,点M 在BD 上,且满足37AM AB t AC =+,则实数t 的值为( ) A .67B .47C .27 D .59【例1-2】(2020春•密云区期末)如图,在ABC ∆中,13AN NC =.若AN AC λ=,则λ的值为 ,P 是BN上的一点,若13AP AB mAC =+,则m 的值为 .【跟踪训练1-1】(2020•黄州区校级三模)在ABC ∆中5,AC AD E =是直线BD 上一点,且2BE BD =,若AE mAB nAC =+,则(m n += )A .25 B .25-C .35D .35-【跟踪训练1-2】(2020春•金安区校级期末)如图,已知AB a =,AC b =,3DC BD =,2AE EC =,则(DE =)A .1334a b -+B .53124a b - C .3143a b -D .35412a b -+【跟踪训练1-3】(2020春•运城期末)如图,在ABC ∆中,32AC AD =,3PD BP =,若AP AB AC λμ=+,则λμ+的值为( )A .89B .34C .1112D .79【名师指导】平面向量基本定理的实质及应用思路(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用平面向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.题型2 平面向量的坐标表示【例2-1】(2020•黔东南州模拟)若向量(1,2)AC =,(1,4)AB BC -=-,则(AB = ) A .(1,1)-B .(0,6)C .(2,2)-D .(0,3)【跟踪训练2-1】(2020春•南岗区校级期末)设(3,1),(5,1)OM ON ==--,则1(2MN = )A .(4,1)B .(4,1)-C .(4,1)-D .(4,1)--【跟踪训练2-2】(2020春•绍兴期末)平面向量(1,2)a =,(3,4)b =,则2(a b += ) A .(5,8) B .(5,10) C .(7,8) D .(7,10)【名师指导】求解向量坐标运算问题的一般思路(1)向量问题坐标化向量的坐标运算,使得向量的线性运算都可用坐标来进行,实现了向量运算完全代数化,将数与形紧密结合起来,通过建立平面直角坐标系,使几何问题转化为数量运算.(2)巧借方程思想求坐标向量的坐标运算主要是利用加法、减法、数乘运算法则进行,若已知有向线段两端点的坐标,则应先求出向量的坐标,求解过程中要注意方程思想的运用.(3)妙用待定系数法求系数利用坐标运算求向量的基底表示,一般先求出基底向量和被表示向量的坐标,再用待定系数法求出系数.。

第2节 平面向量基本定理及向量坐标运算--2025高中数学一轮复习课件基础版(新高考新教材)

第2节  平面向量基本定理及向量坐标运算--2025高中数学一轮复习课件基础版(新高考新教材)

2.平面向量的坐标运算
运算
加法
减法
数乘
已知 A(x1,y1),B(x2,y2) ,则=(x2-x1,y2-y1).
微点拨1. 的坐标是用点B的横、纵坐标减去点A的横、纵坐标,既有方
向的信息也有大小的信息.
2.若a=(x1,y1),b=(x2,y2),则a=b⇔x1=x2且y1=y2.
3.平面向量共线的坐标表示
(
,
).
3
3
自主诊断
题组一 思考辨析(判断下列结论是否正确,正确的画“√”,错误的画“×”)
1.平面内的任何两个非零向量都可以组成一个基底.( × )
2.同一向量在不同基底下的表示是相同的.( × )
3.若a与b不共线,且λa+μb=0,则λ=μ=0.( √ )
4.一个平面向量不论经过怎样的平移变换,其坐标不变.( √ )
所以 =
3
=4
1
(
2
1
+ 4
=
1
1
+ )=2 [ + 2 (
3
1
1 11
(2,6)+4(-4,4)=(2 , 2 ).
4
+ )]
因为 A 为坐标原点,所以向量 的坐标即为点 E 的坐标,
故点 E
1 11
的坐标为(2 , 2 ).
考点三
向量共线的坐标表示(多考向探究预测)
8
8.(2021·全国乙,文13)已知向量a=(2,5),b=(λ,4),若a∥b,则λ=__________.
5

4
8
解析 由 a∥b,可得2 = 5,解得 λ=5.
研考点
精准突破

高考数学一轮总复习专题27平面向量的基本定理和向量的坐标运算检测理(2021年整理)

高考数学一轮总复习专题27平面向量的基本定理和向量的坐标运算检测理(2021年整理)

2019年高考数学一轮总复习专题27 平面向量的基本定理和向量的坐标运算检测理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019年高考数学一轮总复习专题27 平面向量的基本定理和向量的坐标运算检测理)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019年高考数学一轮总复习专题27 平面向量的基本定理和向量的坐标运算检测理的全部内容。

专题27 平面向量的基本定理和向量的坐标运算本专题特别注意:1。

平面向量基本定理的应用问题2. 基本定理的两条路径法表示向量问题3. 数形结合的应用4。

向量于线性规划问题等综合问题5。

向量的坐标表示及运算性质6.向量共线与垂直的坐标表示7.向量与数列的综合8.向量与解析几何的综合【学习目标】1.了解平面向量的基本定理及其意义,掌握平面向量的正交分解及其坐标表示.2.会用坐标表示平面向量的加法、减法与数乘运算,理解用坐标表示平面向量共线和垂直的条件.【方法总结】1。

向量的坐标表示主要依据平面向量的基本定理,平面向量错误!实数对(x,y),任何一个平面向量都有唯一的坐标表示,但是每一个坐标所表示的向量却不一定唯一。

也就是说,向量的坐标表示和向量不是一一对应的关系,但和起点为原点的向量是一一对应的关系。

2.已知向量的始点和终点坐标求向量的坐标时,一定要搞清方向,用对应的终点坐标减去始点坐标。

本讲易忽略点有二:一是易将向量的终点坐标误认为是向量坐标;二是向量共线的坐标表示易与向量垂直的坐标表示混淆。

3.向量的坐标表示,实际上是向量的代数表示,在引入向量的坐标表示后,可以使向量运算完全代数化,把关于向量的代数运算与数量的代数运算联系起来,从而把数与形紧密结合起来,这样很多几何问题,特别像共线、共点等较难问题的证明,就转化为熟知的数量运算,也为运用向量坐标运算的有关知识解决一些物理问题提供了一种有效方法.高考模拟:一、单选题1.在如图的平面图形中,已知,则的值为A。

高考数学第一轮复习-第5章 第1讲 平面向量的概念及线性运算 平面向量的基本定理

高考数学第一轮复习-第5章 第1讲 平面向量的概念及线性运算 平面向量的基本定理

高考数学第一轮复习 第五章 平面向量第1讲 平面向量的概念及线性运算 平面向量的基本定理考点一 平面向量的线性运算及几何意义入门测1.思维辨析(1)单位向量只与模有关,与方向无关.( ) (2)零向量的模等于0,没有方向.( ) (3)若两个向量共线,则其方向必定相同.( ) (4)若a ∥b ,b ∥c ,则必有a ∥c .( ) (5)AB →+BA →=0.( )2.如图,在正方形ABCD 中,AC 与BD 交于点O ,AB →+BO →+OC →=( )A .0 B.AD →C.AC →D.BD →3.设a 、b 是两个不共线向量,AB →=2a +p b ,BC →=a +b ,CD →=a -2b ,若A 、B 、D 三点共线,则实数p 的值为________.解题法命题法 对概念的理解、运算和共线定理的应用 典例 (1)下列说法中: ①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB →=DC →是四边形ABCD 为平行四边形的充要条件;③若a =b ,b =c ,则a =c ;④a =b 的充要条件是|a |=|b |且a ∥b ; ⑤若a ∥b ,b ∥c ,则a ∥c . 其中正确命题的序号是( ) A .②③B .①②C .③④D .④⑤(2)已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足2AC →+CB →=0,则OC →=( )A .2OA →-OB → B .-OA →+2OB → C.23OA →-13OB →D .-13OA →+23OB →(3)已知向量a ,b 不共线,c =k a +b (k ∈R ),d =a -b ,如果 c ∥d ,那么( )A .k =1且c 与d 同向B .k =1且c 与d 反向C .k =-1且c 与d 同向D .k =-1且c 与d 反向对点练1.设D 为△ABC 所在平面内一点,BC →=3CD →,则( ) A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →2.已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|P A →+PB →+PC →|的最大值为( )A .6B .7C .8D .93.对任意向量a ,b ,下列关系式中不恒成立的是( )A .|a ·b |≤|a ||b |B .|a -b |≤||a |-|b ||C .(a +b )2=|a +b |2D .(a +b )·(a -b )=a 2-b 24.记max{x ,y }=⎩⎪⎨⎪⎧ x ,x ≥y ,y ,x <y ,min{x ,y }=⎩⎪⎨⎪⎧y ,x ≥y ,x ,x <y ,设a ,b 为平面向量,则( )A .min{|a +b |,|a -b |}≤min{|a |,|b |}B .min{|a +b |,|a -b |}≥min{|a |,|b |}C .max{|a +b |2,|a -b |2}≤|a |2+|b |2D .max{|a +b |2,|a -b |2}≥|a |2+|b |25.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________.6.已知向量OA →⊥AB →,|OA →|=3,则OA →·OB →=________.7.设0<θ<π2,向量a =(sin2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________.考点二 平面向量的基本定理及坐标表示入门测1.思维辨析(1)平面向量不论经过怎样的平移变换之后其坐标不变.( ) (2)平面内任何两个不共线的向量均可作为一组基底.( )(3)向量AB →与BC →的夹角为∠ABC .( )(4)在同一组基底下同一向量的表现形式是唯一的.( )2.已知点A (-1,1),点B (2,y ),向量a =(1,2),若AB →∥a ,则实数y 的值为( ) A .5 B .6 C .7D .8 3.在平行四边形ABCD 中,AC 为一条对角线,若AB →=(2,4),AC →=(1,3),则BD →=( )A .(-2,-4)B .(-3,-5)C .(3,5)D .(2,4)解题法命题法 向量共线,垂直的条件和共线向量基本定理的应用典例 (1)在下列向量组中,可以把向量a =(3,2)表示出来的是( ) A .e 1=(0,0),e 2=(1,2) B .e 1=(-1,2),e 2=(5,-2) C .e 1=(3,5),e 2=(6,10) D .e 1=(2,-3),e 2=(-2,3)(2)已知向量a =(1,-2),b =(m,4),且a ∥b ,则2a -b =( ) A .(4,0) B .(0,4) C .(4,-8)D .(-4,8)(3)在梯形ABCD 中,已知AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点.若AB →=λAM→+μAN →,则λ+μ=________.【解题法】 平面向量基本定理的应用及其坐标运算技巧 (1)共线问题的解题策略①向量共线的充要条件中,当两向量共线时,通常只有非零向量才能表示与之共线的其他向量,注意待定系数法和方程思想的运用.②证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得到三点共线.③若a 与b 不共线且λa =μb ,则λ=μ=0.④直线的向量式参数方程,A ,P ,B 三点共线⇔OP →=(1-t )·OA →+tOB →(O 为平面内任一点,t∈R ).⑤OA →=λOB →+μOC →(λ,μ为实数),若A ,B ,C 三点共线,则λ+μ=1. (2)用平面向量基本定理解决问题的一般思路①先选择一组基底,并运用平面向量基本定理将条件和结论表示成该基底的线性组合,再进行向量的运算.②在基底未给出的情况下,合理地选取基底会给解题带来方便,另外,要熟练运用线段中点的向量表达式.(3)坐标运算的技巧向量的坐标运算主要是利用加、减、数乘运算法则进行,若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则,以向量为载体,可以解决三角函数、解析几何中的有关问题.对点练1.已知向量a =(1,2),b =(3,1),则b -a =( ) A .(-2,1) B .(2,-1) C .(2,0) D .(4,3) 2.已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c =( )A.⎝⎛⎭⎫79,73B.⎝⎛⎭⎫-73,-79C.⎝⎛⎭⎫73,79D.⎝⎛⎭⎫-79,-73 3.在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =_______;y =_______.4.已知向量a =(2,1),b =(1,-2).若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________. 5.设向量a =(3,3),b =(1,-1).若(a +λb )⊥(a -λb ),则实数λ=________.6.在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的最大值是________.7. 如图所示,在△ABC 中,点M 是AB 的中点,且AN →=12NC →,BN 与CM 相交于点E ,设AB→=a ,AC →=b ,用基底a ,b 表示向量AE →=________.微型专题 以向量坐标运算为载体的创新问题创新考向以向量的坐标运算为载体的创新问题是近几年高考命题的一个热点,综合考查向量与函数等知识,考查学生的应变能力与创新能力.创新例题在平面直角坐标系中,若O 为坐标原点,则A ,B ,C 三点在同一直线上的充要条件为存在唯一的实数λ,使得OC →=λOA →+(1-λ)OB →成立,此时称实数λ为“向量OC →关于OA →和OB →的终点共线分解系数”.若已知P 1(3,1),P 2(-1,3),P 1,P 2,P 3三点共线且向量OP 3→与向量a =(1,-1)共线,则“向量OP 3→关于OP 1→和OP 2→的终点共线分解系数”为( )A .-3B .3C .1D .-1已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),求第四个顶点的坐标.课时练 基础组1已知非零向量a ,b ,则“a +b =0”是“a ∥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分又不必要条件2.已知△ABC 的三个顶点A ,B ,C 及其所在平面内一点P 满足P A →+PB →+PC →=AB →,则( )A .P 在△ABC 内B .P 在△ABC 外 C .P 在直线AB 上D .P 是AC 边的一个三等分点3.如图所示,在平行四边形ABCD 中,E 是BC 的中点,F 是AE 的中点,若AB →=a ,AD →=b ,则AF →=( )A.12a +14b B.14a +12b C.12a -14b D.14a -12b 4.设a =(1,2),b =(1,1),c =a +k b .若b ⊥c ,则实数k 的值等于( )A .-32B .-53C.53D.32 5.设向量a =(x,1),b =(4,x ),且a ,b 方向相反,则x 的值是( )A .2B .-2C .±2D .0 6.[2016·武邑中学模拟]已知向量OA →=(k,12),OB →=(4,5),OC →=(-k,10),且A ,B ,C 三点共线,则k 的值是( )A .-23B.43C.12D.137.如图,已知|OA →|=1,|OB →|=3,OA →·OB →=0,点C 在线段AB 上,且∠AOC =30°,设OC →=mOA →+nOB →(m ,n ∈R ),则mn=( )A.13 B .3 C.33D. 38.O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足OP→=OA→+λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,λ∈[0,+∞),则P 的轨迹一定通过△ABC 的( ) A .外心 B .内心 C .重心D .垂心9.已知D 为三角形ABC 边BC 的中点,点P 满足P A →+BP →+CP →=0,AP →=λPD →,则实数λ的值为________.10. △ABC 的三内角A 、B 、C 所对的边分别为a 、b 、c ,设向量m =(3c -b ,a -b ),n =(3a +3b ,c ),m ∥n ,则cos A =________.11.已知点O (0,0)、A (1,2)、B (4,5)及OP →=OA →+tAB →,试问: (1)t 为何值时,P 在x 轴上?在y 轴上?P 在第三象限?(2)四边形OABP 能否成为平行四边形?若能,求出相应的t 值;若不能,请说明理由. 12.在直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2),点P (x ,y )在△ABC 三边围成的区域(含边界)上.(1)若P A →+PB →+PC →=0,求|OP →|;(2)设OP →=mAB →+nAC →(m ,n ∈R ),用x ,y 表示m -n ,并求m -n 的最大值.能力组13设a 是已知的平面向量且a ≠0,关于向量a 的分解,有如下四个命题: ①给定向量b ,总存在向量c ,使a =b +c ;②给定向量b 和c ,总存在实数λ和μ,使a =λb +μc ;③给定单位向量b 和正数μ,总存在单位向量c 和实数λ,使a =λb +μc ; ④给定正数λ和μ,总存在单位向量b 和单位向量c ,使a =λb +μc .上述命题中的向量b ,c 和a 在同一平面内且两两不共线,则真命题的个数是( ) A .1 B .2 C .3D .4 14.已知向量OA →=(1,3),OB →=(3,-1),且AP →=2PB →,则点P 的坐标为( ) A .(2,-4) B.⎝⎛⎭⎫23,-43 C.⎝⎛⎭⎫73,13D .(-2,4)15.在△ABC 中,∠ACB 为钝角,AC =BC =1,CO →=xCA →+yCB →且x +y =1,函数f (m )=|CA→-mCB →|的最小值为32,则|CO →|的最小值为________.16.如图,已知△OCB 中,A 是CB 的中点,D 是将OB →分成2∶1的一个内分点,DC 和OA交于点E ,设OA →=a ,OB →=b .(1)用a 和b 表示向量OC →,DC →; (2)若OE →=λOA →,求实数λ的值.。

