基坑支护中锚杆支护规范
基坑支护锚杆施工工艺流程

基坑支护锚杆施工工艺流程一、施工准备1. 技术准备:熟悉施工图纸,了解基坑支护设计要求,确定锚杆施工方案。
2. 人员准备:组织施工团队,进行技术交底,确保每个成员了解施工流程和注意事项。
3. 物资准备:准备钻机、锚杆、水泥、注浆材料等施工材料和设备。
4. 场地准备:清理施工现场,确保施工区域平整、无障碍物。
二、土方开挖1. 根据设计要求,确定开挖顺序和深度。
2. 采用挖掘机进行开挖,确保开挖断面符合设计要求。
3. 清除开挖区域内的地下障碍物和不稳定土壤。
4. 做好基坑排水措施,防止基坑积水。
三、锚杆孔位确定1. 根据设计要求,确定锚杆孔位和间距。
2. 使用钢卷尺或激光测距仪测量锚杆孔位,确保孔位准确。
3. 在锚杆孔位处做出标记,以便后续钻孔。
四、锚杆制备1. 根据设计要求,选择合适的锚杆材料(如钢绞线、螺纹钢等)。
2. 根据锚杆长度和直径,选择合适的切割工具进行切割。
3. 将锚杆一端加工成扩头,以便插入孔内。
4. 根据设计要求,设置锚杆张拉段长度和锁定值。
五、锚杆插入1. 将制备好的锚杆插入锚杆孔内,确保锚杆插入深度符合设计要求。
2. 使用冲击钻或电动钻机进行钻孔,保持钻机稳定,避免晃动影响锚杆插入效果。
3. 插入过程中,注意观察钻孔是否偏斜,如发现偏斜应及时纠正。
4. 在插入过程中,应保持钻机的清洁,避免灰尘和杂物进入孔内。
5. 插入完成后,检查锚杆是否与孔壁紧密贴合,确保锚杆安装牢固。
6. 如发现锚杆与孔壁之间存在间隙,应采用注浆方式进行填充。
7. 在锚杆张拉之前,应进行必要的维护和保养,确保锚杆处于良好的工作状态。
基坑支护规范

建筑基坑支护技术规程1 总则1.0.1 为了在建筑基坑支护设计与施工中做到技术先进、经济合理、确保基坑边坡稳定、基坑周围建筑物、道路及地下设施安全,制定本规程。
1.0.2 本规程适用于一般地质条件下的建筑物和一般构筑物的基坑工程勘察、支护设计、施工、检测及基坑开挖与监控。
对于膨胀土和湿陷性黄土等特殊地质条件地区应结合当地工程经验应用。
1.0.3 基坑支护设计与施工应综合考虑工程地质与水文地质条件、基础类型、基坑开挖深度、降排水条件、周边环境对基坑侧壁位移的要求、基坑周边荷载、施工季节、支护结构使用期限等因素,做到因地制宜,因时制宜,合理设计、精心施工、严格监控。
1.0.4 基坑支护工程除应符合本规程的规定外,尚应符合国家现行的有关标准、规范和规程的规定。
2 术语、符号2.1 术语2.1.1 建筑基坑building foundation pit为进行建筑物(包括构筑物)基础与地下室的施工所开挖的地面以下空间。
2.1.2 基坑侧壁side of foundation pit构成建筑基坑围体的某一侧面。
2.1.3 基坑周边环境Surroundings around foundation pit基坑开挖影响范围内包括既有建(构)筑物、道路、地下设施、地下管线、岩土体及地下水体等的统称。
2.1.4 基坑支护retaining and protecting for foundation excavation为保证地下结构施工及基坑周边环境的安全,对基坑侧壁及周边环境采用的支挡、加固与保护措施。
2.1.5 排桩piles in row以某种桩型按队列式布置组成的基坑支护结构。
2.1.6 地下连续墙diaphragm用机械施工方法成槽浇灌钢筋混凝土形成的地下墙体。
2.1.7 水泥土墙cement –soil wall由水泥土桩相互搭接形成的格栅状、壁状等形式的重力式结构。
2.1.8 土钉墙soil nailing wall采用土钉加固的基坑侧壁土体与护面等组成的支护结构。
JGJ120-99 建筑基坑支护

h d——支护结构嵌固深度设计值;d——桩身设计直径;b——墙身厚度;A——桩(墙)身截面面积。
2.2.4 计算系数r0——建筑基坑侧壁重要性系数。
3 基本规定3.1 设计原则3.1.1 基坑支护结构应采用以分项系数表示的极限状态设计表达式进行设计。
