机械原理资料
机械原理复习资料

一、单项选择题1. 两构件组成运动副必须具备的条件是两构件( )。
A. 相对转动或相对移动B. 都是运动副C. 相对运动恒定不变 D .直接接触且保持一定的相对运动2. 高副低代的条件是( )。
A. 自由度数不变B. 约束数目不变C. 自由度数不变和瞬时速度、瞬时加速度不变3.曲柄滑块机构共有( )瞬心。
A .4个B .6个 C. 8个 D. 10个4. 两构件直接接触,其相对滚动兼滑动的瞬心在( )。
A. 接触点B. 接触点的法线上C. 接触点法线的无穷远处D. 垂直于导路的无穷远处5.最简单的平面连杆机构是( )机构。
A .一杆B .两杆 C. 三杆 D. 四杆6. 机构的运动简图与( )无关。
A. 构件数目B. 运动副的数目、类型C. 运动副的相对位置D. 构件和运动副的结构7.机构在死点位置时( )。
A .γ=90°B .γ=45° C. α=0° D. α=90°8. 曲柄摇杆机构以( )为原动件时,机构有死点。
A. 曲柄B. 连杆C.摇杆D. 任一活动构件9.凸轮的基圆半径是指( )半径。
A .凸轮转动中心至实际轮廓的最小B .凸轮转动中心至理论轮廓的最小C. 凸轮理论轮廓的最小曲率 D .从动件静止位置凸轮轮廓的10. 从动件的推程采用等速运动规律时,在( )会产生刚性冲击。
A. 推程的始点B. 推程的中点C. 推程的终点D. 推程的始点和终点11.一对齿轮在啮合过程中,啮合角的大小是( )变化的。
A. 由小到大再逐渐变小 B .由大到小逐渐变小C. 先由大到小再到大 D .始终保持定值,不12. 齿轮机构安装中心距等于标准中心距时,节圆直径与分度圆相比较,结论是( )。
A. 节圆直径大B. 分度圆直径大C. 两圆直径相等D. 视具体情况而定13.在斜齿轮模数计算中,下面正确的计算式为( )。
A .βcos t n m m = B. βsin t n m m =C .αcos t n m m =D βcos n t m m =14. 标准直齿圆柱齿轮机构的重合度ε值的范围是( )。
理工类专业课复习资料-机械原理复习试题及答案1

机械原理一、填空题:1.机构具有确定运动的条件是机构的自由度数等于。
2.同一构件上各点的速度多边形必于对应点位置组成的多边形。
3.在转子平衡问题中,偏心质量产生的惯性力可以用相对地表示。
4.机械系统的等效力学模型是具有,其上作用有的等效构件。
5.无急回运动的曲柄摇杆机构,极位夹角等于,行程速比系数等于。
6.平面连杆机构中,同一位置的传动角与压力角之和等于。
7.一个曲柄摇杆机构,极位夹角等于36o,则行程速比系数等于。
8.为减小凸轮机构的压力角,应该凸轮的基圆半径。
9.凸轮推杆按等加速等减速规律运动时,在运动阶段的前半程作运动,后半程作运动。
10.增大模数,齿轮传动的重合度;增多齿数,齿轮传动的重合度。
11.平行轴齿轮传动中,外啮合的两齿轮转向相,内啮合的两齿轮转向相。
12.轮系运转时,如果各齿轮轴线的位置相对于机架都不改变,这种轮系是轮系。
13.三个彼此作平面运动的构件共有个速度瞬心,且位于。
14.铰链四杆机构中传动角为,传动效率最大。
15.连杆是不直接和相联的构件;平面连杆机构中的运动副均为。
16.偏心轮机构是通过由铰链四杆机构演化而来的。
17.机械发生自锁时,其机械效率。
18.刚性转子的动平衡的条件是。
19.曲柄摇杆机构中的最小传动角出现在与两次共线的位置时。
20.具有急回特性的曲杆摇杆机构行程速比系数k 1。
21.四杆机构的压力角和传动角互为,压力角越大,其传力性能越。
22.一个齿数为Z,分度圆螺旋角为的斜齿圆柱齿轮,其当量齿数为。
23.设计蜗杆传动时蜗杆的分度圆直径必须取值,且与其相匹配。
24.差动轮系是机构自由度等于的周转轮系。
25.平面低副具有个约束,个自由度。
26.两构件组成移动副,则它们的瞬心位置在。
27.机械的效率公式为,当机械发生自锁时其效率为。
28.标准直齿轮经过正变位后模数,齿厚。
29.曲柄摇杆机构出现死点,是以作主动件,此时机构的角等于零。
30.为减小凸轮机构的压力角,可采取的措施有和。
机械原理期末复习资料1

C D
2-3 试计算如图所示的机构的自由度,并指出局部自由度、复合铰链和虚约束,最后判定该机 构是否具有确定的运动规律.
