人教版一次函数单元测试题(含答案)
人教版数学八年级下册:一次函数单元测试(有答案)

第19章:一次函数单元测试姓名:________ 学号:_________成绩:___________一、选择题(每小题3分,共30分)1.下列函数中,自变量x 的取值范围是x≥2的是( ) A .y=2x - B .y=12x - C .y=24x - D .y=2x +·2x - 2.下面哪个点在函数y=12x+1的图象上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0) 3.下列函数中,y 是x 的正比例函数的是( )A .y=2x-1B .y=3xC .y=2x 2D .y=-2x+14.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四6.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( )A .k>3B .0<k≤3C .0≤k<3D .0<k<3 7.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( )A .y=-x-2B .y=-x-6C .y=-x+10D .y=-x-18.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )9.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )10.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( )A .y=-2x+3B .y=-3x+2C .y=3x-2D .y=12x-3二、填空题(每小题3分,共30分)11.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________.12.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________. 13.已知一次函数y=kx+b 的图象经过点A (1,3)和B (-1,-1),则此函数的解析式为_________.14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方. 15.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________. 16.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________.18.已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=________,b=______.19.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____.20.如图,一次函数y=kx+b 的图象经过A 、B两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________. 三、解答题(共60分) 21.(14分)根据下列条件,确定函数关系式: (1)y 与x 成正比,且当x=9时,y=16;(2)y=kx+b 的图象经过点(3,2)和点(-2,1).22.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题: (1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?xy1234-2-1CA-14321O23.(12分)一次函数的图象经过点(2,1)和(-1,-3)(1)求此一次函数表达式;(2)求此一次函数与x轴、y轴的交点坐标;(3)求此一次函数的图象与两坐标轴所围成的三角形的面积。
人教版八年级数学下册第十九章《一次函数》单元测试附答案卷

第十九章《一次函数》单元测试卷(共23题,满分120分,考试用时90分钟)学校班级姓名学号一、选择题(共10小题,每小题3分,共30分)1.(跨学科融合)在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中自变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器2.函数y=√x+1中自变量x的取值范围是()A.x≥2B.x≥-1C.x≤1D.x≠13.下列函数中,不是一次函数的是()A.y=x+1B.y=-xC.y=x2D.y=1-x4.直线y=2x经过()A.第二、四象限B.第一、二象限C.第三、四象限D.第一、三象限5.将函数y=-3x的图象沿y轴向上平移2个单位长度后,所得图象对应的函数关系式为()A.y=-3x+2B.y=-3x-2C.y=-3(x+2)D.y=-3(x-2)6.已知关于x的正比例函数y=(k+5)x,且y随x的增大而减小,则k的取值范围是()A.k>5B.k<5C.k>-5D.k<-57.已知点(-1,y1),(4,y2)在一次函数y=3x-2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y18.如图,已知一次函数y=kx+b的图象,则k,b的值为()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0第8题第9题第10题图9.周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是()A.小涛家离报亭的距离是900 mB.小涛从家去报亭的平均速度是60 m/minC.小涛从报亭返回家中的平均速度是80 m/minD.小涛在报亭看报用了15 min10.(创新题)如图,若输入x的值为-5,则输出的结果为()A.-6B.-5C.5D.6二、填空题(共5小题,每小题3分,共15分)11.若y与x的函数关系式为y=2x-2,当x=2时,y的值为.12.直线y=2x-3与x轴的交点坐标是.13.如图,已知一次函数y1=kx+b与y2=x+a的图象,若y1<y2,则x的取值范围是.14.(跨学科融合)测得一根弹簧的长度与所挂物体质量的关系如下表:(重物不超过20千的函数关系式是(015.(创新题)如图1,在矩形ABCD中,BC=5,动点P从点B出发,沿BC-CD-DA运动至点A 停止.设点P运动的路程为x,△ABP的面积为y,若y关于x的函数图象如图2所示,则DC=,y的最大值是.三、解答题(一)(共3小题,每小题8分,共24分)16.已知一次函数y=2x-6.(1)判断点(4,3)是否在此函数的图象上;(2)此函数的图象不经过第象限,y随x的增大而.17.已知直线y=kx+b经过点A(3,7)和B(-8,-4),求直线AB的解析式.18.如图,已知直线l:y=kx+3经过A,B两点,点A的坐标为(-2,0).(1)求直线l的解析式;(2)当kx+3>0时,根据图象直接写出x的取值范围.。
初二数学下《一次函数》单元测试题含答案

人教版八年级数学 《一次函数》 单元测试完成时光:120分钟满分:150分姓名成绩一.选择题(本大题10小题,每小题4分,共40分.每小题给出的四个选项中,只有一个选项是相符题意的,请将该选项的标号填入表格内)1.若等腰三角形的周长为60 cm ,底边长为x cm ,一腰长为y cm ,则y 关于x 的函数解析式及自变量x 的取值规模是( )A .y =60-2x(0<x<60)B .y =60-2x(0<x<30)C .y =12(60-x)(0<x<60)D .y =12(60-x)(0<x<30)1.函数y =1x -3+2.x -1的自变量x 的取值规模是( )A .x ≥1B .x ≥1且x ≠3C .x ≠3D .1≤x ≤33.下列各曲线中暗示y 是x 的函数的是( ) A B C D4.李大爷想围成一个如图所示的长方形菜园,已知长方形菜园ABCD 的面积为24平方米,设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间的函数解析式为( )A .y =24xB .y =-2x +24C .y =2x -24D .y =12x -12第4题图第9题图第10题图5.已知等腰三角形的周长是10,底边长y 是腰长x 的函数,则下列图象中,能准确反应y 与x 之间函数关系的图象是( )A B C D6.已知一次函数y =kx +b,y 跟着x 的增大而减小,且kb <0,则在平面直角坐标系内它的大致图象是( )A B C D7.若正比例函数y =(1-2m)x 的图象经由点A(x 1,y 1)和点B(x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值规模是( )A .m <0B .m >0C .m <12D .m >128.若点M(-7,m),N(-8,n)都在函数y =-(k 2+2k +4)x +1(k 为常数)的图象上,则m 和n 的大小关系是( )A .m >nB .m <nC .m =nD .不克不及肯定9.如图,函数y 1=-2x 与y 2=ax +3的图象订交于点A(m,2),则关于x 的不等式-2x >ax +3的解集是( ) A .x >2 B .x <2C .x >-1 D .x <-110.如图是当地区一种产品30天的发卖图象,图1是产品日发卖量y(单位:件)与时光t(单位:天)的函数关系,图2是一件产品的发卖利润z(单位:元)与时光t(单位:天)的函数关系,已知日发卖利润=日发卖量×每件产品的发卖利润,下列结论错误的是( )A.第24天的发卖量为200件B.第10天发卖一件产品的利润是15元C.第12天与第30天这两天的日发卖利润相等D.第30天的日发卖利润是750元二.填空题(每题5分,共20分)11.在函数y=x-1x-2中,自变量x的取值规模是.12.如图,点A的坐标为(-1,0),点B在直线y=x上活动,当线段AB 最短时,点B的坐标为.第12题图第13题图第14题图13.有甲.乙两个长方体的蓄水池,将甲池中的水匀速注入乙池,甲.乙两个蓄水池中水的高度y(米)与灌水时光x(小时)之间的函数图象如图所示,若要使甲.乙两个蓄水池的蓄水深度雷同,则灌水的时光应为小时.14.如图,经由点B(-2,0)的直线y=kx+b与直线y=4x+2订交于点A(-1,-2),则不等式4x+2<kx+b<0的解集为.三.解答题(共90分)15.(8分)已知y=(m+1)x2-|m|+n+4.(1)当m,n取何值时,y是x的一次函数?(2)当m,n取何值时,y是x的正比例函数?16.已知y与x+2 成正比例,当x=4时,y=12.(1)写出y与x之间的函数解析式;(2)求当y=36时x的值;(3)断定点(-7,-10)是否是函数图象上的点.17.(8分)已知正比例函数y=kx经由点A,点A在第四象限,过点A 作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.(1)求正比例函数的解析式;(2)在x轴上可否找到一点P,使△AOP的面积为5?若消失,求点P的坐标;若不消失,请解释来由.18.(8分)已知y=y1+y2,y1与x成正比例,y2与x-2成正比例,当x =1时,y=0;当x=-3时,y=4.(1)求y与x的函数解析式,并解释此函数是什么函数;(2)当x=3时,求y的值.19.(10分)某灵活车动身前油箱内有42升油,行驶若干小时后,途中在加油站加油若干升,油箱中余油量Q(升)与行驶时光t(时)之间的函数关系如图所示,答复下列问题.(1)灵活车行驶几小时后加油?(2)求加油前油箱残剩油量Q与行驶时光t的函数关系,并求自变量t的取值规模;(3)半途加油若干升?(4)假如加油站距目标地还有230千米,车速为40千米/时,要到达目标地,油箱中的油是否够用?请解释来由.20.(10分)两摞雷同规格的饭碗整洁地叠放在桌面上,如图,请依据图中给出的数据信息,解答问题:(1)求整洁叠放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式(不请求写出自变量x的取值规模);(2)若桌面上有12个饭碗,整洁叠放成一摞,求出它的高度.21.(12分)为更新果树品种,某果园筹划购进A,B两个品种的果树苗栽植培养.若筹划购进这两种果树苗共45棵,个中A种树苗的单价为7元/棵,购置B种树苗所需费用y(元)与购置数目x(棵)之间消失如图所示的函数关系.求y与x的函数解析式.22.(12分)如图,直线y=2x+3与直线y=-2x-1.(1)求两直线与y轴交点A,B的坐标;(2)求两直线交点C的坐标;(3)求△ABC的面积.23.(14分)为响应绿色出行号令,越来越多市平易近选择租用共享单车出行,已知某共享单车公司为市平易近供给了手机付出和会员卡付出两种付出方法,如图描写了两种方法应付出金额y(元)与骑行时光x(时)之间的函数关系,依据图象答复下列问题:(1)求手机付出金额y(元)与骑行时光x(时)的函数关系式;(2)李先生经常骑行共享单车,请依据不合的骑行时光帮他肯定选择哪种付出方法比较合算.参考答案姓名成绩一.选择题(本大题10小题,每小题4分,共40分.每小题给出的四个选项中,只有一个选项是相符题意的,请将该选项的标号填入表格内)题号 1 2 3 4 5 6 7 8 9 10 答案 B D D A D D A B D C 1.函数y=1x-3+x-1的自变量x的取值规模是( B )A.x≥1 B.x≥1且x≠3 C.x≠3D.1≤x≤32.下列各曲线中暗示y是x的函数的是(D)A B C D3.若等腰三角形的周长为60 cm,底边长为x cm,一腰长为y cm,则y 得分评卷人关于x 的函数解析式及自变量x 的取值规模是( D )A .y =60-2x(0<x<60)B .y =60-2x(0<x<30)C .y =12(60-x)(0<x<60)D .y =12(60-x)(0<x<30)4.李大爷想围成一个如图所示的长方形菜园,已知长方形菜园ABCD 的面积为24平方米,设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间的函数解析式为( A )A .y =24xB .y =-2x +24C .y =2x -24D .y =12x -12第4题图第9题图第10题图5.已知等腰三角形的周长是10,底边长y 是腰长x 的函数,则下列图象中,能准确反应y 与x 之间函数关系的图象是( D )A B C D6.