3.1.2 基坑支护结构极限状态可分为下列两类:1.承载能力极限状态:对应于支护结构达到最大承载能力或土体失稳、过大变形导致结构或基坑周边环境破坏;2.正常使用极限状态:对应于支护结构的变形已妨碍地下结构施工或影响基坑周边环境的正确使用功能。
3.1.3 基坑支护结构设计应根据表3.1.3选用相应的侧壁安全等级及重要性系数。
基坑侧壁安全等级及重要性系数表3.1.33.3.2 支护结构选型应考虑结构的空间效应和受力特点,要用有利支护结构材料受力性状的型式。
3.3.3 软土场地可采用深层搅拌、注浆、间隔或全部加固等方法对局部或整个基坑底土进行加固,或采用降水措施提高基坑内侧被动抗力。
3.4 水平荷载标准值3.4.1 支护结构水平荷载标准值e ajk应按当地可靠经验确定,当无经验时可按下列规定计算(图3.4.1):图3.4.1 水平荷载标准值计算简图1.对于碎石土及砂土:3.5 水平抗力标准值3.5.1 基坑内侧水平抗力标准值e pjk宜按下列规定计算(图3.5.1):图3.5.1 水平抗力标准值计算图3.5.2 作用于基坑底面以下深度z j处的竖向应力标准值σpjk可按下式计算:σpjk=r mj z j(3.5.2)式中r mj——深度z j以上土的加权平均天然重度。
3.5.3 第i层的被动土压力系数应按下式计算:控报警值、监测方法及精度要求、监测点的布置、监测周期、工序管理和记录制度以及信息反馈系统等。
3.8.2 监测点的布置应满足监控要求,从基坑边缘以外1~2倍开挖深度范围内的需要保护物体均应作为监控对象。
3.8.3 基坑工程监测项目可按表3.8.3选择。
锚杆及土钉施工工艺标准

锚杆及土钉墙施工工艺标准3.2.1 总则3.2.1.1 适用范围1.锚杆支护结构是挡土结构与外拉系统相结合的一种深基坑组合式支护结构。
其挡土结构与悬臂式或内撑式支护结构相同,诸如:钻孔灌注桩、钢板桩、预制混凝土桩、地下连续墙等。
适用于较密实的砂土、粉土、硬塑到坚硬的黏性土层或岩层中的大型、较深、邻近有建(构)筑物而不允许有较大变形的基坑和不允许设内支撑的基坑。
存在有地下埋设物而不允许损坏的场地不宜采用。
2.土钉墙适用于地下水位以上或经人工降低地下水位后的人工填土、黏性土和弱胶结砂土的基坑支护或边坡加固。
土钉墙宜用于深度不大于12m 的基坑支护或边坡加固,当土钉墙与有限放坡、预应力锚杆联合使用时,深度可增加;不宜用于含水丰富的粉细砂层、砂砾卵石层和淤泥质土;不得用于没有自稳能力的淤泥和饱和软弱土层.3.2.1.2 编制参考标准及规范1.中华人民共和国国家标准《建筑工程施工质量验收统一标准》(GB 50300-2001);2.中华人民共和国国家标准《建筑地基基础工程施工质量验收规范》(GB 50202-2002);3.中华人民共和国行业标准《建筑基坑支护技术规程》(JGJ 120—99);4.中华人民共和国国家标准《建筑边坡工程技术规范》(GB 50330-2002).3.2.2 术语1.锚杆:由锚固段、自由段、锚头组成的,一端与支护挡土结构相连,一端与土层相锚固的细长杆件。
依靠其锚固段与土体的摩阻力,加固或锚固现场土体。
一般采取先在土层中钻孔,后置入钢筋、在锚固段注浆、锚头紧固的方法制成。
亦可采用置入钢管、角钢、钢绞线,在锚固段注浆的方法制成。
2.锚杆支护结构:锚杆支护结构包括挡土支护结构、腰梁和锚杆三部分组成。
挡土支护结构可以是钢板桩、排桩墙、连续墙等各种挡土结构;当挡土结构为非连续体时,在锚拉点标高处应加腰梁,使之形成整体共同受力.3.锚固体:土层锚杆的锚固段全长即为锚固体。
锚固体是由水泥砂浆或水泥浆将拉杆(预应力筋)与土体黏结在一起形成的,通常呈近似圆柱体状。
锚杆锚索检测规范依据

锚杆锚索检测规范依据应提供基坑支护锚杆、锚索检测报告的依据如下:1、根据《建筑基坑支护技术规程》120-2012中4.7锚杆设计和 4.8锚杆施工与检测的规定。
2、根据《预应力筋用锚具、夹具和连接器应用技术规程》(85-2010) 5进场验收的5.0.3和5.0.14条的预应力筋锚具、夹具与连接器取样规定一、《建筑基坑支护技术规程》120-2012。
