九年级中考数学《解直角三角形实际问题》专项复习试卷及解析
2023年中考数学一轮专题练习 解直角三角形的实际应用2(含解析)

2023年中考数学一轮专题练习 ——解直角三角形的实际应用(解答题部分)一、解答题(本大题共16小题)1. (湖北省恩施州2022年)如图,湖中一古亭,湖边一古柳,一沉静,一飘逸、碧波荡漾,相映成趣.某活动小组赏湖之余,为了测量古亭与古柳间的距离,在古柳A 处测得古亭B 位于北偏东60°,他们向南走50m 到达D 点,测得古亭B 位于北偏东45°,求古亭与古柳之间的距离AB 1.41≈ 1.73≈,结果精确到1m ).2. (湖南省湘潭市2022年)湘潭县石鼓油纸伞因古老工艺和文化底蕴,已成为石鼓乡村旅游的一张靓丽名片.某中学八年级数学兴趣小组参观后,进行了设计伞的实践活动.小文依据黄金分割的美学设计理念,设计了中截面如图所示的伞骨结构(其中0.618DHAH≈):伞柄AH 始终平分BAC ∠,20cm AB AC ==,当120BAC ∠=︒时,伞完全打开,此时90BDC ∠=︒.请问最少需要准备多长的伞柄?(结果保留整数,参考数1.732≈)3. (湖南省怀化市2022年)某地修建了一座以“讲好隆平故事,厚植种子情怀”为主题的半径为800米的圆形纪念园.如图,纪念园中心点A 位于C 村西南方向和B 村南偏东60°方向上,C 村在B 村的正东方向且两村相距2.4千米.有关部门计划在B 、C 两村之间修一条笔直的公路来连接两村.问该公路是否穿过纪念园?试通过计算加以说明.,≈1.41)4. (湖南省邵阳市2022年)如图,一艘轮船从点A处以30km/h的速度向正东方向航行,在A处测得灯塔C在北偏东60︒方向上,继续航行1h到达B处,这时测得灯塔C在北偏东45︒方向上,已知在灯塔C的四周40km内有暗礁,问这艘轮船继续向正东方向航行是否安全?并说明理由.(提示:≈)1.414≈, 1.7325. (湖南省郴州市2022年)如图是某水库大坝的横截面,坝高20mCD=,背水坡BC i=.为了对水库大坝进行升级加固,降低背水坡的倾斜程度,设计人员的坡度为11:1i=A与原起点B之间的距离.(参准备把背水坡的坡度改为2≈.结果精确到0.1m)≈ 1.731.416. (天津市2022年)如图,某座山AB的项部有一座通讯塔BC,且点A,B,C在同一条直线上,从地面P处测得塔顶C的仰角为42︒,测得塔底B的仰角为35︒.已知通讯塔BC的高度为32m,求这座山AB的高度(结果取整数).参考数据:,.︒≈︒≈tan350.70tan420.907. (四川省自贡市2022年)某数学兴趣小组自制测角仪到公园进行实地测量,活动过程如下:(1)探究原理:制作测角仪时,将细线一段固定在量角器圆心O 处,另一端系小重物G .测量时,使支杆OM 、量角器90°刻度线ON 与铅垂线OG 相互重合(如图①),绕点O 转动量角器,使观测目标P 与直径两端点,A B 共线(如图②),此目标P 的仰角POC GON ∠=∠.请说明两个角相等的理由.(2)实地测量:如图③,公园广场上有一棵树,为了测量树高,同学们在观测点K 处测得顶端P 的仰角60POQ ∠=,观测点与树的距离KH 为5米,点O 到地面的距离OK 为1.5米;求树高PH 1.73≈,结果精确到0.1米)(3)拓展探究:公园高台上有一凉亭,为测量凉亭顶端P 距离地面高度PH (如图④),同学们讨论,决定先在水平地面上选取观测点,E F (,,E F H 在同一直线上),分别测得点P 的仰角,αβ,再测得,E F 间的距离m ,点12,O O 到地面的距离12,O E O F 均为1.5米;求PH (用,,m αβ表示).8. (四川省遂宁市2022年)数学兴趣小组到一公园测量塔楼高度.如图所示,塔楼剖面和台阶的剖面在同一平面,在台阶底部点A 处测得塔楼顶端点E 的仰角50.2GAE ∠=︒,台阶AB 长26米,台阶坡面AB 的坡度5:12i =,然后在点B 处测得塔楼顶端点E 的仰角63.4EBF ∠=︒,则塔顶到地面的高度EF 约为多少米. (参考数据:tan50.2 1.20︒≈,tan63.4 2.00︒≈,sin50.20.77︒≈,sin63.40.89︒≈)9. (四川省内江市2022年)如图所示,九(1)班数学兴趣小组为了测量河对岸的古树A、B之间的距离,他们在河边与AB平行的直线l上取相距60m的C、D两点,测得∠ACB=15°,∠BCD=120°,∠ADC=30°.(1)求河的宽度;(2)求古树A、B之间的距离.(结果保留根号)10. (四川省眉山市2022年)数学实践活动小组去测量眉山市某标志性建筑物的高CD.如图,在楼前平地A处测得楼顶C处的仰角为30,沿AD方向前进60m到达B处,测得楼顶C处的仰角为45︒,求此建筑物的高.(结果保留整数.参考数据: 1.41≈,≈)1.7311. (四川省泸州市2022年)如图,海中有两小岛C,D,某渔船在海中的A处测得小岛C位于东北方向,小岛D位于南偏东30°方向,且A,D相距10 nmile.该渔船自西向东航行一段时间后到达点B,此时测得小岛C位于西北方向且与点B相距8 nmile.