若正比例函数y =(1-2m)x 的图象经由点A(x 1,y 1)和点B(x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值规模是( D )A .m <0B .m >0C .m <12D .m >127.已知一次函数y =kx +b,y 跟着x 的增大而减小,且kb <0,则在平面直角坐标系内它的大致图象是( A )A B C D8.若点M(-7,m),N(-8,n)都在函数y =-(k 2+2k +4)x +1(k 为常数)的图象上,则m 和n 的大小关系是( B )A .m >nB .m <nC .m =nD .不克不及肯定9.如图,函数y 1=-2x 与y 2=ax +3的图象订交于点A(m,2),则关于x 的不等式-2x >ax +3的解集是( D ) A .x >2 B .x <2C .x >-1 D .x <-110.如图是当地区一种产品30天的发卖图象,图1是产品日发卖量y(单位:件)与时光t(单位:天)的函数关系,图2是一件产品的发卖利润z(单位:元)与时光t(单位:天)的函数关系,已知日发卖利润=日发卖量×每件产品的发卖利润,下列结论错误的是( C )A .第24天的发卖量为200件B .第10天发卖一件产品的利润是15元C .第12天与第30天这两天的日发卖利润相等D .第30天的日发卖利润是750元二.填空题(每题5分,共20分)11.在函数y =x -1x -2中,自变量x 的取值规模是x ≥1且x≠2.12.如图,点A 的坐标为(-1,0),点B 在直线y =x 上活动,当线段AB 最短时,点B 的坐标为(-12,-12).第12题图第13题图第14题图13.有甲.乙两个长方体的蓄水池,将甲池中的水匀速注入乙池,甲.乙两个蓄水池中水的高度y(米)与灌水时光x(小时)之间的函数图象如图所示,若要使甲.乙两个蓄水池的蓄水深度雷同,则灌水的时光应为3 5小时.14.如图,经由点B(-2,0)的直线y=kx+b与直线y=4x+2订交于点A(-1,-2),则不等式4x+2<kx+b<0的解集为-2<x<-1.得分评卷人三.解答题(共90分)15.(8分)已知y=(m+1)x2-|m|+n+4.(1)当m,n取何值时,y是x的一次函数?(2)当m,n取何值时,y是x的正比例函数?解:(1)依据一次函数的界说,有m+1≠0且2-|m|=1,解得m=1.∴m=1,n为随意率性实数时,这个函数是一次函数.(2)依据正比例函数的界说,有m+1≠0且2-|m|=1,n+4=0,解得m=1,n=-4.∴当m=1,n=-4时,这个函数是正比例函数.16.(8分)已知y与x+2 成正比例,当x=4时,y=12.(1)写出y与x之间的函数解析式;(2)求当y=36时x的值;(3)断定点(-7,-10)是否是函数图象上的点.解:(1)设y=k(x+2).∵x=4,y=12,∴6k=12.解得k=2.∴y=2(x+2)=2x+4.(2)当y=36时,2x+4=36,解得x=16.(3)当x=-7时,y=2×(-7)+4=-10,∴点(-7,-10)是函数图象上的点.17.(8分)已知正比例函数y=kx经由点A,点A在第四象限,过点A 作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.(1)求正比例函数的解析式;(2)在x轴上可否找到一点P,使△AOP的面积为5?若消失,求点P的坐标;若不消失,请解释来由.解:(1)∵点A的横坐标为3,且△AOH的面积为3,∴点A的纵坐标为-2,∴点A的坐标为(3,-2).∵正比例函数y=kx经由点A,∴3k=-2,解得k=-23.∴正比例函数的解析式为y=-23x.(2)消失.∵△AOP的面积为5,点A的坐标为(3,-2),∴OP=5.∴点P的坐标为(5,0)或(-5,0).18.(8分)某灵活车动身前油箱内有42升油,行驶若干小时后,途中在加油站加油若干升,油箱中余油量Q(升)与行驶时光t(时)之间的函数关系如图所示,答复下列问题.(1)灵活车行驶几小时后加油?(2)求加油前油箱残剩油量Q与行驶时光t的函数关系,并求自变量t的取值规模;(3)半途加油若干升?(4)假如加油站距目标地还有230千米,车速为40千米/时,要到达目标地,油箱中的油是否够用?请解释来由.解:(1)不雅察函数图象可知:灵活车行驶5小时后加油.(2)灵活车每小时的耗油量为(42-12)÷5=6(升),∴加油前油箱残剩油量Q与行驶时光t的函数关系为Q=42-6t(0≤t≤5).(3)36-12=24(升).∴半途加油24升.(4)油箱中的油够用.来由:∵加油后油箱里的油可供行驶11-5=6(小时),∴剩下的油可行驶6×40=240(千米).∵240>230,∴油箱中的油够用.19.(10分)已知y=y1+y2,y1与x成正比例,y2与x-2成正比例,当x=1时,y=0;当x=-3时,y=4.(1)求y与x的函数解析式,并解释此函数是什么函数;(2)当x=3时,求y的值.解:(1)设y1=k1x,y2=k2(x-2),则y=k1x+k2(x-2),依题意,得⎩⎪⎨⎪⎧k1-k2=0-3k1-5k2=4解得⎩⎪⎨⎪⎧k1=-12k2=-12.∴y=-12x-12(x-2),即y=-x+1.∴y是x的一次函数.(2)把x=3代入y=-x+1,得y=-2.∴当x=3时,y的值为-2.20.(10分)两摞雷同规格的饭碗整洁地叠放在桌面上,如图,请依据图中给出的数据信息,解答问题:(1)求整洁叠放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式(不请求写出自变量x 的取值规模);(2)若桌面上有12个饭碗,整洁叠放成一摞,求出它的高度. 解:(1)设函数解析式为y =kx +b ,依据题意,得⎩⎪⎨⎪⎧4k +b =10.57k +b =15. 解得⎩⎪⎨⎪⎧k =1.5b =4.5.∴y 与x 之间的函数解析式为yx +4.5. (2)当x =12时,y =1.5×12+4.5=22.5.答:它的高度是22.5 cm.21.(12分)为更新果树品种,某果园筹划购进A,B 两个品种的果树苗栽植培养.若筹划购进这两种果树苗共45棵,个中A 种树苗的单价为7元/棵,购置B 种树苗所需费用y(元)与购置数目x(棵)之间消失如图所示的函数关系.求y 与x 的函数解析式.解:∵当0≤x<20时,图象经由(0,0)和(20,160),∴设y =k 1x.把(20,160)代入,得160=20k 1,解得k 1=8.∴y =8x. 当x≥20时,设y =k 2x +b, 把(20,160)和(40,288)代入,得⎩⎪⎨⎪⎧20k2+b =16040k2+b =288.解得⎩⎪⎨⎪⎧k2=6.4b =32.∴y =6.4x +32.∴y =⎩⎪⎨⎪⎧8x (0≤x<20)6.4x +32(x≥20).(个中x 为整数)22.(12分)如图,直线y =2x +3与直线y =-2x -1. (1)求两直线与y 轴交点A,B 的坐标; (2)求两直线交点C 的坐标; (3)求△ABC 的面积.解:(1)对于y =2x +3,令x =0,则y =3,∴点A 的坐标为(0,3).对于y =-2x -1,令x =0,则y =-1,∴点B 的坐标为(0,-1).(2)联立⎩⎪⎨⎪⎧y =2x +3y =-2x -1解得⎩⎪⎨⎪⎧x =-1y =1.∴点C 的坐标为(-1,1). (3)S △ABC =12AB·|x c |=12×4×1=2.23.(14分)为响应绿色出行号令,越来越多市平易近选择租用共享单车出行,已知某共享单车公司为市平易近供给了手机付出和会员卡付出两种付出方法,如图描写了两种方法应付出金额y(元)与骑行时光x(时)之间的函数关系,依据图象答复下列问题:(1)求手机付出金额y(元)与骑行时光x(时)的函数关系式;(2)李先生经常骑行共享单车,请依据不合的骑行时光帮 他肯定选择哪种付出方法比较合算. 解:(1)由图象知:当0≤x,y =0;当x≥,设y =kx +b,⎩⎪⎨⎪⎧0.5k +b =01×k+b =0.5 解得⎩⎪⎨⎪⎧k =1b =-0.5., y =x -0.5.∴手机付出金额y(元)与骑行时光x(时)的函数关系式是y =⎩⎪⎨⎪⎧0(0≤x<0.5)x -0.5(x≥0.5).(2)设会员卡付出对应的函数解析式为y =ax, 则0.75=a×1,, ,,解得x =2,由图象可知,当x =2时,李先生选择两种付出方法一样; 当x >2时,会员卡付出比较合算;当0<x <2时,李先生选择手机付出比较合算.。
初二数学下《一次函数》单元测试题含答案

人教版八年级数学《一次函数》单元测试完成时间:120分钟满分:150分姓名成绩一、选择题(本大题10小题,每小题4分,共40分。
每小题给出的四个选项中,只有一个选项是符合题意的,请将该选项的标号填入表格内)1.若等腰三角形的周长为60 cm,底边长为x cm,一腰长为y cm,则y关于x的函数解析式及自变量x的取值范围是()A.y=60-2x(0<x<60) B.y=60-2x(0<x<30)C.y=12(60-x)(0<x<60) D.y=12(60-x)(0<x<30)1.函数y=1x-3+的自变量x的取值范围是()A.x≥1 B.x≥1且x≠3 C.x≠3D.1≤x≤3 3.下列各曲线中表示y是x的函数的是()A B C D4.李大爷想围成一个如图所示的长方形菜园,已知长方形菜园ABCD的面积为24平方米,设BC边的长为x米,AB边的长为y米,则y与x之间的函数解析式为()A.y=24x B.y=-2x+24 C.y=2x-24 D.y=12x-12第4题图第9题图第10题图5.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A B C D6.已知一次函数y=kx+b,y随着x的增大而减小,且kb<0,则在平面直角坐标系内它的大致图象是()A B C D7.若正比例函数y=(1-2m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1<x2时,y1>y2,则m的取值范围是()A.m<0 B.m>0 C.m<12D.m>128.若点M(-7,m),N(-8,n)都在函数y=-(k2+2k+4)x+1(k为常数)的图象上,则m和n的大小关系是()A.m>n B.m<n C.m=n D.不能确定9.如图,函数y1=-2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式-2x>ax+3的解集是()A.x>2 B.x<2 C.x>-1 D.x<-110.如图是本地区一种产品30天的销售图象,图1是产品日销售量y(单位:件)与时间t(单位:天)的函数关系,图2是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×每件产品的销售利润,下列结论错误的是()A.第24天的销售量为200件B.第10天销售一件产品的利润是15元C.第12天与第30天这两天的日销售利润相等D.第30天的日销售利润是750元二、填空题(每题5分,共20分)11.在函数y=x-1x-2中,自变量x的取值范围是.12.如图,点A的坐标为(-1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为.第12题图第13题图第14题图13.有甲、乙两个长方体的蓄水池,将甲池中的水匀速注入乙池,甲、乙两个蓄水池中水的高度y(米)与注水时间x(小时)之间的函数图象如图所示,若要使甲、乙两个蓄水池的蓄水深度相同,则注水的时间应为小时.14.如图,经过点B(-2,0)的直线y=kx+b与直线y=4x+2相交于点A(-1,-2),则不等式4x+2<kx+b<0的解集为.三、解答题(共90分)15.(8分)已知y=(m+1)x2-|m|+n+4.(1)当m,n取何值时,y是x的一次函数(2)当m,n取何值时,y是x的正比例函数16.已知y与x+2 成正比例,当x=4时,y=12.(1)写出y与x之间的函数解析式;(2)求当y=36时x的值;(3)判断点(-7,-10)是否是函数图象上的点.17.(8分)已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.(1)求正比例函数的解析式;(2)在x轴上能否找到一点P,使△AOP的面积为5若存在,求点P的坐标;若不存在,请说明理由.18.(8分)已知y=y1+y2,y1与x成正比例,y2与x-2成正比例,当x=1时,y=0;当x=-3时,y=4.(1)求y与x的函数解析式,并说明此函数是什么函数;(2)当x=3时,求y的值.19.(10分)某机动车出发前油箱内有42升油,行驶若干小时后,途中在加油站加油若干升,油箱中余油量Q(升)与行驶时间t(时)之间的函数关系如图所示,回答下列问题.(1)机动车行驶几小时后加油(2)求加油前油箱剩余油量Q与行驶时间t的函数关系,并求自变量t的取值范围;(3)中途加油多少升(4)如果加油站距目的地还有230千米,车速为40千米/时,要到达目的地,油箱中的油是否够用请说明理由.20.(10分)两摞相同规格的饭碗整齐地叠放在桌面上,如图,请根据图中给出的数据信息,解答问题:(1)求整齐叠放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式(不要求写出自变量x的取值范围);(2)若桌面上有12个饭碗,整齐叠放成一摞,求出它的高度.21.(12分)为更新果树品种,某果园计划购进A,B 两个品种的果树苗栽植培育.若计划购进这两种果树苗共45棵,其中A种树苗的单价为7元/棵,购买B种树苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.求y与x的函数解析式.22.(12分)如图,直线y=2x+3与直线y=-2x-1.(1)求两直线与y轴交点A,B的坐标;(2)求两直线交点C的坐标;(3)求△ABC的面积.23.(14分)为响应绿色出行号召,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付和会员卡支付两种支付方式,如图描述了两种方式应支付金额y(元)与骑行时间x(时)之间的函数关系,根据图象回答下列问题:(1)求手机支付金额y(元)与骑行时间x(时)的函数关系式;(2)李老师经常骑行共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算.参考答案姓名成绩一、选择题(本大题10小题,每小题4分,共40分。
人教版八年级数学下册 第19章 一次函数 单元测试题精选(配套练习附答案)

③根据一次购买10千克以上种子时,超过10千克的那部分种子的价格为2.5元/千克,而2.5÷5=0.5,所以可以求出打的折数;
考点:一次函数图象上点的坐标特征;轴对称-最短路线问题.