2.1术语2.1.14锚杆anchor由杆体(钢绞线、普通钢筋、热处理钢筋或钢管)、注浆形成的固结体、锚具、套管、连接器所组成的一端与支护结构构件连接,另一端锚固在稳定岩土体内的受拉杆件。
杆体采用钢绞线时,亦可称为锚索。
4.7锚杆设计4.7.1锚杆的应用应符合下列规定:1锚拉结构宜采用钢绞线锚杆;当设计的锚杆抗拔承载力较低时,也可采用普通钢筋锚杆;当环境保护不允许在支护结构使用功能完成后锚杆杆体滞留于基坑周边地层内时,应采用可拆芯钢绞线锚杆;2在易塌孔的疏松或稍密的砂土、碎石土、粉土层,高液性指数的饱和粘性土层,高水压力的各类土层中,钢绞线锚杆、普通钢筋锚杆宜接纳套管护壁成孔工艺;3锚杆注浆宜接纳二次压力注浆工艺;4锚杆锚固段不宜设置在淤泥、淤泥质土、泥炭、泥炭质土及松散填土层内;5在复杂地质条件下,应通过现场试验确定锚杆的适用性。
4.7.9钢绞线锚杆、普通钢筋锚杆的构造应符合下列规定:5锚杆杆体用钢绞线应符合现行国家标准《预应力混凝土用钢绞线》GB/T5224的有关规定;6普通钢筋锚杆的杆体宜选用HRB335、HRB400级螺纹钢筋;7应沿锚杆杆体全长设置定位支架;定位支架应能使相邻定位支架中点处锚杆杆体的注浆固结体保护层厚度不小于10mm,定位支架的间距宜按照锚杆杆体的组装刚度确定,对自在段宜取1.5m~2.0m;对锚固段宜取1.0m~1.5m;定位支架应能使各根钢绞线彼此星散;8钢绞线用锚具应符合现行国家标准gb t 2007《预应力筋用锚具、夹具和连接器》GB/T的规定;4.8锚杆施工与检测4.8.7预应力锚杆张拉锁定时应符合下列要求:1当锚杆固结体的强度达到设计强度的75%且不小于15MPa后,方可进行锚杆的张拉锁定;2拉力型钢绞线锚杆宜接纳钢绞线束整体张拉锁定的办法;3锚杆锁定前,应按表4.8.8的张拉值进行锚杆预张拉;锚杆张拉应平缓加载,加载速度不宜大于0.1Nk/min,此处,Nk为锚杆轴向拉力标准值;在张拉值下的锚杆位移和压力表压力应保持稳定当锚头位移不稳定时,应判定此根锚杆不合格;4锁定时的锚杆拉力应考虑锁定过程的预应力损失量;预应力损失量宜通过对锁定前、后锚杆拉力的测试确定;缺少测试数据时,锁定时的锚杆拉力可取锁定值的1.1倍~1.15倍;5锚杆锁定尚应考虑相邻锚杆张拉锁定引起的预应力损失,当锚杆预应力损失严重时,应进行再次锁定;锚杆出现锚头松弛、脱落、锚具失效等情况时,应及时进行修复并对其进行再次锁定;6当锚杆需要再次张拉锁定时,锚具外杆体的长度和完好程度应满足张拉要求。
护坡桩加锚杆支护施工

护坡桩加锚杆支护施工护坡桩支护结构就是在基坑开挖前在基坑边缘施工成排的桩并使其底部深入基坑底面以下,随着基坑的分层开挖,在排桩表面设置支点,其支点形式可以采用内支衬也可以采用锚杆。
这种支护结构的优点:这种支护结构产生的水平变形较小,可以有效的保护城区内深基坑的垂直开挖,周边已有的建筑、地下管线的安全。
在实际施工过程中,常用的护坡桩的形式:钢板桩,钢管桩钢筋混凝土板桩H型钢板加挡板钢筋混凝土灌注桩钢筋混凝土预制桩护坡桩加锚杆结构通常称桩锚支护体系,它是由桩,锚梁,腰梁锚杆组成受力体系,由于钢板桩造价高,噪声大,常选用钢筋混凝土灌注桩,其优点有:造价低,噪声低,对周边影响小。
对灌注桩的要求:直经大于600毫米以上,下面详细介绍:钢筋混凝土人工开挖的灌注桩加锚杆支护结构护坡桩的施工流程如下:护坡桩的定位放线护坡桩的成孔制做钢筋笼,放入钢筋笼护坡桩混凝土的浇筑土层锚杆施工帽梁施工桩间土支护护坡桩的定位放线:按护坡桩的图纸放入护坡桩的轴线,用钢尺在轴线上量出桩的中心点,以此为中心点画出桩的外轮廓线,要求:桩位偏差,轴线和垂直轴线方向偏听偏差不宜超过50毫米,桩经偏差为正负50毫米。