解:F=3n-(2pl+ph)=3×7-(2×9+1)=2 或 F=3n-(2pl+ph-p′)-F′=3×8-(2×12+1-4)-1=2
O
或 F=3n-(2pl+ph-p′)-F′=3×8-(2×12+1-4)-1=2 该机构中 E 处有一个局部自由度;C 处为
通过观察和分析机械的实际构造和运动情况,先搞清楚机械的原动部分和执行部分,然后循 着运动传递的路线,查明组成机构的构件情况和运动副的类别,数目及相对位置情况. ②选择投影面 选平面机构运动平面或运动平面平行的平面为投 影面. ③选取比例尺 μ=(m/mm) 具体画法是:先根据机构的运动尺寸,确定出各运动副的位置(转动副的中心、移动副的导路方 位及高副的接触点等),画上相应的运动副符号;再用简单的线条代表构件,将各运动副连接起 来;最后,要标出构件号数字及运动副的代号字母,画出原动件的运动方向箭头. 3.机构具有确定运动的条件 ⑴机构的自由度是机构具有确定运动时所需的独立运动参数的数目. ⑵为了使机构具有确定的运动,机构的原动件的数目应等于机构的自由度数目. 4.机构自由度的计算 ⑴平面机构自由度的计算公式为 F=3n-(2pl+ph) 式中,F 为机构自由度,n 为机构中活动构件数; pl 为机构中的低副数; ph 为机构中的高副数. ⑵在利用上式计算机构自由度时,应特别注意下列三种情况: A.正确计算运动副的数目 ①两个以上的构件在同一轴线处以转动副相联接,则构成复合铰链,m 个构件以复合铰链相联 接,则构成复合铰链,m 个构件以复合铰链相联结时,构成转动副的数目为(m-1)个. ②两构件在多处配合而构成转动副,且各转动轴线重合,计算ph)=3×6-(2×7+3)=1 或 F=3n-(2pl+ph-p′)-F′=3×6-(2×7+3-0)-0=1
机械原理课件 第5章 机械的效率和自锁 西工大版

Pd
η1 1
P
η2 2
0.98
P
0.96
0.96
0.98
' ' ' ' P' P' P' P' 0.2kW = ' ' η5 η' 4' 5' 3' η4 3
0.94 0.94 0.42
解:机构 1、2、3′及 4′串联的部分 P′ =P′r /(12′3′4 ) =5kW/(0.982×0.962)=5.649 kW d 机构1、2、3" 、4" 及5" 串联的部分 "" " P" =P"/(123 4 5 ) =0.2kW/(0.982×0.942×0.42)=0.561kW d r
§5-1 机械的效率
4、机组的机械效率计算(续)
(3)混联
混联机组的机械效率计算步骤为:
1)首先将输入功至输出功的路线弄清楚; 2)然后分别计算出总的输入功率∑Pd和总的输出功率∑Pr;
3)最后按下式计算其总机械效率: =∑Pr /∑Pd
§5-1 机械的效率
例5-2:设已知某机械传动装置的机构的效率和输出功率,求 该机械传动装置的机械效率。 P' P' P'=5kW ' η' η' 44 33
放松时 G0 / G tan( V ) tan