二、填空题。(每小题3分,共18分)仔细审题,认真填写哟!
11.在平面直角坐标系中,已知一次函数 的图像经过 , 两点,若 ,则 _______ .(填”>”,”<”或”=”)函数 的增减性有两种情况:①当 时,函数 的值随x的值增大而增大;②当 时,函数 y的值随x的值增大而减小.
A. 21cmB. 22cmC. 23cmD. 24cm
【答案】C
【解析】
【分析】
【详解】试题分析:设碗的个数为x个,碗的高度为ycm,由题意可知碗的高度和碗的个数的关系式为y=kx+b,
由题意得, ,
解得: ,
则11只饭碗摞起来的高度为: ×11+5= (cm).
更接近23cm.
故选C.
考点:二元一次方程组的应用.
【答案】D
【解析】
设正比例函数的解析式为y=kx(k≠0),
因为正比例函数y=kx的图象经过点(-1,2),
所以2=-k,
解得:k=-2,
所以y=-2x,
把这四个选项中的点的坐标分别代入y=-2x中,等号成立的点就在正比例函数y=-2x的图象上,
所以这个图象必经过点(1,-2).
故选D.
4.对于一次函数y=kx+k-1(k≠0),下列叙述正确的是( )
【3套试卷】人教版八年级下册数学基础训练题: 第十九章 一次函数(含答案)

人教版八年级下册数学基础训练题:第十九章一次函数(含答案)一、选择题1.下列哪一个点在直线y=-2x-5上()A. (2,-1)B. (3,1)C. (-2,1)D. (-1,-3)2.一次函数y=(m+1)x+5中,y的值随x的增大而减小,则m的取值范围是()A. m<-1B. m>-1C. m>0D. m<03.一次函数的图象经过点A(﹣2,﹣1),且与直线y=2x﹣3平行,则此函数的解析式为()A. y=x+1B. y=2x+3C. y=2x﹣1D. y=﹣2x﹣54.某种签字笔的单价为2元,购买这种签字笔x支的总价为y元.则y与x之间的函数关系式为()A. B. C. y=-2x D. y=2x5.某乡镇企业现在年产值是15万元,如果每增加100元投资,一年增加250元产值,那么总产值y(万元)与新增加的投资额x(万元)之间函数关系为( )A. y=25x+15B. y=2.5x+1.5C. y=2.5x+15D. y=25x+1.56.一次函数y=kx+b的图象如图所示,当y<0时,x的取值范围是( )A. x>0B. x<0C. x>2D. x<27.如图所示的函数图象反映的过程是:小徐从家去菜地浇水,又去玉米地除草,然后回家,其中x表示时间,y表示小徐离他家的距离.读图可知菜地离小徐家的距离为()A. 1.1千米B. 2千米C. 15千米D. 37千米8.如图,在平面直角坐标系中,直线l1:y=x+3与直线l2:y=mx+n交于点A(﹣1,b),则关于x、y的方程组的解为()A. B. C. D.9.一次函数y=kx+b的图象如图所示,则不等式kx+b<0的解集是()A. x>﹣2B. x<﹣2C. x>﹣4D. x<﹣410.小明到离家900米的春晖超市卖水果,从家中到超市走了20分钟,在超市购物用了10分钟,然后用15分钟返回家中,下列图形中表示小明离家的时间与距离之间的关系是()A. B. C. D.11.一次函数y=x+5的图象经过点P(a,b)和Q(c,d),则a(c-d)-b(c-d)的值为()A. 9B. 16C. 25D. 3612.一次函数y=kx+b(k,b是常数,k≠0)的图象,如图所示,则不等式kx+b>0的解集是()A. x<2B. x<0C. x>0D. x>2二、填空题13.函数y=中,自变量x的取值范围为________ .14.已知,函数y=(k﹣1)x+k2﹣1,当k________ 时,它是一次函数.15.当x=-1时,一次函数y=kx+3的值为5,则k的值为________ .16.已知长方形的周长为30cm,一边长为ycm,另一边长为xcm,则y与x的关系式为________,其中变量是________,常量是________.17.根据如图所示的计算程序计算变量y的对应值,若输入变量x的值为- ,则输出的结果为 ________18.某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y (单位:元)与购书数量x(单位:本)之间的函数关系________.19.已知A地在B地的正南方3km处,甲、乙两人同时分别从A、B两地向正北方向匀速直行,他们与A地的距离S(km)与所行时间t(h)之间的函数关系如图所示,当他们行驶3h 时,他们之间的距离为________km.20.如图,已知点A和点B是直线y=x上的两点,A点坐标是(2,).若AB=5,则点B的坐标是 ________.21.一次函数y=ax+b的图象如图,则关于x的不等式ax+b≥0的解集为________.22.某水库的水位在5小时内持续上涨,初始水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y(米)与时间x(小时)(0≤x≤5)的函数关系式为________ .三、解答题23.一次函数y=kx+b经过点(-4,-2)和点(2,4),求一次函数y=kx+b的解析式。
人教版数学八年级下册第19章一次函数单元测试卷4份含答案
人教版数学八年级下册第19章一次函数单元测试卷4份第19章单元测试(1)一、填空题1.若一次函数的图象经过点(1,3)与(2,-1),则它的解析式为___________________,函数y随x的增大而____________.2.若函数y=(m-1)x|m|-2-1是关于x的一次函数,且y随x的增大而减小,则m=_______.3.一次函数y=(m+4)x-5+2m,当m__________时,y随x增大而增大;当m_______时,图象经过原点;当m__________时,图象不经过第一象限.4.一次函数y=2x-3的图象可以看作是函数y=2x的图象向__________平移________个单位长度得到的,它的图象经过_______________象限.5.已知一次函数y=kx-1的图象不经过第二象限,则正比例函数y=(k+1)x必定经过第______________象限.6.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过10吨时,水价为每吨1.2元;超过10吨时,超过部分按每吨1.8元收费,该市某户居民5月份用水x吨(x>10),应交水费y元,则y关于x 的关系式.7.小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜之后,余下的每千克降价0.4元,全部售完;销售金额与卖瓜千克数之间的关系如图所示,那么小李赚了______元.8.写出同时具备下列两个条件的一次函数表达式(写出一个即可) .(1)y随着x的增大而减小.(2)图象经过点(1,-3)9.已知一次函数y=kx+b的图象经过点P(2,-1)与点Q(-1,5),则当y 的值增加1时,x的值将_______________________.10.已知直线y=kx+b经过点(252,0)且与坐标轴所围成的三角形的面积是254,则该直线的解析式为_____________________________________.二、选择题11.一次函数y=2x+3的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限12.已知一次函数y=(-1-m 2)x+3(m 为实数),则y 随x 的增大而 ( )A .增大B .减小C .与m 有关D .无法确定13.直线y =-x +2和直线y =x -2的交点P 的坐标是 ( )A .P (2,0)B .P (-2,0)C .P (0,2)D .P (0,-2)14.无论实数m 取什么值,直线y=x+21m 与y=-x+5的交点都不能在( )A .第一象限B .第二象限C .第三象限D .第四象限15.已知一次函数y=(m -1)x+1的图象上两点A (x 1,y 1),B (x 2,y 2),当x 1>x 2时,有y 1<y 2,那么m 的取值范围是 ( ) A .m>0 B . m<0 C .m>1 D .m<1 16.若点A(2,-3)、B(4,3)、C(5,a)在同一条直线上,则a 的值是 ( ) A .6或-6 B .6 C .-6 D .6和3 17.一次函数y=kx+b 与y=kbx ,它们在同一坐标系内的图象可能为 ( )18.已知一次函数y=ax+4与y=bx-2的图象在x 轴上相交于同一点,则ba 的值是( )A .4B .-2C .12D . 1219.某公司市场营部的营销人员的个人收入与其每月的销售业绩满足一次函数关系,其图象如图所示,由图中给出的信息可知:营销人员没有销售业绩时的收入是( )元.A .280B .290C .300D .31020.如图,点P 按A →B →C →M 的顺序在边长为1的正方形边上运动,M 是CD 边上的中点.设点P 经过的路程x 为自变量,△APM 的面积为y ,则函数y 的大致图像是 ( )21.如图中的图象(折线ABCDE )描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s (千米)和行驶时间t (小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为380千米/时;④汽车自出发后3小时至 4.5小时之间行驶的速度在逐渐减少.其中正确的说法共有 ( )A .1个B .2个C .3个D .4个三、解答题22.已知一次函数y=(2m+4)x+(3-n).⑴当m 、n 是什么数时,y 随x 的增大而增大? ⑵当m 、n 是什么数时,函数图象经过原点?⑶若图象经过一、二、三象限,求m 、n 的取值范围.23.已知一次函数y=(3m-7)x+m-1的图象与y轴交点在x轴的上方,且y随x 的增大而减小,求整数m的值.24.作出函数y=1x42的图象,并根据图象回答问题:⑴当x取何值时,y>0?⑵当-1≤x≤2时,求y的取值范围.25.已知直线y=3x+1和x、y轴分别交于点A、B两点,以线段AB为边在第一象限内作一个等边三角形ABC,第一象限内有一点P(m,0.5),且S△ABP =S△ABC,求m值.26.某影碟出租店开设两种租碟方式:一种是零星租碟,每张收费1元;另一种是会员卡租碟,办卡费每月12元,租碟费每张0.4元.小彬经常来该店租碟,若每月租碟数量为x张.(1)写出零星租碟方式应付金额y(元)与租碟数量x(张)之间的函数关系1式;(2)写出会员卡租碟方式应付金额y(元)与租碟数量x(张)之间的函数关2系式;(3)小彬选取哪种租碟方式更合算?27.某纺织厂生产的产品,原来每件出厂价为80元,成本为60元.由于在生产过程中平均每生产一件产品有0.5米3的污水排出,现在为了保护环境,需对污水净化处理后再排出.已知每处理1米3污水的费用为2元,且每月排污设备损耗为8000元.设现在该厂每月生产产品x件,每月纯利润y元:①求出y与x的函数关系式.(纯利润=总收入-总支出)②当y=106000时,求该厂在这个月中生产产品的件数.28.一报刊销售亭从报社订购某晚报的价格是每份0.7元,销售价是每份1元,卖不掉的报纸还可以以0.20元的价格返回报社,在一个月内(以30天计算),有20天每天可卖出100份,其余10天,每天可卖出60份,但每天报亭从报社订购的份数必须相同,若以报亭每天从报社订购报纸的份数为x,每月所获得的利润为y.(1)写出y与x之间的函数关系式,并指出自变量x的取值范围;(2)报亭应该每天从报社订购多少份报纸,才能使每月获得的利润最大?最大利润是多少?答案一、1.47y x =-+ 减小 2.-3 3.4m >- 52m =4m <- 4.下,三,一、三、四象限 5.一、三 6. 1.86y x =- 7.36 8.3y x =-等9.减小1210.22112525y x y x =-=-+或二、11.D 12.B 13.A 14.C 15.D 16.B 17.A 18.D 19.C 20.A 21.A三、22.(1)2m >- n 为任何实数 (2)23m n ≠-⎧⎨=⎩ (3)23m n >-⎧⎨<⎩23.71,23m m m <<∴=又为整数,24.