护坡桩人工挖孔的规定:人工挖孔的直经不小于0.8米,当孔之间的间距小于二倍孔经时,或者小于2.5米时应采用间隔开挖的跳挖法施工,人工挖孔的混凝土护壁厚度不小于100毫米,混凝土的强度等级不低于C25,上下层护壁间应设拉接钢筋,第一节护壁应高于平面150-200毫米,每节护壁的高度不大于1米,上下节护壁的搭接长度不小于50毫米,并保证混凝土密实,护壁模板应在24小时拆除.并在孔内设置应急绳,安全梯,并定时检查孔内的空气质量,孔深超过5米时,应有向孔内送风的设备,护坡桩的检查应按桩数的10%抽检,并不少于5根,且查桩位,桩经,垂直度等,制作钢筋笼:按设计图纸的要求,选择钢筋的规格,品种,纵向主筋应按规定切割下料,若主筋需要接长采用搭接电焊或者闪光对焊,接设计图纸把主筋点焊在定位内含箍上,纵向箍筋的接头应相互错开,钢筋笼的偏差为主筋间隔正负10毫米,箍筋间隔为20毫米,长度正负50毫米,为加强钢筋笼的强度在钢筋笼内设剪刀撑钢筋笼安放:一般使用吊装设备安放,钢筋笼下放时的朝向应满足设计要求,下放后就立刻固定,护坡桩混凝土浇筑:混凝土的强度大于C20,其浇筑前应核实设计要求的强度与实际强度是否相附,并检查沙,水泥的合格证,混凝土内的水灰比等等浇灌混凝土用汽车泵进行浇灌,且连续浇灌,在距平面为6米之内应震动密实浇筑到孔顶时应高于孔顶设计标高用来保证其最终的设计要求,并要求在现场制作试块土层锚杆施工:根据基坑的深度,周边环境,在进行支护结构设计时沿坚向可以设置一排锚杆也可以多排锚杆,在进行锚杆设计时可以设计成一桩一锚,一桩两锚,二桩一锚,锚杆可以设置在桩的顶部即帽梁的顶部也可以设置在桩身处,但此时应设腰梁,腰梁一般选用糟钢,其截面尺寸根据设计而定,锚杆施工顺序如下:钻孔—安放锚杆—灌浆—养护—安装锚头—张拉锚固锚杆施工应符合下列要求:锚杆水平及垂直方向孔距小于或者等于正负100毫米,钻孔长度小于或者等于正负30毫米,钻孔倾斜度小于或者等于1度,锚杆所用的材料为:钢筋或者钢角线,预应力锚杆大多采用钢角线,在锚杆轴线上每隔1.5-2米设置一个定位支架且固定好并同时固定灌浆管,在锚杆我自由端绑扎塑料薄膜,安放锚杆应缓慢进入,不要用力过猛,以防定位支架脱落,下一步进行灌浆,开始灌浆时应不断抽取灌浆管,抽取速度不宜过快,这样可以把孔内的空气和水排出来,来保证灌浆的质量,抽取后立即封堵孔口,以防浆体外溢。
建筑基坑支护规范
建筑基坑支护规范《建筑基坑支护技术规范》基本概况:《建筑基坑支护规范》为了在建筑基坑支护设计、施工中做到安全适用、保护环境、技术先进、经济合理、确保质量,制定本规程。
《建筑基坑支护规范》关于发布北京市地方标准《建筑基坑支护技术规程》的通知。
京建科教【2007】766号。
《建筑基坑支护规范》关于同意北京市《建筑基坑支护技术规程》地方标准备案的函。
建标标备便【2007】24号。
《建筑基坑支护技术规程》本规程适用于一般地质条件下临时性建筑基坑支护的勘察、设计、施工、检测、基坑开挖与监测。
对湿陷性土、多年冻土、膨胀土、盐渍土等特殊土或岩石基坑,应结合当地工程经验应用本规程,并应符合相关技术标准的规定。
《建筑基坑支护技术规程》的主要内容包括:总则、术语、符号、基本规定、放坡、排桩、地下连续墙、土钉墙、地下水控制等内容。
其中相关内容如下:3.1.4支护结构设计应考虑其结构水平变形、地下水的变化对周边环境的水平与竖向变形的影响,对于安全等级为一级和对周边环境变形有限定要求的二级建筑基坑侧壁,应根据周边环境的重要性、对变形的适应能力及土的性质等因素确定支护结构的水平变形限值。
3.1.5当场地内有地下水时,应根据场地及周边区域的工程地质条件、水文地质条件、周边环境情况和支护结构与基础型式等因素,确定地下水控制方法。
当场地周围有地表水汇流、排泻或地下水管渗漏时,应对基坑采取保护措施。
3.1.6根据承载能力极限状态和正常使用极限状态的设计要求,基坑支护应按下列规定进行计算和验算:1基坑支护结构均应进行承载能力极限状态的计算,计算内容应包括:1)根据基坑支护形式及其受力特点进行土体稳定性计算;2)基坑支护结构的受压、受弯、受剪承载力计算;3)当有锚杆或支撑时,应对其进行承载力计算和稳定性验算。
2对于安全等级为一级及对支护结构变形有限定的二级建筑基坑侧壁,尚应对基坑周边环境及支护结构变形进行验算。
