2007年高考文科数学试题及参考答案(山东卷)
2007年高考真题(山东卷)(数学理)

2007年普通高等学校招生全国统一考试(山东卷)理科数学第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,选择一个符合题目要求的选项。
1.若z cos isin θθ=+(i 为虚数单位),则使2z 1=-的θ的值可能是A .6πB .4π C .3π D .2π2.已知集合{1,1}=-M ,11{|24,}2+=<<∈x N x x Z ,则= M NA .{1,1}-B .{1}-C .{0}D .{1,0}-3.下列几何体各自的三视图中,有且仅有两个视图相同的是A .①②B .①③C .①④D .②④4.设1{1,1,,3}2∈-a ,则使函数2=y x 的定义域为R 且为奇函数的所有a 值为A .1,3B .-1,1C .-1,3D .-1,1,35.函数sin(2)cos(2)63ππ=+++y x x 的最小正周期和最大值分别为A .,1πB .πC .2,1πD .2π6.给出下列三个等式:()()(),()()(),()=++=+=f xy f x f y f x y f x f y f x y ()()1()()+-f x f y f x f y ,下列函数中不.满足其中任何一个等式的是 A .()3=xf xB .()sin =f x xC .2()log =f x xD .()tan =f x x7.命题“对任意的∈x R ,3210-+≤x x ”的否定是A .不存在∈x R ,3210-+≤x x B .存在∈x R ,3210-+≤x x C .存在 ∈x R ,3210-+>x xD .对任意的∈x R ,3210-+>x x8.某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒;……第六组,成绩大于等于18秒且小于等于19秒.右图是按上述分组方法得到的频率分布直方图.设成绩小于17秒的学生人数占全班总人数的百分比为x ,成绩大于等于15秒且小于17秒的学生人数为y ,则从频率分布直方图中可分析出x 和y 分别为A .0.9,35B .0.9,45C .0.1,35D .0.1, 459.下列各小题中,p 是q 的充要条件的是①2:26;:3p m m q y x mx m <->=+++或有两个不同的零点.②():1;:()()f x p q y f x f x -==是偶函数. ③:cos cos ;:tan tan .p q αβαβ==④:;:p A B A q = A .①② B .②③ C .③④D .①④10.阅读右边的程序框图,若输入的n 是100,则输出的变量S 和T 的值依次是A .2500,2500B .2550,2550C .2500,2550D .2550,250011.在直角ABC ∆中,CD 是斜边AB 上的高,则下列等式不.成立的是A .2AC AC AB = B .2BC BA BC =C .2AB AC CD =D .22()()AC AB BA BC CD AB=12.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是12.质点P 移动五次后位于点(2,3)的概率是 A .51()2B .2551()2CC .3351()2CD .235551()2C C第Ⅱ卷(共90分)注意事项:1.用黑色或蓝色钢笔、圆珠笔直接答在试题卷上. 2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共4小题,每小题4分,共16分,答案须填在题中横线上. 13.设O 是坐标原点,F 是抛物线y 2=2px (p >0)的焦点,A 是抛物线上的一点,与x轴正向的夹角为60°,. 14.设D 是不等式组21023,04,1x y x y x y +≤⎧⎪+≥⎪⎨≤≤⎪⎪≥⎩,表示的平面区域,则D 中的点P (x ,y )到直线x +y =1015.与直线x +y -2=0和曲线x 2+y 2-12x -12y +54=0都相切的半径最小的圆的标准方程是22(2)(2)2x y -+-=.16.函数y =log a (x +3)-1(a >0,a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中mn >0,则12m n+的最小值为 8 .三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)设数列{}n a 满足a 1+3a 2+32a 3+…+3n -1a n =,N*3nn ∈. (1)求数列{}n a 的通项; (2)设n nnb a =,求数列{}n b 的前n 项和S n . 解:(1)∵2123333n n na a a a +++-1…+3=, ①∴当n ≥2时,22123113333n n n a a a a ---++++=…. ②①-②得1113,33n n n n a a -==.在①中,令n =1,得113a =.∴13n n a =.(2)∵n nnb a =,∴b n =n 3n ∴23323333n n S n =+⨯+⨯++…. ③∴22313323333n n S n +=+⨯+⨯++…. ④④-③得12323(3333)n n n S n +=-++++….即13(13)2313n n n S n +-=--.∴1(21)3344n n n S +-=+. 18.(本小题满分12分)设b 和c 先后抛掷一枚骰子得到的点数,用随机变量ξ表示方程20x bx c ++=实根的个数(重根按一个计) (1)求方程20x bx c ++=有实根的概率; (2)求ξ的分布列数学期望;(3)求在先后两次出现的点数中有5的条件下,方程20x bx c ++=有实根的概率.解:(1)由题意知:设基本事件空间为Ω,记“方程20x bx c ++=没有实根”为事件A ,“方程20x bx c ++=有且仅有一个实根”为事件B ,“方程20x bx c ++=有两个相异的实根”为事件C ,则(){},,1,2,,6b c b c Ω==⋅⋅⋅,(){}2,40,,1,2,,6A b c b c b c =-<=⋅⋅⋅,(){}2,40,,1,2,,6B b c b c b c =-==⋅⋅⋅, (){}2,40,,1,2,,6C b c bc b c =->=⋅⋅⋅,所以Ω中的基本事件总数为36个,A 中的基本事件总数为17个,B 中的基本事件总数为2个,C 中的基本事件总数为17个,又因为B ,C 是互斥事件,故所求概率21719()()363636P P B B C =+=+=. (2)由题意,ξ得可能取值为0,1,2,则{}17036P ξ==, {}1118P ξ==,{}17236P ξ==故ξ的分布列为:所以ξ的数学期望171170121361836E ξ=⨯+⨯+⨯=. (3)记“先后两次出现的点数中有5”为事件D ,“方程20x bx c ++=有实根”为事件E ,由上面分析得11()36P D =,7()36P D E ⋂=, ()7(|)()11P D E P E D P D ⋂∴==.19.(本小题满分12分)如图,在直四棱柱1111ABCD A BC D -中,已知122DC DD AD AB ===,AD DC ⊥,//AB DC .(1)设E 是DC 的中点,求证:1//D E 平面1A BD ;(2)求二面角11A BD C --的余玄值.解法一:(1)连结BE ,则四边形DABE 为正方形,∴BE=AD=A 1D 1,且BE//AD//A 1D 1, ∴四边形A 1D 1EB 为平行四边形。
2007年山东课标版高考预测(数学文)

2007年高考预测试卷 课标版(山东)数学试题(文科)第Ⅰ卷(选择题 共60分)一、选择题(共12题,每题只有一个正确答案,每题5分,共60分)1.()()=+-810212i i( )A .i 43+B .i 43-C .i 34+D .i 34-2.若集合{}Z x x y y M ∈==,|2,{}R x x x N ∈≥-=,63|,全集R U =,P 是N 的 补集,则P M 的真子集个数是 ( )A .15B .7C .16D .8 3.设α是锐角,2234tan +=⎪⎭⎫⎝⎛+απ,则αcos 的值为( ) A .22B .23 C .33D .36 4.设函数()()⎪⎩⎪⎨⎧<-⎪⎭⎫ ⎝⎛≥-=2 1212 1log 2x x x x f x,若()10>x f ,则0x 的取值范围是( )A .()()+∞∞-,20,B .()2,0C .()()+∞-∞-,31,D .()3,1-5.对于实数b a 、,“()0≤-a b b ”是“1≥ba”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.在R 上定义运算⊗:()y x y x -=⊗1,若不等式()()11<+⊗-x a x 对任意实数x 都成立,则有( ) A .11<<-aB .20<<aC .02<<-aD .22<<-a7.设n m l 、、表示三条直线,γβα、、表示三个平面,则下列命题中不成立...的是( ) A .若α⊥l ,α⊥m ,则m l //B .若β⊂m ,n 是l 在β内的射影,l m ⊥,则n m ⊥C .若α⊂m ,α⊄n ,n m //,则α//nD .若γα⊥,γβ⊥,则βα//8.已知ABC ∆的三个顶点C B A 、、及所在平面内一点P 满足AB PC PB PA =++,则 点P 与ABC ∆的关系是( )A .P 在ABC ∆内部B .P 在ABC ∆外部C .P 在直线AB 上D .P 在ABC ∆的AC 边的一个三等分点上9.y x 、满足约束条件⎪⎩⎪⎨⎧≤++≤≥020k y x x y x (k 为常数),能使y x z 3+=的最大值为12的k 的值为( )A .-9B .9C .-12D .1210.设双曲线()012222>>=-b a by a x 的半焦距为c ,直线l 过()()b a ,00,、两点,已知原点到直线l 的距离为c 43,则此双曲线的离心率为 ( )A .2B .2或3CD11.已知数列{n a }的首项11=a ,)1(31≥=+n S a n n ,则下列结论正确的是 ( ) A .数列{n a }是等差数列B .数列{n a }是等比数列C .数列 ,,,,32n a a a 是等差数列D .数列 ,,,,32n a a a 是等比数列12.若函数()()1,0≠>-=-a a a ka x f xx既是奇函数,又是增函数,那么()()k x x g a +=l o g的图象是( )A .B .C .D .第Ⅱ卷(非选择题 共90分)二、填空题(共4 题,请将答案写在横线上,每题 4分,共 16 分) 13.如右图,大正方形的面积为13,四个全等的直角三角形围成中间的小正方形,较短的直角边长为 2,向大正方形内投掷飞镖,则飞镖落在中间小正 方形内的概率是________ 14.已知⊙08:222=+-++k y kx y x C ,过点)1,2(-P 可作两条直线与圆⊙C 相切,则k 的取值范围是_______ 15.____ _ 16.有如下图的程序框图则程序输出的结果为_______三、解答题(本题共6小题74分,应写出必要的文字说明,证明过程或演算步骤) 17.设向量⎪⎭⎫ ⎝⎛=2sin,2cos x x ,向量⎪⎭⎫ ⎝⎛=x x 23cos ,23sin ,⎥⎦⎤⎢⎣⎡∈2,0πx .(1)求b a ⋅+;(2)若函数()x f +⋅=,求()x f 的最小值、最大值.18.如图,已知四棱锥ABCDP -的底面是直角梯形,2π=∠=∠BCD ABC ,22=====CD PC PB BC AB ,侧面PBC ⊥底面A B C D ,O 是BC 的中点,AO 交BD 于点E . (1)求证:PA ⊥BD ;(2)求证:平面PAD ⊥平面PAB .19.