高考数学一轮总复习专题25平面向量的基本定理和向量的坐标运算检测文(2021年整理)

高考数学一轮总复习专题25平面向量的基本定理和向量的坐标运算检测文(2021年整理)

2019年高考数学一轮总复习专题25 平面向量的基本定理和向量的坐标运算检测文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019年高考数学一轮总复习专题25 平面向量的基本定理和向量的坐标运算检测文)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019年高考数学一轮总复习专题25 平面向量的基本定理和向量的坐标运算检测文的全部内容。

专题25平面向量的基本定理和向量的坐标运算本专题特别注意:1.平面向量基本定理的应用问题2. 基本定理的两条路径法表示向量问题3. 数形结合的应用4.向量于线性规划问题等综合问题5. 向量的坐标表示及运算性质6.向量共线与垂直的坐标表示7.向量与数列的综合8。

向量与解析几何的综合【学习目标】1.了解平面向量的基本定理及其意义,掌握平面向量的正交分解及其坐标表示.2.会用坐标表示平面向量的加法、减法与数乘运算,理解用坐标表示平面向量共线和垂直的条件.【方法总结】1.向量的坐标表示主要依据平面向量的基本定理,平面向量错误!实数对(x,y),任何一个平面向量都有唯一的坐标表示,但是每一个坐标所表示的向量却不一定唯一.也就是说,向量的坐标表示和向量不是一一对应的关系,但和起点为原点的向量是一一对应的关系.2.已知向量的始点和终点坐标求向量的坐标时,一定要搞清方向,用对应的终点坐标减去始点坐标.本讲易忽略点有二:一是易将向量的终点坐标误认为是向量坐标;二是向量共线的坐标表示易与向量垂直的坐标表示混淆.3.向量的坐标表示,实际上是向量的代数表示,在引入向量的坐标表示后,可以使向量运算完全代数化,把关于向量的代数运算与数量的代数运算联系起来,从而把数与形紧密结合起来,这样很多几何问题,特别像共线、共点等较难问题的证明,就转化为熟知的数量运算,也为运用向量坐标运算的有关知识解决一些物理问题提供了一种有效方法。

2020届高三文理科数学一轮复习《平面向量基本定理及坐标表示》专题汇编(学生版)

2020届高三文理科数学一轮复习《平面向量基本定理及坐标表示》专题汇编(学生版)

