机械原理复习资料
机械原理复习资料

一、单项选择题1. 两构件组成运动副必须具备的条件是两构件( )。
A. 相对转动或相对移动B. 都是运动副C. 相对运动恒定不变 D .直接接触且保持一定的相对运动2. 高副低代的条件是( )。
A. 自由度数不变B. 约束数目不变C. 自由度数不变和瞬时速度、瞬时加速度不变3.曲柄滑块机构共有( )瞬心。
A .4个B .6个 C. 8个 D. 10个4. 两构件直接接触,其相对滚动兼滑动的瞬心在( )。
A. 接触点B. 接触点的法线上C. 接触点法线的无穷远处D. 垂直于导路的无穷远处5.最简单的平面连杆机构是( )机构。
A .一杆B .两杆 C. 三杆 D. 四杆6. 机构的运动简图与( )无关。
A. 构件数目B. 运动副的数目、类型C. 运动副的相对位置D. 构件和运动副的结构7.机构在死点位置时( )。
A .γ=90°B .γ=45° C. α=0° D. α=90°8. 曲柄摇杆机构以( )为原动件时,机构有死点。
A. 曲柄B. 连杆C.摇杆D. 任一活动构件9.凸轮的基圆半径是指( )半径。
A .凸轮转动中心至实际轮廓的最小B .凸轮转动中心至理论轮廓的最小C. 凸轮理论轮廓的最小曲率 D .从动件静止位置凸轮轮廓的10. 从动件的推程采用等速运动规律时,在( )会产生刚性冲击。
A. 推程的始点B. 推程的中点C. 推程的终点D. 推程的始点和终点11.一对齿轮在啮合过程中,啮合角的大小是( )变化的。
A. 由小到大再逐渐变小 B .由大到小逐渐变小C. 先由大到小再到大 D .始终保持定值,不12. 齿轮机构安装中心距等于标准中心距时,节圆直径与分度圆相比较,结论是( )。
A. 节圆直径大B. 分度圆直径大C. 两圆直径相等D. 视具体情况而定13.在斜齿轮模数计算中,下面正确的计算式为( )。
A .βcos t n m m = B. βsin t n m m =C .αcos t n m m =D βcos n t m m =14. 标准直齿圆柱齿轮机构的重合度ε值的范围是( )。
机械原理总结复习

3.铰链四杆机构急回运动和行程速度变化系数
(1)极位夹角 极位:曲柄与连杆两次共线时,摇杆的两个极限位置。 极位夹角:曲柄(原动件)与连杆两次共线时,原动件两位置所夹 的锐角θ。
(2)行程速比系数K
K v2 v1
C1C2 t2 t1 180
C1C2 t1
第七章 机械的运转及其速度波动的调节
1.等效动力学模型概念
对于一个单自由度机械系统的动力学问题研究,可简化为对 其一个等效转动构件或等效移动构件的运动的研究。
等效转动惯量(或等效质量)是等效构件具有的假想转动惯 量(或假想质量),等效构件的动能应等于原机械系统中所有运 动构件的动能之和。
等效力矩(或等效力)是作用在等效构件上的一个假想力矩 (或假想力),其瞬时功率应等于作用在原机械系统上的所有外 力在同一瞬时的功率之和。
机构的组成:机构=机架+原动件+从动件
1个
1个或几个
若干
2.机构运动简图:根据机构的运动尺寸,按一 定的比例尺定出各运动副的位置,采用运动副 及常用机构运动简图符号和构件的表示方法, 将机构运动传递情况表示出来的简化图形。
3.机构的自由度
使机构具有确定运动时所必须给定的独立 运动参数的数目,称为机构的自由度。
ω
r0
回转中心 滚子推杆
理论 廓线
对于尖顶推杆,理论轮廓与工作轮廓重合。 对于滚子推杆,滚子中心相对于凸轮的轨迹。 对于平底推杆,理论轮廓与工作轮廓重合。
工作轮廓 理论轮廓
ss
s
B’ A
D δ02
δ
δ'0
B’ O δ
ω
B
t δ’0 δ02 δ
C
3.凸轮转角:凸轮以推杆位于其最近点(A)作为初 始位置,从初始位置转过的任意角度δ 。
机械原理复习

5、平面机构的组成原理:任何机构都可以看作是由若干基本 杆组依次联接于原动件和机架上所组成的系统。 机构=原动件+机架+基本杆组 ☆基本杆组:最简单的、不可再分的、自由度为零的构件组。 6、机构结构分析的步骤: (1)求F,确定原动件:原动件不同,机构级别可能不同。 (2)拆杆组:从远离原动件处开始→Ⅱ级(不行)→Ⅲ级 →…→直到只剩Ⅰ级 (每拆出一个杆组后,剩下的仍能组成机构,且 F不变) (3)确定机构级别:包含杆组的最高级别。
P24
P23 P12
P13
P14
P34
P12 P13
P23
四、机构的效率和自锁
1、移动副中的全反力(正压力和摩擦力的合力):与相对速 度方向成 90 2、转动副中的全反力:R21:大小与外载荷平衡;方向与外载 荷相反;作用线与摩擦圆圆相切,对O的矩与相反。
FR12
FR32 FR21
FR21
用齿条刀具加工齿轮时,当把刀具相对于齿轮轮坯中心偏离 标准位置移远时,加工出来的齿轮称为 齿轮, 移近时,加工出来的齿轮称为 齿轮。 渐开线齿廓的几何形状与 的大小有关。 。
在蜗轮蜗杆传动中,蜗杆为右旋,则蜗轮的旋向应为 为什么一对渐开线标准直齿圆柱齿轮啮合能够保证定传动比?