已知函数d ax bx x x f +++=23)(的图象过点)2,0(P , 且在点))1(,1(--f M 处的切线方程为076=+-y x . (1)求函数)(x f y =的解析式; (2)求函数)(x f y =的单调区间20.某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x 个,零件的实际出厂单价为y 元,写出函数)(x f y =的表达式; (3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本)21.直线1+=kx y 与双曲线1322=-y x 相交于不同的两点B A 、.(1)求实数k 的取值范围;(2)若以AB 为直径的圆过坐标原点,求该圆的直径.22.已知数列{}n a 中,()1,01≠≠=t t t a ,22t a =,且当t x =时,函数()()()()221121≥---=+-n x a a x a a x f n n n n 取得极值 (1)求证:数列{}n n a a -+1是等比数列; (2)若()*ln N n a a b n n n ∈=,求数列{}nb 的前n 项和nS;(3)当107-=t 时,数列{}n b 中是否存在最大项?若存在,说明是第几项;若不存在,请说明理由.参考答案一、选择题1.B 2.B 3.D 4.C 5.B 6.C 7.D 8.D 9.A 10.D 11.D 12.D 二、填空题13.131 14.)338,3()1,338( -- 15.三棱锥的体积等于其内切球半径与三棱锥全面积的乘积的3116.13三、解答题17.解:(1)x x x x x x x b a 2sin )223sin(23cos 2sin 23sin 2cos =+=+=⋅…………………2分x b a b a 2sin 222)(2+=⋅++=+=+)cos (sin 2)cos (sin 22sin 222x x x x x +=+=+= ])2,0[(π∈x……6分(2)由(1)得:)cos (sin 2cos sin 2)cos (sin 22sin )(x x x x x x x x f ++=++=令t x x =+cos sin ]2,1[],2,0[∈∴∈t x π (8)分,1cos sin 22-=⋅∴t x x ………………………………………………………………9分],2,1[,2)1(21)(22∈-+=+-=∴t t t t x f所以当1=t 时,2)(min =x f ;当2=t 时221)(max +=x f …………………12分18.解:(1)∵PC PB =,∴BC PO ⊥.∵面PBC ⊥面ABCD , 面PBC 面ABCD BC =,∴PO ⊥平面ABCD …………………………………………………………………3分 在梯形ABCD 中,可得ABO Rt ∆≌BCD Rt ∆,∵2π=∠+∠=∠DBA OAB BEO ,即BD AO ⊥.∵PA 在平面ABCD 内的射影为AO ,∴PA ⊥BD . ……………………………6分 (2)取PB 中点N ,连结CN ∴BC PC =∴PB CN ⊥①∵BC AB ⊥,平面PBC ⊥平面ABCD ∴AB ⊥平面PBC ∵AB ⊂面PAB ∴平面PBC ⊥平面PAB ②由①②知CN ⊥平面PAB .………………………………………………………9分连结DM 、MN ,则由CD AB MN ////,CD AB MN ==21,得四边形MNCD 为平行四边形∴DM CN //∴DM ⊥平面PAB ,又DM ⊂平面PAD ∴平面PAD ⊥平面PAB ………12分 19.解:(1) 由)(x f 的图象经过)2,0(P ,知2=d …………………………………………1分所以,2)(23+++=cx bx x x f c bx x x f ++='23)(2由已知得1)1(,6)1(=-=-'f f即⎩⎨⎧-=-=⇒⎩⎨⎧=+-+-=+-33121623c b c b c b……………………………………………………5分 所以233)(23+--=x x x x f ………………………………………………………6分 (2) 363)(2--='x x x f令,03632=--x x 即0122=--x x解得 21,2121+=-=x x ………………………………………………………8分 当21-<x 或21+>x 时,0)(>'x f当0)(,2121<'+<<-x f x 时…………………………………………………10分故233)(23+--=x x x x f 在)2,(--∞内是增函数, 在)21,21(+-内是减函数,在),21(+∞+内是增函数. …………………………………………………………12分 20.解:(1)设每个零件的实际出厂价恰好降为51元时,一次订购量为x 0个,则 x 01006051002550=+-=.……………………………………………………………2分 (2)当0100<≤x 时,60=y当100550<<x 时,5062)100(02.060x x y -=--= 当x ≥550时,51=y所以⎪⎪⎩⎪⎪⎨⎧≥∈<<-≤<==55051)(5501005062100060)(x N x x x x x f y …………………………8分(3))(550115501005022100020)40(2N x x xx x x x xx y z ∈⎪⎪⎩⎪⎪⎨⎧≥<<-≤<=-= 当x =500时,6000=z ;当x =1000时,11000=z因此,当销售商一次订购500个零件时,该厂获得的利润是6000元;如果订购1000个,利润是11000元. …………………………………………………12分 21.解:(1)由⎩⎨⎧=-+=13122y x kx y 可得022)3(22=---kx x k ,因为直线与双曲线有两个不同的交点,所以()⎪⎩⎪⎨⎧>-+=∆≠-038403222k k k 解之得k ∈)6,3()3,3()3,6( ---……………………………4分(2)设()()2211,,y x B y x A 、,由⑴得⎪⎪⎩⎪⎪⎨⎧-=-=+3232221221k x x k k x x所以()()()111212122121+++=++=x x k x x k kx kx y y …………………………7分因为以AB 为直径的圆过坐标原点, 所以002121=+⇔=⋅⇔⊥y y x x OB OA即()01323122222=+---+k k k k ,解之得1±=k 且1±∈)6,3()3,3()3,6( ---…………………………………10分 所以⎩⎨⎧-=±=+112121x x x x ,从而=AB ]4)[(221221x x x x -+10=…………12分 22.解:(1)由题意得()()()0'11=---=+-n n n n a a t a a t f即()()11-+-=-n n n n a a t a a 2≥n()1212-=-=-t t t t a a因为1,0≠≠t t ,所以012≠-a a所以{}n n a a -+1是以t t -2为首项,t 为公比的等比数列…………………………4分 (2)由⑴知()121-+⋅-=-n n n t t t a a所以=n a ()()()n n n n n t a a a a a a a =+-+⋯⋯+-+----112211………………7分 所以t nt t t a a b n n n n n n ln ln ln === 所以()t nt t t t S n n ln 3232+⋯⋯+++=① ()t nt t t t tS n n ln 321432++⋯⋯+++=②①-②得()()t nt t t t t S t n n n ln 1132+-+⋯⋯+++=-所以()()t t nt t t t S n n n ln 11112⎥⎦⎤⎢⎣⎡----=+………………………………………………10分 (3)因为107-=t ,所以当n 为偶数时0ln <=t nt b n n ;当n 为奇数时0ln >=t nt b n n所以最大项为奇数项令⎩⎨⎧≥≥++-+32121212k k k k b b b b ()*N k ∈⇒()()⎪⎩⎪⎨⎧+≥+-≥+2232121212t k k k t k ………………………12分 将107-=t 代入得617611≤≤k 因为*N k ∈,所以2=k ,故最大项为第5项…………………………………14分。
2007年高考数学知识与能力测试题及答案(6套)(文科)

2007年高考数学知识与能力测试题(一)(文 科)第一部分 选择题(共50分)一、选择题:(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的).1、设集合{}{}4|N 0)1(|2<<-=x x x x x M =,,则( ). A 、φ=⋂N M B 、M N M =⋂ C 、M N M =⋃ D 、R N M =⋃ 2、化简ii +-13=( ).A 、i 21+-B 、i 21-C 、i 21+D 、i 21--3、等差数列{}为则中,593,19,7a a a a n ==( ). A 、13 B 、12 C 、11 D 、104、原命题:“设2,,ac b a R c b a 则若、、>∈>bc 2”以及它的逆命题,否命题、逆否命题中,真命题共有( )个.A 、0B 、1C 、2D 、45、设,)cos 21,31(),43,(sin x b x a ==→-→-且→-→-b a //,则锐角α为( )A 、6π B 、4π C 、3πD 、π1256、如图1,该程序运行后输出的结果为( )A 、1B 、2C 、4D 、16(图1)7、一个正方体的体积是8,则这个正方体的内切球的表面积是( )A 、π8B 、π6C 、π4D 、π8、若焦点在x 轴上的椭圆 1222=+m y x 的离心率为21,则m=( ). A 、23 B 、3 C 、38 D 、329、不等式组⎩⎨⎧≤≤-≥+--+210)1)(1(x y x y x 所表示的平面区域是( )A 、一个三角形B 、一个梯形C 、直角三角形D 、等腰直角三角形10、已知 则实数 时均有 当 且a x f x a x x f a a x ,21)()1,1(,)(,102<-∈-=≠>的取值范围是( )A 、[)∞+⎥⎦⎤ ⎝⎛,,221 0B 、(]4,11,41 ⎪⎭⎫⎢⎣⎡ C 、(]2 11,21, ⎪⎭⎫⎢⎣⎡ D 、[)∞+⎥⎦⎤ ⎝⎛, 441,0第二部分 非选择题(共100分)二、填空题:(本大题共4小题,每小题5分,共20分) 11、函数)0(1ln >+=x x y 的反函数为 12、定义运算=⊕--=⊕6cos6sin,22ππ则b ab a b a13、设n m 、是两条不同的直线,βα、是两个不同的平面,下面给出四个命题;①若n m n m //,////,// 则 且 βαβα; ②若n m n m ⊥⊥⊥⊥ 则 且 ,,βαβα ③若n m n m ⊥⊥ 则 且 ,////,βαβα ④若ββαβα⊥⊥=⊥n m n m 则 且 ,, 其中真命题的序号是14、▲选做题:在下面两道题中选做一题,两道题都选的只计算前一题的得分。
2007高三数学(文科)(校)模拟试卷(附答案).doc