《平面向量基本定理及坐标表示》专题一、相关知识点1.平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,存在唯一一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标表示在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i ,j 作为基底,该平面内的任一向量a 可表示成a =xi +yj ,把有序数对(x ,y )叫做向量a 的坐标,记作a =(x ,y ). 3.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=(x 2-x 1)2+(y 2-y 1)2. 4.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.a ,b 共线⇔x 1y 2-x 2y 1=0. 5.常用结论(1)若a 与b 不共线,且λa +μb =0,则λ=μ=0.(2)设a =(x 1,y 1),b =(x 2,y 2),如果x 2≠0,y 2≠0,则a ∥b ⇔x 1x 2=y 1y 2.(3)已知P 为线段AB 的中点,若A (x 1,y 1),B (x 2,y 2),则P 点坐标为⎝⎛⎭⎫x 1+x 22,y 1+y 22;已知△ABC 的顶点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则△ABC 的重心G 的坐标为⎝⎛⎭⎫x 1+x 2+x 33,y 1+y 2+y 33题型一 平面向量基本定理及其应用1.设e 1,e 2是平面内一组基底,若λ1e 1+λ2e 2=0,则λ1+λ2=________. 2.下列各组向量中,可以作为基底的是( )A .e 1=(0,0),e 2=(1,2)B .e 1=(-1,2),e 2=(5,7)C .e 1=(3,5),e 2=(6,10)D .e 1=(2,-3),e 2=⎝⎛⎭⎫12,-343.在下列向量组中,可以把向量a =(3,2)表示出来的是( )A .e 1=(0,0),e 2=(1,2)B .e 1=(-1,2),e 2=(5,-2)C .e 1=(3,5),e 2=(6,10)D .e 1=(2,-3),e 2=(-2,3)4.已知向量e 1,e 2不共线,实数x ,y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则2x -y =_______.5.在平行四边形ABCD 中,E 为DC 边的中点,且AB →=a ,AD →=b ,则BE →等于( )A .b -12aB .b +12aC .a +12bD .a -12b6.在△ABC 中,P ,Q 分别是AB ,BC 的三等分点,且AP =13AB ,BQ =13BC ,若AB →=a ,AC →=b ,则PQ →=( )A .13a +13bB .-13a +13bC .13a -13bD .-13a -13b7.如图,在△ABC 中,BE 是边AC 的中线,O 是边BE 的中点,若AB →=a ,AC →=b ,则AO →=( )A .12a +12bB .12a +13bC .14a +12bD .12a +14b8.在平行四边形ABCD 中,AC 与BD 交于点O ,F 是线段DC 上的点.若DC =3DF ,设AC ―→=a ,BD ―→=b ,则AF ―→=( )A.14a +12bB.23a +13bC.12a +14bD.13a +23b9.在直角梯形ABCD 中,AB =2AD =2DC ,E 为BC 边上一点,BC ―→=3EC ―→,F 为AE 的中点,则BF ―→=( )A.23AB ―→-13AD ―→B.13AB ―→-23AD ―→ C .-23AB ―→+13AD ―→ D .-13AB ―→+23AD ―→10.在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点.若AB ―→=λAM ―→+μAN ―→,则λ+μ等于( )A.15B.25C.35D.4511.在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=_______.12.在△ABC 中,点P 是AB 上一点,且CP ―→=23CA ―→+13CB ―→,Q 是BC 的中点,AQ 与CP 的交点为M ,又CM―→=t CP ―→,则实数t 的值为________.13.在△ABC 所在平面上有三点P ,Q ,R ,满足PA ―→+PB ―→+PC ―→=AB ―→,QA ―→+QB ―→+QC ―→=BC ―→,RA ―→+RB ―→+RC ―→=CA ―→,则△PQR 的面积与△ABC 的面积之比是( )A .1∶2B .1∶3C .1∶4D .1∶514.已知G 是△ABC 的重心,过点G 作直线MN 与AB ,AC 分别交于点M ,N ,且AM ―→=x AB ―→,AN ―→=y AC ―→(x ,y >0),则3x +y 的最小值是( )A.83B.72C.52D.43+23315.在△ABC 中,点D 满足BD →=34BC →,当点E 在射线AD (不含点A )上移动时,若AE →=λAB →+μAC →,则λ+1μ的最小值为________.16.如图,已知△OCB 中,点C 是以A 为中点的点B 的对称点,D 是将OB →分为2∶1的一个内分点,DC 和OA 交于点E ,设OA →=a ,OB →=b .(1)用a 和b 表示向量OC →、DC →;(2)若OE →=λOA →,求实数λ的值.题型二 平面向量的坐标运算1.若a =(2,3),b =(-1,4),则2a -b =________.2.如果向量a =(1,2),b =(4,3),那么a -2b =3.已知平面向量a =(2,-1),b =(1,3),那么|a +b |等于4.已知▱ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________.5.已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →=6.若向量a =(1,1),b =(-1,1),c =(4,2),则c 等于( )A .3a +bB .3a -bC .-a +3bD .a +3b7.已知a =(1,2),b =(-1,1),c =2a -b ,则|c |=8.已知A (1,4),B (-3,2),向量BC ―→=(2,4),D 为AC 的中点,则BD ―→=________.9.已知在平行四边形ABCD 中,AD ―→=(3,7),AB ―→=(-2,3),对角线AC 与BD 交于点O ,则CO ―→的坐标为( )A.⎝⎛⎭⎫-12,5B.⎝⎛⎭⎫12,5C.⎝⎛⎭⎫-12,-5D.⎝⎛⎭⎫12,-510.已知点 A (1,3),B (4,-1),则与AB →同方向的单位向量是( )A .⎝⎛⎭⎫35,-45B .⎝⎛⎭⎫45,-35C .⎝⎛⎭⎫-35,45D .⎝⎛⎭⎫-45,3511.在平面直角坐标系xOy 中,已知A (1,0),B (0,1),C 为坐标平面内第一象限内一点且∠AOC =π4,|OC ―→|=2,若OC ―→=λOA ―→+μOB ―→,则λ+μ=12.已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c 等于13.已知向量a =(2,1),b =(1,-2).若ma +nb =(9,-8)(m ,n ∈R),则m -n 的值为________.14.平面直角坐标系xOy 中,已知A (1,0),B (0,1),C (-1,c ),(c >0),且|OC →|=2,若OC →=λOA →+μOB →,则实数λ+μ的值为________.题型三 平面向量共线的坐标表示1.已知向量a =(1,-1),则下列向量中与向量a 平行且同向的是( )A .b =(2,-2)B .b =(-2,2)C .b =(-1,2)D .b =(2,-1)2.已知向量a =(1,2),b =(-2,3),若m a -n b 与2a +b 共线(其中n ∈R ,且n ≠0),则mn =________.3.已知向量a =(m ,4),b =(3,-2),且a ∥b ,则m =________.4.已知向量a =(1,2),b =(2,-2),c =(1,λ).若c ∥(2a +b ),则λ=________.5.设向量a =(x,1),b =(4,x ),若a ,b 方向相反,则实数x 的值为________.6.已知A (-2,-3),B (2,1),C (1,4),D (-7,t ),若AB →与CD →共线,则t =________.7已知向量a =(1,2),a -b =(4,5),c =(x,3),若(2a +b )∥c ,则x =________.8.已知向量OA ―→=(k ,12),OB ―→=(4,5),OC ―→=(-k ,10),且A ,B ,C 三点共线,则k 的值是9.若三点A (1,-5),B (a ,-2),C (-2,-1)共线,则实数a 的值为____.10.向量a =⎝⎛⎭⎫13,tan α,b =(cos α,1),且a ∥b ,则cos 2α=11.已知向量a =(1-sin θ,1),b =⎝⎛⎭⎫12,1+sin θ,若a ∥b ,则锐角θ=12.已知点A (2,3),B (4,5),C (7,10),若AP ―→=AB ―→+λAC ―→(λ∈R),且点P 在直线x -2y =0上,则λ=13.已知平面向量a =(1,m ),b =(-3,1)且(2a +b )∥b ,则实数m 的值为14.已知向量a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,且u ∥v ,则实数x 的值为________.15.已知平面直角坐标系内的两个向量a =(m ,3m -4),b =(1,2),且平面内的任意向量c 都可以唯一地表示成c =λa +μb (λ,μ为实数),则m 的取值范围是( )A .(-∞,4)B .(4,+∞)C .(-∞,4)∪(4,+∞)D .(-∞,+∞)16.已知向量OA →=(1,-3),OB →=(2,-1),OC →=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 应满足的条件是________.17.已知a =(1,0),b =(2,1).(1)当k 为何值时,ka -b 与a +2b 共线?(2)若AB →=2a +3b ,BC →=a +mb 且A ,B ,C 三点共线,求m 的值.18.平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1).(1)求满足a =mb +nc 的实数m ,n ;(2)若(a +kc )∥(2b -a ),求实数k .19.平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1).(1)若(a +kc )∥(2b -a ),求实数k ;(2)若d 满足(d -c )∥(a +b ),且|d -c |=5,求d 的坐标.。

2023年新高考数学大一轮复习专题22 平面向量的数量积及其应用(解析版)

