2016北京卷高考数学(文)答案
2016年北京市高考数学试卷(理科)(含详细答案解析)

2016年北京市高考数学试卷(理科)(含详细答案解析)2016年北京市高考数学试卷(理科)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.(5分)已知集合A={x||x|<2},集合B={﹣1.1,2,3},则A∩B=()A。
{﹣1.1}B。
{,1}C。
{,1,2}D。
{﹣1.1,2}2.(5分)若x,y满足x+y=4且x2+y2的最小值为2,则2x+y的最大值为()A。
2B。
3C。
4D。
53.(5分)执行如图所示的程序框图,若输入的a值为1,则输出的k值为()A。
1B。
2C。
3D。
44.(5分)设a、b为向量,则||a+b||=||a-b||的充分必要条件是()A。
a·b=0B。
a=bC。
||a||=||b||D。
a·b=||a||·||b||5.(5分)已知x,y∈R,且x>y>0,则()A。
x-y>0B。
sinx-siny>0C。
(x+y)/(x-y)<2D。
XXX>06.(5分)某三棱锥的三视图如图所示,则该三棱锥的体积为()A。
8/3B。
10/3C。
12/5D。
14/57.(5分)将函数y=sin(2x-π/2)图象上的点P(π/6,t)向左平移s(s>0)个单位长度得到点P′,若P′位于函数y=sin2x的图象上,则()A。
t=1,s的最小值为π/6B。
t=1/2,s的最小值为π/6C。
t=1,s的最小值为π/3D。
t=1/2,s的最小值为π/38.(5分)袋中装有偶数个球,其中红球、黑球各占一半。
甲、乙、丙是三个空盒。
每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个放入乙盒,否则就放入丙盒。
重复上述过程,直到袋中所有球都被放入盒中,则()A。
乙盒中黑球不多于丙盒中黑球B。
乙盒中红球与丙盒中黑球一样多C。
乙盒中红球不多于丙盒中红球D。
乙盒中黑球与丙盒中红球一样多二、填空题共6小题,每小题5分,共30分。
2016年北京高考真题数学理(含解析)

2016年普通高等学校招生全国统一考试(北京卷)数学(理工类)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.(1)已知集合{}|2A x x =<,{}1,0,1,2,3B =-则A B =( ) (A){}0,1 (B ){}0,1,2 (C ){}1,0,1- (D){}1,0,1,2-(2) 若,x y 满足20,3,0,x y x y x -≤⎧⎪+≤⎨⎪≥⎩ 则2x y +的最大值为( )(A )0 (B )3 (C )4 (D)5(3)执行如图所示的程序框图,若输入的a 值为1,则输出的k 值为( )(A )1(B )2(C)3 (D)4(4)设a,b是向量,则“a b="是“+a b a b=-”的( )(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(5)已知,x y∈R,且0x y>>,则()(A)11x y->(B)sin sin0x y->(C)1122x y⎛⎫⎛⎫-<⎪ ⎪⎝⎭⎝⎭(D)ln ln0x y+>(6)某三棱锥的三视图如图所示,则三棱锥的体积为( )(A)16(B)13(C)12(D)1(7)将函数πsin23y x⎛⎫=-⎪⎝⎭图像上的点π,4P t⎛⎫⎪⎝⎭向左平移()0s s>个单位长度得到点P'.若P'位于函数sin2y x=的图像上,则( )(A)12t=,s的最小值为π6(B)3t,s的最小值为π6(C)12t=,s的最小值为π3(D)3t=,s的最小值为π3(8) 袋中装有偶数个球,其中红球,黑球各占一半,甲 ,乙,丙 是三个空盒,每次从袋中随意取出两个球,将期中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则放入丙盒,重复上述过程,直到袋中所有球都被放入盒中,则( ).(A )乙盒中黑球不多于丙盒中黑球 (B )乙盒中红球与丙盒中黑球一样多 (C )乙盒中的红球不多于丙盒中红球 (D )乙盒中黑球与丙盒中红球一样多二、填空题共6题,每小题5分,共30分.(9)设a ∈R ,若复数()()1i i a ++在复平面内对应的点位于实轴上,则a =__________. (10)在()612x -的展开式中,2x 的系数为__________.(11)在极坐标系中,直线cos sin 10ρθθ-=与圆2cos ρθ=交于,A B 两点,则AB = __________.(12)已知{}n a 为等差数列,n S 为其前n 项和.若1356,0a a a =+=,则6S =__________. (13)双曲线()222210,0x y a b a b-=>>的渐近线为正方形OABC 的边,OA OC 所在的直线,点B为该双曲线的焦点,若正方形OABC 的边长为2,则a =__________. (14)设函数()33,2,x x f x x ⎧-=⎨-⎩,,x a x a ≤>①若0a =,则()f x 的最大值__________.②若()f x 无最大值,则实数a 的取值范围是__________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15. (本小题13分)在ABC △中,222a c b +=+ (1) 求B ∠的大小.(2) cos A C +的最大值.16. (本小题13分)A ,B ,C 三班共有100名学生,为调查他们的体育锻炼情况,通过分层(Ⅰ)试估计班的学生人数;(Ⅱ)从A 班和C 班抽出的学生中,各随机选取一人,A 班选出的人记为甲,C 班选出的人记为乙,假设所有学生的锻炼时间相互独立,求该周甲的锻炼时间比乙的锻炼时间长的概率; (Ⅲ)再从A ,B ,C 三班中个随机抽取抽取一名学生,题目该周期的锻炼时间分别是7,9,8.25(单位:小时),这3个新数据与表格构成的新样本的平均数记为1μ,表格中的数据的平均数记为0μ,试判断0μ和1μ的大小.(结论不要求证明)17. (本小题14分)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,5AC CD ==.(Ⅰ)求证:PD ⊥平面PAB ;(Ⅱ)求直线PB 与平面PCD 所成角的正弦值;(Ⅲ)在棱PA 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP的值;若不存在,说明理由.(18)(本小题13分)设函数()a x f x xe bx -=+,曲线()y f x =在点()()2,2f 处的切线方程为()14y e x =-+. (1)求,a b 的值;(2)求()f x 的单调区间。
2016年北京市高考数学试卷(理科)教师版

2016年北京市高考数学试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)(2016•北京)已知集合A={x||x|<2},集合B={﹣1,0,1,2,3},则A∩B=()A.{0,1}B.{0,1,2}C.{﹣1,0,1}D.{﹣1,0,1,2}【分析】先求出集合A和B,由此利用交集的定义能求出A∩B.【解答】解:∵集合A={x||x|<2}={x|﹣2<x<2},B={﹣1,0,1,2,3},∴A∩B={﹣1,0,1}.故选:C.2.(5分)(2016•北京)若x,y满足,则2x+y的最大值为()A.0B.3C.4D.5【分析】作出不等式组对应的平面区域,目标函数的几何意义是直线的纵截距,利用数形结合即可求z的取值范围.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).设z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线y=﹣2x+z的截距最大,此时z最大.由,解得,即A(1,2),代入目标函数z=2x+y得z=1×2+2=4.即目标函数z=2x+y的最大值为4.故选:C.3.(5分)(2016•北京)执行如图所示的程序框图,若输入的a值为1,则输出的k值为()A.1B.2C.3D.4【分析】根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,可得答案.【解答】解:输入的a值为1,则b=1,第一次执行循环体后,a=﹣,不满足退出循环的条件,k=1;第二次执行循环体后,a=﹣2,不满足退出循环的条件,k=2;第三次执行循环体后,a=1,满足退出循环的条件,故输出的k值为2,故选:B.4.(5分)(2016•北京)设,是向量,则“||=||”是“|+|=|﹣|”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据向量模相等的几何意义,结合充要条件的定义,可得答案.【解答】解:若“||=||”,则以,为邻边的平行四边形是菱形;若“|+|=|﹣|”,则以,为邻边的平行四边形是矩形;故“||=||”是“|+|=|﹣|”的既不充分也不必要条件;故选:D.5.(5分)(2016•北京)已知x,y∈R,且x>y>0,则()A.﹣>0B.sinx﹣siny>0C.()x﹣()y<0D.lnx+lny>0【分析】x,y∈R,且x>y>0,可得:<,sinx与siny的大小关系不确定,<,lnx+lny与0的大小关系不确定,即可判断出结论.【解答】解:∵x,y∈R,且x>y>0,则<,sinx与siny的大小关系不确定,<,即﹣<0,lnx+lny与0的大小关系不确定.故选:C.6.(5分)(2016•北京)某三棱锥的三视图如图所示,则该三棱锥的体积为()A.B.C.D.1【分析】由已知中的三视图可得:该几何体是一个以俯视图为底面的三棱锥,进而可得答案.【解答】解:由已知中的三视图可得:该几何体是一个以俯视图为底面的三棱锥,棱锥的底面面积S=×1×1=,高为1,故棱锥的体积V==,故选:A.7.(5分)(2016•北京)将函数y=sin(2x﹣)图象上的点P(,t)向左平移s(s>0)个单位长度得到点P′,若P′位于函数y=sin2x的图象上,则()A.t=,s的最小值为B.t=,s的最小值为C.t=,s的最小值为D.t=,s的最小值为【分析】将x=代入得:t=,进而求出平移后P′的坐标,进而得到s的最小值.【解答】解:将x=代入得:t=sin=,将函数y=sin(2x﹣)图象上的点P向左平移s个单位,得到P′(﹣s,)点,若P′位于函数y=sin2x的图象上,则sin(﹣2s)=cos2s=,则2s=+2kπ,k∈Z,则s=+kπ,k∈Z,由s>0得:当k=0时,s的最小值为,故选:A.8.(5分)(2016•北京)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则()A.乙盒中黑球不多于丙盒中黑球B.乙盒中红球与丙盒中黑球一样多C.乙盒中红球不多于丙盒中红球D.乙盒中黑球与丙盒中红球一样多【分析】分析理解题意:乙中放红球,则甲中也肯定是放红球;往丙中放球的前提是放入甲中的不是红球,据此可以从乙中的红球个数为切入点进行分析.【解答】解:取两个球共有4种情况:①红+红,则乙盒中红球数加1个;②黑+黑,则丙盒中黑球数加1个;③红+黑(红球放入甲盒中),则乙盒中黑球数加1个;④黑+红(黑球放入甲盒中),则丙盒中红球数加1个.设一共有球2a个,则a个红球,a个黑球,甲中球的总个数为a,其中红球x个,黑球y个,x+y=a.则乙中有x个球,其中k个红球,j个黑球,k+j=x;丙中有y个球,其中l个红球,i个黑球,i+l=y;黑球总数a=y+i+j,又x+y=a,故x=i+j由于x=k+j,所以可得i=k,即乙中的红球等于丙中的黑球.故选:B.二、填空题共6小题,每小题5分,共30分.9.(5分)(2016•北京)设a∈R,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a=﹣1.【分析】(1+i)(a+i)=a﹣1+(a+1)i,则a+1=0,解得答案.【解答】解:(1+i)(a+i)=a﹣1+(a+1)i,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a+1=0,解得:a=﹣1,故答案为:﹣110.(5分)(2016•北京)在(1﹣2x)6的展开式中,x2的系数为60.(用数字作答)【分析】利用二项式定理展开式的通项公式即可得出.=(﹣2x)r=(﹣2)r x r,【解答】解:(1﹣2x)6的展开式中,通项公式T r+1令r=2,则x2的系数==60.故答案为:60.11.(5分)(2016•北京)在极坐标系中,直线ρcosθ﹣ρsinθ﹣1=0与圆ρ=2cosθ交于A,B两点,则|AB|=2.【分析】把圆与直线的极坐标方程化为直角坐标方程,利用圆心C在直线上可得|AB|.【解答】解:直线ρcosθ﹣ρsinθ﹣1=0化为y直线x﹣y﹣1=0.圆ρ=2cosθ化为ρ2=2ρcosθ,∴x2+y2=2x,配方为(x﹣1)2+y2=1,可得圆心C(1,0),半径r=1.则圆心C在直线上,∴|AB|=2.故答案为:2.12.(5分)(2016•北京)已知{a n}为等差数列,S n为其前n项和.若a1=6,a3+a5=0,则S6=6.【分析】由已知条件利用等差数列的性质求出公差,由此利用等差数列的前n 项和公式能求出S6.【解答】解:∵{a n}为等差数列,S n为其前n项和.a1=6,a3+a5=0,∴a1+2d+a1+4d=0,∴12+6d=0,解得d=﹣2,∴S6==36﹣30=6.故答案为:6.13.(5分)(2016•北京)双曲线﹣=1(a>0,b>0)的渐近线为正方形OABC 的边OA,OC所在的直线,点B为该双曲线的焦点.若正方形OABC的边长为2,则a=2.【分析】根据双曲线渐近线在正方形的两个边,得到双曲线的渐近线互相垂直,即双曲线是等轴双曲线,结合等轴双曲线的性质进行求解即可.【解答】解:∵双曲线的渐近线为正方形OABC的边OA,OC所在的直线,∴渐近线互相垂直,则双曲线为等轴双曲线,即渐近线方程为y=±x,即a=b,∵正方形OABC的边长为2,∴OB=2,即c=2,则a2+b2=c2=8,即2a2=8,则a2=4,a=2,故答案为:214.(5分)(2016•北京)设函数f(x)=,,>.①若a=0,则f(x)的最大值为2;②若f(x)无最大值,则实数a的取值范围是(﹣∞,﹣1).【分析】①将a=0代入,求出函数的导数,分析函数的单调性,可得当x=﹣1时,f(x)的最大值为2;②若f(x)无最大值,则>,或>>>,解得答案.【解答】解:①若a=0,则f(x)=,,>,则f′(x)=,,>,当x<﹣1时,f′(x)>0,此时函数为增函数,当x>﹣1时,f′(x)<0,此时函数为减函数,故当x=﹣1时,f(x)的最大值为2;②f′(x)=,,>,令f′(x)=0,则x=±1,若f(x)无最大值,则>,或>>>,解得:a∈(﹣∞,﹣1).