(1)由图像可知,当8,0x y >>时 (2)当912,32x y -≤≤-≤≤-时25.S △ABP m ==26.(1)1(0)y x x =≥ (2)20.412(0)y x x =+≥1212123,0.412,20,0.412,20,0.412,20y y x x x y y x x x y y x x x <<+<==+=>>+>()令则 令则 令则,所以,当租碟少于20张时,选零星租碟方式合算;当租碟20张时,两种方式一样;当租碟大于20张时,选会员卡租碟合算 27.(1)198000y x =- (2)6000x =(件)28.(1)20(10.7)1060(10.7)(0.70.2)(60)10y x x =-+⨯----⨯ 480(60100)x x x =+≤≤且为整数10100580(2)k y x x y =>==∴∴最大值随增大而增大当时(元),第19章单元测试(2)一、填空题 1.已知函数1231x y x -=-,x =__________时,y 的值时0,x=______时,y 的值是1;x=_______时,函数没有意义. 2.已知253x y x+=-,当x=2时,y=_________.3.在函数3y x =-中,自变量x 的取值范围是__________.4.一次函数y =kx +b 中,k 、b 都是 ,且k ,自变量x 的取值范围是 ,当 k ,b 时它是正比例函数. 5.已知82)3(-+=mx m y 是正比例函数,则m .6.函数n m x m y n +--=+12)2(,当m= ,n= 时为正比例函数; 当m= ,n= 时为一次函数.7.当直线y=2x+b 与直线y=kx-1平行时,k________,b___________.8.直线y=2x-1与x 轴的交点坐标是____________;与y 轴的交点坐标是_____________. 9.已知点A 坐标为(-1,-2),B 点坐标为(1,-1),C 点坐标为(5,1),其中在直线y=-x+6上的点有____________.在直线y=3x-4上的点有____________.10.一个长为120米,宽为100米的矩形场地要扩建成一个正方形场地,设长增加x 米,宽增加y 米,则y 与x 的函数关系式是 ,自变量的取值范围是 ,且y 是x 的 函数.11.直线y=kx+b 与直线y=32x -平行,且与直线y=312+-x 交于y 轴上同一点,则该直线的解析式为________________________________.二、选择题:12.下列函数中自变量x 的取值范围是x ≥5的函数是 ( )A .y =B .y =C .yD .y = 13.下列函数中自变量取值范围选取错误..的是( )A .2y x x =中取全体实数B .1y=中x ≠0x-1C .1y=中x ≠-1x+1D .1y x =≥14.某小汽车的油箱可装汽油30升,原有汽油10升,现再加汽油x 升。
人教版八年级数学 下册 第十九章 一次函数 单元综合与测试题(含答案)
1 / 3第十九章 一次函数 单元复习与检测题(含答案)一、选择题 1、函数2y x =+的自变量的取值范围是( )A .x ≥- 2B .x < -2C .x >-2D .x ≤ -2 2、下列函数关系中,属于正比例函数关系的是( )A.圆的面积与它的半径B.面积为常数S 时矩形的长y 与宽xC.路程是常数时,行驶的速度v 与时间tD. 三角形的底边是常数a 时它的面积S 与这条边上的高h3、若一个正比例函数的图象经过点(2,-3),则这个图象一定也经过点( ) A .(-3,2) B .(32,-1) C .(23,-1) D .(-32,1)4、下列问题中,两个变量成正比例的是( ) A .等腰三角形的面积一定,它的底边和底边上的高 B .等边三角形的面积和它的边长C .长方形的一边长确定,它的周长与另一边长D .长方形的一边长确定,它的面积与另一边长5、在直角坐标系中,既是正比例函数y=kx,又是y 的值随x 的增大而减小的图象是( )A .B .C .D .6、如图,函数y =2x 和y =ax +4的图象相交于点A(m, 2),则不等式2x <ax +4的解集为( )A. x >3B. x <1C. x >1D. x <37、如图,直线y =kx +b 交坐标轴于A (-3,0).B (0,5)两点,则不等式-kx -b <0的解集为( )A .x >-3B .x <-3C .x >3D .x <38、李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如图所示的矩形ABCD ,设BC 的边长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系式是( )A.y=-2x+24(0<x <12)B. y=-21x+12(0<x <24) C. y=2x-24(0<x <12) D. y=21x-12(0<x <24) 9、某洗衣机在洗涤衣服时经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水),在这三个过程中洗衣机内水量y(升)与时间x(分)之间的函数关系对应的图象大致为( )10、已知一次函数32y x m =+和12y x n =-+的图象都经过点A (-2,0),且与y 轴分别交于B ,C 两点,那么△ABC 的面积等于( ).A .2B .3C .4D .6二、填空题11、某物体从上午7时至下午4时的温度M (℃)是时间t(h)的函数:35100m t t =-+ (其中t=0表示中午12时,t=-1表示上午11时,t=1表示13时),则上午10时此物体的温度为 ℃12、已知直线y=(2-3m )x 经过点A (x 1,y 1)、B (x 2,y 2),当x 1<x 2时,有y 1>y 2,则m 的取值范围是 .13、如图,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm )和注水时间x(s)之间的关系满足如图2中的图象,则至少需要________s 能把小水杯注满.2 / 314、已知一次函数y =ax -b 的图象经过一.二.三象限,且与x 轴交于点(-2,0),则不等式ax >b的解集为 .15、已知直线l 1,l 2的解析式分别为y 1=ax +b ,y 2=mx +n (0<m <a ),根据图中的图象填空:(1)方程组,y ax b y mx n=+⎧⎨=+⎩的解为__________;(2)当-1≤x ≤2时,y 2的范围是__________;(3)当-3≤y 1≤3时,自变量x 的取值范围是__________.三、解答题16、如图,在平面直角坐标系中,点A 的坐标为(0,6),将△OAB 沿x 轴向左平移得到△O'A'B',点A 的对应点A'落在直线y=-34x 上,求点B 与其对应点B'间的距离.17、一次越野跑中,当李明跑了1600米时,小刚跑了1450米,此后两人匀速跑的路程s (米)与时间t (秒)的关系如图,结合结合图象,求图中S 1和S 0的数值.提示:求得小刚和李明速度,再乘以相遇时间,两个路程相减即可得出两人的路程之差150.18、已知A 、B 两地相距30km ,小明以6km /h 的速度从A 步行到B 地的距离为y km ,步行的时间为x h .(1)求y 与x 之间的函数表达式,并指出y 是x 的什么函数; (2)写出该函数自变量的取值范围.19、在平面直角坐标系xoy 中,已知一次函数()10y mx m =≠与()20y kx b k =+≠相交于点()12A ,,且()20y kx b k =+≠与y 轴交于点()03B ,.(1)求一次函数1y 和2y 的解析式; (2)当120y y >>时,求出x 的取值范围.20、在社会主义新农村建设中,长春某乡镇决定对A 、B 两村之间的公路进行改造,并有甲工程队从A 村向B 村方向修筑,乙工程队从B 村向A 村方向修筑.已知甲工程队先施工3天,乙工程队再开始施工.乙工程队施工几天后因另有任务提前离开,余下的任务有甲工程队单独完成,直到公路修通.下图是甲乙两个工程队修公路的长度y (米)与施工时间x (天)之间的函数图象,请根据图象所提供的信息解答下列问题:(1)乙工程队每天修公路多少米?(2)分别求甲、乙工程队修公路的长度y (米)与施工时间x (天)之间的函数关系式. (3)若该项工程由甲、乙两工程队一直合作施工,需几天完成?3 / 3参考答案:一、1、A 2、D 3、C 4、D 5、C 6、B 7、A 8、B 9、D 10、C 二、 11、102 12、m >2313、5 14、 x >-215、(1)2,3x y =⎧⎨=⎩ (2)0≤y 2≤3 (3)0≤x ≤2三、16、解析:由题意可知,点A 移动到点A'位置时,纵坐标不变,∴点A'的纵坐标为6,∵点A'落在直线y=-34x 上,∴-34x=6,解得x=-8,∴△OAB 沿x 轴向左平移到△O'A'B'位置,移动了8个单位,∴点B 与其对应点B'间的距离为8.17、解设小刚速度为xm/s ,李明速度为ym/s 由题意可得1001450160010020014503001600x yx y +=+⎧⎨+=+⎩解得31.5x y =⎧⎨=⎩所以S 0=1450+100x=1750m ,S 1=1450+200x=2050m 18、解:(1)由题意可得:y=6x , 此函数是正比例函数; (2)∵A 、B 两地相距30km , ∴0≤6x ≤30, 解得:0≤x ≤5,即该函数自变量的取值范围是:0≤x ≤5.19、∵一次函数()10y mx m =≠过点()12A ,∴2m = ∴12y x =;又∵一次函数()20y kx b k =+≠经过点()12A ,, ()03B , ∴2{3k bb=+=;解得: 1{3k b =-= ∴23y x =-+; (2)1<<3x .20、(1)由图得:720÷(9-3)=120(米) 答:乙工程队每天修公路120米.(2)设y 乙=kx+b ,则,309720k b k b +=⎧⎨+=⎩,解得120360k b =⎧⎨=-⎩,所以y 乙=120x-360,当x=6时,y 乙=360,设y 甲=k 1x ,∵y 乙与y 甲的交点是(6,360) ∴把(6,360)代入上式得: 360=6k 1,k 1=60, 所以y 甲=60x ;(3)当x=15时,y 甲=900,所以该公路总长为:720+900=1620(米), 设需x 天完成,由题意得: (120+60)x=1620,解得:x=9,答:该项工程由甲、乙两工程队一直合作施工,需9天完成.。
人教版初中数学八年级数学下册第四单元《一次函数》测试(含答案解析)