标准直齿圆柱齿轮传动的重合度
。
设计凸轮机构时,凸轮的轮廓曲线形状取决于从动件的 A、运动规律 B、运动形式 C、 结构形状
为防止滚子从动件运动失真,滚子半径必须 凸轮理论廓 线的最小曲率半径。 A、< B 、> C、>=
凸轮机构中,基圆半径减小,会使机构压力角 A、增大 B、减小 C、不变
。
在设计凸轮机构时,应保证凸轮轮廓的最大压力角不超过 许用值的前提下,尽可能缩小凸轮的尺寸。( ) 在凸轮机构中,若从动件在推程和回程采用等速运动,则运 转平稳,无冲击( ) 在滚子直动从动件盘形凸轮机构中,改变滚子的大小对从动 件的运动规律无影响。( ) 六、齿轮机构 1、齿廓啮合基本定律、节点、节圆、齿廓曲线的选择 (渐开线齿廓制造和安装方便,互换性好。)
机械原理期末复习资料

动副. ③两构件在多处接触而构成移动副,且移动方向彼 此平行或者重合,计算运动副数目时只能算作一个移动副. ④如果两构件在多处相接触而构成平面高副,且各接触点处的公法线彼此重合,计算运动副数 目时也只能算作一个平面高副. ⑤如果两构件在多处接触而构成平面高副,但各接触点处的公法线方向并不彼此重合,计算运 动副数目时,则相当于一个低副. 虚约束是机构中实际上不起约束作用的约束.在计算机构自由度时,可将引入虚约束的运动副 或运动链部分划掉不计,以达到除去机构中的虚约束目的. B.除去局部自由度
F=3n-(2pl+ph-p′)-F′ 式中:n, pl, ph 为未排除局部自由度及虚约束时机构的活动构件数,低副数及高副数;p′虚约 束数目;F′局部自由度数目. 5.平面机构的组成原理 ⑴机构的折组分析:将机构分解为机架和原动件及若干个基本杆组,然后,对相同的基本杆组 以相同的方法进行运动分析或力分析. ⑵机构的组成原理:任何机构都可以看作是由若干个基本杆组依次联接于原动件和机架上而 构成的. 6.平面机构的机构分类 根据机构的杆组的条件 3n-2pl-ph 可知,最简单的杆组是由 2 个构件和 3 个低副组成的,这种 杆组称为Ⅱ级杆组.把 4 个构件和 6 个低副组成的基本杆组称为Ⅲ级杆组. 在同一机构中可包含不同级别的基本杆组,把最高级别为Ⅱ级的杆组组成的机构称为Ⅱ级 机构;把最高级别为Ⅲ级的杆组组成的机构称为Ⅲ级机构;而把由机架和原动件组成的机构 称为Ⅰ级机构. 7.平面机构中的高副低代 ⑴高副低代是将机构中的高副虚拟地以低副来代替,替代后机构的自由度不变,机构的瞬时速 度、瞬时加速度也不变.高副低代只便于对机构进行自由度计算、机构组成分析和机构运动 分析,但不能用于机构的力分析. ⑵高副低代的方法是:用一个虚拟两副构件将两高副构件在过接触点的曲率中心处相连起来 即可.若高副两元素之一为直线时,则因其曲率中心在无穷远处,故所连接这一端的运动副为 移动副. 习题: 一填空: 1、机构的组成原理,任何机构都可以看作是由 机架 、 原动件 和 从动件 组成的。 2、平面运动副的最大约束为 2 ,最小约束为 1 。 3、平面机构中若引入一个高副将带入 1 个约束,而引入一个低副将带入 2 个约束。
《机械原理》复习资料-基础部分

第一章绪论选择填空1、机构中的构件是由一个或多个零件所组成,这些零件间 B 产生任何相对运动。
A、可以B、不能2、构件是组成机器的 B 。
A、制造单位B、独立运动单元C、原动件D、从动件简答题1、什么是机构、机器和机械?机构:在运动链中,其中一个件为固定件(机架),一个或几个构件为原动件,其余构件具有确定的相对运动的运动链称为机构。
机器:能代替或减轻人类的体力劳动或转化机械能的机构的组合。
机械:机器和机构的总称。
2、机器有什么特征?(1)经过人们精心设计的实物组合体。