故答案为:2,(﹣∞,﹣1)三、解答题共6小题,共80分,解答应写出文字说明,演算步骤或证明过程.15.(13分)(2016•北京)在△ABC中,a2+c2=b2+ac.(Ⅰ)求∠B的大小;(Ⅱ)求cosA+cosC的最大值.【分析】(Ⅰ)根据已知和余弦定理,可得cosB=,进而得到答案;(Ⅱ)由(I)得:C=﹣A,结合正弦型函数的图象和性质,可得cosA+cosC 的最大值.【解答】解:(Ⅰ)∵在△ABC中,a2+c2=b2+ac.∴a2+c2﹣b2=ac.∴cosB===,∴B=(Ⅱ)由(I)得:C=﹣A,∴cosA+cosC=cosA+cos(﹣A)=cosA﹣cosA+sinA=cosA+sinA=sin(A+).∵A∈(0,),∴A+∈(,π),故当A+=时,sin(A+)取最大值1,即cosA+cosC的最大值为1.16.(13分)(2016•北京)A,B,C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如表(单位:小时):(Ⅰ)试估计C班的学生人数;(Ⅱ)从A班和C班抽出的学生中,各随机选取一个人,A班选出的人记为甲,C班选出的人记为乙.假设所有学生的锻炼时间相对独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;(Ⅲ)再从A,B,C三班中各随机抽取一名学生,他们该周锻炼时间分别是7,9,8.25(单位:小时),这3个新数据与表格中的数据构成的新样本的平均数记为μ1,表格中数据的平均数记为μ0,试判断μ0和μ1的大小.(结论不要求证明)【分析】(I)由已知先计算出抽样比,进而可估计C班的学生人数;(Ⅱ)根据古典概型概率计算公式,可求出该周甲的锻炼时间比乙的锻炼时间长的概率;(Ⅲ)根据平均数的定义,可判断出μ0>μ1.【解答】解:(I)由题意得:三个班共抽取20个学生,其中C班抽取8个,故抽样比K==,故C班有学生8÷=40人,(Ⅱ)从从A班和C班抽出的学生中,各随机选取一个人,共有5×8=40种情况,而且这些情况是等可能发生的,当甲锻炼时间为6时,甲的锻炼时间比乙的锻炼时间长有2种情况;当甲锻炼时间为6.5时,甲的锻炼时间比乙的锻炼时间长有3种情况;当甲锻炼时间为7时,甲的锻炼时间比乙的锻炼时间长有3种情况;当甲锻炼时间为7.5时,甲的锻炼时间比乙的锻炼时间长有3种情况;当甲锻炼时间为8时,甲的锻炼时间比乙的锻炼时间长有4种情况;故周甲的锻炼时间比乙的锻炼时间长的概率P==;(Ⅲ)μ0>μ1.17.(14分)(2016•北京)如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD=.(Ⅰ)求证:PD⊥平面PAB;(Ⅱ)求直线PB与平面PCD所成角的正弦值;(Ⅲ)在棱PA上是否存在点M,使得BM∥平面PCD?若存在,求的值,若不存在,说明理由.【分析】(Ⅰ)由已知结合面面垂直的性质可得AB⊥平面PAD,进一步得到AB ⊥PD,再由PD⊥PA,由线面垂直的判定得到PD⊥平面PAB;(Ⅱ)取AD中点为O,连接CO,PO,由已知可得CO⊥AD,PO⊥AD.以O为坐标原点,建立空间直角坐标系,求得P(0,0,1),B(1,1,0),D(0,﹣1,0),C(2,0,0),进一步求出向量、、的坐标,再求出平面PCD的法向量,设PB与平面PCD的夹角为θ,由<,>求得直线PB与平面PCD所成角的正弦值;(Ⅲ)假设存在M点使得BM∥平面PCD,设,M(0,y1,z1),由可得M(0,1﹣λ,λ),,,,由BM∥平面PCD,可得,由此列式求得当时,M点即为所求.【解答】(Ⅰ)证明:∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,且AB⊥AD,AB⊂平面ABCD,∴AB⊥平面PAD,∵PD⊂平面PAD,∴AB⊥PD,又PD⊥PA,且PA∩AB=A,∴PD⊥平面PAB;(Ⅱ)解:取AD中点为O,连接CO,PO,∵CD=AC=,∴CO⊥AD,又∵PA=PD,∴PO⊥AD.以O为坐标原点,建立空间直角坐标系如图:则P(0,0,1),B(1,1,0),D(0,﹣1,0),C(2,0,0),则,,,,,,,,,,,,设,,为平面PCD的法向量,则由,得,则,,.设PB与平面PCD的夹角为θ,则<,>=;(Ⅲ)解:假设存在M点使得BM∥平面PCD,设,M(0,y1,z1),由(Ⅱ)知,A(0,1,0),P(0,0,1),,,,B(1,1,0),,,,则有,可得M(0,1﹣λ,λ),∴,,,∵BM∥平面PCD,,,为平面PCD的法向量,∴,即,解得.综上,存在点M,即当时,M点即为所求.18.(13分)(2016•北京)设函数f(x)=xe a﹣x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e﹣1)x+4,(Ⅰ)求a,b的值;(Ⅱ)求f(x)的单调区间.【分析】(Ⅰ)求函数的导数,根据导数的几何意义求出函数的切线斜率以及f (2),建立方程组关系即可求a,b的值;(Ⅱ)求函数的导数,利用函数单调性和导数之间的关系即可求f(x)的单调区间.【解答】解:(Ⅰ)∵y=f(x)在点(2,f(2))处的切线方程为y=(e﹣1)x+4,∴当x=2时,y=2(e﹣1)+4=2e+2,即f(2)=2e+2,同时f′(2)=e﹣1,∵f(x)=xe a﹣x+bx,∴f′(x)=e a﹣x﹣xe a﹣x+b,则,即a=2,b=e;(Ⅱ)∵a=2,b=e;∴f(x)=xe2﹣x+ex,∴f′(x)=e2﹣x﹣xe2﹣x+e=(1﹣x)e2﹣x+e=(1﹣x+e x﹣1)e2﹣x,∵e2﹣x>0,∴1﹣x+e x﹣1与f′(x)同,令g(x)=1﹣x+e x﹣1,则g′(x)=﹣1+e x﹣1,由g′(x)<0,得x<1,此时g(x)为减函数,由g′(x)>0,得x>1,此时g(x)为增函数,则当x=1时,g(x)取得极小值也是最小值g(1)=1,则g(x)≥g(1)=1>0,故f′(x)>0,即f(x)的单调区间是(﹣∞,+∞),无递减区间.19.(14分)(2016•北京)已知椭圆C:+=1(a>b>0)的离心率为,A (a,0),B(0,b),O(0,0),△OAB的面积为1.(Ⅰ)求椭圆C的方程;(Ⅱ)设P是椭圆C上一点,直线PA与y轴交于点M,直线PB与x轴交于点N.求证:|AN|•|BM|为定值.【分析】(Ⅰ)运用椭圆的离心率公式和三角形的面积公式,结合a,b,c的关系,解方程可得a=2,b=1,进而得到椭圆方程;(Ⅱ)方法一、设椭圆上点P(x0,y0),可得x02+4y02=4,求出直线PA的方程,令x=0,求得y,|BM|;求出直线PB的方程,令y=0,可得x,|AN|,化简整理,即可得到|AN|•|BM|为定值4.方法二、设P(2cosθ,sinθ),(0≤θ<2π),求出直线PA的方程,令x=0,求得y,|BM|;求出直线PB的方程,令y=0,可得x,|AN|,运用同角的平方关系,化简整理,即可得到|AN|•|BM|为定值4.【解答】解:(Ⅰ)由题意可得e==,又△OAB的面积为1,可得ab=1,且a2﹣b2=c2,解得a=2,b=1,c=,可得椭圆C的方程为+y2=1;(Ⅱ)证法一:设椭圆上点P(x0,y0),可得x02+4y02=4,直线PA:y=(x﹣2),令x=0,可得y=﹣,则|BM|=|1+|;直线PB:y=x+1,令y=0,可得x=﹣,则|AN|=|2+|.可得|AN|•|BM|=|2+|•|1+|=||=||=||=4,即有|AN|•|BM|为定值4.证法二:设P(2cosθ,sinθ),(0≤θ<2π),直线PA:y=(x﹣2),令x=0,可得y=﹣,则|BM|=||;直线PB:y=x+1,令y=0,可得x=﹣,则|AN|=||.即有|AN|•|BM|=||•||=2||=2||=4.则|AN|•|BM|为定值4.20.(13分)(2016•北京)设数列A:a1,a2,…,a N(N≥2).如果对小于n(2≤n≤N)的每个正整数k都有a k<a n,则称n是数列A的一个“G时刻”,记G (A)是数列A的所有“G时刻”组成的集合.(Ⅰ)对数列A:﹣2,2,﹣1,1,3,写出G(A)的所有元素;(Ⅱ)证明:若数列A中存在a n使得a n>a1,则G(A)≠∅;≤1(n=2,3,…,N),则G(A)的元素个(Ⅲ)证明:若数列A满足a n﹣a n﹣1数不小于a N﹣a1.【分析】(Ⅰ)结合“G时刻”的定义进行分析;(Ⅱ)可以采用假设法和递推法进行分析;(Ⅲ)可以采用假设法和列举法进行分析.【解答】解:(Ⅰ)根据题干可得,a1=﹣2,a2=2,a3=﹣1,a4=1,a5=3,a1<a2满足条件,2满足条件,a2>a3不满足条件,3不满足条件,a2>a4不满足条件,4不满足条件,a1,a2,a3,a4,均小于a5,因此5满足条件,因此G(A)={2,5}.(Ⅱ)因为存在a n>a1,设数列A中第一个大于a1的项为a k,则a k>a1≥a i,其中2≤i≤k﹣1,所以k∈G(A),G(A)≠∅;(Ⅲ)设A数列的所有“G时刻”为i1<i2<…<i k,对于第一个“G时刻”i1,有>a1≥a i(i=2,3,…,i1﹣1),则﹣a1≤﹣≤1.对于第二个“G时刻”i1,有>≥a i(i=2,3,…,i1﹣1),则﹣≤﹣≤1.类似的﹣≤1,…,﹣≤1.于是,k≥(﹣)+(﹣)+…+(﹣)+(﹣a1)=﹣a1.对于a N,若N∈G(A),则=a N.若N∉G(A),则a N≤,否则由(2)知,,…,a N,中存在“G时刻”与只有k个“G时刻”矛盾.从而k≥﹣a1≥a N﹣a1.。
2016年全国高考新课标1卷文科数学试卷与答案解析

2016 年全国高考新课标 1 卷文科数学试题第Ⅰ卷一、选择题,本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合 A= {1,3,5,7} ,B= {x|2 ≤x ≤ 5},则A ∩B= () A .{1,3} B .{3,5} C .{5,7} D .{1,7}2.设 (1+2i)(a+i )的实部与虚部相等,其中 a 为实数,则 a= ()A .-3B .-2C .2D . 33.为美化环境,从红、黄、白、紫 4 种颜色的花中任选 2 种花种在一个花坛中,余下的 2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是() A . 1B . 1C . 2D . 532362 , 4. ABC 的内角 A,B,C 的对边分别为 a,b,c.已知 a 5,c2,cos A 则 b=( ) 3A . 2B . 3C .2D .35.直线 l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的1,则该椭圆的离心率为 () 4 A . 1B . 1C . 2D . 332346.若将函数 y=2sin (2x+ )的图像向右平移 1 个周期后,所得图像对应的函数为( ) 6 4A .y=2sin(2x + )B .y=2sin(2x +) C .y=2sin(2x – ) D . y=2sin(2x –) 4 3 4 37.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径 .若该几何体的体积是 28 ,则它的表面积是 () 3 A . 17πB .18πC .20πD .28π8.若 a>b>0,0<c<1,则() c c a bab c c A . log c<log c B . log a<log b C .a <b D .c >c9.函数 y=2x 2 –e |x|在[ –2,2]的图像大致为 ()yyy y1 111 -2O2 x -2O 2 x -2 O 2 x -2O2 x10.执行右面的程序框图,如果输入的 x=0,y=1,n=1,开始A(B C D则输出 x, y 的值满足)输入 x,y,nA .y=2x B.y=3xn1C.y=4x D.y=5xn=n+ 1x x, y ny211.平面α过正方体 ABCD-A1B1 C1 D1 的顶点A,否2 21 1,α∩平面ABCD=m,x +y ≥36? α//平面 CBD是第1 页共 1 页输出 x,y结束α∩平面 ABB1 1,则 , 所成角的正弦值为( )A =n m n A . 3B . 2C . 3D . 1 223312.若函数 f (x) x- 1sin2x asin x 在 (-∞ ,+ ∞)单调递增,则 a 的取值范围是 () 3A .[-1,1]B .[-1, 1 ]C .[- 1 , 1 ]D . [-1,- 1 ]33 33第Ⅱ卷本卷包括必考题和选考题两部分 .第 13 题~第 21 题为必考题,每个试题考生都必须作答,第 22 题 ~第 24 题为选考题,考生根据要求作答 .二、填空题:本大题共 4 小题,每小题 5 分,共 20 分.把答案填在横线上. 13.设向量 a=(x , x+1),b=(1,2),且 a ⊥b ,则 x= . 14.已知 θ是第四象限角,且 sin(θ+ π)= 3 ,则 tan(θ- π)=.4 5 415.设直线 y=x+2a 与圆 C :x 2+y 2-2ay-2=0 相交于 A , B 两点,若 |AB|= 2 3 ,则圆 C 的面积为 .16.某高科技企业生产产品 A 和产品 B 需要甲、乙两种新型材料 .生产一件产品 A 需要甲材料1.5kg ,乙材料 1kg ,用 5 个工时;生产一件产品 B 需要甲材料 0.5kg ,乙材料 0.3kg ,用 3 个工时,生产一件产品 A 的利润为 2100 元,生产一件产品 B 的利润为 900 元 .该企业现有甲材料 150kg ,乙材料 90kg ,则在不超过 600 个工时的条件下,生产产品 A 、产品 B 的利润之和的最大值为元 .三、解答题:解答应写出文字说明,证明过程或演算步骤.只做 6 题,共 70 分. 17.(本题满分 12 分)已知 { an 是公差为 3 的等差数列,数列 n 满足 1 2 1 ,an n+1 n+1n} { b } b =1, b =3 b +b =nb. (Ⅰ)求{ a } 的通项公式; (Ⅱ )求{ b } 的前 n 项和 .n n18.(本题满分 12 分)如图,已知正三棱锥 P-ABC 的侧面是直角三角形, PA=6,顶点 P 在平面 ABC 内的正投影为点 D ,D 在平面 PAB 内的正投影为点 E ,P 连接 PE 并延长交 AB 于点 G.(Ⅰ)证明 G 是 AB 的中点;A E C (Ⅱ)在答题卡第( 18)题图中作出点 E 在平面 PAC内的正投影 F(说明作法及理由 ),并求四面体 PDEF 的体积.G DB19.(本小题满分 12 分)第 2 页共 2 页某公司计划购买 1 台机器,该种机器使用三年后即被淘汰 . 