3地下水控制计算和验算:1)抗渗透稳定性验算;2)基坑底突涌稳定性验算;3)根据支护结构设计要求进行地下水位控制计算。
深基坑预应力锚杆支护
深基坑预应力锚杆支护摘要:随设现代化城市建设的步伐的不断加大,越来越多的高层及超高层建筑在密集的楼群中拔地而起,而可供用来建设的土地面积越来越小,为了能在有限的区域内安全、经济、快速的为这些高耸建筑打下坚实的基础,深基坑的支护就变得尤为重要了。
应根据不同的地质条件,有效的选择不同的深基坑的支护方法。
文章介绍一种比较常用且经济的深基坑预应力锚杆支护。
关键词:预应力;深基坑;锚杆支护一、预应力锚杆支护的基本概念及特点预应力锚杆支护是指为防止周边土层的坍塌,在周边土层内部植入具有抗拔性质的和有效锚固长度的杆体,并经过对其张拉后使土体增加抗剪能力的施工方法。
预应力锚杆支护具有施工方便,施工速度快,施工费用低等特点。
二、预应力锚杆支护设计原则锚杆支护应根据岩土勘察报告进行设计,首先应对锚杆的锚固土层进行测算,确定锚固在哪个土层比较合适,其次,根据土力学理论公式,确定锚杆的锚固长度及锚杆的总长,确定锚杆的倾角、布置数量及布置方式等,同时根据基坑的重要等级测算相关数据是否超标,如被加固土上层点的水平位移等。
最后验算张拉端的腰梁及张拉应力,确保每一项都能满足要求。
三、预应力锚杆支护施工工艺:施工之前最重要的一点,就是根据岩土勘察报告判定地下水位,如果地下水位标高位于锚杆之上,必须先要进行降水,待达到要求后方可施工。
(一)成孔1.施钻前,必须根据岩土勘察报告,确定锚杆在土层的有效锚固长度,从而确定成孔长度。
2.根据施工条件的不同,成孔分为人工成孔和机械成孔。
人工成孔多使用洛阳铲,施工方便;机械成孔多使用进口设备,施工速度快。
3.严格控制锚杆工作平台标高,不得超挖或欠挖,并保证工作面平整。
(二)灌浆1.为确保锚杆注浆压力,在锚杆自由段和锚固段交接处设止浆装置。
保证锚杆在孔洞中心,设置锚杆居中装置。
2.注浆一般分为水泥浆和水泥砂浆,通常情况下掺入膨胀剂减水剂,控制浆体的强度。
3.确保注入密实,锚杆位于浆体中心位置,让浆体充分将锚杆包裹。
锚杆喷射混凝土支护技术规范培训
3.边坡喷射棍凝土面层防护设计应符合下列规定:
丝网直径不宜小于 3.2mm ,网目不宜大于 60mm; (4) 钢筋网喷射混凝土面层与锚杆应有可靠的连接;
5 ➢基坑锚固
1.基坑锚固体系应由围护结构和锚杆组成,支护结构设计使用期限应满足 主体结构施工要求。 2.基坑工程应进行全过程监测,包括支护结构受力及变形、周边建(构)筑物 及管线变形、土体变形及地面沉降以及锚杆拉力等,并可依据监测结果对 支护设计进行调整。 3.锚拉桩支护
(1) 锚杆水平间距不宜小于1. 5m ; (2)多排锚杆竖向间距不宜小于 2.0m; (3) 锚杆的倾角宜取15°~45°;
4.土钉墙支护
(1)土钉墙支护的基坑坑壁宜适当放坡,坡度宜为1:0.2~1:0.4 (2)土钉墙的水平和竖向间距宜取 1m~2m,当土质差时应取小值,且可小于 1m; 土钉钻孔的向下倾角宜为 10°~20°。
定的影响; (4)查明工程影响区域内的邻近建筑物、地下管线及构筑物的位置及状况; (5)查明施工场地与相邻地界的距离,调查锚杆可否借用相邻地块; (6)调查当地类似工程的主要支护形式、施工方法及工程经验。
2 ➢预应力锚杆
2.1 ➢一般规定
1.预应力锚杆宜用于利用地层承受结构所产生的拉力和施加预应力来加固岩体的 不稳定部位或为结构建立有效支承的工程。
1
拉力型锚杆
200kN~1000kN; 当锚固段长大于 8m( 岩层)和 12m( 土层)时,锚杆极限抗拔承载力的提高极为有
锚杆施工方法
锚杆施工方法锚杆施工是一种常见的地下工程施工技术,旨在加强土体或岩石的支护和稳定。
锚杆的施工方法各异,根据不同的工程要求和土体条件选择合适的施工方法至关重要。
本文将介绍几种常见的锚杆施工方法。
1. 钢筋锚杆施工方法钢筋锚杆是一种常用的锚杆材料,其施工方法相对简单。
首先,根据设计要求,在钻孔内安装锚杆。