2007年普通高等学校招生全国统一考试数学(文科)试卷 第Ⅰ卷(选择题共60分)参考公式:如果事件A B ,互斥,那么()()()P A B P A P B +=+ 如果事件A B ,相互独立,那么()()()P A B P A P B =·· 球的表面积公式24πS R =,其中R 表示球的半径 球的体积公式34π3V R =,其中R 表示球的半径 如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率()(1)k kn k n n P k C P P -=-一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列,则a 2= ( ) A. –4 B. –6 C. –8 D. –102.下列函数中,既是偶函数又在(0,+∞)上单调递增的是 ( ) A. y=x 3B. y=cosxC. y=1xD. y=lg|x|3. “ m=12 ”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的 ( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条4.函数f(x)=x-1 +1 (x ≥1)的反函数f -1(x)的图象是 ( )A B C D5设集合A={x||4x-1|≥9,x ∈R},B={x|xx+3≥0,x ∈R},则A ∩B= ( )A. (-3,2]B. (-3,-2]∪[0,52 ]C. (-∞,-3]∪[52 ,+∞)D. (-∞,-3)∪[52,+∞)x6.为了得到函数y=sin(2x+π3 )的图象,可以将函数y=cos2x+3的图象沿向量→a 平移,则向量→a的坐标可以是 ( ) A. (- π6 ,-3) B. (π6 ,3) C. (π12 ,-3) D. (- π12,3)7.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c,已知A=π3 ,a= 3 ,b=1,则c 等于 ( )A. 1B. 2C. 3 –1D. 38.若正数a 、b 的等差中项为12 ,且x=a+1a ,y=b+1b ,则x+y 的最小值为 ( )A. 4B. 5C. 6D. 79.如图,空间有两个正方形ABCD 和ADEF,M 、N 分别为BD 、AE 的中点,则以下结论: ①MN ⊥AD; ② MN 与BF 是一对异面直线;③ MN ∥平面ABF; ④ MN 与AB 所成角为600,其中正确的是( ) A. ①② B. ①③ C. ②④ D. ①②③10.已知两点M(-2,0),N(2,0),点P 为坐标平面内的动点,满足|→MN|·|→MP|+→MN ·→NP=0,则动点P(x,y)的轨迹方程是 ( ) A. y 2=8x B. y 2=-8x C. y 2=4x D. y 2=-4x11.椭圆C 1: x2a2 + y2b2 =1(a >b >0)的左、右焦点分别为F 1、F 2,抛物线C 2以F 1为顶点,以F 2为焦点且过椭圆C 1的短轴端点,则椭圆C 1的离心率等于 ( ) A. 35 B. 14 C. 3 3 D. 1312.用四种不同的颜色给正方体ABCD-A 1B 1C 1D 1的六个面染色,要求相邻两个面涂不同的颜色,且四种颜色均用完,则所有不同的涂色方法共有 ( ) A. 24种 B. 96种 C. 72种 D. 48种第Ⅱ卷 (90分)A BCDFENM二.填空题:本大题共4小题,每小题4分,共16分,将答案填在题后的横线上.13.设动点坐标(x,y)满足⎩⎨⎧(x-y+1)(x+y-4)≥0 x≥3,则x 2+y 2的最小值为 .14.若(x- 2a x )6的展开式中常数项为 –160,则展开式中各项系数之和为 .15.A 、B 、C 是半径为2的球面上的三点,O 为球心.已知A 、B 和A 、C 的球面距离均为π,B 、C 的球面距离为2π3 ,则二面角A-BC-O 的大小为 .16.给出下列四个命题:① 抛物线x=ay 2(a ≠0)的焦点坐标是(14a ,0); ② 等比数列{a n }的前n 项和S n =2n -1-m,则m=12;③ 若函数f(x)=x 3+ax 在(1,+∞)上递增,则a 的取值范围是(-3,+∞); ④ 渐近线方程为y=±12x 的双曲线方程是 x24- y 2=1.其中正确的命题有 .(把你认为正确的命题都填上)三.解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. 17.(12分)设函数f(x)=cos ωx( 3 sin ωx+cos ωx),其中0<ω<2. (1)若f(x)的周期为π,求当 - π6 ≤x ≤π3 时,f(x)的值域;(2)若函数f(x)的图象的一条对称轴为x=π3 ,求ω的值.18.(12分)正项数列{a n }的前n 项和S n 满足: 4S n =a n 2+2a n -3 (n ∈N +).(1) 求数列{a n }的通项公式;(2)设b n =1anan+1 ,求数列{b n }的前n 项和T n .19.(12分)四棱锥P-ABCD 中,底面ABCD 为正方形,侧面PAB 为等边三角形,BC= 2 ,PD=2,点M为PD 的中点,N 为BC 的中点.(1) 求证:面PAB ⊥面ABCD;(2)求直线MN 与平面ABCD 所成的角; (3)求点N 到平面PAD 的距离.20.(12分)某项赛事,在“五进三”的淘汰赛中,需要加试综合素质测试,每位参赛选手需回答3个问题.组委会为每位选手都备有10道不同的题目可供选择,其中有6道艺术类题目,2道文学类题目,2道体育类题目.测试时,每位选手从给定的10道题中不放回地随机抽取3次,每次抽取一道题,回答完该题后,再抽取下一道题目作答.求: (1) 每位选手抽到3道彼此不同类别题目的概率; (2)每位选手至少有1次抽到体育类题目的概率.21.(12分)已知椭圆x2a2 +y2b2 =1(a >b >0)的离心率e= 6 3 ,过点A(a,0)和B(0,-b)的直线与原点的距离为32.(1)求椭圆的方程;(2)已知定点E(-1,0),D 为OB 的中点,M 、N 为椭圆上的点(点M 在x 轴上方),满足:→ME=λ→EN,且∠DME=∠DNE,求λ的值.22.(14分)二次函数f(x)=ax 2+bx+c 与其导函数f ’(x)的图象交于点A(1,0),B(m,m). (1) 求实数m 的值及函数f(x)的解析式;(2) 若不等式f(x+1)>3(x+t)4(x+1) 对任意的x ∈(0,3)恒成立,求实数t 的取值范围;(3) 若方程f(x+1)= 3(x+t)x+2 有三个不等的实根,求实数t 的取值范围.2007年普通高等学校招生全国统一考试 数学(文科)试卷(参考答案)AB CDPMN一.选择题:1. B a 1(a 1+3d)=(a 1+2d)2,∴3a 1d=4a 1d+4d 2,∴a 1= - 4d= -8, ∴a 2=a 1+d= - 6 . 2. D y=x 2与y=1x 均为奇函数,而y=cosx 在(0,+∞)上非单调.3. B 由(m+2)(m-2)+3m(m=2)=0,∴(m+2)(2m-1)=0,∴m=-2或m=12 .4. C f -1(x)=(x-1)2+1 (x ≥1).5. D 解得A=(-∞,-2)∪[52,+∞],B=(-∞,-3)∪[0,+∞].6. C y=cos2x+3=sin(π2 +2x)+3=sin2(x+π4 )+3右移π12 ,下移3得y=sin(2x+π3 ).7. B 由c 2+1-2·c ·cos π3 =3,∴c 2-c-2=0,(c-2)(c+1)=0,∴c=2 .8. B a+b=1,x+y=1+1ab ≥1+21()2a b=5 .9. B ①取AD 中点Q,则AD ⊥MQ,∴MN ⊥AD;②MN ∥BF;③由MN ∥BF,∴MN ∥面ABF;④MN 与AB 成450角.10. B →MN=(4,0),→NP=(x-2,y),∴4(x+2)2+y2 +4(x-2)=0,∴y 2=-8x,又由2-x ≥0,∴x ≤2. 11. D ∵|PF 2|=a,点P 到抛物线C 2的准线为x=-3c 的距离为3c,依抛物线的定义,a=3c,∴e=13 .12. C 同色有3对,∴共有C 23 A 44 =72种.二.填空题:13. 10 由直线x+y-4=0与x=3的交点P(3,1),∴x 2+y 2的最小值为|0P|2=9+1=10. 14. 1 由T r+1=C r 6 x 6-r ·(- 2a x )r =(-2a)r C r 6 ·x 6-2r ,令6-2r=0,∴r=3,由(-2a)3C 36 =-160,∴-8a 3=-8,∴a=1,∴各项系数之和为(1-2a)6=1.15. arctan 2 3 3∵∠AOB=∠AOC=900 ,∠BOC=600,取BC 中点D,AD=8-1 =7 ,OD= 3 ,∵AD ⊥BC,OD ⊥BC,∴∠ODA 为二面角A-BC-O 的平面角,在Rt △AOD 中,tan ∠ODA=2 33.16. ①② ① y 2=1a x 的焦点坐标(14a ,0);② S n =12 ·2n -m,∴m=12 ;③ f ’(x)=3x 2+a ≥0在[1,+∞)恒成立,∴3+a ≥0得a ≥-3;④渐近线为y=±12 x 的双曲线方程是x24 - y 2=λ(λ≠0)三.解答题: 17.(1)f(x)=3 2 sin2ωx+1+cos2ωx 2 =sin(2ωx+π6 )+12 , ∵T=2π2ω=π ,∴ω=1 , ∴f(x)=sin(2x+π6 )+12 . ∵- π6 ≤x ≤π3 , ∴- π6 ≤2x+π6 ≤5π6 ,∴-12≤sin(2x+π6 )≤1, ∴f(x)的值域为[0,32]. (2) 由 2ωπ3 +π6 =k π+π2 ,∴ω=32k+12 ,∵0<ω<2, ∴ω=12.18.(1)当n=1时,4a 1=a 12+2a 1-3 ,∴a 12-2a 1-3=0 ,(a 1-3)(a 1+1)=0, ∵a 1>0, ∴a 1=3 . 当n ≥2时,4S n-1=a n-12+2a n-1-3 ,∴4a n =a n 2-a n-12+2a n -2a n-1 ,∴(a n +a n-1)(a n -a n-1-2)=0, ∵a n >0, ∴a n -a n-1=2,∴数列{a n }是以a 1=3为首项,以2为公差的等差数列,∴a n =2n+1. (2)∵b n =1(2n+1)(2n+3) =12(12n+1 - 12n+3),∴T n =12[(13 -15 )+(15 -17)+…+(12n+1 - 12n+3 )]=12(13 - 12n+3 )=n 3(2n+3) .19.(1)∵正方形ABCD,∴DA ⊥AB,∵AD=PA= 2 ,PD=2,∴PA 2+AD 2=PD 2,∴DA ⊥PA, ∵AB ∩PA=A,∴DA ⊥面PAD,∵DA 面ABCD, ∴面PAB ⊥面ABCD.(3) 取AB 中点E,∵△PAB 为正三角形,∴PE ⊥AB, ∴PE ⊥面ABCD. 取ED 的中点F,∵M 为PD 的中点, ∴MF ∥PE, ∴MF ⊥面ABCD,∴∠MNF 为MN 与面ABCD 所成的角.在梯形EBCD 中,NF=12( 2 2 + 2 )=34 2 ,而MF=12PE= 6 4,∴tan ∠MNF= 64342 =3 3,∴∠MNF=300 ,∴直线MN 与平面ABCD 所成的角为300. (3)∵AD ⊥面PAB,∴面PAB ⊥面PAD,取PA 的中点H,则BH ⊥面PAD.又∵BN ∥AD,∴BN ∥面PAD,ABCDPMNHE F∴点N 到平面PAD 的距离等于点B 到平面PAD 的距离,∵BH=3 2 · 2 = 6 2, ∴点N 到面PAD 的距离为6 2. 20.(1)设事件“抽到3道彼此不同类别题目”为A,依题有P(A)=C 16C 12C 12C 310 =15 ;答: 抽到3道彼此不同类别题目的概率为15;(2) 设事件“至少有1次抽到体育类题目”为B,依题有P(B)=1-C 38C 310=1- 115 =815 ; 答: 至少有1次抽到体育类题目的概率为815 .21.