专题22 平面向量的数量积及其应用【考点预测】一.平面向量的数量积a (1)平面向量数量积的定义已知两个非零向量与b ,我们把数量||||cos θa b 叫做a 与b 的数量积(或内积),记作⋅a b ,即⋅a b =||||cos θa b ,规定:零向量与任一向量的数量积为0. (2)平面向量数量积的几何意义①向量的投影:||cos θa 叫做向量a 在b 方向上的投影数量,当θ为锐角时,它是正数;当θ为钝角时,它是负数;当θ为直角时,它是0.②⋅a b 的几何意义:数量积⋅a b 等于a 的长度||a 与b 在a 方向上射影||cos θb 的乘积. 二.数量积的运算律已知向量a 、b 、c 和实数λ,则: ①⋅=⋅a b b a ;②()()()λλλ⋅⋅=⋅a b =a b a b ; ③()+⋅⋅+⋅a b c =a c b c . 三.数量积的性质设a 、b 都是非零向量,e 是与b 方向相同的单位向量,θ是a 与e 的夹角,则 ①||cos θ⋅=⋅=e a a e a .②0⊥⇔⋅=a b a b .③当a 与b 同向时,||||⋅=a b a b ;当a 与b 反向时,||||⋅=-a b a b .特别地,2||⋅=a a a 或||=a . ④cos ||||θ⋅=a ba b (||||0)≠a b .⑤||||||⋅a b a b ≤. 四.数量积的坐标运算已知非零向量11()x y =,a ,22()x y =,b ,θ为向量a 、b 的夹角.(1)平面向量的数量积是一个实数,可正、可负、可为零,且||||||a b a b ⋅≤.(2)当0a ≠时,由0a b ⋅=不能推出b 一定是零向量,这是因为任一与a 垂直的非零向量b 都有0a b ⋅=. 当0a ≠时,且a b a c ⋅=⋅时,也不能推出一定有b c =,当b 是与a 垂直的非零向量,c 是另一与a 垂直的非零向量时,有0a b a c ⋅=⋅=,但b c ≠.(3)数量积不满足结合律,即a b c b c a ⋅≠⋅()(),这是因为a b c ⋅()是一个与c 共线的向量,而b c a ⋅()是一个与a 共线的向量,而a 与c 不一定共线,所以a b c ⋅()不一定等于b c a ⋅(),即凡有数量积的结合律形式的选项,一般都是错误选项.(4)非零向量夹角为锐角(或钝角).当且仅当0a b ⋅>且(0)a b λλ≠>(或0a b ⋅<,且(0))a b λλ≠< 【方法技巧与总结】(1)b 在a 上的投影是一个数量,它可以为正,可以为负,也可以等于0.(2)数量积的运算要注意0a =时,0a b ⋅=,但0a b ⋅=时不能得到0a =或0b =,因为a ⊥b 时,也有0a b ⋅=. (3)根据平面向量数量积的性质:||a a a =⋅,cos ||||a ba b θ⋅=,0a b a b ⊥⇔⋅=等,所以平面向量数量积可以用来解决有关长度、角度、垂直的问题.(4)若a 、b 、c 是实数,则ab ac b c =⇒=(0a ≠);但对于向量,就没有这样的性质,即若向量a 、b 、c 满足a b a c ⋅=⋅(0a ≠),则不一定有=b c ,即等式两边不能同时约去一个向量,但可以同时乘以一个向量. (5)数量积运算不适合结合律,即()()a b c a b c ⋅⋅≠⋅⋅,这是由于()a b c ⋅⋅表示一个与c 共线的向量,()a b c ⋅⋅表示一个与a 共线的向量,而a 与c 不一定共线,因此()a b c ⋅⋅与()a b c ⋅⋅不一定相等.【题型归纳目录】题型一:平面向量的数量积运算 题型二:平面向量的夹角 题型三:平面向量的模长题型四:平面向量的投影、投影向量 题型五:平面向量的垂直问题 题型六:建立坐标系解决向量问题 【典例例题】题型一:平面向量的数量积运算例1.(2022·全国·模拟预测(理))在ABC 中,π3ABC ∠=,O 为ABC 的外心,2BA BO ⋅=,4BC BO ⋅=,则BA BC ⋅=( )A .2B .C .4D .【答案】B 【解析】 【分析】设,AB BC 的中点为D,E ,将2BA BO ⋅=,变为2BD BO ⋅,根据数量积的几何意义可得||1BD =,同理求得||BC ,根据数量积的定义即可求得答案. 【详解】如图,设,AB BC 的中点为D,E ,连接OD,OE ,则,OD AB OE BC ⊥⊥ ,故2BA BO ⋅=,即22||||cos 2BD BO BD BO OBD ⋅=⋅∠= , 即2||1,||1BD BD ==,故||2BA =,4BC BO ⋅=,即22||||cos 4BE BO BE BO OBE ⋅=⋅∠= ,即2||2,||2BE BE ==,故||22BC =故1||||cos 22BA BC BA BC BAC ⋅=⋅∠=⨯=故选:B例2.(2022·河南安阳·模拟预测(理))已知AH 是Rt ABC △斜边BC 上的高,AH =,点M 在线段AH 上,满足()82+⋅=MB MC AH MB MC ⋅=( ) A .4- B .2- C .2 D .4【答案】A 【解析】 【分析】由()82+⋅=MB MC AH 2MH =,由AH 是Rt ABC △斜边BC 上的高,AH =,可得28HC HB AH ⋅==,然后对()()MB MC MH HB MH HC ⋅=+⋅+化简可求得结果因为AH 是Rt ABC △斜边BC 上的高,AH = 所以0,0AH HB AH HC ⋅=⋅=,28HC HB AH ⋅==, 因为()82+⋅=MB MC AH所以()82MH MH A HB HC H +⋅=++ 所以282MH AH HB AH HC AH ⋅+⋅+⋅= 所以42MH AH ⋅=, 所以42MH AH ⋅= 所以2MH =,所以()()MB MC MH HB MH HC ⋅=+⋅+ 2MH MH HC HB MH HC HB =+⋅+⋅+⋅2cos MH HC HB π=+⋅ 228(1)4=+⨯-=-,故选:A例3.(2022·全国·高三专题练习(理))已知向量,a b 满足||1,||3,|2|3a b a b ==-=,则a b ⋅=( ) A .2- B .1- C .1 D .2【答案】C 【解析】 【分析】根据给定模长,利用向量的数量积运算求解即可. 【详解】解:∵222|2|||44-=-⋅+a b a a b b , 又∵||1,||3,|2|3,==-=a b a b ∴91443134=-⋅+⨯=-⋅a b a b ,故选:C.例4.(2022·四川省泸县第二中学模拟预测(文))如图,正六边形ABCDEF 中,2AB =,点P 是正六边形ABCDEF 的中心,则AP AB ⋅=______.【答案】2 【解析】 【分析】找到向量的模长和夹角,带入向量的数量积公式即可. 【详解】在正六边形中,点P 是正六边形ABCDEF 的中心,60PAB ︒=∴∠,且2AP AB ==, 1cos602222AP AB AP AB ︒∴⋅=⋅⋅=⨯⨯=. 故答案为:2.例5.(2022·安徽·合肥市第八中学模拟预测(理))已知向量,,a b c 满足0,||1,||3,||4a b c a b c ++====,则a b ⋅=_________.【答案】3 【解析】 【分析】由0a b c ++=,得a b c +=-,两边平方化简可得答案 【详解】由0a b c ++=,得a b c +=-, 两边平方,得2222a a b b c +⋅+=, 因为134a b c ===,,, 所以12916a b +⋅+=,得·3a b =. 故答案为:3.例6.(2022·陕西·模拟预测(理))已知向量()1,a x =,()0,1b =,若25a b +=,则⋅=a b __________ 【答案】0或4-##4-或0. 【解析】 【分析】由向量模长坐标运算可求得x ,由向量数量积的坐标运算可求得结果. 【详解】()21,2a b x +=+,(21a b x ∴+=+0x =或4x =-;当0x =时,()1,0a =,0a b ∴⋅=;当4x =-时,()1,4a =-,044a b ∴⋅=-=-; 0a b ∴⋅=或4-.故答案为:0或4-.例7.(2022·上海徐汇·二模)在ABC 中,已知1AB =,2AC =,120A ∠=︒,若点P 是ABC 所在平面上一点,且满足AP AB AC λ=+,1BP CP ⋅=-,则实数λ的值为______________. 【答案】1或14【解析】 【分析】根据平面向量的线性运算法则,分别把BP CP ,用AB AC ,表示出来,再用1BP CP ⋅=-建立方程,解出λ的值. 【详解】由AP AB AC λ=+,得AP AB AC λ-=,即BP AC λ=, (1)CP AP AC AB AC λ=-=+-,在ABC 中,已知1AB =,2AC =,120A ∠=︒, 所以2((1))(1))BP CP AC AB AC AC AB AC λλλλλ⋅=⋅+-=⋅+-22cos1204(1)451λλλλλ=+-=-=-, 即24510λλ-+=,解得1λ=或14λ= 所以实数λ的值为1或14. 故答案为:1或14. 例8.(2022·陕西·交大附中模拟预测(理))已知在平行四边形ABCD 中,11,,2,622DE EC BF FC AE AF ====,则AC DB ⋅值为__________. 【答案】94【解析】 【分析】由向量加法的几何意义及数量积运算律有22D AC DB C CB ⋅=-,再由1313AE BC DC AF DC BC⎧=+⎪⎪⎨⎪=+⎪⎩结合数量积运算律,即可得结果. 【详解】由题设可得如下图:,AC AD DC DB DC CB =+=+,而AD CB =-,所以22D AC DB C CB ⋅=-, 又11,,2,622DE EC BF FC AE AF ====, 所以1313AE AD DE BC DC AF AB BF DC BC ⎧=+=+⎪⎪⎨⎪=+=+⎪⎩,则22222143921639BC BC DC DC DC BC DC BC ⎧+⋅+=⎪⎪⎨⎪+⋅+=⎪⎩,故228()29DC BC -=,可得2294DC BC -=,即94AC DB =⋅. 故答案为:94例9.(2022·福建省福州第一中学三模)过点M 的直线与22:(3)16C x y -+=交于A ,B 两点,当M 为线段AB中点时,CA CB ⋅=___________. 【答案】-8 【解析】 【分析】由题意可得M 在C 内,又由M 为线段AB 中点AB CM ⊥,由两点间距离公式得2CM ==12AC ,进而求得120ACB ∠=︒,再由向量的数量积公式计算即可得答案. 【详解】解:因为点M 在22:(3)16Cx y -+=内, 所以当M 为线段AB 中点时,AB CM ⊥,又因为C 的半径为4,2CM ==12AC ,所以60ACM ∠=°, 所以120ACB ∠=︒,所以,CA CB ⋅=||||cos120CA CB ︒=144()82⨯⨯-=-.故答案为:-8.例10.(2022·全国·模拟预测(理))已知向量a 与b 不共线,且()2a a b ⋅+=,1a =,若()()22a b a b -⊥+,则()b a b ⋅-=___________. 【答案】3- 【解析】 【分析】由()2a a b ⋅+=得1a b ⋅=,由()()22a b a b -⊥+得2b =,即可求解结果. 【详解】由()212a a b a a b a b ⋅+=+⋅=+⋅=得1a b ⋅=由()()22a b a b -⊥+得()()222240a b a b a b -⋅+=-=,所以2b = 则()2143b a b b a b ⋅-=⋅-=-=- 故答案为:3-例11.(2022·全国·高三专题练习(理))设向量a ,b 的夹角的余弦值为13,且1a =,3b =,则()2a b b +⋅=_________. 【答案】11 【解析】 【分析】设a 与b 的夹角为θ,依题意可得1cos 3θ=,再根据数量积的定义求出a b ⋅,最后根据数量积的运算律计算可得. 【详解】解:设a 与b 的夹角为θ,因为a 与b 的夹角的余弦值为13,即1cos 3θ=,又1a =,3b =,所以1cos 1313a b a b θ⋅=⋅=⨯⨯=,所以()22222221311a b b a b b a b b +⋅=⋅+=⋅+=⨯+=.故答案为:11.例12.(2022·江苏·徐州市第七中学模拟预测)如图是第24届国际数学家大会的会标,它是根据中国古代数学家赵爽的弦图设计的,大正方形ABCD 是由4个全等的直角三角形和中间的小正方形EFGH 组成的.若E 为线段BF 的中点,则AF BC ⋅=______.【答案】4 【解析】 【分析】利用数量积的几何意义求解. 【详解】 解:如图所示:设CF x =,由题可得2BF x =, 所以()2225x x +=, 解得1x =.过F 作BC 的垂线,垂足设为Q , 故24AF BC BQ BC BF ⋅=⋅==, 故答案为:4. 【方法技巧与总结】(1)求平面向量的数量积是较为常规的题型,最重要的方法是紧扣数量积的定义找到解题思路. (2)平面向量数量积的几何意义及坐标表示,分别突出了它的几何特征和代数特征,因而平面向量数量积是中学数学较多知识的交汇处,因此它的应用也就十分广泛.(3)平面向量的投影问题,是近几年的高考热点问题,应熟练掌握其公式:向量a 在向量b 方向上的投影为||a bb ⋅. (4)向量运算与整式运算的同与异(无坐标的向量运算)同:222()2a b a ab b ±=±+;a b ±()a b c ab ac +=+公式都可通用 异:整式:a b a b ⋅=±,a 仅仅表示数;向量:cos a b a b θ⋅=±(θ为a 与b 的夹角) 22222cos ma nb m a mn a b n b θ±=±+,使用范围广泛,通常是求模或者夹角.ma nb ma nb ma nb -≤±≤+,通常是求ma nb ±最值的时候用. 题型二:平面向量的夹角例13.(2022·甘肃·高台县第一中学模拟预测(文))已知非零向量a →,b →满足a b a →→→-=,a a b →→→⎛⎫⊥- ⎪⎝⎭,则a→与b →夹角为______. 【答案】4π##45 【解析】 【分析】根据已知求出2=a a b →→→,||b a →→,即得解. 【详解】解:因为a b a →→→-=,所以22222,2a b a b a b a b →→→→→→→→+-=∴=.因为a a b →→→⎛⎫⊥- ⎪⎝⎭,所以22=0,=aa b a a b a a b →→→→→→→→→⎛⎫--=∴ ⎪⎝⎭, 所以22=2||b a b a →→→→∴,.设a →与b →夹角为θ,所以22cos =2|||||a ba ba b a θ→→→→→→→==. 因为[0,]θπ∈,所以4πθ=.例14.(2022·安徽·合肥一六八中学模拟预测(文))已知向量||1b =,向量(1,3)a =,且|2|6a b -=,则向量,a b 的夹角为___________. 【答案】2π##90 【解析】【分析】由|2|6a b -=两边平方,结合数量积的定义和性质化简可求向量,a b 的夹角 【详解】因为(1,3)a =,所以(21+a =因为|2|6a b -=,所以2222+26a ab b -=,又||1b =,所以426b -⋅+=,所以0a b ⋅=, 向量,a b 的夹角为θ,则cos 0a b θ⋅= 所以cos 0θ=,则2πθ=.故答案为:2π. 例15.(2022·湖北武汉·模拟预测)两不共线的向量a ,b ,满足3a b =,且t R ∀∈,a tb a b -≥-,则cos ,a b =( )A .12 B C .13D 【答案】C 【解析】 【分析】由a tb a b -≥-两边平方后整理得一元二次不等式,根据一元二次函数的性质可判断0∆≤,整理后可知∆只能为0,即可解得答案. 【详解】 解:由题意得:t R ∀∈,a tb a b -≥-t R ∴∀∈,2222222a t b ta b a b a b +-⋅≥+-⋅即222226cos ,6cos ,0t b t b a b b b a b --+≥ 0b ≠t R ∴∀∈,26cos ,16cos ,0t t a b a b --+≥()221Δ36cos ,46cos ,136cos ,03a b a b a b ⎛⎫∴=--=-≤ ⎪⎝⎭1cos ,03a b ∴-=,即1cos ,3a b =故选:C例16.(2022·云南师大附中模拟预测(理))已知向量()2,2a t =,()2,5b t =---,若向量a 与向量a b +的夹角为钝角,则t 的取值范围为( ) A .()3,1- B .()()3,11,1---C .()1,3-D .111,,322⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭【答案】D 【解析】 【分析】求出a b +的坐标,求得当a 与a b +共线时12t =,根据向量a 与向量a b +的夹角为钝角,列出相应的不等式,求得答案. 【详解】因为(23)a b t +=--,,又a 与a b +的夹角为钝角, 当a 与a b +共线时,162(2)0,2t t t ---==, 所以()0a a b ⋅+<且a 与a b +的不共线,即2230t t --<且12t ≠, 所以111322t ⎛⎫⎛⎫∈-⋃ ⎪ ⎪⎝⎭⎝⎭,,, 故选:D .例17.(2022·广东深圳·高三阶段练习)已知向量()cos30,sin 210a =︒-︒,(3,1)b =-,则a 与b 夹角的余弦值为_________. 【答案】12-【解析】 【分析】化简向量a ,根据向量的模的公式,数量积公式和向量的夹角公式求解. 