机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个 200 元 . 在机器使用期间,如果备件不足再购买,则每个500 元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了 100 台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记 x 表示 1 台机器在三年使用期内需更换的易损零件数,y 表示 1 台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数.(Ⅰ)若 n=19,求 y 与 x 的函数解析式;(Ⅱ)若要求―需更换的易损零件数不大于n‖的频率不小于 0.5,求 n 的最小值;(Ⅲ)假设这 100 台机器在购机的同时每台都购买19 个易损零件,或每台都购买20 个易损零件,分别计算这 100 台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1 台机器的同时应购买 19 个还是 20 个易损零件?20.(本小题满分 12 分)在直角坐标系 xoy 中,直线 l :y=t(t≠0)交 y 轴于点 M,交抛物线 C:y2=2px(p>0)于点 P,M关于点 P 的对称点为 N,连结 ON 并延长交 C 于点 H.(Ⅰ)求OH; (Ⅱ)除 H 以外,直线 MH 与 C 是否有其它公共点?说明理由.ON21.(本小题满分 12 分)已知函数 f(x)=(x -2)e x+a(x -1)2.(Ⅰ)讨论 f(x)的单调性;(Ⅱ)若有两个零点,求 a 的取值范围 .第 3 页共 3 页请考生在22、 23、 24 题中任选一题作答 ,如果多做 ,则按所做的第一题计分 ,做答时请写清题号22.(本小题满分 10 分)选修 4-1:几何证明选讲如图,OAB 是等腰三角形,∠ AOB=120°. 以 O 为圆心,1 OA 为半径作圆 .2(Ⅰ)证明:直线 AB 与⊙ O 相切;(Ⅱ)点 C,D 在⊙ O 上,且 A,B,C,D 四点共圆,证明: AB∥CD.23.(本小题满分 10 分)选修 4—4:坐标系与参数方程x a costxoy 中,曲线 C1 的参数方程为(t 为参数, a>0) .在以坐标原 y 1 a sint 点为极点, x 轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明 C1 是哪种曲线,并将C1 的方程化为极坐标方程;(Ⅱ)直线 C3 的极坐标方程为θ=α0,其中α0满足 tanα0=2,若曲线 C1 与 C2 的公共点都在C3 上,求 a.第 4 页共 4 页24.(本小题满分 10 分),选修 4— 5:不等式选讲已知函数 f(x)=| x+1| -|2x-3|.(Ⅰ)在答题卡第 24 题图中画出 y=f(x)的图像;(Ⅱ)求不等式 | f(x)|>1 的解集 .2016 年全国高考新课标 1 卷文科数学试题参考答案一、选择题,本大题共12 小题,每小题5 分,共 60分.1B 2A 3C 4D 5B 6D 7A8B 9D 10C 11A 12C二、填空题:本大题共4 小题,每小题 5 分,共 20 分.13.214.415. 4π16. 2160003 3 .只做 6 题,共 70分.三、解答题:解答应写出文字说明,证明过程或演算步骤17.解:1 2 21, b1 ,21,解得a1=2⋯2分(Ⅰ)依题 a b +b =b =1 b =3通项公式为 an=2+3(n-1)=3n-1是公比为1⋯ 6 分n+ 1n,bn+1 1n,所以{ bn 的等比数列(Ⅱ)由(Ⅰ)知 3nb =nb = b }331 ( 1)n3 1 P所以{ bn 的前n 3⋯12分F} n 项和 S=11 2 2 3n 13 EA18. (Ⅰ)证明: PD⊥平面 ABC,∴ PD⊥AB.G D.⋯9 分C又 DE⊥平面 PAB,∴ DE⊥AB.∴ AB⊥平面 PDE.⋯3 分 B又PG 平面 PDE,∴ AB⊥PG.依题 PA=PB ,∴ G 是 AB 的中点.⋯ 6 分(Ⅱ)解:在平面 PAB 内作 EF⊥PA(或 EF// PB)垂足为 F,则 F 是点 E 在平面 PAC 内的正投影 . ⋯ 7 分理由如下:∵ PC⊥ PA,PC⊥PB,∴ PC⊥平面 PAB.∴EF ⊥PC作EF⊥PA,∴ EF⊥平面 PAC.即 F 是点 E 在平面 PAC 内的正投影 .⋯ 9分连接 CG,依题 D 是正 ABC 的重心,∴ D 在中线 CG 上,且 CD=2DG.易知 DE// PC,PC=PB=PA= 6,∴ DE=2, PE= 2PG 2 3 2 2 2 .3 3则在等腰直角 PEF 中, PF=EF= 2,∴ΔPEF 的面积 S=2.所以四面体 PDEF 的体积 V 1 S DE 4 . ⋯12 分3 319.解: (Ⅰ)当 x≤19 时, y=3800;当 x>19 时, y=3800+500(x-19)=500x-5700.所以 y 与 x 的函数解析式为 y 3800,x 19⋯ 3 分500x5700,x(x N*)19(Ⅱ)由柱状图知,需更换的易损零件数不大于18 为 0.46,不大于 19 为 0.7,所以 n 的最小值为 19. ⋯ 6 分第 5 页共 5 页(Ⅲ)若每台机器都购买 19 个易损零件,则有70 台的费用为 3800, 20 台的费用为 4300,10 台的费用为 4800,所以 100 台机器购买易损零件费用的平均数为 1 (3800×70+4300×20+4800×10)=4000. ⋯ 9 分10若每台机器都购买 20 个易损零件,则有 90 台的费用为 4000,10 台的费用为 4500,所以100 台机器购买易损零件费用的平均数为 1 (4000×90+4500×10)=4050. ⋯11 分100 1 台机器的同时应购买 19 个易损零件 .⋯ 12 分比较两个平均数可知,购买 20.解: (Ⅰ)依题 M(0, t),P( t2 , t). 所以 N( t2 , t), ON 的方程为 y px . 2p p t联立 y 2 =2px ,消去 x 整理得 y 2=2ty. 解得 y1 =0,y2=2t. ⋯4 分所以 H( 2t 2 OH,2t). 所以 N 是 OH 的中点,所以⋯6 分 =2.p ON(Ⅱ)直线 MH 的方程为 y tp x ,联立 y 2=2px ,消去 x 整理得 y 2-4ty+4t 2=0. 解得 y12 即直线 与 2t 只有一个交点 MH C H. =y=2t.所以除 H 以外,直线 MH 与 C 没有其它公共点 . ⋯12 分21.解: (Ⅰ) f '(x)=(x -1)e x +a(2x -2)=(x -1)(e x +2a). x ∈ R ⋯ 2 分(1)当 a ≥0 时,在 (-∞,1)上, f '(x)<0,f(x)单调递减;在(1,+∞)上, f '(x)>0,f(x)单调递增 .⋯ 3 分 (2)当 a<0 时,令 f '(x)=0,解得 x =1 或 x=ln(-2 a).①若 a= e , , ≥ 恒成立,所以 f(x) 在 (-∞ ∞ 上单调递增. 2 ln(-2a) =1 f '(x) 0 ,+ )②若 a> e , ,在 (ln(-2a),1) 上, f '(x)<0 , f(x) 单调递减;2 ln(-2a)<1在 (-∞, ln(-2a))与 (1,+∞)上, f '(x)>0,f(x)单调递增 .③若 a< e , ,在 (1,ln(-2a)) 上, f '(x)<0 , f(x) 单调递减;2 ln(-2a)>1在 (-∞,1)与(ln(-2a),+∞)上, f '(x)>0, f(x)单调递增 .⋯7 分(Ⅱ) (1)当 a=0 时, f(x)=(x -2)e x只有一个零点,不合要求 . ⋯8 分(2)当 a>0 时,由 (Ⅰ)知 f(x)在(-∞,1)上单调递减;在 (1,+∞)上单调递增 .最小值 f(1)=-e<0,又 f(2)= a>0,若取 b<0 且 b<ln a,e b< a .2 2从而 f(b)> a (b 2) a(b 1)2a(b23 b) 0 ,所以 f(x)有两个零点 . ⋯10 分2 2(3)当 a<0 时,在 (-∞,1]上,f(x)<0 恒成立;若 a≥e,由(Ⅰ )知 f(x)在(1,+∞)上单调递增,不2存在两个零点 .若 a< e ,f(x)在(1,ln(-2a))上单调递减;在(ln(-2a),+∞ 上单调递增,也不存在两2)个零点 .综上 a 的取值范围是 (0,1). ⋯12 分22.(本小题满分 10 分)选修 4-1:几何证明选讲第 6 页共 6 页如图, OAB 是等腰三角形,∠ AOB=120°. 以 O 为圆心,1OA 为半径作圆 . (Ⅰ)证明:直线 AB 与⊙ O 相切;2(Ⅱ)点 C,D 在⊙ O 上,且 A,B,C,D 四点共圆,证明: AB ∥CD. 证明: (Ⅰ)设 E 是 AB 的中点,连接 OE ,因为 OA=OB , ∠AOB=120°. 所以 OE ⊥AB ,∠AOE=60°. ⋯3 分在 Rt AOE 中, OE= 1OA. 即圆心 O 到直线 AB 的2距离等打半径,所以直线 AB 与⊙ O 相切 . ⋯5 分(Ⅱ)因为 OD= 1 OA ,所以 O 不是 A,B,C,D 四点共圆的圆心, 故设其圆心为 O',则 O'在 AB2的垂直平分线上 .又 O 在 AB 的垂直平分线上,作直线 O O',所以 O O'⊥AB.⋯ 8 分同理可证 O O'⊥ CD.所以 AB ∥ CD. ⋯10 分23.(本小题满分 10 分)选修 4—4:坐标系与参数方程x a cost xoy 中,曲线 C 1 的参数方程为 (t 为参数, a>0) .在以坐标原 y 1 a sint点为极点, x 轴正半轴为极轴的极坐标系中,曲线 C2:ρ=4cos θ.(Ⅰ)说明 C 1 是哪种曲线,并将 C1 的方程化为极坐标方程;1 与 C2 的公共点都在 C3(Ⅱ)直线 C 3 的极坐标方程为 θ=α0,其中 α0满足 tan α0 ,若曲线 C =2上,求 a.的普通方程 x 2+(y-1)2=a 2. 解: (Ⅰ)消去参数 t 得到 C1所以 C1 是以 (0,1)为圆心 a 为半径的圆 .⋯ 3 分 将 x= cos ,y= sin 代入可得 C1 的极坐标方程为 2-2 sin +1-a 2=0. ⋯5 分 (Ⅱ)联立 2-2 sin +1-a 2=0 与 ρ=4cos θ消去 ρ得16cos 2-8sin cos +1-a 2=0, 由 tan θ=2 可得 16cos 2 -8sin cos = 0. 从而 2 ,解得 a=1. ⋯ 8分 1-a =0当 a=1 时,极点也是 C1 与 C2 的公共点,且在 C3 上,综上 a=1. ⋯10 分24.(本小题满分 10 分),选修 4— 5:不等式选讲已知函数 f(x)=| x+1| -|2x-3|.(Ⅰ)在答题卡第 24 题图中画出 y=f(x)的图像;(Ⅱ)求不等式 | f(x)|>1 的解集 .x 4, x 1解: (Ⅰ) f (x) 3x2, 1 x 32x 4, x32y=f(x)的图像如图所示 . ⋯ 5 分(Ⅱ)由 f(x)的图像和表达式知,当f(x)=1 时,解得 x=1 或 x=3.当 f(x)=-1 时,解得 x= 1或x=5. ⋯ 8 分3结合 f(x)的图像可得 | f(x)|>1 的解集为 { x|x< 1或 1< x<3 或x>5}. ⋯10 分3第7 页共7 页小题详解1.解:取 A ,B 中共有的元素是 {3,5} ,故选 B2.解: (1+2i)(a+i )= a-2+(1+2a)i ,依题 a-2=1+2a ,解得 a=-3,故选 A3.解:设红、黄、白、紫 4 种颜色的花分别用 1,2,3,4 来表示,则所有基本事件有 (12,34),(13,24), (14,23),(23,14),(24,13),(34,12),共 6 个,其中 1 和 4 不在同一花坛的事件有 4 个, 其概 4 2 率为 P= 63,故选 C.解:由余弦定理得: 5=4+b 2 2 , 则 3b 2 ,解得 ,故选D 4-4b × -8b-3=0 b=33 1 c 1.解:由直角三角形的面积关系得 2b b 2c 2 ebc = 4 ,解得 a 2 ,故选 B51 6.解:对应的函数为 y=2sin[ 2(x- 4)+ 6 ] ,即 y=2sin(2x –3 ),故选 D7.解:依图可知该几何体是球构成截去了八分之一,其体积V 4 R 3 7 28 ,解得 R=2,表面积 S 4 22 7 + 3 22 17 ,故选 B 3 8 3 8 4 8.解:取特值 a=1,b=0.5,c=0.5,可排除 A ,C ,D ,故选 B9.解:当 0≤x ≤2时, y'=4x –e x,函数先减后增,且 y'|x=0.5>0,最小值在 (0,0.5)内。
2016年北京市高考数学试卷(理科)(含解析版)