(1)由C=6 3 a,∴b 2=a 2- 23 a 2=13a 2 , 又直线AB: x a - yb =1,即bx-ay-ab=0,∴d=ab b2+a2 = 32 ,∴ab 43a 2= 3 2 ,∴b=1 ,a 2=3 ,∴所求椭圆方程为: x23 +y (3) 设M(x 1,y 1),N(x 2,y 2),(y 1>0),由→ME=λ→EN,∴y 1+λy 2=0. 设直线MN: x=my-1 , 消x 得: (m 2+3)y 2-2my-2=0 ,△=4m 2+8(m 2+3)>0,y 1+y 2=2m m2+3 ,∴MN 的中点为(- 3m2+3 ,m m2+3) ∴MN 的中垂线方程为: y - m m2+3 = - m(x+ 3m2+3) ,将OB 的中点D 的坐标(0,- 12 )代入得:- 12 - m m2+3 = - 3m m2+3 ,∴m 2-4m+3=0 , (m-1)(m+3)=0, ∴m=1或m=3 . 当m=1时,2y 2-y-1=0 ,(2y+1)(y-1)=0,∵y 1>0,∴y 1=1,y 2=- 12 ,∴λ=y1-y2=2 ;当m=3时,6y 2-3y-1=0 ,y=3±33 12 ,∴y 1=3+33 12, y 2=3-33 12 ,∴λ=y1-y2 =6+33 4.综合得,λ=2或λ=6+334.22.(1)f ’(x)=2ax+b ,∴⎩⎨⎧a+b+c=02a+b=0am2+bm+c=m 2am+b=m∴c=a,b=-2a ,代入得: am 2-2am+a=2am-2a ,∵a ≠0 ,∴m 2-4m+3=0 ,(m-1)(m-3)=0, 当m=1时,2a+b=1与2a+b=0矛盾,∴m=3 . ∴6a+b=3得a=34 ,b=-32 ,c=34 ,∴f(x)=34 x 2-32 x+34 =34 (x-1)2.(2) 由34 x 2>3(x+t)4(x+1)x ∈(0,3),∴t <x 3+x 2-x .记g(x)=x 3+x 2-x ,g ’(x)=3x 2+2x-1=(3x-1)(x+1), 令g ’(x)=0 ,∴x=13 或x=-1 ,∴g(x)在(0,3)内的最小值为g(13 )= - 527 .∴t < - 527 .(3) 由34 x 2=3(x+t)(x+2) ,当x+2≠0时,方程化为 : x 3+2x 2-4x-4t=0 ,记F(x)=x 3+2x 2-4x-4t .∵ F ’(x)=3x 2+4x-4=(3x-2)(x+2) ,令F ’(x)=0 ,∴x=23 或x=-2 ,F 极大值(x)=F(-2)=8-4t ; F 极小值(x)=F(23 )=- 4027-4t;要使方程f(x+1)= 3(x+t)x+2 有三个不等的实根,只要⎩⎨⎧F 极大值(x)>0F 极小值(x)<0 ,即⎩⎪⎨⎪⎧8-4t >0- 4027 -4t <0 ,∴⎩⎪⎨⎪⎧t <2t >- 1027 , ∴ t 的取值范围是( - 1027 ,2) .。
2007年高考数学模拟试题(文科)(全国卷)

第Ⅰ卷 ( 选择题 共 60 分 )
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个 选项中,只有一项是符合题意要求的 .
1. 已知映射 f: A
B , 其中 A B R , 对应法则 f: x
y
2
x
2x
2,若对实数
k B , 在集合 A 中不存在原象 , 则 k 的取值范围是
2,或 2 x 2
C. x | 2 x
22
,或
x2
2
2
D. x | 2 x 2,且 x 0
11. 用正偶数按下表排列 第1列
第2列
第 3列
第 4列
第5列
第一行
2
4
6
8Leabharlann 第二行1614
12
10
第三行
18
20
22
24
…
…
28
26
则 2006 在第
行第
列.
A.第 251 行第 3 列
B.第 250 行第 4 列
()
A. 无法确定
B
.
36
C
.
18
8.已知直线 ax by 1 0 ( a,b 不全为 0 )与圆 x2 y 2
D
.
12
50 有公共点 ,且公共点的横、纵
坐标均为整数 ,那么这样的直线有
()
A.66 条
B.72 条
C.74 条
D.78 条
9. 从 8 名女生, 4 名男生中选出 6 名学生组成课外小组,如果按性别比例分层抽样,则不
3
(1)求证: GE∥侧面 AA1B1B ; (2)求平面 B1GE与底面 ABC所成锐二面角的大小 .
2007年高考文科数学试题及答案(全国卷1)

如果事件 A、B 相互独立,那么 P(A·B)=P(A)·P(B)
如果事件 A 在一次试验中发生的概率是 P,那么 n 次独立重复试验中事件 A 恰好发生 k 次的概率
C
1 n
pk
(1
p) nk
(k
0,1,2,
球的表面积公式 S 4R 2 其中 R 表示球的半径
球的体积公式
一、选择题
V 4 R3 3
1.a 是第四象限角, tan 5 ,则 sin 12
A. 1 5
B. 1 5
2.设 a 是实数,且 a 1 i 是实数,则 a= 1i 2
A. 1 2
B.1
3.已知向量 a=(-5,6),b=(6,5),则 a 与 b
n)
其中 R 表示球的半径
C. 5 13
C. 3 2
2.社会主义本质理论对探索怎样建设3.社19会57主年义2月具,有毛重在要《的关实于践正意确义处。理社人会民主内义2.社部本科会矛质学主盾理的义的论1本本问的.邓质质题提小是的》出平创科讲,提新学话为出,内中我“创涵提们邓社新。出寻始小会的邓(找终平主关小1一代坚义)键平种表持的我2在对能.1中把科本国人社9够国发学质社5才会从4先展社,会年,主更进作会是主,人义深生为主解义毛才本层产执义放制在的质次1力政理生度《成所.认社1的兴论产还论长作.识发会发国和力刚十靠的社展主展的实,刚大教概会才义要第践发建关坚育括主是本求一的展立系2持。,义硬质、,要基生,》以人一,道理发大务本产还重发才方从理论展力是成力没要展资面而,把才促由果,有讲社的源强为把我是进中,消完话会办是调四中发们(硬先国抓灭全中主法第必、国展对2道进共住剥建提三义解一)须科的生社理生产“削立出、经决资采解学社产会,产党什,(代济前源取放技会力主是力的么消还1表基进。从和术主作义)对的执是除不中础科低发是义1为的吧社3发政社两完9国基的学级展.第建发社认二国5会展地会极全先本问技到6生一设展会识、内主,年位主分巩进建题术高产生在才主提发外义是底所义化固生立,实级力产改是义高1展一时中我决,的邓产的是力9,力革硬建到是切间5国定怎最思小力同实和国另3开道设了党积经共对的样终想年平的时行国家一放理的一执极验产农,建达。1一发,改民资方中2,根个政因教党业是设到(月再展我革教本面探是本新兴素训站、对社共2,强要国开育主指索)适任的国都的在手一执会同毛调求的放水义出出第创应务科在的调深时工、政主富1泽,政以平的4了一三造.时,学社第动刻坚代.业发规义裕东中一治来,过2解条节性代符水会一起总持前.和展律”。关社 国个领我始度放发、地主合平阶要来结社列资才认这”于会 社公域们终形和展社提题马。级务为。会,本是识个1总主 会有也党是式发更会9出变克社二关中主保硬的根8路义 主制发的衡。展快主了化思会6、系国义持道深本3线基 义占生一年量所生、义社.的主社发解用工现理化问的本 基主了条,综谓产人的会需义会生决和业金商,题1完制 本体重主邓合国力民根主要基本.主变事所平化向业也,1整度 制,大要小国家的享本9义。本质义化业有方建的是深5的度一变经平力资手受社任原理6本的服问法设根社对刻表确 的个化验年提和本段到会 1务理论第质同务题进与本会党揭一.述立 确共,。出社主社和社主基,的二理时的行社体主实示、:, 立同确苏“会义会目会3义本是提节论,基关改会现义了社.从为 ,富立共社文,社主的主一改矛巩出、的我本键造主和改其社会中当 使裕了二会明就会义。义、造盾固,对重国方是。义根造所会之华代 占,中十主程是主基建中的和和为第社要针这改本基承主一人中 世这国大义度在义本设国基两发进一会意。靠不造要本担义本民国 界是共以财的国基制内成特本类展一节主义的(自仅同求完的本质共一 人我产后富重家本度涵果色完矛社步、义主2己保时。成历质理和切 口们党毛属要直)制的包最伴社成盾会推中本要的证并,史论国发 四必领泽于标接正度确括大随会,的主进国质矛发了举标第的这成展 分须导东人志控确的立(,着主是学义改特理盾展2社。志五需是提立进 之坚的提民。制处确是1.能社义我说采制革色论也。会实着章要对)出,步 一持人出,和理立中够会建国,取度开社的发的践中。马把到奠 的民要社支经,国社充经设强积的放会提生稳证国克解社定 东民“会配济是历会分济道调极必和主出了定明历思放会了 方主以下建4广史主体制路要引然社义变,.史主和主把制 大专苏义的设大上义现度初严导要会二建化而党上义发义对度 国政为的资和劳最的出和步经格、求主设。且坚长的展改企基 进党的鉴致本社动深本对社探济区逐。义确道人极持达重生造业础 入在根社”富主会人刻质资会索结分步现立路民大社数产基的。 了过本会,是义发民最和本经的构过代社的对的会千发力逐本改社渡原主探全经展真伟根主济理发正渡化会初于促主年展概步完造会时则义索民济中正大本义结论生确的建新主步经进义的,括实成和主期。基自共的成任优构成了处方设中义探济了改阶对为现,对义总本己同国一为社务越的果根理式提国基索文社造级于国这人制 社路政的致家系国会性根本两。供的本化会与剥建家是的度 会线治道富资列家变一的本变类中了成制迅主社削设的一改的 ,第制路。本重的革、道变化不国强立度速义会制中社个造建 这三主度。社大主,社路化,同这大,的发事主度国的会过结立 是节要。会义关人也会,1社性场的标重展业义的特本主.渡合极 世、内人主有系解和是主奠我会质巨思志大的的工结(色质义时起大 界社容民义初。决社2义定国主的大想着意需发业束3社0。工期来地 社(会被民原级了会基)世了社义矛而武我义要展化,会(业。,提 会2主概则和3在生本把纪理会经盾深器国同),同实主2化党把高 主对义括专,高一产制资中)论的济,刻。新经遵改总时现义新是在对了 义手制为政第级个资度本国强基阶成在特的通民济循革之并了具民党这资工 运二七度“实一形以料的主又调础级分新别社过主文自4过,举由有主在个本人 动、届 业在一质是式农的.(初义一消,关已民是它会(没主化愿于和的新重主过过主阶 史新社二 的中化上发之民主1步工次灭开系占主要是变4收义不互集平方民(大)义渡渡义级 上民会中 社国三已展)分为人确商划剥阔也绝主正中革官能利中改针主3的用社时时工和 又主全 会的改成生坚。主立)业时削了发对义确国,僚命满、的造,主理和会期期商广 一主义会确”为产持初题正者代,广2生优革处革不资阶足典计解对义论平的.的业大 个义改提立。无,积级资的确改的消阔了势命理命仅√本段人型划决于向和赎五总总搞劳 历革造出 改“产第极形本、分造历除前根,理人的没中而民示体了在社3实买种路路糟动 史命的使 造一阶二领式主落(.析成史两景本社论民具有国形基需党范制诸深会践的经线线成人 性理历中 ,化级是导的义后√ 1农为巨极。的会内体对革成本要的和如刻主意)方济的和为民 的论史国 党”专共、工的中村自变分邓主指部实生命的结建国初实的义积法成主总自的 伟是经“ 和即政同稳家商半国的食。化小义导矛际产在走社束状设家步现社的。极改分体任食积 大以验稳 政社;致步资业殖社革阶其们平。公下盾出力一农会和况。帮构社会转引造—。务其极 胜一毛步 府会人富前本的民会命级力吐对1有,。发的个村主社之加助想会变导资—要.,力性 利、泽地 采主民。进农社地第的必和出社制中(,发以包义会间强的,变革农本社从是的和 。适东由 取义代”的业会半二阶须社了会已国3不展农围的主党原要革中社民主会根)要社创合为农 了工表这方是、主封节级走层会最主成共拘造民城国义矛的则求与保会组义主本从在会造中主业 积大段针国手义建、构农状主终义为产泥成为市营改盾建,2中经持主织工义上全一主性国要极化会话,家工改的.社成村况义达本我党武于破主、经造,设以央济社义起商性改体个义。特代转 领,制成采对业造东会主包,劳到质国领装已��
2007年山东省高考数学试卷(理科)
2007年山东省高考数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)若z=cosθ+isinθ(i为虚数单位),则z2=﹣1的θ值可能是()A.B.C.D.2.(5分)已知集合M={﹣1,1},N=,则M∩N=()A.{﹣1,1}B.{﹣1}C.{0}D.{﹣1,0}3.(5分)下列几何体各自的三视图中,有且仅有两个视图相同的是()A.(1),(2)B.(1),(3)C.(1),(4)D.(2),(4)4.(5分)设a∈,则使函数y=x a的定义域是R,且为奇函数的所有a的值是()A.1,3 B.﹣1,1 C.﹣1,3 D.﹣1,1,35.(5分)函数f(x)=sin(2x+)+cos(2x+)的最小正周期和最大值分别为()A.π,1 B. C.2π,1 D.6.(5分)给出下列三个等式:f(xy)=f(x)+f(y),f(x+y)=f(x)f(y),.下列函数中不满足其中任何一个等式的是()A.f(x)=3x B.f(x)=sinx C.f(x)=log2x D.f(x)=tanx7.(5分)命题“对任意的x∈R,x3﹣x2+1≤0”的否定是()A.不存在x∈R,x3﹣x2+1≤0 B.存在x∈R,x3﹣x2+1≤0C.存在x∈R,x3﹣x2+1>0 D.对任意的x∈R,x3﹣x2+1>08.(5分)某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:每一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒;…第六组,成绩大于等于18秒且小于等于19秒.如图是按上述分组方法得到的频率分布直方图.设成绩小于17秒的学生人数占全班人数的百分比为x,成绩大于等于15秒且小于17秒的学生人数为y,则从频率分布直方图中可以分析出x和y分别为()A.0.9,35 B.0.9,45 C.0.1,35 D.0.1,459.(5分)下列各小题中,p是q的充要条件的是()(1)p:m<﹣2或m>6;q:y=x2+mx+m+3有两个不同的零点.(2);q:y=f(x)是偶函数.(3)p:cosα=cosβ;q:tanα=tanβ.(4)p:A∩B=A;q:∁U B⊆∁U A.A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)10.(5分)阅读右边的程序框图,若输入的n是100,则输出的变量S和T的值依次是()A.2550,2500 B.2550,2550 C.2500,2500 D.2500,255011.(5分)在直角△ABC中,CD是斜边AB上的高,则下列等式不成立的是()A.B.C.D.12.(5分)位于坐标原点的一个质点P按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是.质点P移动5次后位于点(2,3)的概率为()A.B.C.D.二、填空题(共4小题,每小题4分,满分16分)13.(4分)设O是坐标原点,F是抛物线y2=2px(p>0)的焦点,A是抛物线上的一点,与x轴正向的夹角为60°,则为.14.(4分)设D是不等式组表示的平面区域,则D中的点P(x,y)到直线x+y=10距离的最大值是.15.(4分)与直线x+y﹣2=0和曲线x2+y2﹣12x﹣12y+54=0都相切的半径最小的圆的标准方程是.16.(4分)已知函数y=log a(x﹣1)+1(a>0,且a≠1)的图象恒过定点A,若点A在一次函数y=mx+n的图象上,其中最小值为.三、解答题(共6小题,满分74分)17.(12分)设数列{a n}满足a1+3a2+32a3+…+3n﹣1a n=(n∈N*).(1)求数列{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和S n.18.(12分)设b和c分别是先后抛掷一枚骰子得到的点数,用随机变量ξ表示方程x2+bx+c=0实根的个数(重根按一个计).(I)求方程x2+bx+c=0有实根的概率;(II)求ξ的分布列和数学期望;(III)求在先后两次出现的点数中有5的条件下,方程x2+bx+c=0有实根的概率.19.(12分)如图,在直四棱柱ABCD﹣A1B1C1D1中,已知DC=DD1=2AD=2AB,AD ⊥DC,AB∥DC.(Ⅰ)设E是DC的中点,求证:D1E∥平面A1BD;(Ⅱ)求二面角A1﹣BD﹣C1的余弦值.20.(12分)如图,甲船以每小时海里的速度向正北方向航行,乙船按固定方向匀速直线航行,当甲船位于A1处时,乙船位于甲船的北偏西105°的方向B1处,此时两船相距20海里.当甲船航行20分钟到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距海里,问乙船每小时航行多少海里?21.(12分)已知椭圆C中心在原点、焦点在x轴上,椭圆C上的点到焦点的最大值为3,最小值为1.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若直线l:y=kx+m(k≠0)与椭圆交于不同的两点M、N(M、N不是左、右顶点),且以MN为直径的圆经过椭圆的右顶点A.求证:直线l过定点,并求出定点的坐标.22.(14分)设函数f(x)=x2+bln(x+1),其中b≠0.(Ⅰ)当时,判断函数f(x)在定义域上的单调性;(Ⅱ)求函数f(x)的极值点;(Ⅲ)证明对任意的正整数n,不等式都成立.请修改新增的标题2007年山东省高考数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2007•山东)若z=cosθ+isinθ(i为虚数单位),则z2=﹣1的θ值可能是()A.B.C.D.【分析】先求出Z2,再利用复数相等的概念得到三角函数的等式,将答案代入验证即可.【解答】解:z=cosθ+isinθ,所以Z2=cos2θ+2icosθsinθ﹣sin2θ=﹣1.所以,将答案选项中的数值代入验证知D符合.故选D2.(5分)(2007•山东)已知集合M={﹣1,1},N=,则M∩N=()A.{﹣1,1}B.{﹣1}C.{0}D.{﹣1,0}【分析】N为指数型不等式的解集,利用指数函数的单调性解出,再与M求交集.求【解答】解:⇔2﹣1<2x+1<22⇔﹣1<x+1<2⇔﹣2<x<1,即N={﹣1,0}又M={﹣1,1}∴M∩N={﹣1},故选B3.(5分)(2007•山东)下列几何体各自的三视图中,有且仅有两个视图相同的是()A.(1),(2)B.(1),(3)C.(1),(4)D.(2),(4)【分析】法一排除法,从选项看只要判断正方体的三视图都相同就可以选出正确答案.法二直接法,把每一个几何体的三视图都找出来,然后可得答案.【解答】解:法一:由于正方体的三视图都是相同图形,所以排除(1),由于A、B、C中都含有(1),因而选项A、B、C都错误,可知选D.故选D.法二:正方体的三视图都是相同的正方形;圆锥的三视图中正视图、侧视图相同是三角形,俯视图是圆;三棱台的三视图都不相同,正视图是两个梯形,侧视图是一个梯形,俯视图是外部三角形、内部三角形对应顶点连线的图形;四棱锥的正视图与侧视图相同,是三角形,俯视图是有对角线的正方形.故选D.4.(5分)(2007•山东)设a∈,则使函数y=x a的定义域是R,且为奇函数的所有a的值是()A.1,3 B.﹣1,1 C.﹣1,3 D.﹣1,1,3【分析】分别验证a=﹣1,1,,3知当a=1或a=3时,函数y=x a的定义域是R 且为奇函数.【解答】解:当a=﹣1时,y=x﹣1的定义域是x|x≠0,且为奇函数;当a=1时,函数y=x的定义域是R且为奇函数;当a=时,函数y=的定义域是x|x≥0且为非奇非偶函数.当a=3时,函数y=x的定义域是R且为奇函数.故选A.5.(5分)(2007•山东)函数f(x)=sin(2x+)+cos(2x+)的最小正周期和最大值分别为()A.π,1 B. C.2π,1 D.【分析】化成y=Asin(ωx+φ)的形式,即y=cos2x进行判断.【解答】解:∵==cos2x∴原函数的最小正周期是=π,最大值是1故选A.6.(5分)(2007•山东)给出下列三个等式:f(xy)=f(x)+f(y),f(x+y)=f (x)f(y),.下列函数中不满足其中任何一个等式的是()A.f(x)=3x B.f(x)=sinx C.f(x)=log2x D.f(x)=tanx【分析】依据指、对数函数的性质可以发现A,C满足其中的一个等式,而D满足,B不满足其中任何一个等式【解答】解:f(x)=3x是指数函数满足f(x+y)=f(x)f(y),排除A.f(x)=log2x是对数函数满足f(xy)=f(x)+f(y),排除Cf(x)=tanx满足,排除D.故选B7.(5分)(2007•山东)命题“对任意的x∈R,x3﹣x2+1≤0”的否定是()A.不存在x∈R,x3﹣x2+1≤0 B.存在x∈R,x3﹣x2+1≤0C.存在x∈R,x3﹣x2+1>0 D.对任意的x∈R,x3﹣x2+1>0【分析】根据命题“对任意的x∈R,x3﹣x2+1≤0”是全称命题,其否定是对应的特称命题,从而得出答案.【解答】解:∵命题“对任意的x∈R,x3﹣x2+1≤0”是全称命题∴否定命题为:存在x∈R,x3﹣x2+1>0故选C.8.(5分)(2007•山东)某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:每一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒;…第六组,成绩大于等于18秒且小于等于19秒.如图是按上述分组方法得到的频率分布直方图.设成绩小于17秒的学生人数占全班人数的百分比为x,成绩大于等于15秒且小于17秒的学生人数为y,则从频率分布直方图中可以分析出x和y分别为()A.0.9,35 B.0.9,45 C.0.1,35 D.0.1,45【分析】频率分布直方图中,小矩形的高等于每一组的频率/组距,它们与频数成正比,小矩形的面积等于这一组的频率.建立相应的关系式,即可求得.【解答】解:从频率分布直方图上可以看出x=1﹣(0.06+0.04)=0.9,y=50×(0.36+0.34)=35,故选:A9.(5分)(2007•山东)下列各小题中,p是q的充要条件的是()(1)p:m<﹣2或m>6;q:y=x2+mx+m+3有两个不同的零点.(2);q:y=f(x)是偶函数.(3)p:cosα=cosβ;q:tanα=tanβ.(4)p:A∩B=A;q:∁U B⊆∁U A.A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)【分析】(1)中求出q的范围,可得p是q的充要条件,排除B,C,再判断(2),p中为分式,应考虑分母不等于0.(3)中注意正切函数的定义域,(4)中,由A∩B=A可知A⊆B,由韦恩图可判.【解答】解:(1)q:y=x2+mx+m+3有两个不同的零点,△>0,得m<﹣2或m >6,即为p;排除B,C,(2)由可得f(﹣x)=f(x)⇒q,反之,若y=f(x)是偶函数,可以有f(0)=0,p不成立;故选D10.(5分)(2007•山东)阅读右边的程序框图,若输入的n是100,则输出的变量S和T的值依次是()A.2550,2500 B.2550,2550 C.2500,2500 D.2500,2550【分析】根据流程图所示的顺序,逐框分析程序中各变量、各语句的作用可知:该程序的作用是累加循环变量n的值,并将其保存在S、T中.【解答】解:依据框图可得:S=100+98+96+…+2=2550,T=99+97+95+…+1=2500故答案选A11.