§5-1 机械的效率
3、机械效率的确定(续)
(2)机械效率的试验测定
机械效率的确定除了用计算法外,更常用实验法来测定, 许多机械尤其是动力机械在制成后,往往都需作效率实验。
对于正在设计和制造的机械,虽然不能直接用实验法测定 其机械效率,但由于各种机械一般都是由一些常用机构组合而 成的,而常用机构的效率又是可通过实验积累的资料来预先估 定的(见表5-1 简单传动机构和运动副的效率)。 据此,可通过 计算确定出整个机械的效率。 同理,对于由许多机器组成的机组,如果已知机组中各台 机器的效率,就可以计算出整个机组的总效率。
大工12秋《机械原理》辅导资料13--17

《机械原理》辅导资料十三一、课程课件的学习重点研究对象:机械系统—由原动机、传动系统、执行机构组成。
研究内容:1、建立机械系统的等效动力学模型;2、机械运转速度波动的调节。
作用在机械系统上的力:驱动力和工作阻力。
其余外力,如重力、惯性力、摩擦力等,在一般情况下与驱动力和工作阻力相比要小很多,故在研究稳定运转的动力学问题时常忽略不计。
原动机:电动机、液压马达、气压泵、内燃机…机械特性:原动机输出的驱动力与某些运动参数的函数关联。
工作阻力的变化规律主要取决于工作机的类型及工艺特点。
机械系统的等效动力学模型主要内容:1、机械运动方程式;2、等效动力学模型;3、机械运动方程建立。
机械运动方程式:建立作用在机械上的力和力矩、构件上的质量、转动惯量和运动参数之间的函数关系式。
等效动力学模型:目的:将单自由度机械系统,简化为等效构件(一个构件)运动;通过等效构件建立最简单的等效动力学模型,简化研究机械真实运动问题。
等效原则:动能相等,功率相等。
等效构件:常取绕定轴转动或作直线运动构件。
三、重要知识点补充1、机器的运转过程机器的运转过程分起动阶段、稳定运转阶段和停车阶段。
在起动阶段,原动件的速度从零上升到它的正常工作速度,驱动力作的功(驱动功)大于阻力作的功(阻抗功),机器动能增加,机器的运转速度逐渐增加;在稳定运转阶段,原动件的平均角速度保持稳定,因每个瞬间的驱动功与阻抗功不相等,机器运转速度会发生波动,但就一个周期而言,机器的总驱动功与总阻抗功是相等的,一个周期的始末,机器的速度也是相等的;在停车阶段,撤去驱动力,原动件的速度从正常工作速度下降到零,驱动功小于阻抗功,机器运转速度逐渐减小,直至停止。
2、机器等效动力学模型机器运转的真实运动规律取决于作用在它所有构件上各力所作的功和它的所有运动构件的动能变化。
根据动能定理,某一瞬间机器总动能的增量dE应等于该瞬间机器上各外力所作的元功之和dW,该机器的运动方程式为:dE=dW。
l六足昆虫机器人机械原理

一、基本原理本项目的机器人,传动系统还是继续利用“摆动曲柄滑块机构”原理,把减速电机的旋转运动转换为驱动腿迈步的往复摆动运动,再结合简单的连杆结构,协调六条腿按照昆虫的步态规律实现爬行运动。
1、运动方式本项目机器人是模仿拥有六条腿的昆虫的爬行运动。