通常,钻孔会通过机械钻孔或液压钻孔这样的工具进行。
然后,将锚杆插入钻孔并使用特殊的砂浆灌注固定。
最后,将钢筋与预埋物相连接并完成锚杆的固定。
2. 预应力锚杆施工方法预应力锚杆适用于需要承受较大荷载的地下工程。
预应力锚杆通过在施工过程中施加预应力,从而提高杆件的抗拉能力。
施工方法如下:首先,在钻孔内安装预应力锚固管;然后,将预埋钢束插入锚固管内,并通过张拉装置施加预应力;最后,使用特殊的砂浆填充锚固孔道并完成锚杆的固定。
3. 胶结锚杆施工方法胶结锚杆适用于弱固结土体或软岩的加固。
胶结锚杆施工方法如下:首先,根据设计要求,在钻孔中放置锚杆。
钻孔通常采用泥浆钻孔或钻孔机进行。
然后,将胶结材料灌注到钻孔中固化。
最后,将锚杆与固体胶结物连接并完成固结。
4. 微型钢板桩施工方法微型钢板桩是一种钢板桩的变种,被广泛用于边坡加固和基坑支护。
施工方法如下:首先,在土体中钻孔,并通过机械手段将微型钢板桩插入孔内。
然后,在微型钢板桩顶部连接连接器,使钢板桩形成连续的墙面。
最后,通过定向钻孔给钢板桩注入混凝土,确保其稳定性和强度。
总结针对不同的土体条件和工程要求,锚杆施工可以采用不同的方法。
钢筋锚杆施工方法适用于一般地下工程,而预应力锚杆适用于承受大荷载的工程。
胶结锚杆适用于弱固结土体和软岩,微型钢板桩适用于边坡加固和基坑支护。
施工过程中,应按照设计要求和相关规范进行操作,以确保锚杆施工的质量和安全。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基坑支护中锚杆支护规范篇一:基坑支护规范建筑基坑支护技术规程1 总则1.0.1 为了在建筑基坑支护设计与施工中做到技术先进、经济合理、确保基坑边坡稳定、基坑周围建筑物、道路及地下设施安全,制定本规程。
1.0.2 本规程适用于一般地质条件下的建筑物和一般构筑物的基坑工程勘察、支护设计、施工、检测及基坑开挖与监控。
对于膨胀土和湿陷性黄土等特殊地质条件地区应结合当地工程经验应用。
1.0.3 基坑支护设计与施工应综合考虑工程地质与水文地质条件、基础类型、基坑开挖深度、降排水条件、周边环境对基坑侧壁位移的要求、基坑周边荷载、施工季节、支护结构使用期限等因素,做到因地制宜,因时制宜,合理设计、精心施工、严格监控。
1.0.4 基坑支护工程除应符合本规程的规定外,尚应符合国家现行的有关标准、规范和规程的规定。
2 术语、符号2.1 术语2.1.1 建筑基坑building foundation pit为进行建筑物(包括构筑物)基础与地下室的施工所开挖的地面以下空间。
2.1.2 基坑侧壁side of foundation pit构成建筑基坑围体的某一侧面。
2.1.3 基坑周边环境Surroundings around foundation pit基坑开挖影响范围内包括既有建(构)筑物、道路、地下设施、地下管线、岩土体及地下水体等的统称。
2.1.4 基坑支护retaining and protecting for foundation excavation为保证地下结构施工及基坑周边环境的安全,对基坑侧壁及周边环境采用的支挡、加固与保护措施。
2.1.5 排桩piles in row以某种桩型按队列式布置组成的基坑支护结构。
2.1.6 地下连续墙diaphragm用机械施工方法成槽浇灌钢筋混凝土形成的地下墙体。
2.1.7 水泥土墙cement – soil wall由水泥土桩相互搭接形成的格栅状、壁状等形式的重力式结构。
2.1.8 土钉墙soil nailing wall采用土钉加固的基坑侧壁土体与护面等组成的支护结构。
2.1.9 土层锚杆soil anchor由设置于钻孔内、端部伸入稳定土层中的钢筋或钢绞线与孔内注浆体组成的受拉杆体。
2.1.10 支撑体系bracing system由钢或钢筋混凝土构件组成的用以支撑基坑侧壁的结构体系。
2.1.11 冠梁top beam设置在支护结构顶部的钢筋混凝土连梁。
2.1.12 腰梁middle beam设置在支护结构顶部以下传递支护结构与锚杆或内支撑支点力的钢筋混凝土梁或钢梁。