(2)各部分之间具有确定的相对运动。
(3)能代替或减轻人的体力劳动,转换机械能。
3、机构有什么特征?(1)经过人们精心设计的实物组合体。
(2)各部分之间具有确定的相对运动。
4、什么是构件和零件?构件:是运动的单元,它可以是一个零件也可以是几个零件的刚性组合。
零件:是制造的单元,加工制造不可再分的个体。
第二章平面机构的结构分析判断题1、具有局部自由度的机构,在计算机构的自由度时,应当首先除去局部自由度。
(√)2、具有虚约束的机构,在计算机构的自由度时,应当首先除去虚约束。
(√)3、虚约束对运动不起作用,也不能增加构件的刚性。
(×)4、六个构件组成同一回转轴线的转动副,则该处共有三个转动副。
(×)选择填空1、原动件的自由度应为 B 。
A、0B、1C、22、机构具有确定运动的条件是 B 。
A、自由度>0B、自由度=原动件数C、自由度>13、由K个构件汇交而成的复合铰链应具有 A 个转动副。
A、K-1B、KC、K+14、一个作平面运动的自由构件有 B 个自由度。
A、1B、3C、65、通过点、线接触构成的平面运动副称为 C 。
A、转动副B、移动副C、高副6、通过面接触构成的平面运动副称为 A 。
A、低副B、高副C、移动副7、平面运动副的最大约束数是 B 。
A、1B、2C、38、原动件数少于机构自由度时,机构将 B 。
机械原理复习资料

第一章机械是机构和机器的总称。
机构是指一种用来传递与变换运动和力的可动装置。
机器是指一种执行机械运动装置,可用来变换和传递能量、物料和信息。
机器按其用途可分为两类:凡将其他形式的能量转换为机械能的机器称为原动机;凡利用机械能来完成有用功的机器称为工作机。
第二章任何机器都是由许多零件组合而成的。
零件是机器中的一个独立制造单元体;构件是机器中的一个独立运动单元体。
运动副是两构件直接接触而构成的可动连接;运动副元素是两构件参与接触而构成运动副的表面。
高副是两构件通过单一点或线接触而构成的运动副通过面接触而构成的运动副称为低副运动链构件通过运动副的连接而构成的相对可动的系统。
具有固定构件的运动链称为机构。
机架机构中的固定构件。
原动件按给定已知运动规律独立运动的构件。
从动件机构中其余活动构件。
机构具有确定运动的条件是:机构的原动件数目应等于机构的自由度数目F。
如果原动件数<F,则机构的运动将不确定;如果原动件数>F,则会导致机构最薄弱环节的损坏。
n为机构的活动构件数目;自由度计算公式F=3n-(2pl+ph)pl 为机构的低副数目;ph为机构的高副数目。
公共约束是指机构中所有构件均受到的共同的约束。
复合铰链由m个构件组成的复合铰链,共有(m-1)个转动副。
同一运动副如果两构件在多处接触而构成运动副,且符合下列情况者,则为同一运动副,即只能算一个运动副。
(1)移动副,且移动方向彼此平行或重合;(2)转动副,且转动轴线重合;(3)平面高副,且各接触点处的公法线彼此重合。
如果两构件在多处接触而构成平面高副,但各接触点处的公法线方向并不彼此重合,则为复合高副,相当于一个低副(移动副或转动副)。
局部自由度是指机构中某些构件所产生的不影响其他构件运动的局部运动的自由度虚约束是指机构中某些运动副带入的对机构运动起重复约束作用的约束,(1)在机构中,如果用转动副连接的是两个构件上运动轨迹相重合的点,该连接将带入是1个虚约束。
机械原理基础知识复习资料

第二讲平面机构的运动分析一用速度瞬心法作机构的速度分析1 速度瞬心的定义:作平面相对运动两构件上任一瞬时其速度相等的点,称为这个瞬时的速度中心。
分类:相对瞬心-重合点绝对速度不为零绝对瞬心-重合点绝对速度为零2 瞬心数目 K=N(N-1)/23 机构瞬心位置的确定直接观察法:适用于求通过运动副直接相联的两构件瞬心位置。