求B,D间的距离(计算过程中的数据不取近似值).12. (四川省凉山州2022年)去年,我国南方菜地一处山坡上一座输电铁塔因受雪灾影响,被冰雪从C 处压折,塔尖恰好落在坡面上的点B 处,造成局部地区供电中断,为尽快抢通供电线路,专业维修人员迅速奔赴现场进行处理,在B 处测得BC 与水平线的夹角为45°,塔基A 所在斜坡与水平线的夹角为30°,A 、B 两点间的距离为16米,求压折前该输电铁塔的高度(结果保留根号).13. (湖北省鄂州市2022年)亚洲第一、中国唯一的航空货运枢纽一一鄂州花湖机场,于2022年3月19日完成首次全货运试飞,很多市民共同见证了这一历史时刻.如图,市民甲在C 处看见飞机A 的仰角为45°,同时另一市民乙在斜坡CF 上的D 处看见飞机A 的仰角为30°,若斜坡CF 的坡比=1:3,铅垂高度DG =30米(点E 、G 、C 、B 在同一水平线上).求:(1)两位市民甲、乙之间的距离CD ; (2)此时飞机的高度AB ,(结果保留根号)14. (四川省成都市2022年)2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角150AOB ∠=︒时,顶部边缘A 处离桌面的高度AC 的长为10cm ,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角108A OB '∠=︒时(点A '是A 的对应点),用眼舒适度较为理想.求此时顶部边缘A '处离桌面的高度A D '的长.(结果精确到1cm ;参考数据:sin720.95︒≈,cos720.31︒≈,tan72 3.08︒≈)15. (黑龙江省绥化市2022年)如图所示,为了测量百货大楼CD 顶部广告牌ED 的高度,在距离百货大楼30m 的A 处用仪器测得30DAC ∠=︒;向百货大楼的方向走10m ,到达B 处时,测得48EBC ∠=︒,仪器高度忽略不计,求广告牌ED 的高度.(结果保留小数点后一位)1.732≈,sin 480.743︒≈,cos480.669︒≈,tan 48 1.111︒≈)16. (四川省广元市2022年)如图,计划在山顶A 的正下方沿直线CD 方向开通穿山隧道EF .在点E 处测得山顶A 的仰角为45°,在距E 点80m 的C 处测得山顶A 的仰角为30°,从与F 点相距10m 的D 处测得山顶A 的仰角为45°,点C 、E 、F 、D 在同一直线上,求隧道EF 的长度.参考答案1. 【答案】古亭与古柳之间的距离AB 的长约为137m 【分析】过点B 作AD 的垂直,交DA 延长线于点C ,设m AC x =,则(50)m CD x =+,分别在Rt BCD 和Rt ABC △中,解直角三角形求出,BC AB 的长,再建立方程,解方程可得x 的值,由此即可得出答案. 【详解】解:如图,过点B 作AD 的垂直,交DA 延长线于点C , 由题意得:50m,60,45AD BAC D =∠=︒∠=︒, 设m AC x =,则(50)m CD AC AD x =+=+, 在Rt BCD 中,tan (50)m BC CD D x =⋅=+,在Rt ABC △中,tan m BC AC BAC =⋅∠=,2m cos ACAB x BAC==∠,则50x +=,解得25x =,则250137(m)AB x ==≈,答:古亭与古柳之间的距离AB 的长约为137m .2. 【答案】72cm 【分析】过点B 作BE AH ⊥于点E ,解Rt ,Rt ABE BED ,分别求得,AE ED ,进而求得AD ,根据黄金比求得DH ,求得AH 的长,即可求解. 【详解】如图,过点B 作BE AH ⊥于点EAB AC =,120BAC ∠=︒,AH 始终平分BAC ∠, 60BAE CAD ∴∠=∠=︒ 1cos60102AE AB AB ∴=︒⨯==,BE =,,AB AC BAD CAD AD AD =∠=∠=ADC ADB ∴≌ 90BDC ∠=︒ 45ADB ADC ∴∠=∠=︒BE ED ∴=1027.32AD AE ED ∴=+=+≈0.618DHAH≈ 0.618DHDH AD∴≈+解得44.2DH ≈27.3244.271.5272AH AD DH ∴=+=+=≈ 答:最少需要准备72cm 长的伞柄 3. 【答案】不穿过,理由见解析 【分析】先作AD ⊥BC ,再根据题意可知∠ACD=45°,∠ABD =30°,设CD =x ,可表示AD 和BD ,然后根据特殊角三角函数值列出方程,求出AD ,与800米比较得出答案即可. 【详解】不穿过,理由如下:过点A 作AD ⊥BC ,交BC 于点D ,根据题意可知∠ACD=45°,∠ABD =30°. 设CD =x ,则BD=2.4-x , 在Rt △ACD 中,∠ACD=45°, ∴∠CAD=45°, ∴AD=CD =x .在Rt △ABD 中,tan 30ADBD︒=,即2.4x x =-, 解得x =0.88,可知AD=0.88千米=880米,因为880米>800米,所以公路不穿过纪念园.4. 【答案】这艘轮船继续向正东方向航行是安全的,理由见解析 【分析】如图,过C 作CD ⊥AB 于点D ,根据方向角的定义及余角的性质求出∠BAC =30°,∠CBD =45°,解Rt △ACD 和Rt △BCD ,求出CD 即可. 【详解】解:过点C 作CD ⊥AB ,垂足为D .