2.1.13 支点fulcrum锚杆或支撑体系对支护结构的水平约束点。
2.1.14 支点刚度系数stiffness coefficient of fulcrum bearing锚杆或支撑体系对支护结构的水平向反作用力与其位移的比值。
2.1.15 嵌固深度embedded depth桩墙结构在基坑开挖底面以下的埋置深度。
2.1.16 嵌固深度设计值design value of embedded depth根据基坑侧壁安全等级及支护结构验算条件确定的支护结构嵌固深度的设计值。
2.1.17 地下水控制groundwater controlling为保证支护结构施工、基坑挖土、地下室施工及基坑周边环境安全而采取的排水、降水、截水或回灌措施。
2.1.18 截水帷幕curtain for cutting of water用于阻截与减少基坑侧壁及基坑底地下水流入基坑而采用的连续止水体。
2.2 符号2.2.1 抗力和材料性能Gk——土的粘聚力标准值;ψk——土的内摩擦角标准值;e——土的孔隙比;k——土的渗透系数;w——土的天然含水量;r——土的重力密度(简称土的重度);rk——水泥土墙的平均重度;fcsk、fcs——水泥土开挖龄期轴心抗压强度标准值、设计值;m——地基土水平抗力系数的比例系数;fck、fc——混凝土轴心抗压强度标准值、设计值;fcmk、fcm——混凝土弯曲抗压强度标准值、设计值;fyk、fpyk——普通钢筋、预应力钢筋抗拉强度标准值;fy、fy——普通钢筋的抗拉、抗压强度设计值;fpy、fpy——预应力钢筋的抗拉、抗压强度设计值;epjk——基坑开挖面下j点水平抗力标准值;Kpi——第i层土被动土压力系数;kTi——第i支点的支点刚度系数(弹簧)系数;ksi——基坑开挖面以下土体弹簧系数;Nu——锚杆轴向受拉承载力设计值。
2.2.2 作用和作用效应eajk——j点水平荷载标准值;Kai——第i层土主动土压力系数;Mc——弯矩计算值;Vc——剪力计算值;Tcj——第j层支点力计算值;N——轴向力设计值;M——弯矩设计值;V——剪力设计值;Td——锚杆或内支撑支点力设计值。
2.2.3 几何参数sa——排桩中心距;h——基坑开挖深度;hd——支护结构嵌固深度设计值;d——桩身设计直径;b——墙身厚度;A——桩(墙)身截面面积。
2.2.4 计算系数r0——建筑基坑侧壁重要性系数。
3 基本规定3.1 设计原则3.1.1 基坑支护结构应采用以分项系数表示的极限状态设计表达式进行设计。
3.1.2 基坑支护结构极限状态可分为下列两类:1.承载能力极限状态:对应于支护结构达到最大承载能力或土体失稳、过大变形导致结构或基坑周边环境破坏;2.正常使用极限状态:对应于支护结构的变形已妨碍地下结构施工或影响基坑周边环境的正确使用功能。
3.1.3 基坑支护结构设计应根据表3.1.3选用相应的侧壁安全等级及重要性系数。
基坑侧壁安全等级及重要性系数表3.1.3注:有特殊要求的建筑基坑侧壁安全等级可根据具体情况另行确定。
3.1.4 支护结构设计应考虑其结构水平变形、地下水的变化对周边环境的水平与竖向变形的影响,对于安全等级为一级和对周边环境变形有限定要求的二级建筑基坑侧壁,应根据周边环境的重要性、对变形的适应能力及土的性质等因素确定支护结构的水平变形限值。
3.1.5 当场地内有地下水时,应根据场地及周边区域的工程地质条件、水文地质条件、周边环境情况和支护结构与基础型式等因素,确定地下水控制方法。
当场地周边有地表水汇流、排泻或地下水管渗漏时,应对基坑采取保护措施。
3.1.6 根据承载能力极限状态和正常使用极限状态的设计要求,基坑支护应按下列规定进行计算和验算:1.基坑支护结构均应进行承载能力极限状态的计算,计算内容应包括:1)根据基坑支护形式及其受力特点进行土体稳定性计算;2)基坑支护结构的受压、受弯、受剪承载力计算;3)当有锚杆或支撑时,应对其进行承载力计算和稳定性验算。
2.对于安全等级为一级及对支护结构变形有限定的二级建筑基坑侧壁,尚应对基坑周边环境及支护结构变形进行验算。