一、选择题1.下列图形中,表示一次函数y =mx +n 与正比例函数y =mnx (m ,n 为常数,且mn≠0)的图象的是( )A .B .C .D .2.甲、乙两汽车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时间t 的对应关系如图所示.下列结论错误的是( ).A .A ,B 两城相距300km B .行程中甲、乙两车的速度比为3∶5C .乙车于7:20追上甲车D .9:00时,甲、乙两车相距60km3.在平面直角坐标系中,横坐标和纵坐标都是整数的点叫整点,已知直线()1:20l y mx m =+<与直线2:4l y x =-,若两直线与y 轴围成的三角形区域内(不含三角形的边)有且只有三个整点,则m 的取值范围是( ) A .21m -<<- B .21m -≤<- C .322m -≤<-D .322m -<≤-4.如图,一次函数443y x =-的图像与x 轴,y 轴分别交于点A ,点B ,过点A 作直线l 将ABO ∆分成周长相等的两部分,则直线l 的函数表达式为( )A .26y x =-B .23y x =-C .1322y x =- D .3y x =-5.如图,直线443y x =+与x 轴,y 轴分别交于A ,B 两点,点C 在OB 上,若将ABC 沿AC 折叠,使点B 恰好落在x 轴上的点D 处,则点C 的坐标是( )A .(0,1)B .20,3⎛⎫ ⎪⎝⎭C .30,2⎛⎫ ⎪⎝⎭D .(0,2)6.下列图象中,不可能是关于x 的一次函数y =px ﹣(p ﹣3)的图象的是( )A .B .C .D .7.某一次函数的图象经过点()1,2,且y 随x 的增大而增大,则这个函数的表达式可能是( ) A .24y x =+B .31y x =-C .31y x =-+D .24y x =-+ 8.若点P 在一次函数31y x =-+的图象上,则点P 一定不在( ) A .第一象限B .第二象限C .第三象限D .第四象限9.圆的周长公式是2C r π=,那么在这个公式中,关于变量和常量的说法正确的是( ) A .2是常量,C 、π、r 是变量 B .2、π是常量,C 、r 是变量 C .2是常量,r 是变量 D .2是常量,C 、r 是变量10.关于x 的一次二项式ax+b 的值随x 的变化而变化,分析下表列举的数据,若ax+b =11,则x 的值是( ) x﹣111.5ax+b ﹣3 ﹣1 1 2A .3B .﹣5C .6D .不存在11.甲、乙两辆汽车分别从A 、B 两地同时出发,沿同一条公路相向而行,乙车出发2h 后休息,与甲车相遇后,继续行驶.设甲、乙两车与B 地的距离分别为()y km 甲、()y km 乙,甲车行驶的时间为(h)x ,y 甲、y 乙与x 之间的函数图象如图所示,结合图象下列说法不正确的是( )A .甲车的速度是80/km hB .乙车休息前的速度为100/km hC .甲走到200km 时用时2.5hD .乙车休息了1小时12.甲、乙两人在笔直的人行道上同起点、同终点、同方向匀速步行1800米,先到终点的人原地休息.已知甲先出发3分钟,在整个步行过程中,甲、乙两人间的距离y (米)与甲出发后步行的时间t (分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了22.5分钟;③乙用9分钟追上甲;④乙到达终点时,甲离终点还有270米.其中正确的结论有( )A .1个B .2个C .3个D .4个二、填空题13.如图,已知,,a b c 分别是Rt ABC △的三条边长,90C ∠=︒,我们把关于x 的形如a by x c c =+的一次函数称为“勾股一次函数”;若点351,5P ⎛ ⎝⎭在“勾股一次函数”的图象上,且Rt ABC △的面积是10,则c 的值是_________.14.如图,矩形ABCO 的对角线AC 、OB 交于点1A ,直线AC 的解析式33y x =-+,过点1A 作11AO OC ⊥于1O ,过点1A 作11A B BC ⊥于1B ,得到第二个矩形111A B CO ,1A C 、11O B 交于点2A ,过点2A 作22A O OC ⊥于2O ,过点2A 作22A B BC ⊥于2B ,得到第三个矩形222A B CO ,…,依此类推,这样作的第n 个矩形对角线交点n A 的坐标为____________________.15.如图,直线y ax b =+与x 轴交于A 点(4,0),与直线y mx =交于B 点(2,)n ,则关于x 的一元一次方程ax b mx -=的解为___________.参考答案16.如图,直线y =﹣43x +8与x 轴、y 轴分别交于点A 、B ,∠BAO 的角平分线与y 轴交于点M ,则OM 的长为_____.17.某一列动车从A 地匀速开往B 地,一列普通列车从B 地匀速开往A 地,两车同时出发,设普通列车行驶的时间为x (小时),两车之间的距离为y (千米),如图中的折线表示y 与x 之间的函数关系.根据图像进行探究,图中t 的值是__.18.已知一次函数3y x 的图像经过点(,)P a b 和(,)Q c d ,那么()()b c d a c d ---的值为____________.19.已知一次函数y =2x +b 的图象经过点A (2,y 1)和B (﹣1,y 2),则y 1_____y 2(填“>”、“<”或“=”).20.在学校,每一位同学都对应着一个学籍号,在数学中也有一些对应.现定义一种对应关系f ,使得数对(),x y 和数z 是对应的,此时把这种关系记作:(),f x y z =.对于任意的数m ,n (m n >),对应关系f 由如表给出:(),x y(),n n(),m n(),n m(),f x ynm n -m n +如:()1,2213f =+=,()2,1211f =-=,()1,11f --=-,则使等式()12,32f x x +=成立的x 的值是___________. 三、解答题21.如图直线27y x =-+与x 轴、y 轴分别相交于点C 、B ,与直线32y x =相交于点A .(1)求A 点坐标; (2)求OAC 的面积;(3)如果在y 轴上存在一点P ,使OAP △是等腰三角形,请直接写出P 点坐标; (4)在直线27y x =-+上是否存在点Q ,使OAQ 的面积等于6?若存在,请求出Q 点的坐标,若不存在,请说明理由.22.已知y 与1x -成正比例,当3x =时,4y =,求y 与x 之间的函数关系式.23.地表以下岩层的温度()y ℃随着所处深度() km x 的变化而变化,在某个地点y 与x 之间满足如下关系:(2)当8x =时,求出相应的y 值.(3)若岩层的温度是510℃,求相应的深度是多少?24.某商品经销店欲购进A 、B 两种纪念品,用160元购进的A 种纪念品与用240元购进的B 种纪念品的数量相同,每件B 种纪念品的进价比A 种纪念品的进价贵10元. (1)求A 、B 两种纪念品每件的进价分别为多少元?(2)若这两种纪念品共购进1000件,由于A 种纪念品销量较好,进购时A 不少于B 种纪念品的数量,且不超过B 种纪念品的1.5倍,问共有多少种进购方案?(3)该商店A 种纪念品每件售价24元,B 种纪念品每件售价35元,在(2)的条件下求出哪种方案获利最多,并求出最大利润.25.如果3个数位相同的自然数m ,n ,k 满足:m n k +=,且k 各数位上的数字全部相同,则称数m 和数n 是一对“黄金搭档数”.例如:因为123,765,888都是三位数,123765888+=,所以123和765是一对“黄金搭档数”.再如:因为26,29,55都是两位数,262955+=,所以26和29是一对“黄金搭档数”.(1)若326与一个个位上的数字是3的数a 是一对“黄金搭档数”,389与一个个位上的数字是8的数b 是一对“黄金搭档数”,直接写出a 和b 的值;(2)若10(19,09)s x y x y =+≤≤≤≤,10(19,09)t x z x z =+≤≤≤≤,且y z <,s 和t 是一对“黄金搭档数”,求这样的“黄金搭档数”一共有多少对? 26.一次函数23y x =-+的图像经过点P (1,n ). (1)求n 的值;(2)若一次函数1y mx =-的图像经过点P (2n -1,n ),求m 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据“两数相乘,同号得正,异号得负”分两种情况讨论mn 的符号,然后根据m 、n 同正时,同负时,一正一负或一负一正时,利用一次函数的性质进行判断.【详解】解:①当mn >0,m ,n 同号,同正时y =mx +n 过1,3,2象限,同负时过2,4,3象限;②当mn <0时,m ,n 异号,则y =mx +n 过1,3,4象限或2,4,1象限. 故选:A . 【点睛】此题主要考查一次函数与正比例函数的图象判断,解题的关键是熟知一次函数的图象与性质.2.C解析:C 【分析】根据题意得A ,B 两城相距300km ,结合图表甲、乙两车消耗的总时间,可计算得甲、乙两车的速度,从而得到乙车追上甲车和在9:00时甲、乙两车的距离,从而得到答案. 【详解】根据题意得:A ,B 两城相距300km ,故选项A 结论正确;根据题意得:甲车从A 城出发前往B 城共消耗5小时,乙车从A 城出发前往B 城共消耗3小时; 甲车的速度300==60km/h 5乙车的速度300==100km/h 3∴行程中甲、乙两车的速度比为603=1005,故答案B 结论正确; 设乙车出发x 小时后,乙车追上甲车得:()601100x x += ∴32x =∵乙车于6:00出发∴乙车于7:30追上甲车,故选项C 结论错误; ∵9:00时,甲车还有一个小时的到B 城∴9:00时,甲、乙两车相距60160km ⨯=,故选项D 结论正确; 故选:C . 【点睛】本题考查了函数图像和一元一次方程的知识;解题的关键是熟练掌握函数图像的性质,从而完成求解.3.D解析:D 【分析】由1l 过(1,0)时区域内由两个整点求出m=-2,由1l 过(2,-1)时区域内有三个整点求出32m =-,综合求出区域内有三个整点可求出322m -<≤-.【详解】当()1:20l y mx m =+<过(1,0)时区域内由两个整点, 此时m+2=0,m=-2,当()1:20l y mx m =+<过(2,-1)时区域内有三个整点, 此时122m -=+,32m =-, 两直线与y 轴围成的三角形区域内(不含三角形的边)有且只有三个整点,322m -<≤-.故选择:D .【点睛】本题考查数形结合思想求区域整点问题,掌握利用区域三角形边界整点来解决问题是关键.4.D解析:D 【分析】设直线l 与y 轴交于点C ,由已知条件求出点C 的坐标后利用待定系数法可以得到直线l 的函数表达式. 【详解】解:分别令x=0和y=0可得B 、A 的坐标为(0,-4)、(3,0), ∴AB=22345+=,则三角形OAB 的周长为12 如图,设直线l 与y 轴交于点C (0,c ),则OA+OC=6,即3-c=6, ∴c=-3,即C 的坐标为(0,-3),设l 的函数表达式为y=kx+b ,由l 经过A 、C 可得:033k b b =+⎧⎨-=⎩,解之得: 13k b =⎧⎨=-⎩, ∴l 的函数表达式为:y=x-3, 故选D . 【点睛】本题考查一次函数的应用,熟练掌握一次函数的图象、勾股定理的应用及待定系数法求解析式的方法是解题关键.5.C解析:C 【分析】先求得点A 、B 的坐标分别为:(﹣3,0)、(0,4),由此可求得AB =5,再根据折叠可得AD =AB =5,故OD =AD ﹣AO =2,设点C (0,m ),则OC =m ,CD =BC =4﹣m ,根据222CO OD CD +=列出方程求解即可.【详解】解:∵直线y =43x +4与x 轴、y 轴分别交于A 、B 两点, ∴当x =0时,y =4;当y =0时,x =﹣3,则点A 、B 的坐标分别为:A (﹣3,0)、B (0,4), ∴AO =3,BO =4,∴在Rt ABC 中,AB 22AO BO +=5,∵折叠,∴AD =AB =5,CD =BC , ∴OD =AD ﹣AO =2,设点C (0,m ),则OC =m ,BC =4﹣m , ∴CD =BC =4﹣m ,在Rt COD 中,222CO OD CD +=, 即2222(4)m m +=-, 解得:m =32, 故点C (0,32), 故选:C . 【点睛】本题考查的是一次函数图象上点的坐标特征,题目将图象的折叠和勾股定理综合考查,难度适中.6.D解析:D 【分析】先根据一次函数的增减性、与y 轴的交点可得一个关于p 的一元一次不等式组,再找出无解的不等式组即可得. 【详解】 A 、由图象知,0(3)0p p >⎧⎨-->⎩,解得03p <<,即它可能是关于x 的一次函数(3)y px p =--的图象,此项不符题意;B 、由图象知,0(3)0p p >⎧⎨--=⎩,解得3p =,即它可能是关于x 的一次函数(3)y px p =--的图象,此项不符题意;C 、由图象知,0(3)0p p <⎧⎨-->⎩,解得0p <,即它可能是关于x 的一次函数(3)y px p =--的图象,此项不符题意;D 、由图象知,0(3)0p p <⎧⎨--<⎩,不等式组无解,即它不可能是关于x 的一次函数(3)y px p =--的图象,此项符合题意;故选:D . 【点睛】本题考查了一次函数的图象与性质、一元一次不等式组,熟练掌握一次函数的图象与性质是解题关键.7.B解析:B 【分析】设一次函数关系式为y kx b =+,y 随x 增大而增大,则0k >;图象经过点(1,2),可得k 、b 之间的关系式.