绝密★启用前2016年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={x||x|<2},集合B={﹣1,0,1,2,3},则A∩B=()A.{0,1}B.{0,1,2}C.{﹣1,0,1}D.{﹣1,0,1,2}2.(5分)若x,y满足,则2x+y的最大值为()A.0B.3C.4D.53.(5分)执行如图所示的程序框图,若输入的a值为1,则输出的k值为()A.1B.2C.3D.44.(5分)设,是向量,则“||=||”是“|+|=|﹣|”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.(5分)已知x,y∈R,且x>y>0,则()A.﹣>0B.sinx﹣siny>0C.()x﹣()y<0D.lnx+lny>06.(5分)某三棱锥的三视图如图所示,则该三棱锥的体积为()A.B.C.D.17.(5分)将函数y=sin(2x﹣)图象上的点P(,t)向左平移s(s>0)个单位长度得到点P′,若P′位于函数y=sin2x的图象上,则()A.t=,s的最小值为B.t=,s的最小值为C.t=,s的最小值为D.t=,s的最小值为8.(5分)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则()A.乙盒中黑球不多于丙盒中黑球B.乙盒中红球与丙盒中黑球一样多C.乙盒中红球不多于丙盒中红球D.乙盒中黑球与丙盒中红球一样多二、填空题共6小题,每小题5分,共30分.9.(5分)设a∈R,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a=.10.(5分)在(1﹣2x)6的展开式中,x2的系数为.(用数字作答)11.(5分)在极坐标系中,直线ρcosθ﹣ρsinθ﹣1=0与圆ρ=2cosθ交于A,B两点,则|AB|=.12.(5分)已知{a n}为等差数列,S n为其前n项和.若a1=6,a3+a5=0,则S6=.13.(5分)双曲线﹣=1(a>0,b>0)的渐近线为正方形OABC的边OA,OC所在的直线,点B为该双曲线的焦点.若正方形OABC的边长为2,则a=.14.(5分)设函数f(x)=.①若a=0,则f(x)的最大值为;②若f(x)无最大值,则实数a的取值范围是.三、解答题共6小题,共80分,解答应写出文字说明,演算步骤或证明过程.15.(13分)在△ABC中,a2+c2=b2+ac.(Ⅰ)求∠B的大小;(Ⅱ)求cosA+cosC的最大值.16.(13分)A,B,C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如表(单位:小时):A班6 6.577.58B班6789101112C班3 4.567.5910.51213.5(Ⅰ)试估计C班的学生人数;(Ⅱ)从A班和C班抽出的学生中,各随机选取一个人,A班选出的人记为甲,C班选出的人记为乙.假设所有学生的锻炼时间相对独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;(Ⅲ)再从A,B,C三班中各随机抽取一名学生,他们该周锻炼时间分别是7,9,8.25(单位:小时),这3个新数据与表格中的数据构成的新样本的平均数记为μ1,表格中数据的平均数记为μ0,试判断μ0和μ1的大小.(结论不要求证明)17.(14分)如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD=.(Ⅰ)求证:PD⊥平面PAB;(Ⅱ)求直线PB与平面PCD所成角的正弦值;(Ⅲ)在棱PA上是否存在点M,使得BM∥平面PCD?若存在,求的值,若不存在,说明理由.18.(13分)设函数f(x)=xe a﹣x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e﹣1)x+4,(Ⅰ)求a,b的值;(Ⅱ)求f(x)的单调区间.19.(14分)已知椭圆C:+=1(a>b>0)的离心率为,A(a,0),B(0,b),O(0,0),△OAB的面积为1.(Ⅰ)求椭圆C的方程;(Ⅱ)设P是椭圆C上一点,直线PA与y轴交于点M,直线PB与x轴交于点N.求证:|AN|•|BM|为定值.20.(13分)设数列A:a1,a2,…,a N(N≥2).如果对小于n(2≤n≤N)的每个正整数k都有a k<a n,则称n是数列A的一个“G时刻”,记G(A)是数列A的所有“G时刻”组成的集合.(Ⅰ)对数列A:﹣2,2,﹣1,1,3,写出G(A)的所有元素;(Ⅱ)证明:若数列A中存在a n使得a n>a1,则G(A)≠∅;(Ⅲ)证明:若数列A满足a n﹣a n﹣1≤1(n=2,3,…,N),则G(A)的元素个数不小于a N﹣a1.2016年北京市高考数学试卷(理科)参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={x||x|<2},集合B={﹣1,0,1,2,3},则A∩B=()A.{0,1}B.{0,1,2}C.{﹣1,0,1}D.{﹣1,0,1,2}【考点】1E:交集及其运算.【专题】11:计算题;35:转化思想;49:综合法;5J:集合.【分析】先求出集合A和B,由此利用交集的定义能求出A∩B.【解答】解:∵集合A={x||x|<2}={x|﹣2<x<2},B={﹣1,0,1,2,3},∴A∩B={﹣1,0,1}.故选:C.【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.2.(5分)若x,y满足,则2x+y的最大值为()A.0B.3C.4D.5【考点】7C:简单线性规划.【专题】11:计算题;29:规律型;31:数形结合;33:函数思想;35:转化思想.【分析】作出不等式组对应的平面区域,目标函数的几何意义是直线的纵截距,利用数形结合即可求z的取值范围.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).设z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线y=﹣2x+z的截距最大,此时z最大.由,解得,即A(1,2),代入目标函数z=2x+y得z=1×2+2=4.即目标函数z=2x+y的最大值为4.故选:C.【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.3.(5分)执行如图所示的程序框图,若输入的a值为1,则输出的k值为()A.1B.2C.3D.4【考点】EF:程序框图.【专题】11:计算题;28:操作型;5K:算法和程序框图.【分析】根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,可得答案.【解答】解:输入的a值为1,则b=1,第一次执行循环体后,a=﹣,不满足退出循环的条件,k=1;第二次执行循环体后,a=﹣2,不满足退出循环的条件,k=2;第三次执行循环体后,a=1,满足退出循环的条件,故输出的k值为2,故选:B.【点评】本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答.4.(5分)设,是向量,则“||=||”是“|+|=|﹣|”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【考点】29:充分条件、必要条件、充要条件;91:向量的概念与向量的模.【专题】35:转化思想;5A:平面向量及应用;5R:矩阵和变换.【分析】根据向量模相等的几何意义,结合充要条件的定义,可得答案.【解答】解:若“||=||”,则以,为邻边的平行四边形是菱形;若“|+|=|﹣|”,则以,为邻边的平行四边形是矩形;故“||=||”是“|+|=|﹣|”的既不充分也不必要条件;故选:D.【点评】本题考查的知识点是充要条件,向量的模,分析出“||=||”与“|+|=|﹣|”表示的几何意义,是解答的关键.5.(5分)已知x,y∈R,且x>y>0,则()A.﹣>0B.sinx﹣siny>0C.()x﹣()y<0D.lnx+lny>0【考点】71:不等关系与不等式.【专题】35:转化思想;51:函数的性质及应用;5T:不等式.【分析】x,y∈R,且x>y>0,可得:,sinx与siny的大小关系不确定,<,lnx+lny与0的大小关系不确定,即可判断出结论.【解答】解:∵x,y∈R,且x>y>0,则,sinx与siny的大小关系不确定,<,即﹣<0,lnx+lny与0的大小关系不确定.故选:C.【点评】本题考查了不等式的性质、函数的单调性,考查了推理能力与计算能力,属于中档题.6.(5分)某三棱锥的三视图如图所示,则该三棱锥的体积为()A.B.C.D.1【考点】L!:由三视图求面积、体积.【专题】11:计算题;5F:空间位置关系与距离;5Q:立体几何.【分析】由已知中的三视图可得:该几何体是一个以俯视图为底面的三棱锥,进而可得答案.【解答】解:由已知中的三视图可得:该几何体是一个以俯视图为底面的三棱锥,棱锥的底面面积S=×1×1=,高为1,故棱锥的体积V==,故选:A.【点评】本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.7.(5分)将函数y=sin(2x﹣)图象上的点P(,t)向左平移s(s>0)个单位长度得到点P′,若P′位于函数y=sin2x的图象上,则()A.t=,s的最小值为B.t=,s的最小值为C.t=,s的最小值为D.t=,s的最小值为【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】35:转化思想;4R:转化法;57:三角函数的图像与性质.【分析】将x=代入得:t=,进而求出平移后P′的坐标,进而得到s的最小值.【解答】解:将x=代入得:t=sin=,将函数y=sin(2x﹣)图象上的点P向左平移s个单位,得到P′(﹣s,)点,若P′位于函数y=sin2x的图象上,则sin(﹣2s)=cos2s=,则2s=+2kπ,k∈Z,则s=+kπ,k∈Z,由s>0得:当k=0时,s的最小值为,故选:A.【点评】本题考查的知识点是函数y=Asin(ωx+φ)(A>0,ω>0)的图象和性质,难度中档.8.(5分)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则()A.乙盒中黑球不多于丙盒中黑球B.乙盒中红球与丙盒中黑球一样多C.乙盒中红球不多于丙盒中红球D.乙盒中黑球与丙盒中红球一样多【考点】F5:演绎推理.【专题】5M:推理和证明.【分析】分析理解题意:乙中放红球,则甲中也肯定是放红球;往丙中放球的前提是放入甲中的不是红球,据此可以从乙中的红球个数为切入点进行分析.【解答】解:取两个球共有4种情况:①红+红,则乙盒中红球数加1个;②黑+黑,则丙盒中黑球数加1个;③红+黑(红球放入甲盒中),则乙盒中黑球数加1个;④黑+红(黑球放入甲盒中),则丙盒中红球数加1个.设一共有球2a个,则a个红球,a个黑球,甲中球的总个数为a,其中红球x个,黑球y个,x+y=a.则乙中有x个球,其中k个红球,j个黑球,k+j=x;丙中有y个球,其中l个红球,i个黑球,i+l=y;黑球总数a=y+i+j,又x+y=a,故x=i+j由于x=k+j,所以可得i=k,即乙中的红球等于丙中的黑球.故选:B.【点评】该题考查了推理与证明,重点是找到切入点逐步进行分析,对学生的逻辑思维能力有一定要求,中档题二、填空题共6小题,每小题5分,共30分.9.(5分)设a∈R,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a=﹣1.【考点】A4:复数的代数表示法及其几何意义.【专题】11:计算题;35:转化思想;4R:转化法;5N:数系的扩充和复数.【分析】(1+i)(a+i)=a﹣1+(a+1)i,则a+1=0,解得答案.【解答】解:(1+i)(a+i)=a﹣1+(a+1)i,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a+1=0,解得:a=﹣1,故答案为:﹣1【点评】本题考查的知识点是复数的代数表示法及其几何意义,难度不大,属于基础题.10.(5分)在(1﹣2x)6的展开式中,x2的系数为60.(用数字作答)【考点】DA:二项式定理.【专题】34:方程思想;35:转化思想;5P:二项式定理.【分析】利用二项式定理展开式的通项公式即可得出.=(﹣2x)r=(﹣2)r x r,【解答】解:(1﹣2x)6的展开式中,通项公式T r+1令r=2,则x2的系数==60.故答案为:60.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.11.(5分)在极坐标系中,直线ρcosθ﹣ρsinθ﹣1=0与圆ρ=2cosθ交于A,B两点,则|AB|=2.【考点】Q4:简单曲线的极坐标方程.【专题】11:计算题;34:方程思想;49:综合法;5B:直线与圆.【分析】把圆与直线的极坐标方程化为直角坐标方程,利用圆心C在直线上可得|AB|.【解答】解:直线ρcosθ﹣ρsinθ﹣1=0化为y直线x﹣y﹣1=0.圆ρ=2cosθ化为ρ2=2ρcosθ,∴x2+y2=2x,配方为(x﹣1)2+y2=1,可得圆心C(1,0),半径r=1.则圆心C在直线上,∴|AB|=2.故答案为:2.【点评】本题考查了把圆与直线的极坐标方程化为直角坐标方程,考查了计算能力,属于基础题.12.(5分)已知{a n}为等差数列,S n为其前n项和.若a1=6,a3+a5=0,则S6=6.【考点】85:等差数列的前n项和.【专题】11:计算题;35:转化思想;49:综合法;54:等差数列与等比数列.【分析】由已知条件利用等差数列的性质求出公差,由此利用等差数列的前n 项和公式能求出S6.【解答】解:∵{a n}为等差数列,S n为其前n项和.a1=6,a3+a5=0,∴a1+2d+a1+4d=0,∴12+6d=0,解得d=﹣2,∴S6==36﹣30=6.故答案为:6.【点评】本题考查等差数列的前6项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.13.(5分)双曲线﹣=1(a>0,b>0)的渐近线为正方形OABC的边OA,OC所在的直线,点B为该双曲线的焦点.若正方形OABC的边长为2,则a=2.【考点】KC:双曲线的性质.【专题】35:转化思想;4O:定义法;5D:圆锥曲线的定义、性质与方程.【分析】根据双曲线渐近线在正方形的两个边,得到双曲线的渐近线互相垂直,即双曲线是等轴双曲线,结合等轴双曲线的性质进行求解即可.【解答】解:∵双曲线的渐近线为正方形OABC的边OA,OC所在的直线,∴渐近线互相垂直,则双曲线为等轴双曲线,即渐近线方程为y=±x,即a=b,∵正方形OABC的边长为2,∴OB=2,即c=2,则a2+b2=c2=8,即2a2=8,则a2=4,a=2,故答案为:2【点评】本题主要考查双曲线的性质的应用,根据双曲线渐近线垂直关系得到双曲线是等轴双曲线是解决本题的关键.14.(5分)设函数f(x)=.①若a=0,则f(x)的最大值为2;②若f(x)无最大值,则实数a的取值范围是(﹣∞,﹣1).【考点】5B:分段函数的应用.【专题】35:转化思想;4R:转化法;51:函数的性质及应用.【分析】①将a=0代入,求出函数的导数,分析函数的单调性,可得当x=﹣1时,f(x)的最大值为2;②若f(x)无最大值,则,或,解得答案.【解答】解:①若a=0,则f(x)=,则f′(x)=,当x<﹣1时,f′(x)>0,此时函数为增函数,当x>﹣1时,f′(x)<0,此时函数为减函数,故当x=﹣1时,f(x)的最大值为2;②f′(x)=,令f′(x)=0,则x=±1,若f(x)无最大值,则,或,解得:a∈(﹣∞,﹣1).故答案为:2,(﹣∞,﹣1)【点评】本题考查的知识点是分段函数的应用,函数的最值,分类讨论思想,难度中档.三、解答题共6小题,共80分,解答应写出文字说明,演算步骤或证明过程.15.(13分)在△ABC中,a2+c2=b2+ac.(Ⅰ)求∠B的大小;(Ⅱ)求cosA+cosC的最大值.【考点】HU:解三角形.【专题】11:计算题;35:转化思想;4R:转化法;58:解三角形.【分析】(Ⅰ)根据已知和余弦定理,可得cosB=,进而得到答案;(Ⅱ)由(I)得:C=﹣A,结合正弦型函数的图象和性质,可得cosA+cosC 的最大值.【解答】解:(Ⅰ)∵在△ABC中,a2+c2=b2+ac.∴a2+c2﹣b2=ac.∴cosB===,∴B=(Ⅱ)由(I)得:C=﹣A,∴cosA+cosC=cosA+cos(﹣A)=cosA﹣cosA+sinA=cosA+sinA=sin(A+).∵A∈(0,),∴A+∈(,π),故当A+=时,sin(A+)取最大值1,即cosA+cosC的最大值为1.