昆虫爬行想必大家都是见过的,但是由于昆虫的六条腿还是多了些,而且一般昆虫的动作都比较迅速,观察起来有点眼花缭乱,所以可能很多人并不是很了解昆虫爬行时这六条腿是如何协调动作的。
而要做好六足爬行机器人,就要清晰的了解这六条腿的每个阶段的步伐状态,也就是我们常说的“步态”。
实际上,一般六条腿的昆虫,是以三条腿为一组、共两组交叉进行协调运动的。
同一时间内,有一组也就是三条腿着地,另外一组的三条腿是离开地面的,然后两组交替切换往前爬行。
我们都知道,三点可以确定一个平面,即三条腿可以保证整个身体的平衡,这也许就是很多昆虫都是长了六条腿的主要原因吧。
以下是六足昆虫爬行步态的分解,以前进方向为例进行说明:1、静止时六条腿都是同时着地;2、前进时,先迈出第1组三条腿(左前、右中、左后),第2组三条腿着地(右前、左中、右后);3、第1组三条腿(左前、右中、左后)往前迈出着地后保持不动,然后换第2组三条腿(右前、左中、右后)往前迈出;4、第2组三条腿(右前、左中、右后)往前迈出着地后保持不动,再换第1组……如此循环往复,同一时间都保证有一组三条腿着地以保持身体的平衡,并不断往前进。
2、驱动机理本项目机器人是采用六足爬行的方式运动,对于六足的驱动力量也是有一定要求的,所以与前几个仿生类机器人项目一样都是借助减速电机所具有的“低转速、高扭矩”的特性来实现的。
与PVC-Robot 11号、PVC-Robot 12号机器人驱动双臂以及与PVC-Robot 13号驱动双足类似,本项目机器人六足中的中间两足是主动足,是由减速电机直接驱动的,而采用的减速电机同样也必须要满足两个条件:1、拥有足够的动力,能够支撑双足行走;2、减速电机左右两侧同轴输出。
机械原理 瞬心法求速度.
机械原理
用速度瞬心法对机构进行速度分析
用速度瞬心法对机构进行速度分析 瞬心 瞬 心 的 概 念
数目
位置
例题
定义
• 瞬心就是两构件上瞬时绝对速度相同的重合 点(即等速重合点)。
A C
2.确定瞬心的位置3
A B
P12
C
P 14
P23
3.利用瞬心,由“图”求v3。 因P13是构件1、3的同速重合点,
v3 vP13 1lP
13P 14
VP13 1lP
1P P 13 14 l
P 13 14
3.利用瞬心,由“图”求v3。
得: 从机构位置图中量出图长: P13P14=12.3mm,
构件i和构件j的瞬心一般用 Pij或Pji表示。
Pij Pji
分类
• 1 绝对瞬心 当两个构件之中有一个构件固定不动时,则 瞬心处的绝对速度为零,这时的瞬心为绝对 瞬心
2 相对瞬心 当两个构件都在运动时,其瞬心为相对瞬心
2.机构中瞬心的数目
设机构由K个构件组成,该机构的瞬心的总数为:
N = K(k-1)/2
(1)两构件组成运动副
根据瞬心的定义,通过观察直接确定两构件的瞬心 位置
两构件组成纯滚动高副
接触点就是其瞬心。 两构件组成滚动兼滑动高副 瞬心在接触点处两高副元素的 公法线n-n上。
1
2
(2)两构件不组成运动副
不直接接触的两构 件,用三心定理确定 其瞬心的位置.