如图所示:根据题意可知∠BAC =90°−60°=30°,∠DBC =90°-45°=45°,AB =30×1=30(km ), 在Rt △BCD 中,∠CDB =90°,∠DBC =45°, tan ∠DBC =CD BD ,即CDBD=1 ∴CD =BD 设BD =CD =x km ,在Rt △ACD 中,∠CDA =90°,∠DAC =30°,∴tan ∠DAC =CD AD ,即30x x =+解得x, ∵40.98km>40km∴这艘船继续向东航行安全.5. 【答案】背水坡新起点A 与原起点B 之间的距离约为14.6m 【分析】通过解直角三角形Rt BCD 和Rt ACD ∆,分别求出AD 和BD 的长,由AB AD BD =-求出AB 的长. 【详解】解:在Rt BCD 中,∵背水坡BC 的坡度11:1i =,∴1CDBD=, ∴()20m BD CD ==.在Rt ACD ∆中,∵背水坡AC 的坡度2i = ∴CD AD =∴)m AD ==,∴()2014.6m AB AD BD =-=≈.答:背水坡新起点A 与原起点B 之间的距离约为14.6m . 6. 【答案】这座山AB 的高度约为112m 【分析】在Rt PAB 中,·tan AB PA APB =∠,在Rt PAC △中,·tan AC PA APC =∠,利用AC AB BC =+,即可列出等式求解. 【详解】解:如图,根据题意,324235BC APC APB ︒∠︒=∠==,,.在Rt PAC △中,tan ACAPC PA∠=, ∴tan ACPA APC=∠.在Rt PAB 中,tan AB APB PA∠=, ∴tan ABPA APB=∠.∵AC AB BC =+, ∴tan tan AB BC ABAPC APB+=∠∠.∴()tan 32tan 35320.70112m tan tan tan 42tan 350.900.70BC APB AB APC APB ⋅∠⨯︒⨯==≈=∠-∠︒-︒-.答:这座山AB 的高度约为112m . 7. 【答案】(1)证明见解析 (2)10.2米(3)tan tan 1.5tan tan m αβαβ⎛⎫+ ⎪-⎝⎭米 【分析】(1)根据图形和同角或等角的余角相等可以证明出结果;(2)根据锐角三角函数和题意,可以计算出PH 的长,注意最后的结果;(3)根据锐角三角函数和题目中的数据,可以用含αβ、、m 的式子表示出PH .(1)证明:∵9090,COG AON ∠=︒∠=︒∴POC CON GON CON ∠+∠=∠+∠∴POC GON ∠=∠(2)由题意得:KH =OQ =5米,OK =QH =1.5米,9060,OQP POQ ∠=︒∠=︒,在Rt △POQ 中tan ∠POQ =5PQ PQ OQ ==∴PQ =∴15102PH PQ QH =+=+≈..(米)故答案为:10.2米.(3)由题意得:1212, 1.5O O EF m O E O F DH m =====, 由图得:21==tan tan PD PD O D O D βα, 21tan tan PD PD O D O D βα==,, ∴1221O O O D O D =- ∴tan tan PD PD m βα=- ∴tan tan tan tan m PD αβαβ=- ∴tan tan 1.5tan tan m PH PD DH αβαβ⎛⎫=+=+ ⎪-⎝⎭米 故答案为:tan tan 1.5tan tan m αβαβ⎛⎫+ ⎪-⎝⎭米 8. 【答案】塔顶到地面的高度EF 约为47米【分析】延长EF 交AG 于点H ,则EH AG ⊥,过点B 作BP AG ⊥于点P ,则四边形BFHP 为矩形,设5BP x =,则12AP x =,根据解直角三角形建立方程求解即可.【详解】如图,延长EF 交AG 于点H ,则EH AG ⊥,过点B 作BP AG ⊥于点P ,则四边形BFHP 为矩形,∴FB HP =,FH BP =.由5:12i =,可设5BP x =,则12AP x =,由222BP AP AB +=可得()()22251226x x +=,解得2x =或2x =-(舍去),∴10BP FH ==,24AP =,设EF a =米,BF b =米,在Rt BEF △中tan EF EBF BF ∠=, 即tan 63.42a b︒=≈,则2a b =① 在Rt EAH 中,tan EH EF FH EF BP EAH AH AP PH AP BF++∠===++, 即10tan 50.2 1.2024a b +︒=≈+② 由①②得47a =,23.5b =.答:塔顶到地面的高度EF 约为47米.9. 【答案】(1)()米;【分析】(1)过点A 作AE ⊥l 于点E ,设CE =x ,在Rt △ADE 中可表示出DE ,在Rt △ACE 中可表示出AE ,通过解直角三角形ADE 求出x 即可;(2)过点B 作BF ⊥l ,垂足为F ,继而得出CE 的长,在Rt △BCF 中,求出CF ,继而可求出AB .(1)解:过点A 作AE ⊥l ,垂足为E ,设CE =x 米,∵CD =60米,∴DE =CE +CD =(x +60)米,∵∠ACB =15°,∠BCD =120°,∴∠ACE =180°﹣∠ACB ﹣∠BCD =45°,在Rt △AEC 中,AE =CE •tan 45°=x (米),在Rt △ADE 中,∠ADE =30°,∴tan 30°=AE ED =60x x + ∴x =,经检验:x =30是原方程的根,∴AE =(30)米,∴河的宽度为()米;(2)过点B 作BF ⊥l ,垂足为F ,则CE =AE =BF =()米,AB =EF ,∵∠BCD =120°,∴∠BCF =180°﹣∠BCD =60°,在Rt △BCF 中,CF =tan 60BF ︒= ∴AB =EF =CE ﹣CF =30﹣(∴古树A 、B 之间的距离为10. 