【点评】本题考查的知识点是余弦定理,和差角公式,正弦型函数的图象和性质,难度中档.16.(13分)A,B,C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如表(单位:小时):A班6 6.577.58B班6789101112C班3 4.567.5910.51213.5(Ⅰ)试估计C班的学生人数;(Ⅱ)从A班和C班抽出的学生中,各随机选取一个人,A班选出的人记为甲,C班选出的人记为乙.假设所有学生的锻炼时间相对独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;(Ⅲ)再从A,B,C三班中各随机抽取一名学生,他们该周锻炼时间分别是7,9,8.25(单位:小时),这3个新数据与表格中的数据构成的新样本的平均数记为μ1,表格中数据的平均数记为μ0,试判断μ0和μ1的大小.(结论不要求证明)【考点】BE:用样本的数字特征估计总体的数字特征;CB:古典概型及其概率计算公式.【专题】11:计算题;4O:定义法;5I:概率与统计.【分析】(I)由已知先计算出抽样比,进而可估计C班的学生人数;(Ⅱ)根据古典概型概率计算公式,可求出该周甲的锻炼时间比乙的锻炼时间长的概率;(Ⅲ)根据平均数的定义,可判断出μ0>μ1.【解答】解:(I)由题意得:三个班共抽取20个学生,其中C班抽取8个,故抽样比K==,故C班有学生8÷=40人,(Ⅱ)从从A班和C班抽出的学生中,各随机选取一个人,共有5×8=40种情况,而且这些情况是等可能发生的,当甲锻炼时间为6时,甲的锻炼时间比乙的锻炼时间长有2种情况;当甲锻炼时间为6.5时,甲的锻炼时间比乙的锻炼时间长有3种情况;当甲锻炼时间为7时,甲的锻炼时间比乙的锻炼时间长有3种情况;当甲锻炼时间为7.5时,甲的锻炼时间比乙的锻炼时间长有3种情况;当甲锻炼时间为8时,甲的锻炼时间比乙的锻炼时间长有4种情况;故周甲的锻炼时间比乙的锻炼时间长的概率P==;(Ⅲ)μ0>μ1.【点评】本题考查的知识点是用样本的频率分布估计总体分布,古典概型,难度中档.17.(14分)如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD=.(Ⅰ)求证:PD⊥平面PAB;(Ⅱ)求直线PB与平面PCD所成角的正弦值;(Ⅲ)在棱PA上是否存在点M,使得BM∥平面PCD?若存在,求的值,若不存在,说明理由.【考点】LP:空间中直线与平面之间的位置关系.【专题】15:综合题;35:转化思想;49:综合法;5Q:立体几何.【分析】(Ⅰ)由已知结合面面垂直的性质可得AB⊥平面PAD,进一步得到AB ⊥PD,再由PD⊥PA,由线面垂直的判定得到PD⊥平面PAB;(Ⅱ)取AD中点为O,连接CO,PO,由已知可得CO⊥AD,PO⊥AD.以O 为坐标原点,建立空间直角坐标系,求得P(0,0,1),B(1,1,0),D(0,﹣1,0),C(2,0,0),进一步求出向量的坐标,再求出平面PCD的法向量,设PB与平面PCD的夹角为θ,由求得直线PB与平面PCD所成角的正弦值;(Ⅲ)假设存在M点使得BM∥平面PCD,设,M(0,y1,z1),由可得M(0,1﹣λ,λ),,由BM∥平面PCD,可得,由此列式求得当时,M点即为所求.【解答】(Ⅰ)证明:∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,且AB⊥AD,AB⊂平面ABCD,∴AB⊥平面PAD,∵PD⊂平面PAD,∴AB⊥PD,又PD⊥PA,且PA∩AB=A,∴PD⊥平面PAB;(Ⅱ)解:取AD中点为O,连接CO,PO,∵CD=AC=,∴CO⊥AD,又∵PA=PD,∴PO⊥AD.以O为坐标原点,建立空间直角坐标系如图:则P(0,0,1),B(1,1,0),D(0,﹣1,0),C(2,0,0),则,,设为平面PCD的法向量,则由,得,则.设PB与平面PCD的夹角为θ,则=;(Ⅲ)解:假设存在M点使得BM∥平面PCD,设,M(0,y1,z1),由(Ⅱ)知,A(0,1,0),P(0,0,1),,B(1,1,0),,则有,可得M(0,1﹣λ,λ),∴,∵BM∥平面PCD,为平面PCD的法向量,∴,即,解得.综上,存在点M,即当时,M点即为所求.【点评】本题考查线面垂直的判定,考查了直线与平面所成的角,训练了存在性问题的求解方法,建系利用空间向量求解降低了问题的难度,属中档题.18.(13分)设函数f(x)=xe a﹣x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e﹣1)x+4,(Ⅰ)求a,b的值;(Ⅱ)求f(x)的单调区间.【考点】6B:利用导数研究函数的单调性;6H:利用导数研究曲线上某点切线方程.【专题】33:函数思想;35:转化思想;4R:转化法;52:导数的概念及应用.【分析】(Ⅰ)求函数的导数,根据导数的几何意义求出函数的切线斜率以及f(2),建立方程组关系即可求a,b的值;(Ⅱ)求函数的导数,利用函数单调性和导数之间的关系即可求f(x)的单调区间.【解答】解:(Ⅰ)∵y=f(x)在点(2,f(2))处的切线方程为y=(e﹣1)x+4,∴当x=2时,y=2(e﹣1)+4=2e+2,即f(2)=2e+2,同时f′(2)=e﹣1,∵f(x)=xe a﹣x+bx,∴f′(x)=e a﹣x﹣xe a﹣x+b,则,即a=2,b=e;(Ⅱ)∵a=2,b=e;∴f(x)=xe2﹣x+ex,∴f′(x)=e2﹣x﹣xe2﹣x+e=(1﹣x)e2﹣x+e=(1﹣x+e x﹣1)e2﹣x,∵e2﹣x>0,∴1﹣x+e x﹣1与f′(x)同号,令g(x)=1﹣x+e x﹣1,则g′(x)=﹣1+e x﹣1,由g′(x)<0,得x<1,此时g(x)为减函数,由g′(x)>0,得x>1,此时g(x)为增函数,则当x=1时,g(x)取得极小值也是最小值g(1)=1,则g(x)≥g(1)=1>0,故f′(x)>0,即f(x)的单调区间是(﹣∞,+∞),无递减区间.【点评】本题主要考查导数的应用,根据导数的几何意义,结合切线斜率建立方程关系以及利用函数单调性和导数之间的关系是解决本题的关键.综合性较强.19.(14分)已知椭圆C:+=1(a>b>0)的离心率为,A(a,0),B(0,b),O(0,0),△OAB的面积为1.(Ⅰ)求椭圆C的方程;(Ⅱ)设P是椭圆C上一点,直线PA与y轴交于点M,直线PB与x轴交于点N.求证:|AN|•|BM|为定值.【考点】KL:直线与椭圆的综合.【专题】34:方程思想;48:分析法;5B:直线与圆;5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)运用椭圆的离心率公式和三角形的面积公式,结合a,b,c的关系,解方程可得a=2,b=1,进而得到椭圆方程;(Ⅱ)方法一、设椭圆上点P(x0,y0),可得x02+4y02=4,求出直线PA的方程,令x=0,求得y,|BM|;求出直线PB的方程,令y=0,可得x,|AN|,化简整理,即可得到|AN|•|BM|为定值4.方法二、设P(2cosθ,sinθ),(0≤θ<2π),求出直线PA的方程,令x=0,求得y,|BM|;求出直线PB的方程,令y=0,可得x,|AN|,运用同角的平方关系,化简整理,即可得到|AN|•|BM|为定值4.【解答】解:(Ⅰ)由题意可得e==,又△OAB的面积为1,可得ab=1,且a2﹣b2=c2,解得a=2,b=1,c=,可得椭圆C的方程为+y2=1;(Ⅱ)证法一:设椭圆上点P(x0,y0),可得x02+4y02=4,直线PA:y=(x﹣2),令x=0,可得y=﹣,则|BM|=|1+|;直线PB:y=x+1,令y=0,可得x=﹣,则|AN|=|2+|.可得|AN|•|BM|=|2+|•|1+|=||=||=||=4,即有|AN|•|BM|为定值4.证法二:设P(2cosθ,sinθ),(0≤θ<2π),直线PA:y=(x﹣2),令x=0,可得y=﹣,则|BM|=||;直线PB:y=x+1,令y=0,可得x=﹣,则|AN|=||.即有|AN|•|BM|=||•||=2||=2||=4.则|AN|•|BM|为定值4.【点评】本题考查椭圆的方程的求法,注意运用椭圆的离心率和基本量的关系,考查线段积的定值的求法,注意运用直线方程和点满足椭圆方程,考查化解在合理的运算能力,属于中档题.20.(13分)设数列A:a1,a2,…,a N(N≥2).如果对小于n(2≤n≤N)的每个正整数k都有a k<a n,则称n是数列A的一个“G时刻”,记G(A)是数列A的所有“G时刻”组成的集合.(Ⅰ)对数列A:﹣2,2,﹣1,1,3,写出G(A)的所有元素;(Ⅱ)证明:若数列A中存在a n使得a n>a1,则G(A)≠∅;(Ⅲ)证明:若数列A满足a n﹣a n﹣1≤1(n=2,3,…,N),则G(A)的元素个数不小于a N﹣a1.【考点】8I:数列与函数的综合;RG:数学归纳法.【专题】23:新定义;55:点列、递归数列与数学归纳法.【分析】(Ⅰ)结合“G时刻”的定义进行分析;(Ⅱ)可以采用假设法和递推法进行分析;(Ⅲ)可以采用假设法和列举法进行分析.【解答】解:(Ⅰ)根据题干可得,a1=﹣2,a2=2,a3=﹣1,a4=1,a5=3,a1<a2满足条件,2满足条件,a2>a3不满足条件,3不满足条件,a2>a4不满足条件,4不满足条件,a1,a2,a3,a4,均小于a5,因此5满足条件,因此G(A)={2,5}.(Ⅱ)因为存在a n>a1,设数列A中第一个大于a1的项为a k,则a k>a1≥a i,其中2≤i≤k﹣1,所以k∈G(A),G(A)≠∅;(Ⅲ)设A数列的所有“G时刻”为i1<i2<…<i k,对于第一个“G时刻”i 1,有>a1≥a i(i=2,3,…,i1﹣1),则﹣a 1≤﹣≤1.对于第二个“G时刻”i 1,有>≥a i(i=2,3,…,i1﹣1),则﹣≤﹣≤1.类似的﹣≤1,…,﹣≤1.于是,k≥(﹣)+(﹣)+…+(﹣)+(﹣a1)=﹣a1.对于a N,若N∈G(A),则=a N.若N∉G(A),则aN≤,否则由(2)知,,…,a N,中存在“G时刻”与只有k个“G时刻”矛盾.从而k≥﹣a 1≥a N﹣a1.【点评】本题属于新定义题型,重点在于对“G时刻”定义的把握,难度较大.。
北京高考数学试题及答案word精校版

北京高考数学试题及答案word精校版2016年北京高考数学试题及答案(word精校版)2016年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.()(A)0 (B)3(C)4 (D)5(3)执行如图所示的程序框图,若输入的a值为1,则输出的k值为(A)1 (B)2 (C)3 (D)4(4)设a,b是向量,则“IaI=IbI”是“Ia+bI=Ia-bI”的(A) 充分而不必要条件(B)必要而不充分条件(C) 充分必要条件(D)既不充分也不必要条件(6)某三棱锥的三视图如图所示,则该三棱锥的体积为()(D)1(8)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则(A)乙盒中黑球不多于丙盒中黑球(B)乙盒中红球与丙盒中黑球一样多()(C)乙盒中红球不多于丙盒中红球(D)乙盒中黑球与丙盒中红球一样多第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分.三、解答题(共6小题,共80分.解答应写出文字说明,演算步骤或证明过程)(16)(本小题13分)A、B、C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时);A班 6 6.5 7 7.5 8B班 6 7 8 9 10 11 12C班 3 4.5 6 7.5 9 10.5 12 13.5(I) 试估计C班的学生人数;(II) 从A班和C班抽出的学生中,各随机选取一人,A班选出的人记为甲,C班选出的人记为乙,假设所有学生的锻炼时间相对独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;(III)再从A、B、C三个班中各随机抽取一名学生,学.科网他们该周的锻炼时间分别是7,9,8.25(单位:小时),这3个新数据与表格中的数据构成的新样本的平均数记,表格中数据的平均数记为,试判断和的`大小,(结论不要求证明)(17)(本小题14分)(II)求直线PB与平面PCD所成角的正弦值;(18)(本小题13分)。
五年高考2016_2020高考数学真题分项详解专题17立体几何综合含解析文
专题17 立体几何综合【2020年】1。
(2020·新课标Ⅰ文)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,ABC 是底面的内接正三角形,P 为DO 上一点,∠APC =90°.(1)证明:平面PAB ⊥平面PAC ; (2)设DO =2,圆锥的侧面积为3π,求三棱锥P −ABC 的体积。
【答案】(1)证明见解析;(26.【解析】 (1)D 为圆锥顶点,O 为底面圆心,OD ∴⊥平面ABC ,P 在DO 上,,OA OB OC PA PB PC ==∴==,ABC 是圆内接正三角形,AC BC ∴=,PAC PBC ≅△△,90APC BPC ∴∠=∠=︒,即,PB PC PA PC ⊥⊥,,PA PB P PC =∴⊥平面,PAB PC ⊂平面PAC ,∴平面PAB ⊥平面PAC ;(2)设圆锥的母线为l ,底面半径为r ,圆锥的侧面积为3,3rl rl ππ==2222OD l r =-=,解得1,3r l ==2sin 603AC r ==在等腰直角三角形APC 中,2622AP AC ==, 在Rt PAO 中,2262142PO AP OA =-=-=,∴三棱锥P ABC -的体积为11236333248P ABCABC VPO S -=⋅=⨯⨯⨯=△。
2。
(2020·新课标Ⅱ文)如图,已知三棱柱ABC –A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1//MN ,且平面A 1AMN ⊥平面EB 1C 1F ; (2)设O 为△A 1B 1C 1的中心,若AO =AB =6,AO //平面EB 1C 1F ,且∠MPN =π3,求四棱锥B –EB 1C 1F 的体积.【答案】(1)证明见解析;(2)24。
2016年高考新课标1卷文科数学试题(解析版)