【详解】由()cos30,sin210a =︒-︒知31,22a ⎛⎫= ⎪ ⎪⎝⎭,故31(1122a b ⋅=⨯+⨯=-,||1a =,||2b =,记a 与b 的夹角为θ,则11cos 122||||a b a b θ⋅-===-⨯⨯.故答案为:12-.例18.(2022·全国·高三专题练习)已知向量(3,4),(1,0),t ===+a b c a b ,若,,<>=<>a c b c ,则t =( ) A .6- B .5- C .5 D .6【答案】C 【解析】 【分析】利用向量的运算和向量的夹角的余弦公式的坐标形式化简即可求得 【详解】解:()3,4c t =+,cos ,cos ,a c b c =,即931635t tc c+++=,解得5t =, 故选:C例19.(2022·湖南·长沙市明德中学二模)已知非零向量a 、b 满足0a b ⋅=,()()0a b a b +⋅-=,则向量b 与向量a b -夹角的余弦值为( )A .B .0C D 【答案】A 【解析】 【分析】根据0a b ⋅=,设(1,0)a =,(0,)b t =,根据()()0a b a b +⋅-=求出21t =,再根据平面向量的夹角公式计算可得解. 【详解】因为0a b ⋅=,所以可设(1,0)a =,(0,)b t =,则(1,)a b t +=,(1,)a b t -=-, 因为()()0a b a b +⋅-=,所以210t -=,即21t =.则()cos ,||||b a bb a b b a b ⋅-<->=⋅-2==,故选:A.例20.(2022·辽宁·大连市一0三中学模拟预测)已知单位向量a ,b 满足3a b a b -=+,则a 与b 的夹角为( ) A .30° B .60°C .120°D .150°【答案】C【解析】 【分析】根据数量积的运算律及夹角公式计算可得; 【详解】解:因为a ,b 为单位向量,所以1a b ==, 又3a b a b -=+,所以()()223a b a b -=+,即()2222232a a b b a a b b -⋅+=+⋅+,所以()22240a a b b +⋅+=,即()22240a a b b+⋅+=,所以12a b ⋅=-, 所以1cos ,2a ba b a b ⋅==-⋅,因为[],0,a b π∈,所以2,3a b π=;故选:C例21.(2022·北京市大兴区兴华中学三模)已知a 为单位向量,向量()1,2b =,且2a b ⋅=,则,a b a -=( ) A .π6B .π4C .π3D .3π4【答案】B 【解析】 【分析】先根据已知条件求出()a b a ⋅-和b a -,然后利用向量的夹角公式可求出结果 【详解】因为a 为单位向量,向量()1,2b =,且2a b ⋅=, 所以()2211a b a a b a ⋅-=⋅-=-=,222()252b a b a b a b a -=-=-⋅+=-=所以()1cos ,2a b a a b a a b a⋅--===-, 因为[],0,πa b a -∈, 所以π,4a b a -=, 故选:B例22.(2022·全国·模拟预测(理))已知平面向量a b +与a b -互相垂直,模长之比为2:1,若||5a =,则a 与a b +的夹角的余弦值为( )A B C D .12【答案】A 【解析】 【分析】利用向量a b +与a b -互相垂直,模长之比为2:1,利用数量积求得向量,a b 的模长及数量积,然后利用平面向量夹角公式求得结果. 【详解】平面向量a b +与a b -互相垂直,模长之比为2:1,则()()0a b a b +⋅-=且||2||a b a b +=-,得22a b =,又||5a =,则||||5a b ==,将||2||a b a b +=-平方得22222484a a b b a a b b +⋅+=-⋅+,解得=3a b ⋅,222|=216a b a a b b +|+⋅+=,则4a b +=,设a 与a b +的夹角为θ,则()25+3cos =54a ab aa ba a ba a bθ⋅++⋅===⨯++ 故选:A.例23.(多选题)(2022·福建省福州格致中学模拟预测)已知单位向量,a b 的夹角为120︒,则以下说法正确的是( ) A .||1a b += B .(2)a b a +⊥C .3cos ,2a b b 〈-〉= D .2a b +与2a b +可以作为平面内的一组基底【答案】ABD 【解析】 【分析】根据向量的模的公式,数量积的运算,向量的夹角公式,判断向量共线的条件逐项验证即可 【详解】据题意221,1,11cos1202a b a b ︒==⋅=⨯⨯=-因为2221()211212a b a b a b ⎛⎫+=++⋅=++⨯-= ⎪⎝⎭所以||1a b +=,所以A 对因为21(2)21202a b a a a b ⎛⎫+⋅=+⋅=+⨯-= ⎪⎝⎭,所以(2)a b a +⊥,所以B 对.因为222213()1,()2322a b b a b b a b a b a b -⋅=⋅-=--=--=++⋅=所以3()2cos ,||||31a b b a b b a b b --⋅〈-〉===-⋅⨯所以C 错因为2a b +与2a b +不共线,所以可以作为平面内的一组基底,所以D 正确 故选:ABD例24.(多选题)(2022·江苏·模拟预测)已知向量(3,2)a =-,(2,1)b =,(,1)c λ=-,R λ∈,则( ) A .若(2)a b c +⊥,则4λ= B .若a tb c =+,则6t λ+=- C .a b μ+的最小值为D .若向量a b +与向量2b c +的夹角为锐角,则λ的取值范围是(,1)-∞- 【答案】ABC 【解析】 【分析】利用向量的坐标运算及向量垂直的坐标表示判断A ,利用向量坐标的表示可判断B ,利用向量的模长的坐标公式及二次函数的性质可判断C ,利用向量数量积的坐标表示及向量共线的坐标表示可判断D. 【详解】对于A ,因为2(1,4)a b +=,(,1)c λ=-,(2)a b c +⊥,所以14(1)0λ⨯+⨯-=,解得4λ=,所以A 正确. 对于B ,由a tb c =+,得(3,2)(2,1)(,1)(2,1)t t t λλ-=+-=+-,则32,21,t t λ-=+⎧⎨=-⎩解得93t λ=-⎧⎨=⎩,故6t λ+=-,所以B 正确.对于C ,因为(3,2)(2,1)(23,2)a bμμμμ+=-+=-+,所以a b μ+==则当45μ=时,a b μ+取得最小值,为,所以C 正确. 对于D ,因为(1,3)a b +=-,2(4,1)b c λ+=+,向量a b +与向量2b c +的夹角为锐角, 所以()(2)1(4)310a b b c λ⋅+=-⨯+⨯++>,解得1λ<-;当向量a b +与向量2b c +共线时,113(4)0λ-⨯-⨯+=,解得133λ=-, 所以λ的取值范围是1313,,133⎛⎫⎛⎫-∞-⋃-- ⎪ ⎪⎝⎭⎝⎭,所以D 不正确.故选:ABC.例25.(2022·河南·通许县第一高级中学模拟预测(文))已知1e ,2e 是单位向量,122a e e =-,123b e e =+,若a b ⊥,则1e ,2e 的夹角的余弦值为( )A .35B .12C .13D .15【答案】D 【解析】 【分析】根据平面向量数量积的运算性质,结合平面向量夹角公式进行求解即可. 【详解】由题意知121e e ==,()()22121212122303250a b e e e e e e e e ⋅=-⋅+=⇒--⋅=,即1215e e ⋅=,所以121cos 5e e ⋅=. 故选:D.例26.(2022·安徽师范大学附属中学模拟预测(理))非零向量,a b 满足2a b a b a +=-=,则a b -与a 的夹角为( ) A .6π B .3π C .23π D .56π 【答案】B 【解析】 【分析】根据给定条件,求出a b ⋅,再利用向量夹角公式计算作答. 【详解】由a b a b +=-得:22()()a b a b +=-,即222222a a b b a a b b +⋅+=-⋅+,解得0a b ⋅=,因此,22()1cos ,2||||2||a b a a a b a b a a b a a -⋅-⋅〈-〉===-,而,[0,π]a b a 〈-〉∈,解得π,3a b a 〈-〉=, 所以a b -与a 的夹角为3π. 故选:B例27.(2022·内蒙古·海拉尔第二中学模拟预测(文))已知向量a ,b 为单位向量,()0a b a b λλλ+=-≠,则a 与b 的夹角为( ) A .6πB .π3C .π2D .2π3【答案】C 【解析】 【分析】由题干条件平方得到()0a b λ⋅=,从而得到0a b ⋅=,得到a 与b 的夹角. 【详解】由()0a b a b λλλ+=-≠,两边平方可得:22222222a a b b a a b b λλλλ+⋅+=-⋅+,因为向量a ,b 为单位向量,所以221221a b a b λλλλ+⋅+=-⋅+,即()0a b λ⋅=. 因为0λ≠,所以0a b ⋅=,即a 与b 的夹角为π2. 故选:C【方法技巧与总结】 求夹角,用数量积,由||||cos a b a b 得121222221122cos||||x x y y a b a b xyx y ,进而求得向量,a b 的夹角.题型三:平面向量的模长例28.(2022·福建省厦门集美中学模拟预测)已知向量a 、b 、c 满足0a b c ++=,()()0a b a c -⋅-=,9b c -=,则a =______. 【答案】3 【解析】 【分析】由已知条件可得出a b c =--,根据平面向量的数量积可求得22b c +、b c ⋅的值,结合平面向量的数量积可求得a 的值. 【详解】由已知可得a b c =--,则()()()()()()22220a b a c b c b c b c b c -⋅-=--⋅--=+⋅+=, 即222250b c b c ++⋅=,因为9b c -=,则22281b c b c +-⋅=,所以,2245b c +=,18b c ⋅=-,因此,()2222229a a b c b c b c ==--=++⋅=,故3a =.故答案为:3.例29.(2022·辽宁沈阳·三模)已知平面向量,,a b c 满足1,1,0,1a c a b c a b ==++=⋅=-,则b =_______.【解析】【分析】由题意得c a b =--,直接平方即得结果. 【详解】由0a b c ++=可得c a b =--,两边同时平方得2222c a a b b =+⋅+,1,1,1a c a b ==⋅=-,2112b ∴=-+,解得2b =..例30.(2022·全国·高三专题练习(文))已知向量(2,1)(2,4)a b ==-,,则a b -( ) A .2 B .3 C .4 D .5【答案】D 【解析】 【分析】先求得a b -,然后求得a b -. 【详解】因为()()()2,12,44,3a b -=--=-,所以245-=+a b .故选:D例31.(2022·江苏·扬中市第二高级中学模拟预测)已知a 与b 为单位向量,且a ⊥b ,向量c 满足||2b c a --=,则|c |的可能取值有( )A .6B .5C .4D .3【答案】D 【解析】 【分析】建立平面直角坐标系,由向量的坐标计算公式可得(1,1)c a b x y --=--,进而由向量模的计算公式可得22(1)(1)4x y -+-=,分析可得C 在以(1,1)为圆心,半径为2的圆上,结合点与圆的位置关系分析可得答案. 【详解】根据题意,设OA a =,OB b =,OC c =,以O 为坐标原点,OA 的方向为x 轴正方向,OB 的方向为y 轴的正方向建立坐标系, 则(1,0)A ,(0,1)B ,设(,)C x y ,则(1,1)c a b x y --=--,若||2b c a --=,则有22(1)(1)4x y -+-=,则C 在以(1,1)为圆心,半径为2的圆上,设(1,1)为点M ,则||OM =||||||r OM OC r OM -+, 即22||22OC +,则||c 的取值范围为22⎡⎣;故选:D .例32.(2022·江苏·南京市天印高级中学模拟预测)已知平面向量a ,b 满足2a =,1b =,且a 与b 的夹角为3π,则a b +=( )AB C D .3【答案】C 【解析】 【分析】 由()2222a b a ba ab b +=+=+⋅+求解.【详解】解:因为2a =,1b =,且a 与b 的夹角为3π, 所以()2222a b a ba ab b +=+=+⋅+,==,故选:C例33.(2022·河南·开封市东信学校模拟预测(理))已知非零向量a ,b 的夹角为6π,()||3,a a a b =⊥-,则||b =___________. 【答案】2 【解析】 【分析】由平面向量的数量积的运算性质求解即可 【详解】由()a a b ⊥-得22π3()||||||||cos3||062a ab a a b a a b b ⋅-=-⋅=-⋅=-=, 解得||2b =. 故答案为:2例34.(2022·全国·高三专题练习)已知三个非零平面向量a ,b ,c 两两夹角相等,且||1a =,||2b =,||3c =,求|23|a b c -+.9 【解析】【分析】由三个非零平面向量a ,b ,c 两两夹角相等得 ,,,120a b b a c c 〈〉=〈〉=〈〉=︒或0,再分别计算求解即可 【详解】因为三个非零平面向量a ,b ,c 两两夹角相等,所以,,,120a b b a c c 〈〉=〈〉=〈〉=︒或0 .当,,,120a b b a c c 〈〉=〈〉=〈〉=︒时,2|23|(23)a b c a b c -+=-+222||||9||4126a b c b b c a c a =++-⋅+⋅-⋅==当,,,0a b b c c a 〈〉=〈〉=〈〉=︒,即a ,b ,c 共线时. |23|2||||3||2299a b c a b c -+=-+=-+=∣∣.9例35.(2022·全国·高三专题练习)已知2=a ,3b =,a 与b 的夹角为120,求a b +及a b -的值. 【答案】7a b +=,19a b -=. 【解析】 【分析】利用向量数量积定义可求得a b ⋅,由向量数量积的运算律可求得2a b +和2a b -,由此可得结果. 【详解】cos ,6cos1203a b a b a b ⋅=⋅<>==-,22224697a b a a b b ∴+=+⋅+=-+=,222246919a b a a b b -=-⋅+=++=,7a b ∴+=,19a b -=.例36.(2022·福建泉州·模拟预测)已知向量(0,1)=a ,(,3)b t =,若,a b 的夹角为π3,则||b =___________.【答案】【解析】 【分析】根据平面向量的夹角公式可求出结果. 【详解】 由πcos3||||a b a b ⋅=⋅,得132||b ,得||23b =.故答案为:【方法技巧与总结】 求模长,用平方,2||a a .题型四:平面向量的投影、投影向量例37.(2022·新疆克拉玛依·三模(理))设a ,b 是两个非零向量,AB a =,CD b =,过AB 的起点A 和终点B ,分别作CD 所在直线的垂线,垂足分别为1A ,1B ,得到11A B ,则11A B 叫做向量a 在向量b 上的投影向量.如下图,已知扇形AOB 的半径为1,以O 为坐标原点建立平面直角坐标系,()1,0OA =,12OB ⎛= ⎝⎭,则弧AB 的中点C 的坐标为________;向量CO 在OB 上的投影向量为________ .【答案】12⎫⎪⎪⎝⎭3()4- 【解析】 【分析】由已知,根据给到的OA ,OB 先求解OA 与OB 的夹角,然后再利用点C 是弧AB 的中点,即可求解出AOC ∠,从而求解点C 的坐标;根据前面求解出的点C 的坐标,写出OB 和CO ,先计算向量CO 在OB 上的投影,然后根据OB 即可写出向量CO 在OB 上的投影向量. 【详解】由已知,()1,0OA =,12OB ⎛= ⎝⎭,所以112cos ,112OA OB OA OB OA OB ===⨯, 所以π3AOB ∠=,因为点C 为弧AB 的中点,所以π6AOC ∠=, 扇形AOB 的半径为1,所以弧AB 满足的曲线参数方程为cos π()sin 3xy αααα=⎧≤≤⎨=⎩为参数,0, 所以中点C 的坐标为πcos 6π1sin 62x y ⎧==⎪⎪⎨⎪==⎪⎩,所以C的坐标为12⎫⎪⎪⎝⎭,12CO ⎛⎫=-- ⎪ ⎪⎝⎭,12OB ⎛=⎝⎭, 向量CO 在OB 上的投影为3441CO OB OB-== 因为12OB ⎛= ⎝⎭,所以向量CO 在OB 上的投影向量为3()4-.故答案为:12⎫⎪⎪⎝⎭;3()4- 例38.(2022·江西鹰潭·二模(文))已知向量,,(3,1),||2,(2)3a b a b a b b ==-⋅=,则b 在a 方向上的投影为_________ 【答案】54【解析】 【分析】根据向量数量积性质和向量投影定义求解即可. 【详解】因为(3,1)a =,||2b =,所以2||1(2a =+,22b =,因为(2)3a b b -⋅=,所以222223a b b b a b b a b ⋅-⋅=⋅-=⋅-=,所以52a b ⋅=, 所以b 在a 方向上的投影为5||4a b a ⋅=, 故答案为:54. 例39.(2022·江西·南昌市八一中学三模(理))已知向量()1,2a =-,()3,b t =,且a 在b 上的投影等于1-,则t =___________. 【答案】4 【解析】 【分析】根据投影定义直接计算可得,注意数量积符号. 