【答案】82米【分析】设CD 的长为x ,可以得出BD 的长也为x ,从而表示出AD 的长度,然后利用解直角三角形中的正切列出方程求解即可.【详解】解:设CD 为x ,∵45CBD ∠=︒,∠CDB =90°,∴BD CD x ==,∴()60AD AB BD x =+=+,在Rt ACD 中,∠ADC =90°,∠DAC =30°,tan CD DAC AD∠=,即60x x =+ ∴30330x∴81.9m x =82m ≈.答:此建筑物的高度约为82m .11. 【答案】B ,D 间的距离为14nmile .【分析】如图,过点D 作DE ⊥AB 于点E ,根据题意可得,∠BAC =∠ABC =45°,∠BAD =60°,AD =10 nmile ,BC .再根据锐角三角函数即可求出B ,D 间的距离.【详解】解:如图,过点D 作DE ⊥AB 于点E ,根据题意可得,∠BAC =∠ABC =45°,∠BAD =60°,AD =10 nmile ,BC .在Rt △ABC 中,AC =BC∴AB =16(nmile),在Rt △ADE 中,AD =10 nmile ,∠EAD =60°,∴DE =AD , AE =12AD =5 (nmile), ∴BE =AB -AE =11(nmile),∴BD =14(nmile),答:B ,D 间的距离为14nmile .12. 【答案】(8+米【分析】过点B 作BD AC ⊥于点D ,在Rt △ABD 和Rt BCD 中,分别解直角三角形求出,,,AD BD CD BC 的长,由此即可得. 【详解】解:如图,过点B 作BD AC ⊥于点D ,由题意得:16AB =米,45,30,CBD E AC EF ∠=︒∠=︒⊥,BD EF ∴,30ABD E ∴∠=∠=︒,在Rt △ABD 中,182AD AB ==米,cos BD AB ABD =⋅∠=在Rt BCD 中,tan CD BD CBD =⋅∠=cos BD BC CBD ==∠则8AD CD BC ++=+答:压折前该输电铁塔的高度为(8+米.13. 【答案】(1)(2)()90米【分析】(1)先根据斜坡CF 的坡比=1:3,求出CG 的长,然后利用勾股定理求出CD 的长即可;(2)如图所示,过点D 作DH ⊥AB 于H ,则四边形BHDG 是矩形,BH =DG =30米,DH =BG ,证明AB =BC ,设AB =BC =x 米,则()30AH AB BH x =-=-米,()90DH BG CG BC x ==+=+米,解直角三角形得到3090x x -=+ (1)解:∵斜坡CF 的坡比=1:3,铅垂高度DG =30米, ∴13DG CG =, ∴90CG =米,∴CD ==米;(2)解:如图所示,过点D 作DH ⊥AB 于H ,则四边形BHDG 是矩形,∴BH =DG =30米,DH =BG ,∵∠ABC =90°,∠ACB =45°,∴△ABC 是等腰直角三角形,∴AB =BC ,设AB =BC =x 米,则()30AH AB BH x =-=-米,()90DH BG CG BC x ==+=+米, 在Rt △ADH中,tan AH ADH DH ∠==,∴3090x x -=+解得90x =,∴()90AB =米.14. 【答案】约为19cm【分析】在Rt △ACO 中,根据正弦函数可求OA =20cm ,在Rt △A DO '中,根据正弦函数求得A D '的值.【详解】解:在Rt △ACO 中,∠AOC =180°-∠AOB =30°,AC =10cm ,∴OA =10201sin 302OC,在Rt △A DO '中,18072A OC A OB ,20OA OA '==cm , ∴sin72200.9519A D OA cm .15. 【答案】4.9m【分析】 先求出BC 的长度,再分别在Rt △ADC 和Rt △BEC 中用锐角三角函数求出EC 、DC ,即可求解.【详解】根据题意有AC =30m ,AB =10m ,∠C =90°,则BC =AC -AB =30-10=20,在Rt △ADC 中,tan 30tan 3010DC AC A =⨯∠=⨯=,在Rt △BEC 中,tan 20tan 48EC BC EBC =⨯∠=⨯,∴20tan 4810DE EC DC =-=⨯-即20tan 481020 1.11110 1.732 4.9DE =⨯-⨯-⨯=故广告牌DE 的高度为4.9m .16. 【答案】隧道EF 的长度()30米.【分析】过点A 作AG ⊥CD 于点G ,然后根据题意易得AG =EG =DG ,则设AG =EG =DG =x ,进而根据三角函数可得出CG 的长,根据线段的和差关系则有80x +=,最后问题可求解.【详解】解:过点A 作AG ⊥CD 于点G ,如图所示:由题意得:80m,10m,45,30CE DF AEF ADE ACE ==∠=∠=︒∠=︒,∴△EAD 是等腰直角三角形,∴AG =EG =DG ,设AG =EG =DG =x ,∴tan 30AG CG ==︒,∴80x +=,解得:40x =,∴()40m AG EG DG ===,∴()401030m EF ED DF =-=-=;答:隧道EF 的长度()30米.。