三心定理:
机械原理自由度课件
机械原理自由度课件1. 机械原理简介机械原理是研究机械运动的基本原理以及机械结构的设计和分析的学科。
在机械设计中,自由度是一个重要的概念,它描述了机械系统中自由运动的能力。
本课件将详细介绍机械原理中的自由度概念及其应用。
2. 自由度的定义自由度(Degrees of Freedom,简称DoF)是指机械系统中独立的运动能力的数量。
简单来说,自由度就是机械系统中可以随意运动的单独变量的数量。
在机械系统中,自由度是确定系统约束和可变参数的一种方式。
3. 自由度的计算方法在计算机械系统的自由度时,可以使用以下方法:3.1. Grübler-Kutzbach公式 Grübler-Kutzbach公式是计算机械系统自由度的最常用的方法之一。
该公式可以用来计算刚性连杆机构的自由度,公式如下:DoF = 3 * N - 2 * C - H其中,DoF为自由度的数量,N为机械链中连杆和关节的数量,C为机构中独立的约束数量,H为机械链中的滑块和导轨的数量。
3.2. Fischer引理Fischer引理是另一种计算机械系统自由度的方法,适用于非刚性连杆机构。
该引理通过计算可动机构中约束柔性的数量来确定自由度的数量。
4. 自由度的应用自由度的概念在机械系统的设计和分析中有着重要的应用。
4.1. 机械结构设计自由度的计算可以帮助工程师确定所设计的机械结构是否具有足够的自由度以实现所需的运动。
过多或者过少的自由度都会导致机械结构的运动受限,影响机械系统的性能。
4.2. 运动学分析自由度的计算还可以用于机械系统的运动学分析。
通过确定机械系统的自由度数量,可以推导出机械系统的运动方程,进而研究其运动规律和性能。
5. 总结本课件简要介绍了机械原理中的自由度概念及其应用。
自由度是机械系统中独立运动能力的数量,通过计算自由度可以判断机械系统的设计是否合理,并进行运动学分析。
掌握自由度的计算方法和应用对于机械工程师来说非常重要。
天津大学机械原理与机械设计主编张策资料-2022年学习资料
机构的运动简图-§3.2-为什么要画机-构运动简图?-机构运动简图-机构的运动:与原动件运动规律、运动副类 、机构-运动尺寸有关,而与机构的结构尺寸和形状以及运动-副的具体构造无关,因此可以不计或略去那些与机构-运 无关的因素。-机构运动简图:指根据机构的运动尺寸,按一定的比例-尺定出各运动副的位置,并用国标规定的简单线 和符号-代表构件和运动副,绘制出表示机构运动关系的简明图形。-机构示意图-机构的示意图:指为了表明机构结构 况,不要求严-格地按比例而绘制的简图。
机构的组成-一、构件-从制造加工角度:机械由零件组成-零件—制造单元体-从运动和功能实现角度:-构件—独立 动的单元体-轮子-注意:构件可以是单一零件,也可以是几个零件的组合联接
机构的组成-二、运动副-◆运动副:指两构件直接接触并能产生相对运动的联接。-◆运动副元素:指两个构件直接接 而构成运动副的部分。-·一运动副元素-二运动副的自由度与约束度-·三运动副类型
机构的运动简图-表2一3一般构件的表示方法-杆、轴类构件-固定构件-同一构件-两副构件-三副构件-<
画机构运动简图的方法-机构的运动简图-例题一:绘制图示颚式破碎机的机构运动简图-分析:该机构有-6个构件和 个转-动副。-2-子田5-》.-6%660
机构的运动简图-例题二:绘制图示偏心轮传动机构的运动简图-继续-①找出所有构件:-1为机架,偏心轮2为-原 件,沿运动路线。-还有连杆3,连架杆4-,滑块5和运动输出-构件6。
机构的组成-·对于两个空间构件-S+f=6-·对于两个平面阿件-S+f=3
机构的组成-三运动副类型-V级副-1.按运动副相对运动形式分-螺旋副-转动副-移动副-Ⅲ级副-2.按运动副 入的约束数分:-I级副、Ⅱ级副、Ⅲ级、-IV级副、V级副-X级运动副:指引入X个约束的运动副。-球面副