2016年高考数学新课标Ⅰ〔文〕试题及答案解析〔使用地区山西、河南、河北、湖南、湖北、江西、安徽、福建、广东〕一、选择题,本大题共12小题,每题5分,共60分.在每题给出的四个选项中,只有一项是符合题目要求的.【2016 新课标Ⅰ〔文〕】1.设集合A={1,3,5,7},B={x |2≤x ≤5},则A ∩B=( )A .{1,3}B .{3,5}C .{5,7}D .{1,7}【答案】B【解析】取A ,B 中共有的元素是{3,5},故选B【2016 新课标Ⅰ〔文〕】2.设(1+2i )(a+i )的实部与虚部相等,其中a 为实数,则a=( )A .-3B .-2C .2D . 3【答案】A【解析】(1+2i )(a+i )= a -2+(1+2a )i ,依题a -2=1+2a ,解得a=-3,故选A【2016 新课标Ⅰ〔文〕】3.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )A .13B .12C .23D .56【答案】C【解析】设红、黄、白、紫4种颜色的花分别用1,2,3,4来表示,则所有基本领件有 (12,34),(13,24),(14,23),(23,14),(24,13),(34,12),共6个,其中1和4不在同一花坛的事件有4个, 其概率为P=4263=,故选C 【2016 新课标Ⅰ〔文〕】4.ΔABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知22,cos 3a c A ===,则b=( )A .B C .2 D .3【答案】D 【解析】由余弦定理得:5=4+b 2-4b ×23, 则3b 2-8b -3=0,解得b =3,故选D【2016 新课标Ⅰ〔文〕】5.直线l 经过椭圆的一个顶点和一个焦点,假设椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) A .13 B .12 C .23 D .34【答案】B【解析】由直角三角形的面积关系得bc=124⨯12c e a ==,故选B【2016 新课标Ⅰ〔文〕】6.假设将函数y =2sin (2x +6π)的图像向右平移14个周期后,所得图像对应的函数为( )A .y =2sin(2x +4π) B .y =2sin(2x +3π) C .y =2sin(2x –4π) D .y =2sin(2x –3π) 【答案】D【解析】对应的函数为y =2sin[ 2(x -14π⨯)+6π],即y =2sin(2x –3π),故选D【2016 新课标Ⅰ〔文〕】7283π, 则它的外表积是( )A .17πB .18πC .20πD .28π【答案】A【解析】依图可知该几何体是球构成截去了八分之一,其体积34728383V R ππ=⨯=,解得R=2,外表积227342+21784S πππ=⨯⨯⨯=,故选B 【2016 新课标Ⅰ〔文〕】8.假设a >b >0,0<c <1,则( )A .log a c <log b cB .log c a <logc b C .a c <b c D .c a >c b【答案】B【解析】取特值a =1,b ,c ,可排除A ,C ,D ,故选B【2016 新课标Ⅰ〔文〕】9.函数y =2x 2–e |x |在[–2,2]的图像大致为( )【解析】当0≤x ≤2时,y'=4x –e x ,函数先减后增,且y'|x >0,最小值在(0,0.5)内.故选D【2016 新课标Ⅰ〔文〕】10则输出x ,y 的值满足( )CA .y =2xB .y =3xC .y =4xD .y =5x 【答案】C 【解析】运行程序,循环节内的n ,x ,y 依次为 (1,0,1),(2,0.5,2),(3,1.5,6), 输出x ,y= 6, 故选C 【2016 新课标Ⅰ〔文〕】11.平面α过正方体ABCD -A 1B 1 α//平面CB 1D 1,α∩平面ABCD=m ,α∩平面ABB 1A 1则m ,n 所成角的正弦值为( )A B .2 C D .13【答案】A【解析】平面A 1B 1C 1D 1∩平面CB 1D 1= B 1D 1与m 平行,平面CDD 1C 1∩平面CB 1D 1= CD 1与n 平行,所以m ,n 所成角就是B 1D 1与CD 1所成角,而ΔCB 1D 1是等边三角形,则所成角是60°,故选A【2016 新课标Ⅰ〔文〕】12.假设函数1()sin 2sin 3f x x -x a x =+在(-∞,+∞)单调递增,则a 的取值范围是( )A .[-1,1]B .[-1,13] C .[-,13] D .[-1,-13] 【答案】C 【解析】2()sin cos sin 3f x x -x x a x =+,222'()1(cos sin )cos 3f x -x x a x ∴=-+, 依题f'(x )≥0恒成立,即a cos x ≥2cos213x -恒成立,而(a cos x )min =-|a |,21111cos21||[]33333x a a -≤-∴-≥-∈-,,解得,,故选C二、填空题:本大题共4小题,每题5分,共20分.把答案填在横线上.【2016 新课标Ⅰ〔文〕】13.设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x = . 【答案】23- 【解析】依题x +2(x +1)=0,解得x=23- 【2016 新课标Ⅰ〔文〕】14.已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ-π4)= . 【答案】43- 【解析】依题θ+π4是第一象限角,cos(θ+π4)=45,tan(θ-π4)=- tan(π4-θ) =- tan[π2-(θ+π4)]=- sin[π2-(θ+π4)]/cos[π2-(θ+π4)]=- cos(θ+π4)/ sin(θ+π4)=43- 【2016 新课标Ⅰ〔文〕】15.设直线y=x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,假设|AB |=C 的面积为 .【答案】4π【解析】圆方程可化为x 2+ (y -a )2=a 2+2,圆心C 到直线距离dd 2+3=a 2+2, 解得a 2=2,所以圆半径为2,则圆面积为4π【2016 新课标Ⅰ〔文〕】16.某高科技企业生产产品A 和产品BA 需要甲材料,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料,乙材料,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.【答案】216000【解析】设生产A 、B 两种产品各x 件、y 件,利润之和是z =2100x +900y ,约束条件是 1.50.51500.390536000,0x y x y x y x y +≤⎧⎪+≤⎪⎨+≤⎪⎪≥≥⎩,即3300103900536000,0x y x y x y x y +≤⎧⎪+≤⎪⎨+≤⎪⎪≥≥⎩ 作出可行域四边形OABC ,如图.画出直线l 0:7x +3y =0,平移l 0到l , 当l 经过点B 时z 最大,联立10x+3y=900与5x+3y=600 解得交点B (60,100),所以 z max =126000+90000=216000.三、解答题:解答应写出文字说明,证明过程或演算步骤.只做6题,共70分.【2016 新课标Ⅰ〔文〕】17.〔此题总分值12分〕已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=31,a n b n +1+b n +1=nb n . (Ⅰ)求{a n }的通项公式; (Ⅱ)求{b n }的前n 项和.【解析】(Ⅰ)依题a 1b 2+b 2=b 1,b 1=1,b 2=31,解得a 1=2 …2分 通项公式为 a n =2+3(n -1)=3n -1 …6分(Ⅱ)由(Ⅰ)知3nb n +1=nb n ,b n +1=31b n ,所以{b n }是公比为31的等比数列.…9分 所以{b n }的前n 项和S n =111()313122313nn --=-⨯- …12分 【2016 新课标Ⅰ〔文〕】18.〔此题总分值12分〕如图,已知正三棱锥P -ABC 的侧面是直角三角形,P A =6影为点D ,D 在平面P AB 内的正投影为点E ,连接PE 并延长交AB 于点G . (Ⅰ)证明G 是AB 的中点;(Ⅱ)在答题卡第〔18〕题图中作出点E 在平面P AC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积. 【解析】(Ⅰ)证明:PD ⊥平面ABC ,∴PD ⊥AB . 又DE ⊥平面P AB ,∴DE ⊥AB .∴AB ⊥平面PDE . 又PG ⊂平面PDE ,∴AB ⊥PG .依题P A=PB ,∴G 是AB 的中点.…6分(Ⅱ)在平面P AB 内作EF ⊥P A 〔或EF // PB 〕垂足为F ,则F 是点E 在平面P AC 内的正投影. …7分理由如下:∵PC ⊥P A ,PC ⊥PB ,∴ PC ⊥平面P AB . ∴EF ⊥PC作EF ⊥P A ,∴EF ⊥平面P AC .即F 是点E 在平面P AC 内的正投影.…9分连接CG ,依题D 是正ΔABC 的重心,∴D 在中线CG 上,且CD =2DG .易知DE// PC,PC=PB=P A= 6,∴DE=2,PE=223222 33PG=⨯=.则在等腰直角ΔPEF中,PF=EF=2,∴ΔPEF的面积S=2.所以四面体PDEF的体积1433V S DE=⨯=. …12分【2016 新课标Ⅰ〔文〕】19.〔本小题总分值12分〕某公司计划购买1台机器,该种机器使用三年后即被淘汰. 机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元. 在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用〔单位:元〕,n表示购机的同时购买的易损零件数.(Ⅰ)假设n=19,求y与x的函数解析式;(Ⅱ)假设要求“需更换的易损零件数不大于n”的频率不小于,求n的最小值;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?【解析】(Ⅰ)当x≤19时,y=3800;当x>19时,y=3800+500(x-19)=500x-5700.所以y与x的函数解析式为3800,19(*)5005700,19xy x Nx x≤⎧=∈⎨->⎩…3分(Ⅱ)由柱状图知,需更换的易损零件数不大于18为0.46,不大于19为0.7,所以n的最小值为19. …6分(Ⅲ)假设每台机器都购买19个易损零件,则有70台的费用为3800,20台的费用为4300,10台的费用为4800,所以100台机器购买易损零件费用的平均数为1100(3800×70+4300×20+4800×10)=4000. …9分假设每台机器都购买20个易损零件,则有90台的费用为4000,10台的费用为4500,所以100台机器购买易损零件费用的平均数为1100(4000×90+4500×10)=4050. …11分比较两个平均数可知,购买1台机器的同时应购买19个易损零件.…12分【2016 新课标Ⅰ〔文〕】20.〔本小题总分值12分〕在直角坐标系xoy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(Ⅰ)求OH ON; (Ⅱ)除H 以外,直线MH 与C 是否有其它公共点?说明理由. 【解析】(Ⅰ)依题M (0, t ),P (22t p , t ). 所以N (2t p , t ),ON 的方程为p y x t=. 联立y 2=2px ,消去x 整理得y 2=2ty . 解得y 1=0,y 2=2t . …4分所以H (22t p ,2t ). 所以N 是OH 的中点,所以OH ON=2. …6分 (Ⅱ)直线MH 的方程为2p y t x t-=,联立y 2=2px ,消去x 整理得y 2-4ty +4t 2=0. 解得y 1=y 2=2t . 即直线MH 与C 只有一个交点H .所以除H 以外,直线MH 与C 没有其它公共点. …12分【2016 新课标Ⅰ〔文〕】21.〔本小题总分值12分〕已知函数f (x )=(x -2)e x +a (x -1)2.(Ⅰ)讨论f (x )的单调性; (Ⅱ)假设有两个零点,求a 的取值范围.【解析】(Ⅰ) f '(x )=(x -1)e x +a (2x -2)=(x -1)(e x +2a ). x ∈R …2分(1)当a ≥0时,在(-∞,1)上,f '(x )<0,f (x )单调递减;在(1,+∞)上,f '(x )>0,f (x )单调递增. …3分(2)当a <0时,令f '(x )=0,解得x =1或x =ln(-2a ).①假设a =2e -,ln(-2a ) =1,f '(x )≥0恒成立,所以f (x )在(-∞,+ ∞)上单调递增. ②假设a >2e -,ln(-2a )<1,在(ln(-2a ),1)上,f '(x )<0,f (x )单调递减; 在(-∞, ln(-2a ))与(1,+∞)上,f '(x )>0,f (x )单调递增.③假设a <2e -,ln(-2a )>1,在(1,ln(-2a ))上,f '(x )<0,f (x )单调递减; 在(-∞,1)与(ln(-2a ),+∞)上,f '(x )>0,f (x )单调递增.…7分(Ⅱ) (1)当a =0时,f (x )=(x -2)e x 只有一个零点,不合要求. …8分(2)当a >0时,由(Ⅰ)知f (x )在(-∞,1)上单调递减;在(1,+∞)上单调递增.最小值f (1)=-e <0,又f (2)= a >0,假设取b <0且b <ln2a ,e b <2a . 从而f (b )>223(2)(1)()022a b a b a b b -+-=->,所以f (x )有两个零点. …10分 (3)当a <0时,在(-∞,1]上,f (x )<0恒成立;假设a ≥2e -,由(Ⅰ)知f (x )在(1,+∞)上单调递增,不存在两个零点.假设a <2e -,f (x )在(1,ln(-2a ))上单调递减;在(ln(-2a ),+∞)上单调递增,也不存在两个零点.综上a 的取值范围是(0,1). …12分【2016 新课标Ⅰ〔文〕】22.〔本小题总分值10分〕选修4-1:几何证明选讲如图,ΔOAB是等腰三角形,∠AOB=120°. 以O为圆心,12OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.证明:(Ⅰ)设E是AB的中点,连接OE,因为OA=OB,∠AOB =120°. 所以OE⊥AB,∠AOE=60°. …3分在Rt ΔAOE 中,OE=12OA. 即圆心O到直线AB的距离等打半径,所以直线AB与⊙O相切. …5分(Ⅱ)因为OD=12OA,所以O不是A,B,C,D四点共圆的圆心,故设其圆心为O',则O'在AB的垂直平分线上.又O在AB的垂直平分线上,作直线O O',所以O O'⊥AB.…8分同理可证O O'⊥CD.所以AB∥CD. …10分【2016 新课标Ⅰ〔文〕】23.〔本小题总分值10分〕选修4—4:坐标系与参数方程在直线坐标系xoy中,曲线C1的参数方程为cos1sinx a ty a t=⎧⎨=+⎩〔t为参数,a>0〕.