(5分)(2007•山东)在直角△ABC中,CD是斜边AB上的高,则下列等式不成立的是()A.B.C.D.【分析】根据,∴A是正确的,同理B也正确,再由D答案可变形为,通过等积变换判断为正确,从而得到答案.【解答】解:∵,∴A是正确的,同理B也正确,对于D答案可变形为,通过等积变换判断为正确故选C.12.(5分)(2007•山东)位于坐标原点的一个质点P按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是.质点P移动5次后位于点(2,3)的概率为()A.B.C.D.【分析】从条件知质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是,本题考查的是独立重复试验,因此质点P移动5次后位于点(2,3)质点在移动过程中向右移动2次向上移动3次.【解答】解:质点在移动过程中向右移动2次向上移动3次,因此质点P移动5次后位于点(2,3)的概率为故选B二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2007•山东)设O是坐标原点,F是抛物线y2=2px(p>0)的焦点,A是抛物线上的一点,与x轴正向的夹角为60°,则为.【分析】先过A作AD⊥x轴于D,构造直角三角形,再根据与x轴正向的夹角为60°求出FA的长度,可得到A的坐标,最后根据两点间的距离公式可得答案.【解答】解:过A作AD⊥x轴于D,令FD=m,则FA=2m,p+m=2m,m=p.∴.故答案为:14.(4分)(2007•山东)设D是不等式组表示的平面区域,则D中的点P(x,y)到直线x+y=104.【分析】首先根据题意做出可行域,欲求区域D中的点到直线x+y=10的距离最大值,由其几何意义为区域D的点A(1,1)到直线x+y=10的距离为所求,代入计算可得答案.【解答】解:如图可行域为阴影部分,由其几何意义为区域D的点A(1,1)到直线x+y=10的距离最大,即为所求,由点到直线的距离公式得:d==4,则区域D中的点到直线x+y=10的距离最大值等于4,故答案为:4.15.(4分)(2007•山东)与直线x+y﹣2=0和曲线x2+y2﹣12x﹣12y+54=0都相切的半径最小的圆的标准方程是(x﹣2)2+(y﹣2)2=2.【分析】由题意可知先求圆心坐标,再求圆心到直线的距离,求出最小的圆的半径,圆心坐标,可得圆的方程.【解答】解:曲线化为(x﹣6)2+(y﹣6)2=18,其圆心到直线x+y﹣2=0的距离为.所求的最小圆的圆心在直线y=x上,其到直线的距离为,圆心坐标为(2,2).标准方程为(x﹣2)2+(y﹣2)2=2.故答案为:(x﹣2)2+(y﹣2)2=2.16.(4分)(2007•山东)已知函数y=log a(x﹣1)+1(a>0,且a≠1)的图象恒过定点A,若点A在一次函数y=mx+n的图象上,其中最小值为8.【分析】根据对数函数的性质,可以求出A点,把A点代入一次函数y=mx+n,得出2m+n=1,然后利用不等式的性质进行求解.【解答】解:∵函数y=log a(x﹣1)+1(a>0,且a≠1)的图象恒过定点A,可得A(2,1),∵点A在一次函数y=mx+n的图象上,∴2m+n=1,∵m,n>0,∴2m+n=1≥2,∴mn≤,∴()==≥8(当且仅当n=,m=时等号成立),故答案为8.三、解答题(共6小题,满分74分)17.(12分)(2007•山东)设数列{a n}满足a1+3a2+32a3+…+3n﹣1a n=(n∈N*).(1)求数列{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和S n.【分析】(1)由a1+3a2+32a3+…+3n﹣1a n=⇒当n≥2时,a1+3a2+32a3+…+3n﹣2a n﹣1=,两式作差求出数列{a n}的通项.(2)由(1)的结论可知数列{b n}的通项.再用错位相减法求和即可.【解答】解:(1)∵a1+3a2+32a3+…+3n﹣1a n=,①∴当n≥2时,a1+3a2+32a3+…+3n﹣2a n﹣1=.②①﹣②,得3n﹣1a n=,所以(n≥2),在①中,令n=1,得也满足上式.∴.(2)∵,∴b n=n•3n.∴S n=3+2×32+3×33+…+n•3n.③∴3S n=32+2×33+3×34+…+n•3n+1.④④﹣③,得2S n=n•3n+1﹣(3+32+33+…+3n),即2S n=n•3n+1﹣.∴.18.(12分)(2007•山东)设b和c分别是先后抛掷一枚骰子得到的点数,用随机变量ξ表示方程x2+bx+c=0实根的个数(重根按一个计).(I)求方程x2+bx+c=0有实根的概率;(II)求ξ的分布列和数学期望;(III)求在先后两次出现的点数中有5的条件下,方程x2+bx+c=0有实根的概率.【分析】(I)由题意知,本题是一个等可能事件的概率,试验发生包含的基本事件总数为6×6,满足条件的事件是使方程有实根,则△=b2﹣4c≥0,对于c的取值进行列举,得到事件数,根据概率公式得到结果.(II)由题意知用随机变量ξ表示方程x2+bx+c=0实根的个数得到ξ的可能取值0,1,2根据第一问做出的结果写出变量对应的概率,写出分布列和期望.(III)在先后两次出现的点数中有5的条件下,方程x2+bx+c=0有实根,这是一个条件概率,做出先后两次出现的点数中有5的概率和先后两次出现的点数中有5的条件下且方程x2+bx+c=0有实根的概率,根据条件概率的公式得到结果.【解答】解:(I)由题意知,本题是一个等可能事件的概率,试验发生包含的基本事件总数为6×6=36,满足条件的事件是使方程有实根,则△=b2﹣4c≥0,即.下面针对于c的取值进行讨论当c=1时,b=2,3,4,5,6;当c=2时,b=3,4,5,6;当c=3时,b=4,5,6;当c=4时,b=4,5,6;当c=5时,b=5,6;当c=6时,b=5,6,目标事件个数为5+4+3+3+2+2=19,因此方程x2+bx+c=0有实根的概率为.(II)由题意知用随机变量ξ表示方程x2+bx+c=0实根的个数得到ξ=0,1,2根据第一问做出的结果得到则,,,∴ξ的分布列为ξ012P∴ξ的数学期望.(III)在先后两次出现的点数中有5的条件下,方程x2+bx+c=0有实根,这是一个条件概率,记“先后两次出现的点数中有5”为事件M,“方程ax2+bx+c=0有实根”为事件N,则,,∴.19.(12分)(2007•山东)如图,在直四棱柱ABCD﹣A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.(Ⅰ)设E是DC的中点,求证:D1E∥平面A1BD;(Ⅱ)求二面角A1﹣BD﹣C1的余弦值.【分析】(1)由题意及图形所给的线段大小之间的关系,利用线线平行进而得到线面平行;(2)利用图形中两两垂直的线和题中所给的线段的大小,建立空间直角坐标系,利用向量的知识求出二面角的大小.【解答】解:(I)连接BE,则四边形DABE为正方形,∴BE=AD=A1D1,且BE∥AD∥A1D1,∴四边形A1D1EB为平行四边形,∴D1E∥A1B.∵D1E⊄平面A1BD,A1B⊂平面A1BD,∴D1E∥平面A1BD.(II)以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,不妨设DA=1,则D(0,0,0),A(1,0,0),B(1,1,0),C1(0,2,2),A1(1,0,2).∴.设为平面A1BD的一个法向量,由得取z=1,则设为平面C1BD的一个法向量,由得,取z1=1,则∵..由于该二面角A1﹣BD﹣C1为锐角,所以所求的二面角A1﹣BD﹣C1的余弦值为.20.(12分)(2007•山东)如图,甲船以每小时海里的速度向正北方向航行,乙船按固定方向匀速直线航行,当甲船位于A1处时,乙船位于甲船的北偏西105°的方向B1处,此时两船相距20海里.当甲船航行20分钟到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距海里,问乙船每小时航行多少海里?【分析】连接A1B2,依题意可知A2B2,求得A1A2的值,推断出△A1A2B2是等边三角形,进而求得∠B1A1B2,在△A1B2B1中,利用余弦定理求得B1B2的值,进而求得乙船的速度.【解答】解:如图,连接A1B2,,,△A1A2B2是等边三角形,∠B1A1B2=105°﹣60°=45°,在△A1B2B1中,由余弦定理得B1B22=A1B12+A1B22﹣2A1B1•A1B2cos45°=,.因此乙船的速度的大小为.答:乙船每小时航行海里.21.(12分)(2007•山东)已知椭圆C中心在原点、焦点在x轴上,椭圆C上的点到焦点的最大值为3,最小值为1.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若直线l:y=kx+m(k≠0)与椭圆交于不同的两点M、N(M、N不是左、右顶点),且以MN为直径的圆经过椭圆的右顶点A.求证:直线l过定点,并求出定点的坐标.【分析】(Ⅰ)由题设条件可知解得,由此能够推导出椭圆C的标准方程.(Ⅱ)由方程组消去y,得(3+4k2)x2+8kmx+4m2﹣12=0,然后结合题设条件利用根的判别式和根与系数的关系求解.【解答】解:(Ⅰ)设椭圆的长半轴为a,半焦距为c,则解得∴椭圆C的标准方程为.(Ⅱ)由方程组消去y,得(3+4k2)x2+8kmx+4m2﹣12=0由题意:△=(8km)2﹣4(3+4k2)(4m2﹣12)>0整理得:3+4k2﹣m2>0 ①设M(x1,y1)、N(x2,y2),则,由已知,AM⊥AN,且椭圆的右顶点为A(2,0)∴(x1﹣2)(x2﹣2)+y1y2=0即(1+k2)x1x2+(km﹣2)(x1+x2)+m2+4=0也即整理得:7m2+16mk+4k2=0解得:m=﹣2k或,均满足①当m=﹣2k时,直线l的方程为y=kx﹣2k,过定点(2,0),舍去当时,直线l的方程为,过定点,故直线l过定点,且定点的坐标为.22.(14分)(2007•山东)设函数f(x)=x2+bln(x+1),其中b≠0.(Ⅰ)当时,判断函数f(x)在定义域上的单调性;(Ⅱ)求函数f(x)的极值点;(Ⅲ)证明对任意的正整数n,不等式都成立.【分析】(Ⅰ)先求函数的定义域,然后求出函数f(x)的导函数,利用二次函数的性质判定导函数的符号,从而确定函数f(x)在定义域上的单调性;(Ⅱ)需要分类讨论,由(Ⅰ)可知分类标准为b≥,0<b<,b≤0或f'(x)<0.参数取某些特定值时,可只管作出判断,单列为一类;不能作出直观判断的,再分为一类,用通法解决,另外要注意由f'(x)=0求得的根不一定就是极值点,需要判断在该点两侧的异号性后才能称为“极值点”.(Ⅲ)先构造函数h(x)=x3﹣x2+ln(x+1),然后研究h(x)在[0,+∞)上的单调性,求出函数h(x)的最小值,从而得到ln(x+1)>x2﹣x3,最后令,即可证得结论.【解答】解:(Ⅰ)函数f(x)=x2+bln(x+1)的定义域在(﹣1,+∞)令g(x)=2x2+2x+b,则g(x)在上递增,在上递减,g(x)=2x2+2x+b>0在(﹣1,+∞)上恒成立,所以f'(x)>0即当,函数f(x)在定义域(﹣1,+∞)上单调递增.(Ⅱ)(1)由(Ⅰ)知当时函数f(x)无极值点(2)当时,,∴,∴时,函数f(x)在(﹣1,+∞)上无极值点(3)当时,解f'(x)=0得两个不同解当b<0时,,∴x1∈(﹣∞,﹣1),x2∈(﹣1,+∞),此时f(x)在(﹣1,+∞)上有唯一的极小值点当时,x1,x2∈(﹣1,+∞)f'(x)在(﹣1,x1),(x2,+∞)都大于0,f'(x)在(x1,x2)上小于0,此时f(x)有一个极大值点和一个极小值点综上可知,b<0,时,f(x)在(﹣1,+∞)上有唯一的极小值点时,f(x)有一个极大值点和一个极小值点时,函数f(x)在(﹣1,+∞)上无极值点.(Ⅲ)当b=﹣1时,f(x)=x2﹣ln(x+1).令上恒正∴h(x)在[0,+∞)上单调递增,当x∈(0,+∞)时,恒有h(x)>h(0)=0即当x∈(0,+∞)时,有x3﹣x2+ln(x+1)>0,ln(x+1)>x2﹣x3,对任意正整数n,取请修改新增的标题参与本试卷答题和审题的老师有:wdlxh;qiss;zlzhan;wsj1012;minqi5;豫汝王世崇;涨停;zhiyuan;庞会丽;邢新丽;zhwsd(排名不分先后)菁优网2017年2月4日。