综合二者取值即可.解:设一次函数关系式为y kx b =+,图象经过点(1,2),2k b ∴+=; y 随x 增大而增大,0k ∴>.即k 取正数,满足2k b +=的k 、b 的取值都可以.故选:B .【点睛】本题考查了待定系数法求一次函数解析式及一次函数的性质,为开放性试题,答案不唯一.只要满足条件即可.8.C解析:C【分析】根据一次函数图象与系数的关系解答.【详解】∵一次函数31y x =-+中,k=-3<0,b=1>0,∴一次函数的图象经过第一、二、四象限,∵点P 在一次函数31y x =-+的图象上,∴点P 一定不在第三象限,故选:C .【点睛】此题考查一次函数图象与系数的关系: k>0,b>0时,直线经过第一、二、三象限; k>0,b<0时,直线经过第一、三、四象限; k<0;b>0时,直线经过第一、二、四象限; k<0,b<0时,直线经过第二、三、四象限.9.B解析:B【分析】常量就是在变化过程中不变的量,变量是指在变化过程中随时可以发生变化的量.【详解】解:圆的周长计算公式是c=2πr ,C 和r 是变量,2、π是常量,故选:B .【点睛】本题主要考查了常量,变量的定义,识记的内容是解题的关键.10.C解析:C【分析】设y=ax+b ,把x=0,y=-1和x=1,y=1代入求出a 与b 的值,即可求出所求.解:设y =ax+b ,把x=0,y=-1和x=1,y=1代入得:11a b b +=⎧⎨=-⎩, 解得:21a b =⎧⎨=-⎩, ∴2x ﹣1=11,解得:x =6.故选:C .【点睛】此题考查了解二元一次方程组以及代数式求值,一次函数的解析式,熟练掌握解二元一次方程组是解本题的关键.11.D解析:D【分析】根据题意和函数图象可以判断题目中的各个选项是否正确,从而可以解答本题;【详解】解:由图象可得,甲车的速度为:400580/km h ÷=,故A 正确;乙车休息前行驶的速度为:2002100/km h ÷=,故B 正确;甲车与乙车相遇时,甲车行驶的时间为:(400200)80 2.5h -÷=,故C 正确;乙车休息的时间为2.520.5h -=,故D 错误.故选:D .【点睛】本题考查一次函数的应用,解答此类问题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答;12.D解析:D【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】解:由图可得,甲步行的速度为:180360÷=米/分,故①正确,乙走完全程用的时间为:1800(12609)22.5÷⨯÷=(分钟),故②正确,乙追上甲用的时间为:1239-=(分钟),故③正确,乙到达终点时,甲离终点距离是:1800(322.5)60270-+⨯=米,故④正确,故选:D .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答二、填空题13.【分析】依据题意得到三个关系式:a+b=cab=10a2+b2=c2运用完全平方公式即可得到c 的值【详解】解:∵点在勾股一次函数的图象上把代入得:即∵分别是的三条边长的面积为10∴故∴∴故解得:故答解析:【分析】依据题意得到三个关系式:c ,ab=10,a 2+b 2=c 2,运用完全平方公式即可得到c 的值.【详解】解:∵点(15P ,在“勾股一次函数”a b y x c c =+的图象上,把(1)5P ,代入得:a b c c=+,即a b +=, ∵,,a b c 分别是Rt ABC 的三条边长,90C ∠=︒,Rt ABC 的面积为10, ∴1102ab =,222+=a b c ,故20ab =, ∴22()2a b ab c +-=,∴22220c ⎫-⨯=⎪⎪⎝⎭,故24405c =,解得:c =.故答案为:【点睛】此类考查了一次函数图象上点的坐标特征以及勾股定理的应用,根据题目中所给的材料结合勾股定理和乘法公式是解答此题的关键. 14.【分析】由矩形的性质和一次函数的性质先求出然后矩形的性质和三角形的中位线定理求出和根据规律即可得到和从而求出点的坐标【详解】解:根据题意∵直线的解析式为令x=0则;令y=0则∴由矩形的性质则点∴;同解析:112n ⎛- ⎝⎭【分析】由矩形的性质和一次函数的性质,先求出OA =1OC =,然后矩形的性质和三角形的中位线定理,求出1O C 和11A O ,根据规律,即可得到n O C 和n n A O ,从而求出点n A 的坐标.【详解】解:根据题意,∵直线AC 的解析式为y =+令x=0,则y =y=0,则1x =, ∴OA =1OC =, 由矩形的性质,则点112AC AC =,∴11122O C OC ==,1112AO AO ==同理可求:221111()242O C O C ===,2221111()22A O AO ===; ……111()22n n n O C O C -==,11()22n n n n n A O A O ===, ∴111()122n n n n OO OC O C =-=-=-,∴点n A 的坐标为:112n ⎛- ⎝⎭;故答案为:112n ⎛- ⎝⎭.【点睛】本题考查了矩形的性质,一次函数的性质,三角形的中位线定理,坐标与图形的规律,解题的关键是熟练掌握所学的知识,正确的找到点的规律进行解题.15.【分析】首先根据两直线交于点B 可联立方程组求出x 的值在通过求得x 即可得解;【详解】∵∴解得:∵直线与直线交于点∴由得:∴∴关于x 的一元一次方程的解为:故答案是:【点睛】本题主要考查了一次函数的图像性 解析:2x =-【分析】首先根据两直线交于点B ,可联立方程组求出x 的值,在通过ax b mx -=求得x ,即可得解;【详解】∵y ax b y mx=+⎧⎨=⎩,∴ax b mx +=, 解得:b x m a =-, ∵直线y ax b =+与直线y mx =交于B 点(2,)n , ∴2bm a =-,由ax b mx -=,得:b x m a =--, ∴2bx m a =-=--, ∴关于x 的一元一次方程ax b mx -=的解为:2x =-.故答案是:2x =-.【点睛】 本题主要考查了一次函数的图像性质,准确分析计算是解题的关键.16.3【分析】过点M 作MH ⊥AB 于H 利用AAS 可证△AHM ≌△AOM 则由全等三角形的性质可得AH =AOHM =OM 根据一次函数的解析式可分别求出直线y =﹣x+8与两坐标轴的交点坐标并得OAOB 的长由勾股定解析:3【分析】过点M 作MH ⊥AB 于H ,利用AAS 可证△AHM ≌△AOM ,则由全等三角形的性质可得AH =AO ,HM =OM .根据一次函数的解析式可分别求出直线y =﹣43x +8与两坐标轴的交点坐标,并得OA 、OB 的长,由勾股定理可求AB .最后在Rt △BMH 中利用勾股定理即可求解OM 的长.【详解】解:如图,过点M 作MH ⊥AB 于H ,∴∠BHM =∠AHM =90°=∠AOM .∵AM 平分∠BOA ,∴∠HAM =∠OAM .在△AHM 和△AOM 中,AHM AOM HAM OAM AM AM ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AHM ≌△AOM (AAS ).∴AH =AO ,HM =OM .将x =0代入y =﹣43x +8中,解得y =8, 将y =0代入y =﹣43x +8中,解得x =6, ∴A (6,0),B (0,8).即OA =6,OB =8.∴AB=10.∵AH =AO =6,∴BH =AB -AH =4.设HM =OM =x ,则MB =8-x ,在Rt △BMH 中,BH 2+HM 2=MB 2,即42+x 2=(8-x )2,解得x =3.∴OM =3.故答案为:3.【点睛】此题考查了一次函数的图象与性质、全等三角形的判定与性质等知识,熟练掌握一次函数的性质并能利用辅助线构造全等三角形与直角三角形模型是解本题的关键.17.4【分析】根据题意和函数图象中的数据:AB 两地相距900千米两车出发后3小时相遇普通列车全程用12小时即可求得普通列车的速度和两车的速度和进而求得动车的速度解答即可【详解】由图象可得:AB 两地相距9解析:4【分析】根据题意和函数图象中的数据:AB 两地相距900千米,两车出发后3小时相遇,普通列车全程用12小时,即可求得普通列车的速度和两车的速度和,进而求得动车的速度,解答即可.【详解】由图象可得:AB 两地相距900千米,两车出发后3小时相遇, 普通列车的速度是:90012=75千米/小时, 动车从A 地到达B 地的时间是:900÷(9003-75)=4(小时),故填:4.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.18.-9【分析】根据一次函数图象上的点的坐标特征将点P (ab )和Q (cd )代入一次函数的解析式求出a−bc−d 的值然后整体代入所求的代数式并求值【详解】解:∵一次函数y =x +3的图象经过点P (ab )和Q解析:-9.【分析】根据一次函数图象上的点的坐标特征,将点P (a ,b )和Q (c ,d )代入一次函数的解析式,求出a−b 、c−d 的值,然后整体代入所求的代数式并求值.【详解】解:∵一次函数y =x +3的图象经过点P (a ,b )和Q (c ,d ),∴点P (a ,b )和Q (c ,d )满足一次函数的解析式y =x +3,∴b =a +3,d =c +3,∴b−a =3,c−d =−3;∴()()b c d a c d ---=(b−a )(c−d )=3×(−3)=-9;故答案为:-9.【点睛】本题考查了一次函数图象上点的坐标特征,经过函数的某点一定在函数的图象上,并且一定满足函数的解析式.19.>【分析】由k =2>0利用一次函数的性质可得出y 随x 的增大而增大结合2>﹣1即可得出y1>y2【详解】解:∵k =2>0∴y 随x 的增大而增大又∵2>﹣1∴y1>y2故答案为:>【点睛】本题考查一次函数解析:>【分析】由k =2>0,利用一次函数的性质可得出y 随x 的增大而增大,结合2>﹣1即可得出y 1>y 2.【详解】解:∵k =2>0,∴y 随x 的增大而增大,又∵2>﹣1,∴y 1>y 2.故答案为:>.【点睛】本题考查一次函数的增减性,根据比例系数k 的正负,判断y 随x 的变化规律是解题关键.20.-1【分析】根据对应关系f 分三种情况求出x 的取值范围以及相应的x 的值再作出判断即可【详解】解:①若1+2x=3x 即x=1则3x=2解得x=(不符合题意舍去);②若1+2x >3x 即x <1则1+2x-3解析:-1.【分析】根据对应关系f ,分三种情况求出x 的取值范围以及相应的x 的值,再作出判断即可.【详解】解:①若1+2x=3x ,即x=1,则3x=2,解得x=23,(不符合题意,舍去); ②若1+2x >3x ,即x <1,则1+2x-3x=2,解得x=-1,③若1+2x <3x ,即x >1,则1+2x+3x=2, 解得x=15(不符合题意,舍去), 综上所述,x 的值是-1.故答案为:-1.【点睛】 本题考查了一元一次不等式及一元一次方程的应用,函数的概念,理解新定义的运算方法是解题的关键,难点在于分情况讨论.三、解答题21.(1)(2,3)A ;(2)214;(3)12(0,P P 3(0,6)P ,413(0,)6P ;(4)245(,)77或263(,)77-. 【分析】(1)两条直线的交点即是联立两个解析式的公共解,据此解题;(2)先计算直线27y x =-+与x 轴的交点,解得点C 的坐标,继而得到OC 的长,再结合(1)中结论得到点A 的纵坐标,最后根据三角形面积公式解题即可;(3)由勾股定理解得OA 的长,根据等腰三角形的性质,分三种情况讨论,①OA=OP ,以点O 为圆心,OA 为半径,作圆,交y 轴于点12,P P ;②OA=AP ,以点A 为圆心,OA 为半径,作圆,交y 轴于点3P ;③OP=PA ,点P 在线段OA 的垂直平分线与y 轴的交点,分别画出相应图形,再根据等腰三角形的性质、勾股定理解题即可;(4)分两种情况讨论,当Q 在线段AB 上,作QD y ⊥轴于点D ;当Q 在线段AC 的延长线上,作QD x ⊥轴于点D ,再分别根据三角形面积的和或差列出方程,解方程即可.