【详解】因为a 在b 上的投影等于1-,即cos ,1a b a a b b⋅〈〉==-1=-,且320t -<,解得4t =.故答案为:4例40.(2022·江苏淮安·模拟预测)已知||2a =,b 在a 上的投影为1,则a b +在a 上的投影为( )A .-1B .2C .3D 【答案】C 【解析】 【分析】先利用b 在a 上的投影为1求出a b ⋅,然后可求a b +在a 上的投影. 【详解】因为||2a =,b 在a 上的投影为1,所以1||a ba ⋅=,即2ab ⋅=; 所以a b +在a 上的投影为()24232||||a b a aa b a a +⋅+⋅+===;故选:C.例41.(2022·四川成都·三模(理))在ABC 中,已知7π12A ∠=,π6C ∠=,AC =BA在BC 方向上的投影为( ).A .B .2CD .【答案】C 【解析】 【分析】利用三角形内角和及正弦定理求得4B π∠=、2AB =,再根据向量投影的定义求结果.【详解】由题设4B π∠=,则sin sin AB AC C B=,可得122AB ==, 所以向量BA 在BC 方向上的投影为||cos 2BA B ==故选:C例42.(2022·广西桂林·二模(文))已知向量(1,2),(0,1)==-a b ,则a 在b 方向上的投影为( ) A .1- B .2- C .1 D .2【答案】B 【解析】 【分析】利用向量的投影公式直接计算即可. 【详解】向量(1,2),(0,1)==-a b ,则a 在b 方向上的投影为2||cos ,21||a b a a b b ⋅-<>===-, 故选:B .例43.(2022·内蒙古呼和浩特·二模(理))非零向量a ,b ,c 满足()b a c ⊥-,a 与b 的夹角为6π,3a =,则c 在b 上的正射影的数量为( )A .12-B .C .12D 【答案】D 【解析】 【分析】利用垂直的向量表示,再利用正射影的数量的意义计算作答. 【详解】非零向量a ,b ,c 满足()b a c ⊥-,则()·0b a c a b c b -=⋅-⋅=,即c b a b ⋅=⋅,又a 与b 的夹角为6π,3a =, 所以c 在b 上的正射影的数量3||cos ,||cos 62||||c b a b c c b a b b π⋅⋅〈〉====故选:D例44.(2022·辽宁·渤海大学附属高级中学模拟预测)已知单位向量,a b 满足||1a b -=,则a 在b 方向上的投影向量为( )A .12bB .12b -C .12aD .12a -【答案】A 【解析】 【分析】根据投影向量公式,即可求解. 【详解】22221a b a a b b -=-⋅+=,因为1==a b ,所以12a b ⋅=, 所以a 在b 方向上的投影向量为12a b b b b b ⋅⋅=. 故选:A例45.(2022·海南华侨中学模拟预测)已知平面向量a ,b 的夹角为3π,且||2a =,(1,3)b =-,则a 在b 方向上的投影向量为( )A .12⎫⎪⎪⎝⎭B .21⎛⎫⎪ ⎪⎝⎭ C .12⎛- ⎝⎭D .12⎛ ⎝⎭【答案】C 【解析】 【分析】利用投影向量的定义求解. 【详解】解:因为平面向量a ,b 的夹角为3π,且||2a =,(1,3)b =-, 所以a 在b方向上的投影向量为22cos 13(1,3)(2a b a b b bbπ⋅⋅⋅⋅=⋅-=- ,故选:C题型五:平面向量的垂直问题例46.(2022·海南海口·二模)已知向量a ,b 的夹角为45°,2a =,且2a b ,若()a b b λ+⊥,则λ=______. 【答案】-2 【解析】 【分析】先利用数量积的运算求解b ,再利用向量垂直数量积为0即可求解. 【详解】因为cos 452a b a b ⋅=︒=得2b =, 又因为()a b b λ+⊥,所以()2240a b b a b b λλλ+⋅=⋅+=+=,所以2λ=-. 故答案为:-2.例47.(2022·广东茂名·二模)已知向量a =(t ,2t ),b =(﹣t ,1),若(a ﹣b )⊥(a +b ),则t =_____. 【答案】12±【解析】 【分析】由(a ﹣b )⊥(a +b ),由垂直向量的坐标运算可得出a b =,再由模长的公式即可求出t . 【详解】因为(a ﹣b )⊥(a +b ),所以()()0a b a b -⋅+=,所以220a b -=,则a b =,所以22241t t t +=+,所以12t =±.故答案为:12±.例48.(2022·青海玉树·高三阶段练习(理))已知向量()1,1a =-,()1,b m =,若()3a b a +⊥,则m =______.【答案】13【解析】 【分析】根据向量的坐标运算和数量积的坐标运算即可求解. 【详解】()()23,3030a b a a b a aa b +⊥∴+⋅=⇒+⋅= ,所以()123103m m +-+=⇒=故答案为:13例49.(2022·河南开封·模拟预测(理))已知两个单位向量1e 与2e 的夹角为3π,若122a e e =+,12b e me =+,且a b ⊥,则实数m =( ) A .45-B .45 C .54-D .54【答案】A 【解析】 【分析】由向量垂直及数量积的运算律可得221122(2)20e m e e m e ++⋅+=,结合已知即可求m 的值.【详解】由题意1222121122)()(220()2a b e me m e e m e e e e ⋅=⋅+=++⋅++=, 又1e 与2e 的夹角为3π且为单位向量, 所以22021m m +++=,可得45m =-.故选:A例50.(2022·河南安阳·模拟预测(文))已知向量(22,4),1,cos 2⎛⎫=-= ⎪⎝⎭a b θ,其中(0,π)θ∈,若a b ⊥,则sin θ=___________. 【答案】1 【解析】 【分析】根据平面向量垂直的性质,结合平面向量数量积的运算坐标表示公式、特殊角的三角函数值进行求解即可. 【详解】因为a b ⊥,所以0a b ⋅=,即14cos0cos22θθ-+=⇒=,因为(0,π)θ∈,所以π(0,)22θ∈,因此ππ242θθ=⇒=,所以sin 1θ=, 故答案为:1例51.(2022·全国·模拟预测(文))设向量()2,1a =,()1,b x =-,若()a b a ⊥-,则b =___________.【答案】【解析】 【分析】由平面向量数量积的坐标运算求解 【详解】()3,1b a x -=--,由题意得()0a b a ⋅-=,即610x -+-=,得7x =149b =+=.故答案为:【方法技巧与总结】121200a b a b x x y y ⊥⇔⋅=⇔+=题型六:建立坐标系解决向量问题例52.(2022·山东淄博·三模)如图在ABC 中,90ABC ∠=︒,F 为AB 中点,3CE =,8CB =,12AB =,则EA EB ⋅=( )A .15-B .13-C .13D .15【答案】C 【解析】 【分析】建立平面直角坐标系,利用坐标法求出平面向量的数量积; 【详解】解:建立如图所示的平面直角坐标系, 则(12,0)A ,(0,0)B ,(0,8)C ,(6,0)F , 又3CE =,8CB =,12AB =,则10CF =,即310CE FC =,即710FE FC =, 则()()9286,67710100,8,55BE BF FC ⎛⎫=+=+-= ⎪⎝⎭, 则,552851EA ⎛⎫=-⎪⎝⎭,928,55EB ⎛⎫=-- ⎪⎝⎭, 则25281355951EA EB ⎛⎫⎛⎫⋅=⨯-+-= ⎪ ⎪⎝⎭⎝⎭;故选:C .例53.(2022·贵州贵阳·模拟预测(理))在边长为2的正方形ABCD 中,E 是BC 的中点,则AC DE ⋅=( ) A .2 B .2-C .4-D .4【答案】A 【解析】 【分析】建立直角坐标系,用向量法即可 【详解】在平面直角坐标系中以A 为原点,AB 所在直线为x 轴建立坐标系,则()0,0A ,()0,2D ,()2,2C ,()2,1E ,所以()()2,22,1422AC DE ⋅=⋅-=-=, 故选:A例54.(2022·江苏·模拟预测)如图,在平面四边形ABCD 中,E ,F 分别为AD ,BC 的中点,(4,1)AB =,(2,3)DC =,(2,)AC m =-,若0E A F C =⋅,则实数m 的值是( )A .3-B .2-C .2D .3【答案】D 【解析】 【分析】根据题意得分别求出AD 和BC 的坐标,再分别求出AE 和BF 的坐标,EF EA AB BF =++,再利用数量积坐标运算求解即可. 【详解】根据题意得:(4,3)AD CD CA AC DC m =-=-=--,(6,1)BC AC AB m =-=--, 因为E ,F 分别为AD ,BC 的中点,所以13(2,)22m AE AD -==-,11(3,)22m BF BC -==-, 所以()3,2EF EA AB BF =++=,又0E A F C =⋅,即()2320m -⨯+⨯=,解得3m =. 故选:D.例55.(2022·四川南充·三模(理))在Rt ABC △中,90A ∠=︒,2AB =,3AC =,2AM MC =,12AN AB =,CN 与BM 交于点P ,则cos BPN ∠的值为( )A B .C .D 【答案】D 【解析】 【分析】将三角形放到直角坐标系当中,利用坐标法求向量夹角,即可求解. 【详解】解:建立如图直角坐标系,则(0,2),(0,1),(3,0),(2,0)B N C M , 得(3,1),(2,2)CN MB =-=-,所以co 10s CN MB CN P BB N M ⋅===⋅∠ 故选:D.例56.(多选题)(2022·山东聊城·三模)在平面四边形ABCD 中,1AB BC CD DA DC ===⋅=,12⋅=BA BC ,则( ) A .1AC = B .CA CD CA CD +=-C .2AD BC = D .BD CD ⋅=【答案】ABD 【解析】 【分析】根据所给的条件,判断出四边形ABCD 内部的几何关系即可. 【详解】因为1AB BC CD ===,1cos 2BA BC BA BC B ⋅==,可得3B π=,所以ABC 为等边三角形,则1AC = ,故A 正确;因为1CD =,所以21CD =,又1DA DC ⋅=,所以2CD DA DC =⋅ ,得()20DC DA DC DC DC DA DC AC -⋅=⋅-=⋅=,所以AC CD ⊥,则CA CD CA CD +=-,故B 正确; 根据以上分析作图如下:由于BC 与AD 不平行,故C 错误; 建立如上图所示的平面直角坐标系,则1,02B ⎛⎫- ⎪⎝⎭,1,02C ⎛⎫⎪⎝⎭,12D ⎫⎪⎪⎝⎭,12BD ⎫=⎪⎪⎝⎭,3122CD ⎛⎫= ⎪ ⎪⎝⎭,所以BD CD ⋅=,故D 正确; 故选:ABD.例57.(多选题)(2022·湖南·长郡中学模拟预测)已知向量a b c ,,满足2222a b a b c c =-=-==,则可能成立的结果为( ) A .34b =B .54b =C .34b c ⋅= D .54b c ⋅=【答案】BCD 【解析】 【分析】不妨设()10C ,,动点A 在以原点为圆心2为半径的圆O 上,动点B 在以C 为圆心,1为半径的圆上,利用坐标法,即可求解. 【详解】对于选项A 、B ,由题意2=a ,1c =,1a b b c -=-=,设OA a =,OB b =,OC c =,不妨设()10C ,,如图,动点A 在以原点为圆心2为半径的圆O 上,动点B 在以C 为圆心,1为半径的圆上,且满足1AB =, 圆C 方程是22(1)1x y -+=.当B 在圆C 上运动时,由AB OB OA +≥,得1OB ≥,当且仅当O ,A ,B 三点共线时取等号,又由图易知2OB ≤,即12b ≤≤,故选项A 不满足,选项B 满足;对于选项C 、D ,设()B x y ,,则()()10b c x y x ⋅=⋅=,,, 由22221(1)1x y x y ⎧+=⎨-+=⎩,解得12x y ⎧=⎪⎪⎨⎪=⎪⎩,12B x ∴≥, 又2B x ≤.即122x ≤≤. 122b c ⎡⎤∴⋅∈⎢⎥⎣⎦,,选项C ,D 满足.故选:BCD例58.(多选题)(2022·湖南·长郡中学模拟预测)如图甲所示,古代中国的太极八卦图是以同圆内的圆心为界,画出相等的两个阴阳鱼,阳鱼的头部有眼,阴鱼的头部有个阳殿,表示万物都在相互转化,互相涉透,阴中有阳,阳中有阴,阴阳相合,相生相克,蕴含现代哲学中的矛盾对立统一规律,其平面图形记为图乙中的正八边形ABCDEFGH ,其中2OA =,则( )A .20OB OE OG ++=B .22OA OD ⋅=- C .4AH EH += D .4+=+AH GH 【答案】ABC【分析】分别以,HD BF 所在的直线为x 轴和y 轴,建立的平面直角坐标系,作AM HD ⊥,结合向量的坐标运算,逐项判定,即可求解. 【详解】由题意,分别以,HD BF 所在的直线为x 轴和y 轴,建立如图所示的平面直角坐标系, 因为正八边形ABCDEFGH ,所以AOH HOG AOB EOF FOG ∠∠∠∠∠====DOE COB COD =∠=∠=∠360458==, 作AM HD ⊥,则OM AM =,因为2OA =,所以OM AM =(A ,同理可得其余各点坐标,()0,2B -,E ,(G ,()2,0D ,()2,0H -,对于A (02(2),2222)0OE OG ++=++--++=,故A 正确;对于B 中,(2(0OA OD ⋅=-⨯+⨯=-B 正确;对于C 中,(2AH =-,(2EH =-,(4,0)AH EH +=-,所以(4AH EH +=-=,故C 正确;对于D 中,(2AH =-,(2GH =-,(4AH GH +=-+,(4AH GH =-+=-D 不正确.故选:ABC.例59.(2022·江苏南京·模拟预测)在ABC 中,0AB AC ⋅=,3AB =,4AC =,O 为ABC 的重心,D 在边BC 上,且AD BC ⊥,则AD AO ⋅______. 【答案】9625【解析】根据O 为ABC 的重心,得到()13=+AO AB AC ,再由0AB AC ⋅=和AD BC ⊥,利用等面积法求得AD ,进而得到DB ,方法一:利用基底法求解;方法二:以A 坐标原点,AC 为x 轴,AB 为y 轴建立平面直角坐标系,利用坐标法求解. 【详解】解:因为O 为ABC 的重心, 所以()13=+AO AB AC , 因为0AB AC ⋅=,所以AB AC ⊥,则5BC =,因为AD BC ⊥,所以1122ABC S AB AC AD BC =⋅=⋅△, 即1134522AD ⨯⨯=⨯, 所以125AD =,在Rt ADB 中,95DB =. 方法一:因为925=+=+AD AB BD AB BC , ()9916252525=+-=+AB AC AB AC AB , 所以()191632525⎛⎫⋅=+⋅+ ⎪⎝⎭AD AO AB AC AC AB ,221916963252525⎛⎫=⨯+= ⎪⎝⎭AC AB . 方法二:以A 坐标原点,AC 为x 轴,AB 为y 轴建立平面直角坐标系,则()4,0AC =,()0,3AB =,由方法一可知9163648,25252525AD AC AB ⎛⎫=+= ⎪⎝⎭,()14,133AO AB AC ⎛⎫=+= ⎪⎝⎭, 所以136489513252525AD AO ⋅=⨯+⨯=.例60.(2022·北京·北大附中三模)已知正方形ABCD 的边长为2,E 是BC 的中点,点P 满足2AP AE AD =-,则PD =___________;PE PD ⋅=___________.【答案】 10 【解析】 【详解】解:以A 为原点,AB 为x 轴正方向建立平面直角坐标系, 所以()()()0,0,2,0,2,1A B E ,()0,2D ,设(),P x y ,所以()()(),,2,1,2,0AP x y AE AD ===,因为2AP AE AD =-,所以()()4,0,4,2P PD =-,所以25PD = 又()2,1PE =-,所以10PE PD ⋅=.故答案为:10.例61.(2022·天津市西青区杨柳青第一中学模拟预测)如图,在菱形ABCD 中,2AB =,60BAD ∠=︒,E ,F 分别为BC ,CD 上的点,2CE EB =,2CF FD =,若线段EF 上存在一点M ,使得5162AM AB AD =+,则||AM =__________,若点N 为线段BD 上一个动点,则AN MN ⋅的取值范围为__________.【答案】73 371,363⎡⎤-⎢⎥⎣⎦【解析】 【分析】以菱形的对角线为在不在建立平面直角坐标系,通过坐标运算先求M 坐标然后可得||AM ,再用坐标表示出AN MN ⋅,由二次函数性质可得所求范围. 【详解】因为ABCD 为菱形,所以AC BD ⊥,以BD 、AC 所在直线分别为x 、y 轴建立平面直角坐标系,因为2AB =,60BAD ∠=︒,所以1,OB OD OC OA ====则(0,(1,0),(1,0)A B D -,设((,0)M m N n 43(1,3),(1,3),(,),(,3),3AB AD AM m AN n ==-==因为5162AM AB AD =+,所以51((62m =+-解得13m =,所以17||93AM =又1(,3MN n =-所以21137()1()3636AN MN n n n ⋅=--=--因为11n -≤≤,所以当16n =时,AN MN ⋅有最小值3736-, 当1n =-时,AN MN ⋅有最大值13,所以AN MN ⋅的取值范围为371,363⎡⎤-⎢⎥⎣⎦故答案为:73,371,363⎡⎤-⎢⎥⎣⎦。