人教版数学九年级下《解直角三角形的应用》测试题(含答案及解析)

人教版数学九年级下《解直角三角形的应用》测试题(含答案及解析)时间:100分钟总分:100题号一二三四总分得分1.小明应用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA的高度与拉绳PB的长度相等.小明将PB拉到PB′的位置,测得∠PB′C=α(B′C为水平线),测角仪B′D的高度为1米,那么旗杆PA的高度为()A. 11−sinαB. 11+sinαC. 11−cosαD. 11+cosα2.如图,长4m的楼梯AB的倾斜角∠ABD为60∘,为了改善楼梯的平安功用,预备重新建造楼梯,使其倾斜角∠ACD为45∘,那么调整后的楼梯AC的长为()A. 2√3mB. 2√6mC. (2√3−2)mD. (2√6−2)m3.一座楼梯的表示图如下图,BC是铅垂线,CA是水平线,BA与CA的夹角为θ.现要在楼梯上铺一条地毯,CA=4米,楼梯宽度1米,那么地毯的面积至少需求()A. (4+4sinθ)米 2B. 4米 2cosθ)米 2 D. (4+4tanθ)米 2C. (4+4tanθ4.上午9时,一条船从A处动身,以每小时40海里的速度向正西方向飞行,9时30分抵达B处(如图).从A、B两处区分测得小岛M在北偏东45∘和北偏西方15∘向,那么在B处船与小岛M的距离为()A. 20海里B. 20√2海里C. 15√3海里D. 20√3海里5.如图,某游乐场一山顶滑梯的高为h,滑梯的坡角为a,那么滑梯长m为()A. ℎsinαB. ℎtanαC. ℎcosαD. ℎ−sinα6.如下图,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔顶端A的仰角为30∘,再向电视塔方向行进120米到达F处,又测得电视塔顶端A的仰角为60∘,那么这个电视塔的高度AB(单位:米)为()A. 60√3B. 61C. 60√3+1D. 1217.某校八年级生物兴味小组租两艘快艇去微山湖生物调查,他们从同一码头动身,第一艘快艇沿北偏西方70∘向飞行50千米,第二艘快艇沿南偏西方20∘向飞行50千米,假设此时第一艘快艇不动,第二艘快艇向第一艘快艇靠拢,那么第二艘快艇飞行的方向和距离区分是()A. 南偏东25∘,50√2千米B. 北偏西25∘,50√2千米C. 南偏东70∘,100千米D. 北偏西20∘,100千米8.如图,一艘海轮位于灯塔P的南偏西方45∘向,距离灯塔60nmile的A处,它沿正南方向飞行一段时间后,抵达位于灯塔P的北偏西方30∘向上的B处,这时,B处与灯塔P的距离为()A. 60√3nmileB. 60√2nmileC. 30√3nmileD. 30√2nmile9.如图,一河坝的横断面为等腰梯形ABCD,坝顶宽10米,坝高12米,斜坡AB的坡度i=1:1.5,那么坝底AD的长度为()A. 26米B. 28米C. 30米D. 46米10.如图是某水库大坝的横截面表示图,AD//BC,且AD、BC之间的距离为15米,背水坡CD的坡度i=1:0.6,为提矮小坝的防洪才干,需对大坝停止加固,加固后大坝顶端AE比原来的顶端AD加宽了2米,背水坡EF的坡度i=3:4,那么大坝底端添加的长度CF是()米.A. 7B. 11C. 13D. 20二、填空题〔本大题共10小题,共30.0分〕11.为增强防汛任务,某市对一拦水坝停止加固,如图,加固前拦水坝的横断面是梯形ABCD.迎水坡面AB=12米,背水坡面CD=12√3米,∠B=60∘,加固后拦水坝的√3,那么CE的长为______ 米.横断面为梯形ABED,tanE=31312.如图,航拍无人机从A处测得一幢修建物顶部B的仰角为30∘,测得底部C的俯角为60∘,此时航拍无人机与该修建物的水平距离AD为90米,那么该修建物的高度BC约为______ 米.(准确到1米,参考数据:√3≈1.73)13.小明沿着坡度i为1:√3的直路向上走了50m,那么小明沿垂直方向降低了______m.14.如图,长4m的楼梯AB的倾斜角∠ABD为60∘,为了改善楼梯的平安功用,预备重新建造楼梯,使其倾斜角∠ACD为45∘,那么调整后楼梯AC长为______ 米.15.如图,一名滑雪运发动沿着倾斜角为34∘的斜坡,从A滑行至B,AB=500米,那么这名滑雪运发动的高度下降了______米.(参考数据:sin34∘≈0.56,cos34∘≈0.83,tan34∘≈0.67)16.如图,为测量某栋楼房AB的高度,在C点测得A点的仰角为30∘,朝楼房AB方向行进10米抵达点D,再次测得A点的仰角为60∘,那么此楼房的高度为______ 米(结果保管根号).17.如图,从热气球C处测无暇中A、B两点的俯角区分为30∘、45∘,假设此时热气球C处的高度为200米,点A、B、C在同不时线上,那么AB两点间的距离是______米(结果保管根号).18.如图,水库堤坝的横断面是梯形,测得BC长为30m,CD长为20√5m,斜坡AB的坡比为1:3,斜坡CD的坡比为1:2,那么坝底的宽AD为______m.19.如图,某堤坝的斜坡AB的斜角是α,坡度是1:√3,那么α=______.20.