【详解】(1)根据题意得,2732y x y x =-+⎧⎪⎨=⎪⎩①② 把②代入①得,3272x x =-+, 解得2x =把2x =代入②中得,3y =,23x y =⎧∴⎨=⎩(2,3)A ∴;(2)令y=0,得270x -+=,72x ∴= 7,02C ⎛⎫∴ ⎪⎝⎭72OC ∴=(2,3)A 1172132224OAC A SOC y ∴=⋅⋅=⨯⨯=; (3)由(1)得,(2,3)A ,根据勾股定理得,OA=222313+= 当OAP △是等腰三角形时,分三种种情况讨论,如图,131213),(0,13)P P ∴-; ②OA=AP ,由等腰三角形三线合一的性质,OP=2A y =6,3(0,6)P ∴; ③点P 在线段OA 的垂直平分线与y 轴的交点,设点P (0,)y ,由勾股定理得OP=PA2222(3)y y ∴+-= 解得136y = 413(0,)6P ∴, 综上所述,符合条件的P 点坐标为:12(0,13),(0,13),P P -3(0,6)P ,413(0,)6P ; (4)存在;令x=0,得2077y =-⨯+=(0,7)B ∴2116,72742AOC AOB S S =<=⨯⨯= Q ∴点有两个位置:Q 在线段AB 上或Q 在AC 的延长线上, 设点Q 的坐标为(,)x y ,当Q 在线段AB 上,作QD y ⊥轴于点D ,如图,则QD=x ,761OBQ OAB OAQ S S S ∴=-=-=112OB QD ∴⋅⋅= 1712x ∴⨯= 27x ∴=把27x =代入27y x =-+,得457y = 245(,)77Q ∴; 当Q 在线段AC 的延长线上,作QD x ⊥轴于点D ,如图,则QD=-y ,213644OCQ OAQ OAC S S S ∴=-=-= 1324OC QD ∴⋅⋅= 113()224y ∴⨯-= 37y ∴=- 把37y =-代入27y x =-+,得267x = 263(,)77Q ∴-; 综上所述,点Q 的坐标为:245(,)77或263(,)77-. 【点睛】本题考查一次函数的综合,涉及等腰三角形的性质、勾股定理、解一元一次方程等知识,是重要考点,难度一般,掌握相关知识是解题关键.22.22y x =-【分析】首先根据题意设出关系式:y=k (x-1),再利用待定系数法把x=3,y=4代入,可得到k 的值,再把k 的值代入所设的关系式中,可得到答案;【详解】解:因为y 与1x -成正比例,所以设()1y k x =-(0k ≠)∵当3x =时,4y =,∴()431k =-解得2k =所以, y 与x 之间的函数关系式为:22y x =-【点睛】此题主要考查了对正比例的理解,关键是设出关系式,代入x ,y 的值求k . 23.(1)3520y x =+;(2)300;(3)相应的深度是14km .【分析】(1)根据图表可知,深度每增加1km ,温度增加35℃,据此直接直接写出y 与x 之间的关系式即可;(2)根据(1)所得关系式,令x=8,求得y 的值即可;(3)根据(1)所得关系式,令y=510,求得x 的值即可.【详解】(1)由图表可知,深度每增加1km ,温度增加35℃,5535(1)y x ∴=+-553535x =+-3520x =+,即y 与x 之间的关系式为:3520y x =+;(2)由3520y x =+令8x =时,则35820300y =⨯+=;(3)由3520y x =+令510y =时,则3520510x +=,解得14x =故相应的深度是14km .【点睛】本题主要考查一次函数的应用,明确题意、正确列出函数解析式成为解答本题的关键. 24.(1)A 、B 两种纪念品每件进价分别为20元、30元;(2)101种;(3)A 种500件,B 种中500件时,最大利润为4500元【分析】(1) 设A 种纪念品每件进价a 元,则B 种纪念品每件进价(10)x +元,根据题意列方程求解即可;(2)设A 种纪念品购进y 件,则B 种纪念品购进(1000)y -件,依据题意列不等式组,求出y 的整数取值范围,即可得出进购方案;(3)根据题意得出利润的关系式,再结合第二问y 的取值范围求出最大利润.【详解】解:(1)设A 种纪念品每件进价a 元,则B 种纪念品每件进价(10)x +元. 根据题意得16024010x x =+,去分母, 得:160(10)240x x +=,解得:20x , 经检验,20x 是原方程的解,1030x +=(元),∴A 种纪念品每件进价20元,B 种纪念品每件进价30元.(2)设A 种纪念品购进y 件,则B 种纪念品购进(1000)y -件,根据题意得:10001.5(1000)y y y y ≥-⎧⎨≤-⎩,解得:500600y ≤≤. 又y 只能取整数,500y ∴=,501, (600)则共有101种购进方案.(3)由题意得,最大利润为:(2420)(3530)(1000)5000W y y y =-+--=-+,在500600y ≤≤时,当500y =时,max 4500W =(元),∴当A 种购进500件,B 种购进500件时,利润最大为4500元.【点睛】本题考查分式方程、一元一次不等式组及一次函数的综合应用,解题关键在于充分理解题意,根据题意列出相关关系式进行求解.25.(1)673,388a b ==;(2)10对.【分析】(1)由黄金搭档数的定义可得:326+999,a =389+=777b ,解方程从而可得答案; (2)由10,10,s x y t x z =+=+可得,s t 的十位上的数字是相同的,再结合19,09,09,x y z ≤≤≤≤≤≤ y <,z 可得:,s t 都是两位数,s <t ,由20,s t x y z +=++可得0<4,x ≤ 结合x 为正整数,再分类讨论可得答案.【详解】解:(1) 326与一个个位上的数字是3的数a 是一对“黄金搭档数”,326∴与a 的和的个位数是9,且它们的和也是三位数,一对黄金搭档数的和各位数上的数字全部相同,326+999,a ∴=673,a ∴=同理可得:389+=777b ,388,b ∴=综上:673,388.a b ==(2)10,10,s x y t x z =+=+,s t ∴的十位上的数字是相同的,19,09,09,x y z ≤≤≤≤≤≤ y <,z1099,1099,s t ∴≤≤≤≤ 且,s t 都是两位数,s <t ,s 和t 是一对“黄金搭档数”,s ∴与t 的和也是一个两位数,且各位数上的数字全部相同,101020,s t x y x z x y z +=+++=++0∴<4,x ≤ x 为正整数, x 的可能的值为1,2,3,4.综上可得:满足条件的数有10对,分别是:当1x =时,10,12,s t ==当2x =时,20,24,s t == 或21,23,s t ==当3x =时,30,36,s t == 或31,35,s t == 或32,34,s t ==当4x =时,40,48,s t == 或41,47,s t == 或42,46,s t == 或43,45.s t == 综上:这样的“黄金搭档数”一共有10对.【点睛】本题考查的是新定义:黄金搭档数的定义的理解,利用定义借助方程,不等式,对变量的范围的理解进行分类讨论,解题的关键是弄懂题意,作出合适的分类.26.(1)1;(2)m =2【分析】(1)把点P (1, n )代入一次函数 y=−2x+3 即可求出n 的值;(2)由(1)可得P (1,1),由一次函数 y=mx−1 的图像经过点P (1,1),可得m 的值.【详解】(1)一次函数23y x =-+的图像经过点P (1,n ),n =-2+3=1;(2)由n =1,P (2n -1,n ),可得P (1,1),一次函数1y mx =-的图像经过点P (1,1),11m =-,解得m=2.【点睛】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.。
人教版八年级数学下册第19章一次函数单元测试题含答案
第十九章一次函数一、选择题(每小题4分,共28分)1.下列函数中:(1)y =πx ,(2)y =2x -1,(3)y =1x ,(4)y =2-3x ,(5)y =x 2-1,是一次函数的有( )A .4个B .3个C .2个D .1个2.若一次函数y =kx +b 的图象经过第二、三、四象限,则k ,b 的取值范围是( ) A .k >0,b >0 B .k >0,b <0 C .k <0,b <0 D .k <0,b >03.对于函数y =-3x +1,下列结论正确的是( ) A .它的图象必经过点(-1,3)B .它的图象经过第一、二、三象限C .当x >13时,y <0D .y 的值随x 值的增大而增大4.若点A (2,4)在函数y =kx 的图象上,则下列各点在此函数图象上的是( ) A .(1,2) B .(-2,-1) C .(-1,2) D .(2,-4)5.一次函数y 1=ax +b 与一次函数y 2=-bx -a 在同一平面直角坐标系中的图象大致是( )图19-Z -16.若函数y =2x +3与y =3x -2b 的图象交x 轴于同一点,则b 的值为( ) A .-3 B .-32 C .9 D .-94图19-Z -27.双胞胎兄弟小明和小亮在同一班读书,周五16:00时放学后,小明和同学走路回家,途中没有停留,小亮骑车回家,他们各自与学校的距离s (米)与用去的时间t (分)的关系如图19-Z -2所示,根据图象提供的有关信息,下列说法中错误的是( )A .兄弟俩的家离学校1000米B .他们同时到家,用时30分C .小明的速度为50米/分D .小亮中间停留了一段时间后,再以80米/分的速度骑回家二、填空题(每小题4分,共20分)8. 函数y =x +1x -1的自变量x 的取值范围是________. 9.如图19-Z -3,直线y =ax +b 与直线y =cx +d 相交于点(2,1),则关于x 的一元一次方程ax +b =cx +d 的解为____________.10.在平面直角坐标系xOy 中,直线y =12x +2向上平移两个单位长度得到直线m ,那么直线m 与x 轴的交点坐标是________.11.一次函数y =kx +b 的图象经过点A(0,4)且与两坐标轴围成的三角形的面积为2,则这个一次函数的解析式为____________.图19-Z -3图19-Z -412.如图19-Z -4,在平面直角坐标系中,直线y =-12x +2分别交x 轴、y 轴于A ,B两点,点P(1,m)在△AOB 内(不包含边界),则m 的取值范围是________.三、解答题(共52分)13.(8分)一次函数的图象经过(-2,1)和(1,4)两点. (1)求这个一次函数的解析式; (2)当x =3时,求y 的值.14.(10分)已知一次函数y=2x+4.(1)在如图19-Z-5所示的平面直角坐标系中,画出函数的图象;(2)求图象与x轴的交点A的坐标,与y轴的交点B的坐标;(3)在(2)的条件下,求△AOB的面积;(4)利用图象直接写出当y<0时,x的取值范围.图19-Z-515.(10分)如图19-Z-6,直线l1的函数解析式为y=-3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的函数解析式;(3)求△ADC的面积.图19-Z-616.(10分)某大剧院举行专场音乐会,成人票每张20元,学生票每张5元,暑假期间,为了丰富广大师生的业余文化生活,影剧院制定了两种优惠方案:方案1:购买一张成人票赠送一张学生票;方案2:按总价的90%付款.某校有4名老师与若干名(不少于4名)学生听音乐会.(1)设学生人数为x名,付款总金额为y(元),分别建立两种优惠方案中y与x之间的函数关系式;(2)请计算并确定出最节省费用的购票方案.17.(14分)国庆节期间,为了满足百姓的消费需求,某商店计划用170000元购进一批家电,这批家电的进价和售价如下表:类别彩电冰箱洗衣机进价(元/台) 2000 1600 1000售价(元/台) 2300 1800 1100若在现有资金允许的范围内,购买上表中三类家电共100台,其中彩电台数是冰箱台数的2倍.设该商店购买冰箱x台.(1)商店至多可以购买冰箱多少台?