高考数学(理科,大纲版)一轮复习配套课件:52平面向量基本定理及坐标运算(共29张PPT)共31页文

目录
5.下列各组向量中:①e1=(-1,2),e2=(5,7);②e1=(3,5), e2=(6,10);③e1=(2,-3),e2=(12,-34),能作为表示它们所 在平面内所有向量的基底的是________.
答案:①
目录
考点探究讲练互动
考点突破
考点 1 平面向量基本定理 平面向量基本定理是用已知向量来表示未知向量的理论依 据.实质就是利用平行四边形法则或三角形法则进行向量的 加减运算或进行数乘运算.
目录
例1 如图,在平行四边形 ABCD 中,M,N 分别为 DC,BC 的中点,已知A→M=c,
A→N=d,试用 c,d 表示A→B,

AD.
【思路分析】 分别在△ADM 和△ABN 中,利用三角形法则
A→M=A→D+D→M, A→N=A→B+B→N.
目录
【解】 法一:设A→B=a,A→D=b, 则 a=A→N+N→B=d+(-12b),① b=A→M+M→D=c+(-12a),②
将②代入①得 a=d+(-12)[c+(-12a)] ⇒a=43d-23c, 代入②得 b=c+(-12)(43d-23c)=43c-23d.
即A→B=43d-23c,A→D=43c-23d.
目录
法二:设A→B=a,A→D=b,
因 M,N 分别为 CD,BC 的中点,
所以B→N=12b, D→M=12a,
目录
例2 已知 A(-2,4),B(3,-1),C(-3,-4).设A→B=a, B→C=b, C→A=c,
(1)求 3a+b-3c; (2)求满足 a=mb+nc 的实数 m,n. 【思路分析】 首先利用点的坐标求出向量坐标,再按坐标 运算法则求向量坐标.
高考数学(理科,大纲版)一轮复习配套课 件:52平面向量基本定理及坐标运算

2021年新高考数学一轮复习题型归纳与达标检测:28 平面向量的概念及线性运算(原卷版)