1)两构件组成转动副时,转动副中心即是它们的瞬心。
2)若两构件组成移动副时,其瞬心位于移动方向的垂直无穷远处。
3)若两构件形成纯滚动的高副时,其高副接触点就是它们的瞬心。
4)若两构件组成滚动兼滑动的高副时,其瞬心应位于过接触点的公法线上。
不直接形成运动副的两构件利用三心定理来确定其具体位置。
三心定理:三个彼此作平面平行运动的构件共有三个瞬心,且它们位于同一条直线上。
此法特别适用于两构件不直接相联的场合。
4传动比的计算ωi /ωj=P1j P ij / P1i P ij两构件的角速度之比等于绝对瞬心至相对瞬心的距离之反比5.角速度方向的确定相对瞬心位于两绝对瞬心的同一侧,两构件转向相同相对瞬心位于两绝对瞬心之间,两构件转向相反。
常见题型:1.速度瞬心的求解、2利用速度瞬心求解速度。
二、用矢量方程图解法作机构的速度和加速度分析 1.同一构件上两点之间速度,加速度的关系。
①由各速度矢量构成的图形称为速度多边形(或速度图);由各加速度矢量构成的图形称为加速度多边形(或加速度图)。
p ,'p 称为极点。
②在速度多边形中,由极点p 向外放射的矢量,代表构件上相应点的绝对速度。
而连接两绝对速度矢端的矢量,则代表构件上相应两点间的相对速度,方向与角标相反,如代表CB v (C 点相对B 点的速度)。
③在加速度多边形中,由极点'p 向外放射的矢量代表构件上相应点的绝对加速度。
而连接两绝对加速度矢量端的矢量代表构件上相应两点间的相对加速度,方向与角标相反。
相对加速度可用其法向加速度和切向加速度来表示。
机械原理复习要点

机械原理复习要点第一章:绪论1.机械的分类:从机械原理学科研究的内涵而言,一般认为机械包含机器和机构两个部分。
2.机器的定义:能实现预期运动并完成特定作业任务的机构系统。
特征:(1)机器是一种人造实物组合体,而非自然形成的物体(2)组成机器的各活动部分之间具有确定的相对运动关系(3)机器能够实现不同能量之间的转换或是代替人类完成特定的作业3.机构的定义:能实现预期运动并实现力传递的人为实物组合体。
特征;(1)机构是一种人造实物组合体,而非自然形成的物体(2)组成机构的各活动部分之间具有确定的相对运动关系(3)机构能够把一种运动形式转换成另外一种运动形式或者实现力的传递。
第二章:机构的结构分析1.机构的组成:构件(构成一个独立运动单元的实物组合体);运动副(两个构件直接接触而又能实现相对运动的可动连接);运动链(若干个构件经运动副连接而成的构建系统)2.机构的组成规律:机构是由一个机架与一个或几个原动件,再加上若干个从动件组成而成。
机架:作为参考系的固定构件。
主动件:按预定给定运动规律独立运动的构件。
从动件:除主动件外的活动构件。
3.零件:不能够再分拆的单个实物体4.运动副元素:两构件直接接触的表面5.约束:对运动的限制称为约束。
分类:按运动副产生约束数目可以分为I 级副、II 级副、III 级副等;按接触方式分为低副和高副;按相对运动形式分为移动副和转动副以及空间运动副;按始终保持接触的方式分为几何形状封闭运动副、力封闭运动副等6.运动链分类:如果组成运动链的所有构件依次连接形成首尾封闭的系统则称之为闭式运动链,反之则为开式运动链。
7.机构运动简图:表明机构的组成、运动传递过程以及各构件相对运动特征的简单图形;机动示意图:只需表明机构的组成状况和结构特点而不需要严格按照比例尺绘制的简图。
8.机构自由度:机构维持确定运动所必需的的独立运动参数。