在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,假设曲线C1与C2的公共点都在C3上,求a.【解析】(Ⅰ)消去参数t得到C1的普通方程x2+(y-1)2=a2.所以C1是以(0,1)为圆心a为半径的圆. …3分将x=cos,y=sin代入可得C1的极坐标方程为2-2 sin+1-a2=0. …5分(Ⅱ)联立2-2 sin+1-a2=0与ρ=4cosθ消去ρ得16cos2-8sin cos+1-a2=0,由tanθ=2可得16cos2-8sin cos=0. 从而1-a2=0,解得a=1. …8分当a=1时,极点也是C1与C2的公共点,且在C3上,综上a=1. …10分【2016 新课标Ⅰ〔文〕】24.〔本小题总分值10分〕,选修4—5:不等式选讲已知函数f(x)=| x+1| -|2x-3|.(Ⅰ)在答题卡第24题图中画出y=f(x)的图像;(Ⅱ)求不等式| f(x)|>1的解集.【解析】(Ⅰ)4,13 ()32,1234,2x xf x x xx x⎧⎪-<-⎪⎪=--≤<⎨⎪⎪-+≥⎪⎩y =f (x )的图像如下图. …5分(Ⅱ)由f (x )的图像和表达式知,当f (x )=1时,解得x =1或x =3.当f (x )=-1时,解得x =13或x =5. …8分 结合f (x )的图像可得| f (x )|>1的解集为{x |x <13或1< x <3或x >5}. …10分2016年全国高考新课标1卷文科数学试题第Ⅰ卷一、选择题,本大题共12小题,每题5分,共60分.在每题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={1,3,5,7},B={x |2≤x ≤5},则A ∩B=( )A .{1,3}B .{3,5}C .{5,7}D .{1,7}2.设(1+2i )(a+i )的实部与虚部相等,其中a 为实数,则a=( )A .-3B .-2C .2D . 33.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )A .13B .12C .23D .564.ΔABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知22,cos 3a c A ===, 则b=( )A .BC .2D .35.直线l 经过椭圆的一个顶点和一个焦点,假设椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) A .13 B .12 C .23 D .346.假设将函数y =2sin (2x +6π)的图像向右平移14个周期后,所得图像对应的函数为 ( )A .y =2sin(2x +4π)B .y =2sin(2x +3π)C .y =2sin(2x –4π)D .y =2sin(2x –3π) 7.如图,某几何体的三视图是三个半径相等的圆及每个283π,则它的外表积是( )A .17πB .18πC .20πD .28π8.假设a >b >0,0<c <1,则( )A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b9.函数y =2x 2–e |x |在[–2,2]的图像大致为( )10.执行右面的程序框图,如果输入的x =0,y =1,n =1,则输出x ,y 的值满足( )A .y =2xB .y =3xC .y =4xD .y =5x11.平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α//平面CB 1D 1,α∩平面ABCD=m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为( )A.2 B.2 C.3 D .13 12.假设函数1()sin 2sin 3f x x -x a x =+在(-∞,+∞)单调递增,则a 的取值范围是( ) A .[-1,1] B .[-1,13] C .[-13,13] D .[-1,-13]第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每题5分,共20分.把答案填在横线上.13.设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x = .14.已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ-π4)= . 15.设直线y=x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,假设|AB|=则圆C 的面积为 .16.某高科技企业生产产品A 和产品BA 需要甲材料,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料,乙材料,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.三、解答题:解答应写出文字说明,证明过程或演算步骤.只做6题,共70分.17.〔此题总分值12分〕已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=31,a n b n +1+b n +1=nb n . (Ⅰ)求{a n }的通项公式; (Ⅱ)求{b n }的前n 项和.B E G P DC A 18.〔此题总分值12分〕如图,已知正三棱锥P -ABC 的侧面是直角三角形,P A =6,顶点P 在平面ABC 内的正投影为点D ,D 在平面P AB 内的正投影为点E ,连接PE 并延长交AB 于点G .(Ⅰ)证明G 是AB 的中点;(Ⅱ)在答题卡第〔18〕题图中作出点E 在平面P AC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.19.〔本小题总分值12分〕某公司计划购买1台机器,该种机器使用三年后即被淘汰. 机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元. 在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x 表示1台机器在三年使用期内需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用〔单位:元〕,n 表示购机的同时购买的易损零件数.(Ⅰ)假设n =19,求y 与x 的函数解析式;(Ⅱ)假设要求“需更换的易损零件数不大于n ”的频率不小于,求n 的最小值;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?20.〔本小题总分值12分〕在直角坐标系xoy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H .(Ⅰ)求OH ON; (Ⅱ)除H 以外,直线MH 与C 是否有其它公共点?说明理由.21.〔本小题总分值12分〕已知函数f(x)=(x -2)e x+a(x -1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)假设有两个零点,求a的取值范围.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号22.〔本小题总分值10分〕选修4-1:几何证明选讲如图,ΔOAB是等腰三角形,∠AOB=120°. 以O为圆心,12OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.EG PFDC A23.〔本小题总分值10分〕选修4—4:坐标系与参数方程在直线坐标系xoy 中,曲线C 1的参数方程为cos 1sin x a t y a t =⎧⎨=+⎩〔t 为参数,a >0〕.在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(Ⅰ)说明C 1是哪种曲线,并将C 1的方程化为极坐标方程;(Ⅱ)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,假设曲线C 1与C 2的公共点都在C 3上,求a .24.〔本小题总分值10分〕,选修4—5:不等式选讲已知函数f (x )=| x +1| -|2x -3|.(Ⅰ)在答题卡第24题图中画出y =f (x )的图像;(Ⅱ)求不等式| f (x )|>1的解集.2016年全国高考新课标1卷文科数学试题参考答案一、选择题,本大题共12小题,每题5分,共60分.1B 2A 3C 4D 5B 6D 7A 8B 9D 10C 11A 12C二、填空题:本大题共4小题,每题5分,共20分.13.23- 14.43- 15.4π 16.216000 三、解答题:解答应写出文字说明,证明过程或演算步骤.只做6题,共70分.17.【解析】(Ⅰ)依题a 1b 2+b 2=b 1,b 1=1,b 2=31,解得a 1=2 …2分 通项公式为 a n =2+3(n -1)=3n -1 …6分(Ⅱ)由(Ⅰ)知3nb n +1=nb n ,b n +1=31b n ,所以{b n }是公比为31的等比数列.…9分 所以{b n }的前n 项和S n =111()313122313n n --=-⨯- …12分18.【解析】(Ⅰ)证明:PD ⊥平面ABC ,∴PD ⊥AB .又DE ⊥平面P AB ,∴DE ⊥AB .∴AB ⊥平面PDE . …3分又PG ⊂平面PDE ,∴AB ⊥PG .依题P A=PB ,∴G 是AB 的中点.…6分(Ⅱ)在平面P AB 内作EF ⊥P A 〔或EF // PB 〕垂足为F ,则F 是点E 在平面P AC 内的正投影. …7分理由如下:∵PC ⊥P A ,PC ⊥PB ,∴ PC ⊥平面P AB . ∴EF ⊥PC作EF ⊥P A ,∴EF ⊥平面P AC .即F 是点E 在平面P AC 内的正投影.…9分连接CG ,依题D 是正ΔABC 的重心,∴D 在中线CG 上,且CD =2DG .易知DE // PC ,PC=PB=P A = 6,∴DE =2,PE =2233PG =⨯=. 则在等腰直角ΔPEF 中,PF=EF=2,∴ΔPEF 的面积S=2.所以四面体PDEF 的体积1433V S DE =⨯=. …12分 19.【解析】(Ⅰ)当x ≤19时,y =3800;当x >19时,y =3800+500(x -19)=500x -5700. 所以y 与x 的函数解析式为3800,19(*)5005700,19x y x N x x ≤⎧=∈⎨->⎩ …3分 (Ⅱ)由柱状图知,需更换的易损零件数不大于18为0.46,不大于19为0.7,所以n 的最小值为19. …6分(Ⅲ)假设每台机器都购买19个易损零件,则有70台的费用为3800,20台的费用为4300,10台的费用为4800,所以100台机器购买易损零件费用的 平均数为1100(3800×70+4300×20+4800×10)=4000. …9分 假设每台机器都购买20个易损零件,则有90台的费用为4000,10台的费用为4500,所以100台机器购买易损零件费用的 平均数为1100(4000×90+4500×10)=4050. …11分 比较两个平均数可知,购买1台机器的同时应购买19个易损零件.…12分20.【解析】(Ⅰ)依题M (0, t ),P (22t p , t ). 所以N (2t p , t ),ON 的方程为p y x t=. 联立y 2=2px ,消去x 整理得y 2=2ty . 解得y 1=0,y 2=2t . …4分所以H (22t p ,2t ). 所以N 是OH 的中点,所以OH ON=2. …6分 (Ⅱ)直线MH 的方程为2p y t x t-=,联立y 2=2px ,消去x 整理得y 2-4ty +4t 2=0. 解得y 1=y 2=2t . 即直线MH 与C 只有一个交点H .所以除H 以外,直线MH 与C 没有其它公共点. …12分21.【解析】(Ⅰ) f '(x )=(x -1)e x +a (2x -2)=(x -1)(e x +2a ). x ∈R …2分(1)当a ≥0时,在(-∞,1)上,f '(x )<0,f (x )单调递减;在(1,+∞)上,f '(x )>0,f (x )单调递增. …3分(2)当a <0时,令f '(x )=0,解得x =1或x =ln(-2a ).①假设a =2e -,ln(-2a ) =1,f '(x )≥0恒成立,所以f (x )在(-∞,+ ∞)上单调递增. ②假设a >2e -,ln(-2a )<1,在(ln(-2a ),1)上,f '(x )<0,f (x )单调递减; 在(-∞, ln(-2a ))与(1,+∞)上,f '(x )>0,f (x )单调递增.③假设a <2e -,ln(-2a )>1,在(1,ln(-2a ))上,f '(x )<0,f (x )单调递减; 在(-∞,1)与(ln(-2a ),+∞)上,f '(x )>0,f (x )单调递增.…7分(Ⅱ) (1)当a =0时,f (x )=(x -2)e x 只有一个零点,不合要求. …8分(2)当a >0时,由(Ⅰ)知f (x )在(-∞,1)上单调递减;在(1,+∞)上单调递增.最小值f (1)=-e <0,又f (2)= a >0,假设取b <0且b <ln2a ,e b <2a . 从而f (b )>223(2)(1)()022a b a b a b b -+-=->,所以f (x )有两个零点. …10分 (3)当a <0时,在(-∞,1]上,f (x )<0恒成立;假设a ≥2e -,由(Ⅰ)知f (x )在(1,+∞)上单调递增,不存在两个零点.假设a <2e -,f (x )在(1,ln(-2a ))上单调递减;在(ln(-2a ),+∞)上单调递增,也不存在两个零点.综上a 的取值范围是(0,1). …12分。
2016年高考文科数学试卷及答案解析(新课标全国1卷)【WORD版】
绝密★启封并使用完毕前2016年普通高等学校招生全国统一考试 1文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷4至6页。
注意事项:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目"与考生本人准考证号、姓名是否一致.2。
第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。
3。