(2)购买冰箱多少台时,能使商店销售完这批家电后获得的利润最大?最大利润为多少元?详解详析1.B [解析] (1)y =πx ,(2)y =2x -1,(3)y =2-3x 是一次函数,共3个,故选B.2.C [解析] 因为一次函数y =kx +b 的图象经过第二、三、四象限,所以k <0,b <0. 3.C4.A [解析] ∵点A (2,4)在函数y =kx 的图象上,∴4=2k ,解得k =2,∴一次函数的解析式为y =2x .A .∵当x =1时,y =2,∴此点在函数图象上,故A 选项正确;B .∵当x =-2时,y =-4≠-1,∴此点不在函数图象上,故B 选项错误;C .∵当x =-1时,y =-2≠2,∴此点不在函数图象上,故C 选项错误;D .∵当x =2时,y =4≠-4,∴此点不在函数图象上,故D 选项错误. 5.D6.D [解析] 在函数y =2x +3中,当y =0时,x =-32,即交点坐标为(-32,0).把(-32,0)代入函数y =3x -2b ,求得b =-94. 7.C [解析] A .根据函数图象右上端点的纵坐标可知,兄弟俩的家离学校1000米,故A 正确;B .根据函数图象右上端点的横坐标可知,兄弟俩同时到家,用时30分钟,故B 正确;C .根据小明与学校的距离s (米)与用去的时间t (分)的函数关系可知,小明的速度为1000÷30=1003(米/分),故C 错误;D .根据折线的第三段的端点坐标可知,小亮用5分钟走了400米,速度为400÷5=80(米/分),故D 正确.8.x ≠1 [解析] 函数y =x +1x -1的自变量x 的取值范围是x -1≠0,即x ≠1.9.x =2 [解析] 观察图象,由直线y =ax +b 与直线y =cx +d 相交于点(2,1),即可知关于x 的一元一次方程ax +b =cx +d 的解为直线y =ax +b 与直线y =cx +d 交点的横坐标,即x =2.10.(-8,0) [解析] ∵直线y =12x +2向上平移两个单位长度得到直线m ,∴直线m 的解析式为y =12x +4,∵当y =0时,12x +4=0,解得x =-8,∴直线m 与x 轴的交点坐标是(-8,0).11.y =4x +4或y =-4x +4 [解析] ∵一次函数y =kx +b 的图象经过点A (0,4),∴b =4,设图象与x 轴交于点B ,设B (a ,0).∵三角形的面积为2,∴12×|a |×b =2,∴a =±1,∴点B 的坐标是(1,0)或(-1,0),∴k +b =0或-k +b =0,∴k =-4或4, ∴这个一次函数的解析式为y =4x +4或y =-4x +4.12.0<m <32[解析] 因为点P (1,m )在△AOB 内(不包含边界),解得0<m <32.13.解:(1)设这个一次函数的解析式为y =kx +b ,∵该函数图象经过(-2,1)和(1,4)两点,∴这个一次函数的解析式为y =x +3.(2)当x =3时,y =3+3=6. 14.解:(1)如图所示:(2)令x =0,则y =4;令y =0,则x =-2.∴A (-2,0),B (0,4). (3)∵A (-2,0),B (0,4),∴OA =2,OB =4,∴△AOB 的面积=12OA ·OB =12×2×4=4.(4)由图象得x 的取值范围为x <-2.15.解:(1)由y =-3x +3,令y =0,得-3x +3=0,∴x =1,∴D (1,0).(2)设直线l 2的函数解析式为y =kx +b ,由图象知:x =4时,y =0;x =3时,y =-32.∴直线l 2的函数解析式为y =32x -6.∴C (2,-3).∵AD =3,∴S △ADC =12×3×||-3=92.16.解:(1)按优惠方案1可得y 1=20×4+(x -4)×5=5x +60(x ≥4); 按优惠方案2可得y 2=(5x +20×4)×90%=4.5x +72(x ≥4). (2)y 1-y 2=0.5x -12(x ≥4),①当y 1-y 2=0时,得0.5x -12=0,解得x =24, ∴当学生人数为24时,两种优惠方案付款一样多; ②当y 1-y 2<0时,得0.5x -12<0,解得x <24, ∴学生人数不少于4且少于24时,选方案一较划算; ③当y 1-y 2>0时,得0.5x -12>0,解得x >24, ∴当学生人数多于24时,选方案二较划算. 17.解:(1)根据题意,得2000×2x +1600x +1000×(100-3x )≤170000.解得x ≤261213.∵x 为正整数,∴x 最大为26.答:商店至多可以购买冰箱26台.(2)设商店销售完这批家电后获得的利润为y 元,则y =(2300-2000)×2x +(1800-1600)x +(1100-1000)×(100-3x )=500x +10000. ∵k =500>0,∴y 随x 的增大而增大.∵x ≤261213且x 为正整数,∴当x =26时,y 取最大值,最大值为500×26+10000=23000.答:当购买冰箱26台时,商店销售完这批家电后获得的利润最大,最大利润为23000元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
学习资料收集于网络,仅供参考
人教版一次函数单元测试题(含答案)
一、选择题
1. 已知正比例函数 y=kx(k≠0)的图象过第二、四象限,则( )
A.y 随 x 的增大而减小
B.y 随 x 的增大而增大
C.当 x<0 时,y 随 x 的增大而增大;当 x>0 时,y 随 x 的增大而减小
D.不论 x 如何变化,y 不变
2. 表示一次函数 y=mx+n 与正比例函数 y=mnx(m、n 是常数且 mn
≠0)图象是( )
3.
若直线 y=
1
2
x+n 与 y=mx-1 相交于点(1, -2) ,则[ ]
1 5 1 5 3
A m= ,n=- B m= ,n=-1 C m=-1,n=- D m=-3,n=-
2 2 2 2 2
4.
点 A(-5,y1)和 B(-2,y2)都在直线 y=-
1
A y1≤y2 B y1=y2 C y1<y2 D y1>y
2
x 上,则 y1 和 y2 的关系是[ ]
5.
若 ab>0,bc<0,则函数 y=
1
b
(ax-c)的图象不经过第[ ]象限。
A 一 B 二 C 三 D 四
6.
如 果 一 次 函 数 y=kx+(k-1) 的 图 象 经 过 第 一 、 三 、 四 象 限 , 则 k 的 取 值 范 围 是
( )
A. k>0 B. k<0 C. 0<k<1 D. k>1
7.
小亮早晨从家骑车到学校,先上坡后下坡,行程情况如下图所示,若返回时上坡、下坡的速度仍保持不变,
那么小亮从学校骑车回家用的时间是( )
A.37.2 分钟 B. 48 分钟
C. 30 分钟 D. 33 分钟
学习资料
9.
下列函数中,自变量的取值范围选取错误的是 ( )
学习资料收集于网络,仅供参考
8.
下列四点中,在函数 y 3x 2 的图象上的点是 ( )
A.(-1,1) B.(-1,-1) C.(2,0) D.(0,-1.5)
..
A.y= x 2 中,x 取 x≥2 B.y=
1
x 1
中,x 取 x≠-1
C.y=2x2 中,x 取全体实数 D.y= 1 x 3 中,x 取 x≥-3
10.
如图(1)是饮水机的图片,饮水桶中的水由图(2)的位置下降到图(3)的位置的过程中,如果水减少的体积是
y,水位下降的高度是 x,那么能够表示 y 与 x 之间函数关系的图象可能是( )
A B C D
二、填空题
11. 如图(1)所示的是实验室中常用的仪器,向以下容器内均匀注水,最后把容器注满,在注水过程中,容器
的水面高度与时间的关系如图(2)•所示,图中 PQ 为一线段,则这个容器是__________.
12.
直线 y1=k1x+b1 和直线 y2=k2x+b2 相交于 y 轴上同一点的条件是___;这两直线平行的条件是___ .
13.
在函数
y x 1
中,自变量 x 的取值范围是_________________.
14. 一次函数的图象过点(1,2),且 y 随 x
的增大而增大, 则这个函数解析式是___.
15. 等腰三角形的周长为 30cm,它的腰长为 ycm 与底长 x
cm 的函数关系式是___.
学习资料
学习资料收集于网络,仅供参考
16. 如果直线 y=2x+m 不经过第二象限,那么实数 m
的取值范围是 .
17. 若直线 y=x+m 与直线 y=-2x+4 的交点在 x 轴上,则 m
= .
18. 生物学家研究表明,某种蛇的长度 y(cm)是其尾长 x
(cm)的一次函数,当蛇的尾长为 6cm 时,蛇长为 45.5cm;
当尾长为 14cm 时,蛇长为 105.5cm.那么当一条蛇的尾长为 10cm 时,这条蛇的长度是 cm.
19.
一 个 一 次 函 数 的 图 象 与 直 线 y 2 x 1 平 行 , 且 经 过 点 ( 2 , - 1 ), 则 这 个 一 次 函 数 的 表 达 示
为 .
20.
函数 y=2x 向左平移 3 个单位所得到的函数为 ,再向下平移 5 个单位得到的函数为 .
三、计算题
21. 某市推出电脑上网包月制,每月收取费用 y(元)与上网时间 x(小时)的函数关系如图 9 所示,其中 BA 是线
段,BA∥x 轴,AC 是射线。
①当 x≥30 时,求 y 与 x 之间的函数关系式;
②若小李 4 月份上网 20 小时,他应付多少元的上网费?
③若小李 5 月份上网费用为 75 元,则他在该月份的上网时间是多少?
22.
如图,直线 OC、BC 的函数关系式分别是
y x
和 y 2 x 6 . 求点 C 的坐标,并回答当 x 取何值时
1 2
y
> y ?
1
2
四、应用题
学习资料
学习资料收集于网络,仅供参考
23. 张老师写出一个一次函数的解析式,甲、乙、丙三位同学分别说出这个函数的一条性质.
甲:函数图象不经过第三象限;
乙:当 x<2 时,y>0;
丙:y 随 x 的增大而减小.
已知这三位同学的叙述都是正确的,请你构造出满足上述所有性质的一个函数.
24.
根据下列条件,确定函数关系式:
(1)y 与 x 成正比,且当 x=9 时,y=16;
(2)y=kx+b 的图象经过点(3,2)和点(-2,1).
25.
某服装厂现大 A 种布料 70 米,B 种布料 52 米,现计划用这两种布料生产 M、N 两种型号的时装 80 套。已知
做一套 M 型号的时装需要 A 种布料 0.6 米,B 种布料 0.9 米,可获利 45 元,做一套 N 型号的时装需要 A 种布料
1.1 米,B 种布料 0.4 米,可获利 50 元。若设生产 N 型号的时装套数为 x,用这批布料生产这两种型号的时装
所获的总利润为 y 元.
(1)求 y 与 x 的函数关系式,并求出自变量 x 的取值范围;
(2)该服装厂在生产这批时装中,当生产 N 型号的时装多少套时,所获利润最大?最大利润是多少?
学习资料
11. 锥形瓶;12. b1=b2、k1=k2;13. y=
3
15.
2
、 ;
16.
m ≤
0
24.
①y=
16
学习资料收集于网络,仅供参考
答案
一、选择题
1. A 2. A 3. C 4. D 5. D 6. D 7. A 8. B 9. D 10. A
二、填空题
3
x、y=- x;14. y=x-1(只需使 k>0,b
<0 即可)
2 2
5
3 3
17.
2
18. 75.5 19. y=-2x+3 20.
y=2x+6 y=2x+1
三、计算题
21. 解:①设 y 与 x 之间的函数关系式为 y=kx+b 把 x=30 ,y=60;x=40,y=90 分别代入 y=kx+b,解得 k=3,
b=-30,所以 y 与 x 之间的函数关系式为 y=3x-30
②60 元
③把 y=75 代入 y=3x-30,解得 x=35 即他在该月份的上网时间是 35 小时。
22.
y=-2x+6 x=2 C (2,2 )
四、应用题
23. y x 2 (答案不惟一)
1 7
x;② y= x+
9 5 5
25.
(1)y=45x+50(80-x )
(2)当 x=36 时最大值是 3820 元
学习资料