平面机构自由度计算公式:)2(3H L P P n F +⨯-⨯=;其中n:活动构件数,P L :低副约束数,P h :高副约束数;空间机构自由度计算公式:)2345(612345P P P P P n F +⨯+⨯+⨯+⨯-⨯=9.机构具有确定运动的条件:机构的自由度等于原动件的数目第三章:平面连杆机构分析与设计1.平面连杆机构:由若干构件通过低副(转动副、移动副、球面副、球销副、圆柱副及螺栓副等)连接而成,又称为低副机构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、判断题1.构件是机构或机器中独立运动的单元体,也是机械原理研究的对象。
( Y )2.当其它条件不变时,凸轮的基圆半径越大,则凸轮机构的压力角就越小,机构传力效果越好。
( Y )3.在曲柄滑块机构中,只要原动件是滑块,就必然有死点存在。
( Y )4.在摆动导杆机构中,若取曲柄为原动件时,机构的最小传动角γmin=0º;而取导杆为原动件时,则机构的最小传动角γmin=90º( N )5.在蜗杆传动中,蜗杆的升角等于蜗轮的螺旋角,且蜗杆与蜗轮的螺旋线旋向相同。
( Y )6.斜齿圆柱齿轮的标准模数和标准压力角在法面上。
( Y )7.与其他机构相比,凸轮机构最大的优点是可实现各种预期的运动规律。
( Y )8.在铰链四杆机构中,若以曲柄为原动件时,机构会出现死点位置。
( N )9、在平面机构中,一个高副引入二个约束。
(N )10、根据渐开线性质,基圆内无渐开线,所以渐开线齿轮的齿根圆必须设计比基圆大。
(N)11、在曲柄滑块机构中,只要原动件是滑块,就必然有死点存在。
( Y )12、机器的等效质量等于组成该机器的各构件质量的总和。
( N ) 13.构件是机构或机器中独立运动的单元体,也是机械原理研究的对象。
(Y ) 14.机构具有确定相对运动的条件为:其的自由度>0。
( N ) 15.机构当出现死点时,对运动传递是不利的,因此应设法避免;而在夹具设计时,却需要利用机构的死点性质。
( Y ) 16.渐开线直齿圆锥齿轮的标准参数取在大端上。
( Y)二、填空题1.机构具有确定运动的条件是机构的自由度数等于原动件独立运动数。
2.同一构件上各点的速度多边形必相似于对应点位置组成的多边形。
3.在转子平衡问题中,偏心质量产生的惯性力可以用质径积相对地表示。
4.机械系统的等效力学模型是具有等效转动惯量,其上作用有等效力矩的等效构件。
5.无急回运动的曲柄摇杆机构,极位夹角等于0,行程速比系数等于 1 。
6.平面连杆机构中,同一位置的传动角与压力角之和等于90 。
7.一个曲柄摇杆机构,极位夹角等于36º,则行程速比系数等于1.5。
8.为减小凸轮机构的压力角,应该增大凸轮的基圆半径。
9.凸轮推杆按等加速等减速规律运动时,在运动阶段的前半程作等加速运动,后半程作等减速运动。
10.增大模数,齿轮传动的重合度不变;增多齿数,齿轮传动的重合度增大。
11.平行轴齿轮传动中,外啮合的两齿轮转向相反,内啮合的两齿轮转向相同。
12.轮系运转时,如果各齿轮轴线的位置相对于机架都不改变,这种轮系是定轴轮系。
13.三个彼此作平面运动的构件共有3 个速度瞬心,且位于一条直线上。
14.铰链四杆机构中传动角γ为90 ,传动效率最大。
15.连杆是不直接和机架相联的构件;平面连杆机构中的运动副均为低副。
16.偏心轮机构是通过扩大转动副半径由铰链四杆机构演化而来的。
17.机械发生自锁时,其机械效率小于等于0 。
18.刚性转子的动平衡的条件是偏心质量产生的惯性力和惯性力矩矢量和等于0 。
19.曲柄摇杆机构中的最小传动角出现在曲柄与机架两次共线的位置时。
20.具有急回特性的曲杆摇杆机构行程速比系数k 大于1。
21.四杆机构的压力角和传动角互为余角,压力角越大,其传力性能越差。