『高考复习·精推资源』『题型归纳·高效训练』第28讲 平面向量的概念及线性运算(讲)思维导图知识梳理1.向量的有关概念(1)向量的定义及表示:既有大小又有方向的量叫做向量.以A 为起点、B 为终点的向量记作AB ―→,也可用黑体的单个小写字母a ,b ,c ,…来表示向量.(2)向量的长度(模):向量AB ―→的大小即向量AB ―→的长度(模),记为|AB |―→. 2.几种特殊向量加法求两个向量和的运算三角形法则平行四边形法则(1)交换律:a+b=b+a;(2)结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算叫做a与b的差三角形法则a-b=a+(-b)数乘求实数λ与向量a的积的运算|λa|=|λ||a|;当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0λ(μa)=(λμ)a;(λ+μ)a=λa+μa;λ(a+b)=λa+λb向量a(a≠0)与b共线,当且仅当有唯一一个实数λ,使得b=λa.题型归纳题型1 平面向量的有关概念【例1-1】(2020春•临川区校级期中)下列说法正确的是()A.零向量没有方向B.向量就是有向线段C.只有零向量的模长等于0D.单位向量都相等【例1-2】(2020春•芮城县月考)有下列命题:①两个相等向量,若它们的起点相同,终点也相同;②若|a →|=|b →|,则a →=b →;③若|AB →|=|DC →|,则四边形ABCD 是平行四边形; ④若m →=n →,n →=k →,则m →=k →; ⑤若a →∥b →,b →∥c →,则a →∥c →;⑥有向线段就是向量,向量就是有向线段. 其中,假命题的个数是( ) A .2B .3C .4D .5【跟踪训练1-1】(2019春•城关区校级月考)给出下列命题:①零向量的长度为零,方向是任意的:②若a →,b →都是单位向量,则a →=b →;③向量AB →与BA →相等,则所有正确命题的序号是( ) A .①B .③C .①③D .①②【跟踪训练1-2】(2019春•北碚区期末)下列命题中,正确的个数是( ) ①单位向量都相等;②模相等的两个平行向量是相等向量; ③若a →,b →满足|a →|>|b →|且a →与b →同向,则a →>b →; ④若两个向量相等,则它们的起点和终点分别重合; ⑤若a →∥b →,b →∥c →,则a →∥c →. A .0个B .1个C .2个D .3个【跟踪训练1-3】(2019•西湖区校级模拟)下列关于向量的叙述不正确的是( ) A .向量AB →的相反向量是BA →B .模为1的向量是单位向量,其方向是任意的C .若A ,B ,C ,D 四点在同一条直线上,且AB =CD ,则AB →=CD →D .若向量a →与b →满足关系a →+b →=0→,则a →与b →共线【跟踪训练1-4】(2019春•民乐县校级月考)下列关于向量的结论: (1)若|a →|=|b →|,则a →=b →或a →=−b →;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 资料正文内容下拉开始>> 高考达标检测(二十一) 平面向量的基本运算 一、选择题 1.(2018·长春模拟)如图所示,下列结论正确的是( )

①PQ―→=32a+32b; ②PT―→=32a-b; ③PS―→=32a-12b; ④PR―→=32a+b. A.①② B.③④ C.①③ D.②④

解析:选C ①根据向量的加法法则,得PQ―→=32a+32b,故①正确; ②根据向量的减法法则,得PT―→=32a-32b,故②错误; ③PS―→=PQ―→+QS―→=32a+32b-2b=32a-12b,故③正确; ④PR―→=PQ―→+QR―→=32a+32b-b=32a+12b,故④错误,故选C. 2.(2018·长沙一模)已知向量OA―→=(k,12),OB ―→=(4,5),OC―→=(-k,10),且A,B,C三点共线,则k的值是( )

A.-23 B.43

C.12 D.13 解析:选A AB―→=OB ―→-OA―→=(4-k,-7), AC―→=OC―→-OA―→=(-2k,-2). ∵A,B,C三点共线,

∴AB―→,AC―→共线, ∴-2×(4-k)=-7×(-2k), 2

解得k=-23. 3.(2018·嘉兴调研)已知点O为△ABC外接圆的圆心,且OA―→+OB ―→+CO―→=0,则△ABC的内角A等于( ) A.30° B.45° C.60° D.90°

解析:选A 由OA―→+OB ―→+CO―→=0得,OA―→+OB ―→=OC―→, 由O为△ABC外接圆的圆心,结合向量加法的几何意义知,四边形OACB为菱形,且∠CAO=60°,故A=30°.

4.若OA―→=a,OB ―→=b,a与b不共线,则∠AOB平分线上的向量OM―→为( ) A.a|a|+b|b| B.a+b|a+b|

C.|b|a-|a|b|a|+|b| D.λa|a|+b|b|,λ由OM―→确定 解析:选D 以OM为对角线,以OA―→,OB ―→方向为邻边作平行四边形OCMD, ∵OM平分∠AOB, ∴平行四边形OCMD是菱形. 设OC=OD=λ,

则OC―→=λa|a|,OD―→=λb|b|,

∴OM―→=OC―→+OD―→=λa|a|+b|b|,且λ由OM―→确定. 5.设D,E,F分别是△ABC的三边BC,CA,AB上的点,且DC―→=2BD―→,CE―→=2EA―→,AF―→=2FB―→,则AD―→+BE―→+CF―→与BC―→ ( ) A.反向平行 B.同向平行 C.互相垂直 D.既不平行也不垂直

解析:选A 由题意得AD―→=AB―→+BD―→=AB―→+13BC―→, BE―→=BA―→+AE―→=BA―→+13AC―→, CF―→=CB―→+BF―→=CB―→+13BA―→, 3

因此AD―→+BE―→+CF―→=CB―→+13(BC―→+AC―→-AB―→) =CB―→+23BC―→=-13BC―→, 故AD―→+BE―→+CF―→与BC―→反向平行. 6.如图所示,已知点G是△ABC的重心,过点G作直线与AB,

AC两边分别交于M,N两点,且AM―→=xAB―→,AN―→=yAC―→,则xyx+y的值为( ) A.3 B.13

C.2 D.12 解析:选B 利用三角形的性质,过重心作平行于底边BC的直线, 易得x=y=23,则xyx+y=13.

7.(2018·兰州模拟)已知向量a=(1-sin θ,1),b=12,1+sin θ,若a∥b,则锐角θ=( ) A.π6 B.π4 C.π3 D.5π12 解析:选B 因为a∥b,所以(1-sin θ)×(1+sin θ)-1×12=0, 得sin2θ=12,所以sin θ=±22,故锐角θ=π4. 8.已知△ABC是边长为4的正三角形,D,P是△ABC内的两点,且满足AD―→= 14(AB―→+AC―→),AP―→=AD―→+18BC―→,则△APD的面积为( )

A.34 B.32 C.3 D.23 解析:选A 法一:取BC的中点E,连接AE,由于△ABC是边长为4的正三角形,

则AE⊥BC,AE―→=12(AB―→+AC―→),又AD―→=14(AB―→+AC―→),所以点D是AE的中点,AD=3.

取AF―→=18BC―→,以AD,AF为邻边作平行四边形,可知AP―→=AD―→+18BC―→=AD―→+AF―→.而△APD是直角三角形,AF=12,所以△APD的面积为12×12×3=34. 4

法二:以A为原点,以BC的垂直平分线为y轴,建立如图所示的平面直角坐标系. ∵等边三角形ABC的边长为4, ∴B(-2,-23),C(2,-23),

由题知AD―→=14(AB―→+AC―→)=14[(-2,-23)+(2,-23)]=(0,-3),

AP―→=AD―→+18BC―→=(0,-3)+18(4,0)=12,-3, ∴△ADP的面积为S=12|AD―→|·|DP―→ |=12×3×12=34. 二、填空题 9.在矩形ABCD中,O是对角线的交点,若BC―→=5e1,DC―→=3e2,则OC―→=________.(用e1,e2表示) 解析:在矩形ABCD中,因为O是对角线的交点,

所以OC―→=12AC―→=12(AB―→+AD―→)=12(DC―→+BC―→)=12(5e1+3e2)=52e1+32e2. 答案:52e1+32e2 10.已知S是△ABC所在平面外一点,D是SC的中点,若BD―→=xAB―→+yAC―→+zAS―→,则x+y+z=________.

解析:依题意得BD―→=AD―→-AB―→=12(AS―→+AC―→)-AB―→=-AB―→+12AC―→+12AS―→, 因此x+y+z=-1+12+12=0. 答案:0 11.(2018·贵阳模拟)已知平面向量a,b满足|a|=1,b=(1,1),且a∥b,则向量a的坐标是________. 解析:设a=(x,y), ∵平面向量a,b满足|a|=1,b=(1,1),且a∥b,

∴x2+y2=1,且x-y=0,解得x=y=±22. ∴a=22,22或-22,-22. 答案:22,22或-22,-22 12.在直角梯形ABCD中,AB⊥AD,DC∥AB,AD=DC=1,AB=2,E,F分别为AB,BC的中点,点P在以A为圆心,AD为半径的 5

圆弧DE上变动(如图所示),若AP―→=λED―→+μAF―→,其中λ,μ∈R,则2λ-μ的取值范围是________. 解析:以A为坐标原点,AB为x轴,AD为y轴,建立如图所示

的平面直角坐标系,则A(0,0),E(1,0),D(0,1),F32,12, 设P(cos α,sin α)(0°≤α≤90°), ∵AP―→=λED―→+μAF―→, ∴(cos α,sin α)=λ(-1,1)+μ32,12 =-λ+32μ,λ+μ2, ∴cos α=-λ+32μ,sin α=λ+μ2, ∴λ=14(3sin α-cos α),μ=12(cos α+sin α), ∴2λ-μ=sin α-cos α=2sin(α-45°), ∵0°≤α≤90°, ∴-45°≤α-45°≤45°,

∴-22≤sin(α-45°)≤22, ∴-1≤2sin(α-45°)≤1, ∴2λ-μ的取值范围是[-1,1]. 答案:[-1,1] 三、解答题

13.如图所示,在△ABC中,D,F分别是BC,AC的中点,AE―→=23AD―→,AB―→=a,AC―→=b.

(1)用a,b表示向量AD―→,AE―→,AF―→,BE―→,BF―→; (2)求证:B,E,F三点共线.

解:(1)延长AD到G,使AD―→=12AG―→, 连接BG,CG,得到平行四边形ABGC, 所以AG―→=a+b, 6

AD―→=12AG―→=12(a+b), AE―→=23AD―→=13(a+b), AF―→=12AC―→=12b, BE―→=AE―→-AB―→=13(a+b)-a=13(b-2a), BF―→=AF―→-AB―→=12b-a=12(b-2a). (2)证明:由(1)可知BE―→=23BF―→, 又因为BE―→,BF―→有公共点B, 所以B,E,F三点共线. 14.(2018·郑州模拟)平面内给定三个向量a=(3,2),b=(-1,2),c=(4,1). (1)若(a+kc)∥(2b-a),求实数k的值; (2)若d满足(d-c)∥(a+b),且|d-c|=5,求d的坐标. 解:(1)a+kc=(3+4k,2+k),2b-a=(-5,2), 由题意得2×(3+4k)-(-5)×(2+k)=0,

解得k=-1613. (2)设d=(x,y),则d-c=(x-4,y-1), 又a+b=(2,4),|d-c|=5,

∴ 4x-4-2y-1=0,x-42+y-12=5,解得 x=3,y=-1或 x=5,y=3. ∴d的坐标为(3,-1)或(5,3).

15.如图,在△OAB中,OC―→=14OA―→,OD―→=12OB ―→,AD与 BC交于点M,设OA―→=a,OB ―→=b. (1)用a,b表示OM―→; (2)在线段AC上取一点E,在线段BD上取一点F,使EF过M点,设OE―→=pOA―→,OF―→

=qOB ―→,求证:17p+37q=1. 解:(1)设OM―→=xa+yb,

相关文档
最新文档