考试结束,监考员将试题卷、答题卡一并收回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={x|x=3n+2,n ∈N},B={6,8,12,14},则集合A ⋂B中元素的个数为(A)5 (B)4 (C)3 (D)2(2)已知点A(0,1),B(3,2),向量AC=(—4,-3),则向量BC=(A)(—7,-4)(B)(7,4) (C)(-1,4) (D)(1,4)(3)已知复数z满足(z-1)i=i+1,则z=(A)-2—I (B)-2+I (C)2—I (D)2+i(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为(A)103(B)15(C)110(D)120(5)已知椭圆E的中心在坐标原点,离心率为12,E的右焦点与抛物线C:y²=8x的焦点重合,A,B是C的准线与E的两个焦点,则|AB|= (A)3 (B)6 (C)9 (D)12(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?"已知1斛米的体积约为1。
2016年高考文科数学全国卷1(含详细答案)
数学试卷 第1页(共39页) 数学试卷 第2页(共39页)数学试卷 第3页(共39页)绝密★启用前2016年普通高等学校招生全国统一考试(全国新课标卷1)文科数学使用地区:山西、河南、河北、湖南、湖北、江西、安徽、福建、广东本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷4至6页,满分150分. 考生注意:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3. 考试结束,监考员将本试题卷、答题卡一并收回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B = ( )A. {1,3}B. {3,5}C. {5,7}D. {1,7}2. 设(12i)(i)a ++的实部与虚部相等,其中a 为实数,则=a( )A. 3-B. 2-C. 2D. 33. 为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是 ( )A.13 B.12 C. 23D. 564. ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知a =,2c =,2cos 3A =,则b =( )A.B.C. 2D. 35. 直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A.13 B.12 C. 23D. 346. 将函数2sin(2)6y x π=+的图象向右平移14个周期后,所得图象对应的函数为( )A. 2sin(2)4y x π=+ B. 2sin(2)3y x π=+ C. 2sin(2)4y x π=-D. 2sin(2)3y x π=-7. 如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是 ( )A. 17πB. 18πC. 20πD. 28π 8. 若0a b >>,01c <<,则( )A. log log a b c c <B. log log c c a b <C. cca b <D. ab c c>9. 函数2|x|2y x e =-在[2,2]-的图象大致为( )ABC D10. 执行如图的程序框图,如果输入的0x =,1y =,1n =,则输出x ,y 的值满足 ( )A. 2y x =B. 3y x =C. 4y x =D. 5y x =11. 平面α过正方体1111ABCD A B C D -的顶点A ,//α平面11CB D ,α平面=ABCD m ,α平面11=ABB A n ,则m ,n 所成角的正弦值为( )A.B.C.D.1312. 若函数1()sin 2sin 3f x x x a x =-+在(,)-∞+∞单调递增,则a 的取值范围是( )A. []1,1-B. 11,3⎡⎤-⎢⎥⎣⎦C. 11,33⎡⎤-⎢⎥⎣⎦D. 11,3⎡⎤--⎢⎥⎣⎦姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第4页(共39页) 数学试卷 第5页(共39页) 数学试卷 第6页(共39页)第II 卷注意事项:第Ⅱ卷共3页,须用黑色墨水签字笔在答题卡上书写作答,若在试题卷上作答,答案无效.本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本题共4小题,每小题5分.13. 设向量a 1(),x x =+,b (1,2)=,且a ⊥b ,则x = .14. 已知θ是第四象限角,且3sin()45πθ+=,则tan()4πθ-= . 15. 设直线2y x a =+与圆22:220C x y ay +--=相交于,A B 两点,若||AB =则圆C的面积为 .16. 某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时,生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知{}n a 是公差为3的等差数列,数列{}n b 满足11b =,213b =,11n n n n a b b nb +++=. (Ⅰ)求{}n a 的通项公式; (Ⅱ)求{}n b 的前n 项和. 18.(本小题满分12分)如图,已知正三棱锥P ABC -的侧面是直角三角形,6PA =.顶点P 在平面ABC 内的正投影为点D ,D 在平面PAB 内的正投影为点E ,连接PE 并延长交AB 于点G . (Ⅰ)证明:G 是AB 的中点;(Ⅱ)在图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.19.(本小题满分12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x 表示1台机器在三年使用期内需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数. (Ⅰ)若19n =,求y 与x 的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n ”的频率不小于0.5,求n 的最小值; (Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?20.(本小题满分12分)在直角坐标系xOy 中,直线:(0)l y t t =≠交y 轴于点M ,交抛物线2:2C y px =(0)p >于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H .(Ⅰ)求||||OH ON ;(Ⅱ)除H 以外,直线MH 与C 是否有其它公共点?说明理由.21.(本小题满分12分)已知函数2()(2)(1)x f x x e a x =-+-. (Ⅰ)讨论()f x 的单调性;(Ⅱ)若()f x 有两个零点,求a 的取值范围.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修41-:几何证明选讲如图,OAB △是等腰三角形,120AOB ∠=.以O 为圆心,12OA 为半径作圆. (Ⅰ)证明:直线AB 与⊙O 相切;(Ⅱ)点,C D 在⊙O 上,且,,,A B C D 四点共圆,证明:AB CD ∥.23.(本小题满分10分)选修44-:坐标系与参数方程在直线坐标系xOy 中,曲线1C 的参数方程为cos ,1sin ,x a t y a t =⎧⎨=+⎩(t 为参数,0a >).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线2:4cos C ρθ=. (Ⅰ)说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程;(Ⅱ)直线3C 的极坐标方程为0θα=,其中0α满足0tan 2α=,若曲线1C 与2C 的公共点都在3C 上,求a .24.(本小题满分10分),选修45-:不等式选讲已知函数()|1||23|f x x x =+--. (Ⅰ)画出()y f x =的图象; (Ⅱ)求不等式|()|1f x >的解集.{3,5}A B=a-=,由已知,得213/ 13数学试卷 第10页(共39页)数学试卷 第11页(共39页) 数学试卷 第12页(共39页)平面ABB1D平面1n所成角等于所成角的正弦值为5/ 13数学试卷 第16页(共39页)数学试卷 第17页(共39页) 数学试卷 第18页(共39页)【解析】由题意,0a b x =+,3【提示】根据向量垂直的充要条件便可得出0a b =,进行向量数量积的坐标运算即可得出关于的值.【考点】向量的数量积,坐标运算7/ 13作出二元一次不等式组①表示的平面区域,即可行域,如图中阴影部分所示.7z77z数学试卷第22页(共39页)数学试卷第23页(共39页)数学试卷第24页(共39页)18.【答案】(Ⅰ)因为P在平面ABC内的正投影为D,所以AB PD⊥.9/ 13数学试卷第29页(共39页)数学试卷第30页(共39页)11 / 13))(1,)+∞时,(,ln(2)),1,+a -,1)(ln(2),)a -+∞时,单调递增,在1,ln((2))a -单调递减)在(,1)-∞ln 2a ,则f数学试卷 第34页(共39页)数学试卷 第35页(共39页) 数学试卷 第36页(共39页)同理可证,'OO CD ⊥,所以//AB CD .13/ 13。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
2016年普通高等学校招生全国统一考试
数 学(文)(北京卷)
本试卷共5页,150分。考试时长120分钟。考生务必将答案答在答题卡上,在试卷上作答无
效。考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)
一、选择题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要
求的一项。
(1)已知集合{|24},{|3>5}AxxBxxx或,则AB
(A){|2<<5}xx (B){|<45}xxx>或 (C){|2<<3}xx (D){|<25}xxx>或
(2)复数12i=2i
(A)i(B)1+i(C)i(D)1i
(3)执行如图所示的程序框图,输出的s值为
(A)8
(B)9
(C)27
(D)36
(4)下列函数中,在区间(1,1)上为减函数的是
(A)11yx (B)cosyx(C)ln(1)yx (D)2xy
(5)圆(x+1)2+y2=2的圆心到直线y=x+3的距离为
(A)1 (B)2 (C)2 (D)22
(6)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为
(A)15 (B)25 (C)825 (D)925
2
(7)已知A(2,5),B(4,1).若点P(x,y)在线段AB上,则2x−y的最大值为
(A)−1 (B)3 (C)7 (D)8
(8)某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛
成绩,其中有三个数据模糊.
学生序号
1 2 3 4 5 6 7 8 9 10
立定跳远(单位:米)
1.96 1.92 1.82 1.80 1.78 1.76 1.74 1.72 1.68 1.60
30秒跳绳(单位:次)
63 a 75 60 63 72 70 a−1 b 65
在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,
则
(A)2号学生进入30秒跳绳决赛 (B)5号学生进入30秒跳绳决赛
(C)8号学生进入30秒跳绳决赛 (D)9号学生进入30秒跳绳决赛
第二部分(非选择题 共110分)
二、填空题共6小题,每小题5分,共30分。
(9)已知向量=(1,3),(3,1)ab,则a与b夹角的大小为_________.
(10)函数()(2)1xfxxx的最大值为_________.
(11)某四棱柱的三视图如图所示,则该四棱柱的体积为___________.
(12) 已知双曲线22221xyab(a>0,b>0)的一条渐近线为2x+y=0,一个焦点为(5 ,0),则a=_______;
b=_____________.
(13)在△ABC中,23A,a=3c,则bc=_________.
3
(14)某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售
出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店
①第一天售出但第二天未售出的商品有______种;
②这三天售出的商品最少有_______种.
三、解答题(小题,共80分.解答应写出文字说明,演算步骤或证明过程)
(15)(本小题13分)
已知{an}是等差数列,{bn}是等差数列,且b2=3,b3=9,a1=b1,a14=b4.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设cn=an+bn,求数列{cn}的前n项和.
(16)(本小题13分)
已知函数f(x)=2sin ωxcosωx+cos 2ωx(ω>0)的最小正周期为π.
(Ⅰ)求ω的值;
(Ⅱ)求f(x)的单调递增区间.
(17)(本小题13分)
某市民用水拟实行阶梯水价,每人月用水量中不超过w立方米的部分按4元/立方米收费,超出w立方
米的部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到
如下频率分布直方图:
4
(I)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为
多少?
(II)假设同组中的每个数据用该组区间的右端点值代替,当w=3时,估计该市居民该月的人均水费.
(18)(本小题14分)
如图,在四棱锥P-ABCD中,PC⊥平面ABCD,,ABDCDCAC∥
(I)求证:DCPAC平面;
(II)求证:PABPAC平面平面;
(III)设点E为AB的中点,在棱PB上是否存在点F,使得PACEF平面?说明
理由.
(19)(本小题14分)
已知椭圆C:22221xyab过点A(2,0),B(0,1)两点.
(I)求椭圆C的方程及离心率;
(II)设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:
四边形ABNM的面积为定值.
5
(20)(本小题13分)
设函数32.fxxaxbxc
(I)求曲线.yfx在点0,0f处的切线方程;
(II)设4ab,若函数fx有三个不同零点,求c的取值范围;
(III)求证:230ab>是.fx有三个不同零点的必要而不充分条件.
6
答案1C2A3B4D5C6B7C8D
7
8
9
10
11
12
13
14
15