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阅卷教师签字:一填空题(共20空每空1.5分)
1.机构中的速度瞬心是两构件上(相对速度)为零的重合点,它用于平面机构(速度)分
析。
2.凸轮的基圆半径越小,则机构尺寸(紧凑)但过于小的基圆半径会导致压力角(增大)。
3.当要求凸轮机构从动件的运动没有冲击时,应选用(摆线运动(正弦加速度))规律。
4.在()条件下,曲柄滑块机构具有急回特性。
5.机构中传动角γ和压力角α之和等于( 90)。
6.在铰链四杆机构中,当最短构件和最长构件的长度之和大于其他两构件长度之和时,只
能获得(双摇杆)机构。
7.在右图示导杆机构中,AB为主动件时,该机构传动角的值为(90)。
8.在摆动导杆机构中,导杆摆角ψ=3 0°,其行程速度变化系数K的值为()。
9. 在下列四杆机构中若各杆长度为下列给定值时,应各为什么机构(a、 b、c、d 为顺
时针次序各杆长,其中 d 为机架):当 a =150 b = 250 c = 250 d = 100 时,();当 a =100
b = 300 c = 250 d = 350 时,();。
10.构件与零件不同,构件是(运动)单元,零件是(制造)单元。
11.在曲柄摇杆机构中,最小传动角发生的位置在(曲柄与机架两次共线位置)。
12.在平面机构中,若引入一个高副,将引入(1)个约束,而引入一个低副将引入(2)个
约束。运动副约束数与相对自由度数的关系是()
13.凸轮的形状是由()决定的。
14、凸轮机构设计的基本任务是()。
二选择题(共10题,每题1.5分)
1.高副低代中的虚拟构件的自由度为(A )。 A) -1 ; B) +1 ; C) 0 ;
2.压力角是在不考虑摩擦情况下,作用力与作用点的(B)方向的夹角。
A)法线; B)速度; C)加速度; D)切线;
3.理论廓线相同而实际廓线不同的两个对心直动滚子从动件盘形凸轮,其推杆的运动规律
是( A)。
A)相同的; B)不相同的; C)不一定的。班级
4.作平面运动的三个构件有被此相关的三个瞬心。这三个瞬心(C)。
A)是重合的; B)不在同一条直线上; C)在一条直线上的。
5 .齿轮渐开线在(B)上的压力角,曲率半径最小。
A)根圆; B)基圆; C)分度圆; D)齿顶圆。
6.要将一个曲柄摇杆机构转化成为双摇杆机构,可将(C)。
A)原机构的曲柄作机架; B)原机构的连杆作机架; C)原机构的摇杆作机架。
7.对于转速很高的凸轮机构,为了减小冲击和振动,从动件运动规律最好采用(C)的运动
规律。
A)等速运动; B)等加等减速运动; C)摆线运动。
8 、渐开线齿轮形状完全取决于(C)。
A)压力角; B)齿数; C)基圆半径。
9、若忽略摩擦,一对渐开线齿廓啮合时,齿廓间作用力沿着(D)方向。
A)齿廓公切线 B)节圆公切线 C)中心线 D)基圆内公切线
10、当凸轮基圆半径不变时,为了改善机构的受力情况,采用适当的偏置式从动件,可以(A)
凸轮机构推程的压力角。
A) 减小; B) 增加; C) 保持原来。
三计算、设计题。
1. 计算下列机构自由度。 (15分)
2. 2 .在下图所示凸轮机构中,已知偏心圆盘为凸轮实际轮廓,其余如图。
试求:(μl =0.001 m/mm )(15 分)
1) 基圆半径 R;
2) 凸轮由图示位置转 90°后,凸轮机构的压力角α;
3)凸轮由图示位置转 90°后,推杆移动距离 S。
3 .(1)画出图示机构的瞬心P24,P26。(5分)
(2)已知一曲柄滑块机构,各杆尺寸及位置如图示,(比例尺μl = 20 mm/mm)
求该机构图示位置的各瞬心。并用瞬心法求连杆上的点 M 的速度 VM 。(12 分)
3(1)题图速度瞬心法:在任一瞬时,两构件之间的相对运动都可以看做是绕某一重合点的
转动、该重合点称为速度瞬心。 3(2)题图 4 在图示四杆机构中 AB
为主动件,绘出 C 点的压力角、传动角及