2007年普通高等学校招生全国统一考试(山东卷
2007年普通高等学校招生全国统一考试(山东卷)文科综合能力测试第Ⅰ卷(必做,共100分)图1为世界某地区图;读图回答1—2题。
1.关于该地区的地理事物叙述正确的是A.①处洋流属暖流B.②处景观为荒漠C.③处湿地为淡水沼泽D.④处山顶有终年积雪2.当太阳直射图中⑤所在纬线时,下列说法正确的是A.悉尼白昼将继续变长B.雅典正值多雨季节C.北京受亚洲低压影响D.伦敦正午太阳高度达一年中最小值3.图2为某地地质地貌剖面示意图。
读图判断下列叙述正确是A.①处的地表形态主要是风蚀作用的结果B.②处的地貌形态主要是由崩塌作用造成的C.③指示的岩层分解面曾遭受过风化作用D.④指示的岩层弯曲现象是内外力共同作用的结果我国既有铁路干线第六次大面提速后,在提速干线上旅客列车最高运行时速达200千米以上,并首次实现了旅客列车追踪间隔5分钟。
这标志着我国既有铁路干线提速已经跨入世界先进行列。
回答4—5题。
4.这次铁路大提速主要应用到的地理信息技术是A.地理信息系统B.遥感技术C.遥感技术和全球定位系统D.全球定位系统和地理信息系统5.根据提速动车组时刻表,乘坐1中哪一车次的旅客到达终点时看到太阳最接近正南方向表1动车组车次始发站终点站开车时间终到时间D21 北京长春07:15 13:31D201 南昌长沙08:00 11:15D584 宝鸡西安11:11 12:23D776 深圳广州11:18 12:28注:长春(43°53′N;125°20′E)长沙(28°11′N;113°00′E)西安(34°15′N;108°55′E)广州(23°00′N;113°11′E)A.D21 B.D201 C.D584 D.D776图3位华北某小城镇略图,读图回答6—7题。
6.该城镇与依托矿产资源,调整工业结构,发展循环经济,你认为最适宜在该城镇布局的工厂是A.建筑材料厂B.化肥厂C.冶炼厂D.电镀厂7.随着经济发展和人口的增长,若该城镇规划—处住宅区,你认为较合理的地点是A.①B.②C.③D.④8.图4是我国第五此人口普查中四个省份的有官人口数据统计分析图。
2007年普通高等学校招生全国统一考试文科数学试卷及答案-全国2[1]
2007年普通高等学校招生全国统一考试试题卷(全国卷Ⅱ)文科数学(必修+选修Ⅰ)注意事项:1. 本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,总分150分,考试时间120分钟. 2. 答题前,考生须将自己的姓名、准考证号、考场号、座位号填写在本试题卷指定的位置上.3. 选择题的每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.4. 非选择题必须使用0.5毫米的黑色字迹的签字笔在答题卡上书写,字体工整,笔迹清楚5. 非选择题必须按照题号顺序在答题卡上各题目的答题区域内作答.超出答题区域或在其它题的答题区域内书写的答案无效;在草稿纸、本试题卷上答题无效. 6. 考试结束,将本试题卷和答题卡一并交回.第Ⅰ卷(选择题)本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么球的表面积公式 ()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(012)kkn kn n P k C p p k n -=-=,,,…,一、选择题1.cos 330=( )A .12B .12- C .2D .2-2.设集合{1234}{12}{24}U A B ===,,,,,,,,则()U A B = ð( ) A .{2}B .{3}C .{124},,D .{14},3.函数sin y x =的一个单调增区间是( )A .ππ⎛⎫- ⎪44⎝⎭, B .3ππ⎛⎫ ⎪44⎝⎭, C .3π⎛⎫π ⎪2⎝⎭, D .32π⎛⎫π⎪2⎝⎭, 4.下列四个数中最大的是( )A .2(ln 2)B .ln(ln 2)C .lnD .ln 25.不等式203x x ->+的解集是( )A .(32)-,B .(2)+∞,C .(3)(2)-∞-+∞ ,,D .(2)(3)-∞-+∞ ,,6.在A B C △中,已知D 是A B 边上一点,若123A D DBCD C A C B λ==+,,则λ=( ) A .23 B .13 C .13- D .23-7.已知三棱锥的侧棱长的底面边长的2倍,则侧棱与底面所成角的余弦值等于( )A .6B .4C .2 D .28.已知曲线24xy =的一条切线的斜率为12,则切点的横坐标为( ) A .1B .2C .3D .49.把函数e x y =的图像按向量(23)=,a 平移,得到()y f x =的图像,则()f x =( ) A .e 2x+B .e 2x-C .2e x -D .2e x +10.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有( )A .10种B .20种C .25种D .32种11.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )A .13B .3C .12D .212.设12F F ,分别是双曲线2219yx +=的左、右焦点.若点P 在双曲线上,且120PF PF =,则12PF PF +=( )A .B .CD .第Ⅱ卷(非选择题)本卷共10题,共90分二、填空题:本大题共4小题,每小题5分,共20分.13.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 .14.已知数列的通项52n a n =-+,则其前n 项和n S = .15.一个正四棱柱的各个顶点在一个直径为2cm 的球面上.如果正四棱柱的底面边长为1cm ,那么该棱柱的表面积为 cm 2.16.821(12)1x x ⎛⎫++ ⎪⎝⎭的展开式中常数项为 .(用数字作答)三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分) 设等比数列{}n a 的公比1q <,前n 项和为n S .已知34225a S S ==,,求{}n a 的通项公式. 18.(本小题满分12分) 在A B C △中,已知内角A π=3,边BC =.设内角B x =,周长为y .(1)求函数()y f x =的解析式和定义域; (2)求y 的最大值. 19.(本小题满分12分)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A :“取出的2件产品中至多有1件是二等品”的概率()0.96P A =. (1)求从该批产品中任取1件是二等品的概率p ;(2)若该批产品共100件,从中任意抽取2件,求事件B :“取出的2件产品中至少有一件二等品”的概率()P B . 20.(本小题满分12分) 如图,在四棱锥S A B C D -中,底面A B C D 为正方形,侧棱SD ⊥底面A B C D E F ,, 分别为A B SC ,的中点. (1)证明E F ∥平面S A D ;(2)设2SD D C =,求二面角A EF D --的大小.AEBCFSD21.(本小题满分12分)在直角坐标系xOy 中,以O 为圆心的圆与直线4x -=相切.(1)求圆O 的方程;(2)圆O 与x 轴相交于A B ,两点,圆内的动点P 使PA PO PB ,,成等比数列,求P A P B的取值范围.22.(本小题满分12分) 已知函数321()(2)13f x ax bx b x =-+-+在1x x =处取得极大值,在2x x =处取得极小值,且12012x x <<<<. (1)证明0a >;(2)若z =a +2b ,求z 的取值范围。
2007年高考真题文科分章节详解“集合与简易逻辑”题
2007年高考“集合与简易逻辑”题1.(全国Ⅰ) 设{|210}S x x =+>,{|350}T x x =-<,则ST =A .∅B .1{|}2x x <- C .5{|}3x x > D .15{|}23x x -<< 解:设{|210}S x x =+>={x| x>-21},{|350}T x x =-<={x| x<35},则S T =15{|}23x x -<<,选D 。
2.(全国II) 设集合{1234}{12}{24}U A B ===,,,,,,,,则()U A B =ð( )A .{2}B .{3}C .{124},,D .{14}, 解:设集合{1234}{12}{24}U A B ===,,,,,,,,则()U A B =ð{3},选B 。
3.(北京卷)4.(天津卷)已知集合{}12S x x =∈+R ≥,{}21012T =--,,,,,则S T =( )A .{}2B .{}12,C .{}012,,D .{}1012-,,,解:(直接法){}{}121S x x S x x =∈+≥⇒=∈≥R R ,{}21012T =--,,,,,故ST ={}12,.(排除法)由{}{}121S x x S x x =∈+≥⇒=∈≥R R 可知S T中的元素比0要大, 而C 、D 项中有元素0,故排除C 、D 项,且S T 中含有元素比1,故排除A 项.故答案为B.5.(上海卷)6.(重庆卷)设全集U ={a 、b 、c 、d },A ={a 、c },B ={b },则A ∩(CuB )=(A )∅ (B ){a } (C ){c } (D ){a ,c } 解:A ∩(CuB )={a ,c },选D 。
“-1<x <1”是“x 2<1”的(A )充分必要条件 (B )充分但不必要条件 (C )必要但不充分条件 (D )既不充分也不必要条件 解:2111x x -<<⇒<,反之亦成立!所以选“充分必要条件”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10本科第四学期口语试题Topic group 1 Friendship1.Do you have many friends? How important are they to you?你有很多朋友吗?他们对你有多重要?2.What kind of people do you want to make friends with? Why?你想和什么样的人做朋友吗?为什么?3.How do you think “ A friend in need is a friend indeed”?你怎么认为“患难之交”?4.How do you make friends?你如何处朋友的?5.How can we keep friendship alive?我们在生活中怎样才能保持友谊?6.How valuable is friendship in a person’s life?人生中友谊是多么宝贵?7.“A friend without faults will never be found.” What’s your understanding?“没有缺点的朋友是永远找不到的。
“你有什么看法?8.“A life without a friend is a life without a sun.” Can we live without a friend?“人生在世无朋友,犹如生活无太阳。