某兴味小组借助无人飞机航拍,如图,无人飞机从A处飞行至B处需12秒,在空中C处同一方向上区分测得A处的仰角为75∘,B处的仰角为30∘.无人飞机的飞行速度为3米/秒,那么这架无人飞机的飞行高度为(结果保管根号)______ 米.三、计算题〔本大题共4小题,共24.0分〕21.如图,某数学兴味小组要测量一栋五层居民楼CD的高度.该楼底层为车库,高2.5米;下面五层寓居,每层高度相等.测角仪支架离地1.5米,在A处测得五楼顶部点D的仰角为60∘,在B处测得四楼顶部点E的仰角为30∘,AB=14米.求居民楼的高度(准确到0.1米,参考数据:√3≈1.73)22.某兴味小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在空中C处同一方向上区分测得A处的仰角为75∘,B处的仰角为30∘.无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保管根号)23.如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18∘,教学楼底部B的俯角为20∘,量得实验楼与教学楼之间的距离AB= 30m.(1)求∠BCD的度数.(2)讨教学楼的高BD.(结果准确到0.1m,参考数据:tan20∘≈0.36,tan18∘≈0.32) 24.如图,在大楼AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30∘,小红在斜坡下的点C处测得楼顶B的仰角为60∘,在斜坡上的点D处测得楼顶B的仰角为45∘,其中点A、C、E在同不时线上.(1)求斜坡CD的高度DE;(2)求大楼AB的高度(结果保管根号)四、解答题〔本大题共2小题,共16.0分〕25.如图,大楼AB右侧有一阻碍物,在阻碍物的旁边有一幢小楼DE,在小楼的顶端D处测得阻碍物边缘点C的俯角为30∘,测得大楼顶端A的仰角为45∘(点B,C,E在同一水平直线上),AB=80m,DE=10m,求阻碍物B,C两点间的距离(结果准确到0.1m)(参考数据:√2≈1.414,√3≈1.732)26.如图,某湖中有一孤立的小岛,湖边有一条蜿蜒的观光小道AB,现决议从小岛架一座与观光小道垂直的小桥PQ通往小岛,某同窗在观光道AB上测得如下数据:AB=100米,∠PAB=45∘,∠PBA=30∘.央求出小桥PQ的长.(√2≈1.414,√3≈1.732,结果准确到0.1米)答案和解析【答案】1. A2. B3. D4. B5. A6. C7. B8. B9. D10. C11. 812. 20813. 2514. 2√615. 28016. 5√317. 200(√3+1)18. 13019. 30∘20. 9√3+921. 解:设每层楼高为x米,由题意得:MC′=MC−CC′=2.5−1.5=1米,∴DC′=5x+1,EC′=4x+1,在Rt△DC′A′中,∠DA′C′=60∘,∴C′A′=DC′tan60∘=√33(5x+1),在Rt△EC′B′中,∠EB′C′=30∘,∴C′B′=EC′tan30∘=√3(4x+1),∵A′B′=C′B′−C′A′=AB,∴√3(4x+1)−√33(5x+1)=14,解得:x≈3.17,那么居民楼高为5×3.17+2.5≈18.4米.22. 解:如图,作AD⊥BC,BH⊥水平线,由题意得:∠ACH=75∘,∠BCH=30∘,AB//CH,∴∠ABC=30∘,∠ACB=45∘,∵AB=32m,∴AD=CD=16m,BD=AB⋅cos30∘=16√3m,∴BC=CD+BD=(16√3+16)m,那么BH=BC⋅sin30∘=(8√3+8)m.23. 解:(1)过点C作CE⊥BD,那么有∠DCE=18∘,∠BCE=20∘,∴∠BCD=∠DCE+∠BCE=18∘+20∘=38∘;(2)由题意得:CE=AB=30m,在Rt△CBE中,BE=CE⋅tan20∘≈10.80m,在Rt△CDE中,DE=CD⋅tan18∘≈9.60m,∴教学楼的高BD=BE+DE=10.80+9.60≈20.4m,那么教学楼的高约为20.4m.24. 解:(1)在Rt△DCE中,DC=4米,∠DCE=30∘,∠DEC=90∘,∴DE=12DC=2米;(2)过D作DF⊥AB,交AB于点F,∵∠BFD=90∘,∠BDF=45∘,∴∠BFD=45∘,即△BFD为等腰直角三角形,设BF=DF=x米,∵四边形DEAF为矩形,∴AF=DE=2米,即AB=(x+2)米,在Rt△ABC中,∠ABC=30∘,∴BC=ABcos30∘=x+2√32=2x+4√3=√3(2x+4)3米,BD=√2BF=√2x米,DC=4米,∵∠DCE=30∘,∠ACB=60∘,∴∠DCB=90∘,在Rt△BCD中,依据勾股定理得:2x2=(2x+4)23+16,解得:x=4+4√3,那么AB=(6+4√3)米.25. 解:如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.那么DE=BF=CH=10m,在直角△ADF中,∵AF=80m−10m=70m,∠ADF=45∘,∴DF=AF=70m.在直角△CDE中,∵DE=10m,∠DCE=30∘,∴CE=DEtan30∘=10√33=10√3(m),∴BC=BE−CE=70−10√3≈70−17.32≈52.7(m).