22.一个齿数为Z,分度圆螺旋角为β的斜齿圆柱齿轮,其当量齿数为Z/cos^3β。
23.设计蜗杆传动时蜗杆的分度圆直径必须取标准值,且与其模数相匹配。
24.差动轮系是机构自由度等于 2 的周转轮系。
25.平面低副具有2个约束, 1 个自由度。
29.具有一个自由度的周转轮系称为行星轮系,具有两个自由度的周转轮系称为差动轮系。
34.在曲柄摇杆机构中,如果将最短杆作为机架,则与机架相连的两杆都可以作整周回转运动,即得到双曲柄机构。
35.标准齿轮分度圆上的压力角为标准值,其大小等于20 。
36.两构件组成移动副,则它们的瞬心位置在垂直移动路线的无穷远处。
37.机械的效率公式为n=输出功/输入功=理想驱动力/实际驱动力,当机械发生自锁时其效率为小于等于0 。
38.标准直齿轮经过正变位后模数不变,齿厚增加。
39.曲柄摇杆机构出现死点,是以摇杆作主动件,此时机构的传动角等于零。
40.为减小凸轮机构的压力角,可采取的措施有增加基圆半径和推杆合理偏置。
42.凸轮从动件作等速运动时在行程始末有刚性性冲击;当其作五次多项式或正弦加速度运动运动时,从动件没有冲击。
44.标准直齿轮经过正变位后齿距不变,齿根圆增加。
45.交错角为90的蜗轮蜗杆传动的正确啮合条件是、、。
三、选择题1.一对渐开线斜齿圆柱齿轮在啮合传动过程中,一对齿廓上的接触线长度是( C )变化的。
A.由小到大逐渐 C.由大到小逐渐C.由小到大再到小逐渐D.始终保持定值2.齿轮根切的现象发生在( D )的场合。
A.模数较大B.模数较小C.齿数较多D.齿数较少3.渐开线齿轮采用齿条型刀具加工时,刀具向轮坯中心靠近,是采用(B)。
A.正变位B.负变位C.零变位D.无变位4.( B)是构成机械的最小单元,也是制造机械时的最小单元。
A.机器B.零件C.构件D.机构。
5.曲柄摇杆机构的死点发生在( C) 位置。
A.主动杆与摇杆共线B.主动杆与机架共线C.从动杆与连杆共线D.从动杆与机架共线6.渐开线在( B)上的压力角、曲率半径最小。
A.根圆B.基圆C.分度圆D.齿顶圆7.压力角是在不考虑摩擦情况下,作用力与作用点的(B)方向的夹角。
A.法线B.速度C.加速度D.切线;8.图示的四个铰链机构中,图( A )是双曲柄机构。
10.用齿条型刀具加工αn =20°、,h a*n =1、β=30°的斜齿圆柱齿轮时不产生根切的最少数是( B )。
A .17B .14C .12D .1811.凸轮机构中从动件作等加速等减速运动时将产生( B )冲击。
它适用于( E )场合。
A.刚性B.柔性C.无刚性也无柔性D.低速E.中速12.作平面运动的三个构件有被此相关的三个瞬心。
这三个瞬心( C )。
A.是重合的B.不在同一条直线上C.在一条直线上的D.不重合13.为保证一对渐开线齿轮可靠地连续传动,重合度应( C)。
A.等于0B.小于1C.大于1D.等于1。
14.为使机构具有急回运动,要求行程速比系数( B )。
A. K = 1B. K > 1C. K < 1D. K=016.渐开线齿轮齿条啮合时,若齿条相对齿轮作远离圆心的平移,其啮合角(B )。
A)增大 ; B)不变; C)减少; D)无法判断。
17.重合度4.1=αε 表示一对轮齿啮合的时间在齿轮转过一个基圆齿距的时间内占( C)。
A) 40%; B) 60%; C) 25% D )70%18.要将一个曲柄摇杆机构转化成为双摇杆机构,可将( A )。
A )原机构的曲柄作机架;B )原机构的连杆作机架;C )原机构的摇杆作机架。
19.在计算机构自由度时,若计入虚约束,则机构自由度数( B )。
A )增多;B )减小;C )不变; D)无法判断。