“我们生活中可以没有朋友吗?Topic group 2 Cultural differences1.What do cultural differences mean? Can you give some examples?文化差异是什么意思?你能举些例子吗?2.How do people’s cultural backgrounds influence their way of thinking?人们的文化背景如何影响他们的思维方式的?3.What problems may be caused by our failure to recognize cultural differences?什么问题可能是使我们认识的文化有差异呢?4.How can failure to recognize cultural differences hinder communication?怎么可以不承认文化差异阻碍沟通吗?5.How can we deal with cultural differences?我们如何处理文化差异?6.What should we do before visiting other countries to avoid misunderstanding?以后我们访问其他国家如何避免(由于文化差异带来的)误解?我们应该做些什么?ment on the proverb “Do in Rome as the Romans do.”评论这个谚语“入乡随俗”。
8.What does “culture shock” mean?“文化冲击”是什么意思?9.In what ways can we cope with culture shock?我们可以通过什么方法来应对文化冲击?10.How to communicate with a foreigner effectively?如何有效地与外国人交流?Topic group 3: Parents1.Can you give me some examples for the differences between Chinese style and Western style on therelationship with their parents?你能给我一些例子中国人和西方人(对待)和他们的父母关系的差异?2.Do you think your parents’ love for you is proper or overspoiled? Can you describe in details?你认为你的父母对你的爱是适当的或被宠坏了的?你能详细描述了吗?3.Do you and your parents believe in different values? Are your parents living models of their system ofvalues?你和你的父母相信不同的价值观?你父母的生活模式的价值观是什么?4.If you and your parents have some arguments ,how do you resolve the problems?如果你和你的父母有一些争论,你是如何解决这个问题呢?5.China is stepping into an aged country, and there are more and more hollow-nestle aged parents in China.Arguments for or against sending aged parents to nursing homes .中国正在步入一个年老的国家,有越来越多的中国hollow-nestle年迈的父母。
支持或者反对把年迈的父母送到养老院。
6.Have you and your parents discussed marriage value? Do you have different opinions?你和你父母讨论婚姻的价值吗?你有不同意见吗?7.Please make arguments for or against asking for pocket money from our parents. ( from perspective of astudent and a parent)请支持或者反对我们要求父母给零花钱。
(从学生和家长的角度分别回答)8.Tracing back to your way of growing up, is there any mistakes your parents made or any lessons you willlearn in your future to educate your own children?追溯你成长的方式,是否有任何错误或任何教训可以从父母那里学习的,(用来)在你未来的教育自己的孩子吗?Topic group 4 Memory1.How good is your memory?怎样让你的记忆很好?2.What is your most memorable thing?什么是你最值得纪念的事情吗?3.What techniques do you use to remind yourself of past events?你用什么技术,让自己记起过去的事件吗?4.Describe the films, people’s names, books or jokes that you remember most.描述电影,人们的名字、书籍或笑话,你记得最清楚的。
5.How important is a good memory in learning English?在学习英语时重要的是具有良好的记忆吗?6.Describe an unforgettable experience..描述一次难以忘怀的体验……7.Why can we remember exciting, dramatic, or frightening events better?为什么我们能更好记住激动人心,戏剧性的,或者令人恐惧的事件?8.List the factors influencing how well one’s memory works.列出影响记忆方式的因素。
Topic group 5 W ealth1.What is the general attitude toward wealth in our society?(对待)我们的社会财富时什么态度是通用的?2.Do you think money can bring happiness? Why or why not?你认为金钱可以带来幸福呢?为什么或为什么不呢?3.Is money the most important thing in your life? If not, what is?钱是你生活中最重要的事情吗?如果不是,那是什么?4.What are some of the valuable things in life that money can’t buy?在生活中什么东西是金钱无法买到的?5.Do you think wealth is a source of happiness or a source of problem?你认为财富是幸福的源泉或者对于幸福源泉的问题(你有什么看法)?6.Do you think it is the moral responsibility of the rich to share their wealth with others?你认为富人有道德责任与他人分享他们的财富吗?7.When did you first earn money?你是什么时候第一次赚钱的?8.What would you do if you won a lottery?如果你中了彩票吗你会怎么做?Topic group 6 W ar1.What is your favorite book or movie about war? How does it affect you and your attitude toward war? 什么是你最喜欢的书或电影关于战争吗?它如何影响你和你的态度对待战争吗?2.What do you think are the causes of war? What damage does war do to mankind?你认为什么是战争的原因?战争给人类造成怎样的损害?3.Is there anything positive about war?关于什么战争是积极的?4.Under what conditions is war justified?在什么条件下战争是正义的?5.Have you visited a war ceremony or a war memorial? If you have, how did you feel?你参观过一个战争礼或战争纪念吗?如果你有,你是怎么想的?6.Do you think war can be avoided? How?你认为战争是可以避免的吗?如何?7.Is war a constructive way to resolve conflicts? Why or why not?战争是用一个有建设性的方式来解决冲突吗?为什么或为什么不呢?8.How was the development of new weapons changed the way wars are fought?开发新的武器如何改变战争方式?Topic group 7 Addiction1.What is addiction? What are the things people can easily get addicted to?什么是成瘾?有什么东西人们容易上瘾吗?2.Is it understandable that nowadays so many young students are addicted to internet games?现在很多年轻的学生沉迷于网络游戏,这是可以理解的?3.Why do you think some people, especially young people, take drugs? What harm can addiction to drugs do topeople?为什么你会觉得有些人,尤其是年轻人,服用药物?成瘾药怎么样伤害人们的?4.Have you read or heard about someone who has been a drug addict? What has become of him or her now?你读过或听说过有人被药物成瘾的人吗?已经成为现在的他或她吗?5.Why is it so difficult for drug addicts to quit taking drugs?为什么戒烟戒毒是如此的困难?6.Why is drug abuse such a threat to our society? What can we do to prevent or reduce drug abuse?为什么药物滥用威胁到我们的社会?我们能做什么来防止或减少毒品滥用?7.Can drug abuse be wiped put totally? Why or why not?滥用药物可以被清除完全吗?为什么或为什么不呢?8.What is most people’s attitude toward drug users in our society? Would you make friends with someone whohas a drug history?在我们的社会中什么态度是大多数人对待吸毒者的?你会结交那些有药物历史的人吗? Topic group 8 Opinion1.Please describe a friend you admire(what he/she did, why you admire him/her).请描述你敬佩的一个朋友(他/她做,为什么你欣赏他/她)。