3.地下水控制计算和验算:1)抗渗透稳定性验算:2)基坑底突涌稳定性验算;3)根据支护结构设计要求进行地下水位控制计算。
3.1.7 基坑支护设计内容应包括对支护结构计算和验算、质量检测及施工监控的要求。
3.1.8 当有条件时,基坑应采用局部或全部放坡开挖,放坡坡度应满足其稳定性要求。
3.2 勘察要求3.2.1 在主体建筑地基的初步勘察阶段,应根据岩土工程条件,搜集工程地质和水文地质资料,并进行工程地质调查,必要时可进行少量的补充勘察和室内试验,提出基坑支护的建议方案。
3.2.2 在建筑地基详细勘察阶段,对需要支护的工程宜按下列要求进行勘察工作:1.勘察范围应根据开挖深度及场地的岩土工程条件确定,并宜在开挖边界外按开挖深度的1~2倍范围内布置勘探点,当开挖边界外无法布置勘探点时,应通过调查取得相应资料。
对于软土,勘察范围尚宜扩大;2.基坑周边勘探点的深度应根据基坑支护结构设计要求确定,不宜小于1倍开挖深度,软土地区应穿越软土层;3.勘探点间距应视地层条件而定,可在15~30m内选择,地层变化较大时,应增加勘探点,查明分布规律。
3.2.3 场地水文地质勘察应达到以下要求;1.查明开挖范围及邻近场地地下水含水层和隔水层的层位、埋深和分布情况,查明各含水层(包括上层滞水、潜水、承压水)的补给条件和水力联系;2.测量场地各含水层的渗透系数和渗透影响半径;3.分析施工过程中水位变化对支护结构和基坑周边环境的影响,提出应采取的措施。
3.2.4 岩土工程测试参数宜包含下列内容:1.土的常规物理试验指标;2.土的抗剪强度指标;3.室内或原位试验测试土的渗透系数;4.特殊条件下应根据实际情况选择其它适宜的试验方法测试设计所需参数。
3.2.5 基坑周边环境勘查应包括以下内容:1.查明影响范围内建(构)筑物的结构类型、层数、基础类型、埋深、基础荷载大小及上部结构现状;2.查明基坑周边的各类地下设施,包括上、下水、电缆、煤气、污水、雨水、热力等管线或管道的分布和性状;3.查明场地周边和邻近地区地表水汇流、排泻情况,地下水管渗漏情况以及对基坑开挖的影响程度;4.查明基坑四周道路的距离及车辆载重情况。
3.2.6 在取得勘察资料的基础上,针对基坑特点,应提出解决下列问题的建议:1.分析场地的地层结构和岩土的物理力学性质;2.地下水的控制方法及计算参数;3.施工中应进行的现场监测项目;4.基坑开挖过程中应注意的问题及其防治措施。
3.3 支护结构选型3.3.1 支护结构可根据基坑周边环境、开挖深度、工程地质与水文地质、施工作业设备和施工季节等条件,按表3.3.1选用排桩、地下连续墙、水泥土墙、逆作拱墙、土钉墙、原状土放坡或采用上述型式的组合。
支护结构选型表表3.3.13.3.2 支护结构选型应考虑结构的空间效应和受力特点,要用有利支护结构材料受力性状的型式。
3.3.3 软土场地可采用深层搅拌、注浆、间隔或全部加固等方法对局部或整个基坑底土进行加固,或采用降水措施提高基坑内侧被动抗力。
3.4 水平荷载标准值3.4.1 支护结构水平荷载标准值eajk应按当地可靠经验确定,当无经验时可按下列规定计算(图3.4.1):图3.4.1 水平荷载标准值计算简图1.对于碎石土及砂土:3.5 水平抗力标准值3.5.1 基坑内侧水平抗力标准值epjk宜按下列规定计算(图3.5.1):图3.5.1 水平抗力标准值计算图3.5.2 作用于基坑底面以下深度zj处的竖向应力标准值σpjk可按下式计算:σpjk=rmjzj (3.5.2)式中 rmj——深度zj以上土的加权平均天然重度。
3.5.3 第i层的被动土压力系数应按下式计算:3.6 质量检测3.6.1 支护结构施工及使用的原材料及半成品应遵照有关施工验收标准进行检验。
3.6.2 对基坑侧壁安全等级为一级或对构件质量有怀疑的安全等级为二级和三级的支护结构应进行质量检测。
3.6.3 检测工作结束后应提交包括下列内容的质量检测报告:1.检测点分布图;2.检测方法与仪器设备型号;3.资料整理及分析方法;4.结论及处理意见。