20、渐开线齿轮形状完全取决于( C )。
A)压力角;B)齿数;C)基圆半径;D)无法判断。
四、简答题1.什么是标准中心距?一对标准齿轮的实际中心距大于标准中心距时,其传动比和啮合角分别有无变化?一对标准齿轮安装时它们的分度圆相切即各自分度圆和节圆重合时的中心距为标准中心距。
当实际中心距大于标准中心距时,其传动比不变,啮合角增大。
2.何谓基本杆组?机构的组成原理是什么?基本杆组:不能拆分的最简单的自由度为0的构件组。
机构组成原理:任何机构都可看成由若干基本杆组依次连接于原动件和机架上所构成的。
3.凸轮轮廓曲线设计的基本原理是什么?如何选择推杆滚子的半径?1:反转法原理2:在满足强度条件下,保证凸轮实际轮廓曲线不出现“尖点”和“失真”,即小于凸轮理论轮廓的最小曲率半径。
4.铰链四杆机构中存在曲柄的条件是?5.什么是周转轮系?什么是周转轮系的转化轮系?至少有一个齿轮的轴线的位置不固定,而绕其他固定轴线回转的轮系称为周转轮系。
在周转轮系中加上公共角速度-W后,行星架相对静止,此时,周转轮系化为定轴轮系,这个假想的定轴轮系称为周转轮系的转化轮系。
6.什么是齿轮的节圆?标准直齿轮在什么情况下其节圆与分度圆重合?经过节点,分别以两齿轮啮合回转中心为圆心的两个相切圆称为节圆。
当俩标准齿轮按俩标准中心距安装时其节圆与分度圆重合。
7.凸轮机构从动件的运动一般分为哪几个阶段?什么是推程运动角?推程、远休止、回程、近休止。
从动件推杆在推程运动阶段,凸轮转过的角度称为推程运动角8.渐开线具有的特性有哪些?1;发生线BK的长度等于基圆上滚过的圆弧的长度。
2:渐开线任一点的法线恒与其基圆相切。
3:发生线与基圆的切点是渐开线的曲率半径。
4:渐开线的形状取决于基圆大小。
5:基圆内无渐开线。
9.什么是重合度?其物理意义是什么?增加齿轮的模数对提高重合度有无好处?实际啮合线段与轮齿法向齿距之比为重合度。
它反映了一对齿轮同时啮合的平均齿数对的多少。
增加模数对提高重合度没有好处。
10.图示铰链四杆机构中,已知l AB=55mm,l BC=40mm,l CD=50mm,l AD=25mm。
试分析以哪个构件为机架可得到曲柄摇杆机构?(画图说明)最短杆临边ab和cd五、计算题与作图题1.计算图中所示机构的自由度数。
若该机构存在局部自由度、复合铰链、虚约束等,请指出。
解:n=7Pl=9Ph=1F=3n-2Pl-Ph=2F处存在局部自由度E处或E’处存在虚约束C处存在复合铰链2.求图示机构的全部瞬心和构件1、3的角速度比。
3.一对外啮合标准直齿圆柱齿轮传动,已知齿数Z1=24,Z2=64,模数m=6mm,安装的实际中心距a’=265mm。
试求两轮的啮合角,节圆半径r1’和r2’。
4.已知轮系中各齿轮齿数Z1=25,Z2=30,Z2’= Z3= 20,Z4=50,n1=600r/min,求系杆转速n H的大小和方向。
齿轮1-2是一对内啮合传动n1/n2=Z2/Z1=30/25=1.2n2=500r/min齿轮2’-3-4组成一周转轮系(n2’-nH)/(n4-nH)=-Z4/Z2=-50/20=-2.5有因为n2=n’2 n4=0得;nH=-333r/min 方向与n1相同5.如图,已知z1=6,z2=z2, =25,z3=57,z4=56,求i14?(10分)(8分)7.一对直齿圆柱齿轮机构,已知压力角α=20度,齿轮2的齿数Z2=27,模数m=5mm,传动比i12=3,安装中心距a’=65mm,求:1.齿轮1的齿数Z1;2.两轮分度圆半径r1,r2;3.啮合角α’,两轮节圆半径r’1,r’2。
(12分)8、已知:n1=1450rpm;Z1=19;Z2=89;Z3=30;Z4=20;Z5=84。