答:阻碍物B,C两点间的距离约为52.7m.26. 解:设PQ=x米,在直角△PAQ中,tan∠PAQ=x AQ,∴AQ=xtan45∘=x,在直角△PBQ中,tan∠PBQ=x BQ,∴BQ=xtan30∘=√3x,∵AB=100米,∴x+√3x=100,解得:x=50√3−50≈36.6(米).答:小桥PQ的长度约是36.6米.【解析】1. 解:设PA=PB=PB′=x,在RT△PCB′中,,∴x−1x=sinα,∴x−1=xsinα,∴(1−sinα)x=1,∴x=11−sinα.应选:A.设PA=PB=PB′=x,在RT△PCB′中,依据,列出方程即可处置效果.此题考察解直角三角形、三角函数等知识,解题的关键是设未知数列方程,属于中考常考题型.2. 解:在Rt△ABD中,∵sin∠ABD=ADAB,∴AD=4sin60∘=2√3(m),在Rt△ACD中,∵sin∠ACD=ADAC,∴AC=2√3sin45∘=2√6(m).应选B.先在Rt△ABD中应用正弦的定义计算出AD,然后在Rt△ACD中应用正弦的定义计算AC即可.此题考察了解直角三角形的运用−坡度坡角:坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的峻峭水平,普通用i表示,常写成i=1:m的方式.把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=tanα.3. 解:在Rt△ABC中,BC=AC⋅tanθ=4tanθ(米),∴AC+BC=4+4tanθ(米),∴地毯的面积至少需求1×(4+4tanθ)=4+4tanθ(米 2);应选:D.由三角函数表示出BC,得出AC+BC的长度,由矩形的面积即可得出结果.此题考察了解直角三角形的运用、矩形面积的计算;由三角函数表示出BC是处置效果的关键.4. 解:如图,过点B作BN⊥AM于点N.=20海里,∠ABM=105∘.由题意得,AB=40×12作BN⊥AM于点N.在直角三角形ABN中,BN=AB⋅sin45∘=10√2.在直角△BNM中,∠MBN=60∘,那么∠M=30∘,所以BM=2BN=20√2(海里).应选B.过点B作BN⊥AM于点N.依据三角函数求BN的长,从而求BM的长.解普通三角形,求三角形的边或高的效果普通可以转化为解直角三角形的效果,处置的方法就是作高线.5. 解:∵sina=ℎ,m∴m=ℎ.sina应选A.依据三角函数的定义即可求解.此题考察了三角函数的定义,了解定义是关键.6. 【剖析】依据题意求出CE的长,依据三角形的外角的性质和等腰三角形的性质求出AE的长,依据正弦的定义计算即可.此题考察的是解直角三角形的运用−仰角俯角效果,了解仰角的概念、熟记锐角三角函数的定义是解题的关键.【解答】解:由题意得,CE=DF=120m,∠EAC=∠AEG−∠ACE=30∘,∴∠EAC=∠ECA,∴AE=DF=120m,∴AG=AE×sin∠AEG=60√3m,∴AB=AG+GB=(60√3+1)m.应选:C.7. 解:∵第一艘快艇沿北偏西方70∘向,第二艘快艇沿南偏西方20∘向,∴∠BOA=90∘,∵BO=AO=50km,∴AB=50√2km,∠B=∠OAB=45∘,∵第二艘快艇沿南偏西方20∘向,∴∠1=∠CAO=20∘,∴∠2=45∘−20∘=25∘,∴第二艘快艇飞行的方向和距离区分是:北偏西25∘,50√2千米.应选:B.依据题意得出AO=BO以及∠BOA=90∘,进而得出第二艘快艇飞行的方向和距离.此题主要考察了方向角以及勾股定理,正确掌握方向角的定义是解题关键.8. 解:如图作PE⊥AB于E.在Rt△PAE中,∵∠PAE=45∘,PA=60nmile,∴PE=AE=√22×60=30√2nmile,在Rt△PBE中,∵∠B=30∘,∴PB=2PE=60√2nmile,应选:B.如图作PE⊥AB于E.在Rt△PAE中,求出PE,在Rt△PBE中,依据PB=2PE即可处置效果.此题考察方向角、直角三角形、锐角三角函数的有关知识.解普通三角形的效果普通可以转化为解直角三角形的效果,处置的方法就是作高线.9. 解:∵坝高12米,斜坡AB的坡度i=1:1.5,∴AE=1.5BE=18米,∵BC=10米,∴AD=2AE+BC=2×18+10=46米,应选:D.先依据坡比求得AE的长,CB=10m,即可求得AD.此题考察了解直角三角形的运用中的坡度坡角的效果及等腰梯形的性质的掌握状况,将相关的知识点相结合更利于解题.10. 解:过D作DG⊥BC于G,EH⊥BC于H,∴GH=DE=2,∵DG=EH=15,背水坡CD的坡度i=1:0.6,背水坡EF的坡度i=3:4,∴CG=9,HF=20,∴CF=GH+HF−CG=13米,应选C.过D作DG⊥BC于G,EH⊥BC于H,解直角三角形即可失掉结论.此题考察了解直角三角形的运用,解答此题的关键是了解坡度、坡比的含义,结构直角三角形,应用三角函数表示相关线段的长度,难度普通.11. 解:区分过A、D作AF⊥BC,DG⊥BC,垂点区分为F、G,如下图.∵在Rt△ABF中,AB=12米,∠B=60∘,∴sin∠B=AFAB,∴AF=12×√32=6√3,∴DG=6√3.∵在Rt△DGC中,CD=12√3,DG=6√3米,∴GC=√CD2−DG2=18.∵在Rt△DEG中,tanE=313√3,∴6√3GE =313√3,∴GE=26,∴CE=GE−CG=26−18=8.即CE的长为8米.故答案为8.区分过A、D作下底的垂线,设垂足为F、G.在Rt△ABF中,坡面长和坡角的度数,可求得铅直高度AF的值,也就失掉了DG的长;在Rt△CDG中,由勾股定理求CG的长,在Rt△DEG中,依据正切函数定义失掉GE的长;依据CE=GE−CG即可求解.此题考察的是解直角三角形的运用−坡度坡角效果,锐角三角函数的定义,勾股定理.作辅佐线结构直角三角形是解答此类题的普通思绪.12. 解:由题意可得:tan30∘=BDAD =BD90=√33,解得:BD=30√3,tan60∘=DCAD =DC90=√3,解得:DC=90√3,故该修建物的高度为:BC=BD+DC=120√3≈208(m),故答案为:208.区分应用锐角三角函数关系得出BD,DC的长,进而求出该修建物的高度.此题主要考察了解直角三角形的运用,熟练运用锐角三角函数关系是解题关键.13. 解:如图,过点B作BE⊥AC于点E,∵坡度:i=1:√3,∴tan∠A=1:√3=√33,∴∠A=30∘,∵AB=50m,∴BE=12AB=25(m).∴他降低了25m.故答案为:25.首先依据题意画出图形,由坡度为1:√3,可求得坡角∠A=30∘,又由小明沿着坡度为1:√3的山坡向上走了50m,依据直角三角形中,30∘所对的直角边是斜边的一半,即可求得答案.此题考察了坡度坡角效果.此题比拟复杂,留意能结构直角三角形并用解直角三角形的知识求解是解此题的关键,留意数形结合思想的运用.14. 解:在Rt△ABD中,∵sin∠ABD=ADAB,∴AD=4sin60∘=2√3(m),在Rt△ACD中,∵sin∠ACD=ADAC,∴AC=2√3sin45∘=2√6(m).故答案是:2√6.先在Rt△ABD中应用正弦的定义计算出AD,然后在Rt△ACD中应用正弦的定义计算AC即可.此题考察了解直角三角形的实践运用中的坡度坡角效果,难度不大,留意细心运算即可.15. 解:如图在Rt△ABC中,AC=AB⋅sin34∘=500×0.56≈280m,∴这名滑雪运发动的高度下降了280m.故答案为280如图在Rt△ABC中,AC=AB⋅sin34∘=500×0.56≈280m,可知这名滑雪运发动的高度下降了280m.此题考察解直角三角形、坡度坡角效果、锐角三角函数等知识,解题的关键是熟练掌握锐角三角函数的定义,属于中考常考题型.16. 解:∵在直角三角形ADB中,∠D=30∘,∴ABBD=tan30∘,∴BD=ABtan30∘=√3AB,∵在直角三角形ABC中,∠ACB=60∘,∴BC=ABtan60∘=√33AB,∵CD=10,∴CD=BD−BC=√3AB−√33AB=10,解得:AB=5√3.故答案为:5√3.首先依据题意剖析图形;此题触及到两个直角三角形,应应用其公共边AB及CD=BD−BC=10结构方程关系式,进而可解,即可求出答案.此题考察解直角三角形的运用−仰角俯角效果,要求先生能借助仰角结构直角三角形,并结合图形应用三角函数解直角三角形.17. 解:∵从热气球C处测无暇中A、B两点的俯角区分为30∘、45∘,∴∠BCD=90∘−45∘=45∘,∠ACD=90∘−30∘=60∘,∵CD⊥AB,CD=200m,∴△BCD是等腰直角三角形,∴BD=CD=200m,在Rt△ACD中,CD=200m,∠ACD=60∘,∴AD=CD⋅tan60∘=200×√3=200√3m,∴AB=AD+BD=200√3+200=200(√3+1)m.故答案为:200(√3+1).先依据从热气球C处测无暇中A、B两点的俯角区分为30∘、45∘可求出∠BCD与∠ACD的度数,再由直角三角形的性质求出AD与BD的长,依据AB=AD+BD即可得出结论.此题考察的是解直角三角形的运用−仰角俯角效果,熟知锐角三角函数的定义是解答此题的关键.18. 解:作BE⊥AD于E,CF⊥AD于F,∵斜坡CD的坡比为1:2,即CFDF =12,∴DF=2CF,又CD=20√5m,∴CF=20m,DF=40m,由题意得,四边形BEFC是矩形,∴BE=CF=20m,EF=BC=30m,∵斜坡AB的坡比为1:3,∴BEAE =13,即AE=3BE=60m,∴AD=AE+EF+DF=130m,故答案为:130m.作BE⊥AD于E,CF⊥AD于F,依据坡度的概念区分求出AE、DF,结合图形计算即可.此题考察的是解直角三角形的运用−坡度坡角效果,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键,掌握矩形的判定和性质的运用.19. 解:tanα=1:√3,那么α=30∘.故答案是:30∘.依据坡度就是坡角的正切值即可求解.此题主要考察了坡度的定义,了解坡度和坡角的关系是解题的关键.20. 解:如图,作AD⊥BC,BH⊥水平线,由题意得:∠ACH=75∘,∠BCH=30∘,AB//CH,∴∠ABC=30∘,∠ACB=45∘,∵AB=3×12=36m,∴AD=CD=18m,BD=AB⋅cos30∘=18√3m,∴BC=CD+BD=(18√3+18)m,∴BH=BC⋅sin30∘=(9√3+9)m.故答案为:9√3+9.作AD⊥BC,BH⊥水平线,依据题意确定出∠ABC与∠ACB的度数,应用锐角三角函数定义求出AD与BD的长,由CD+BD求出BC的长,即可求出BH的长.此题考察了解直角三角形的运用−仰角俯角效果,熟练掌握锐角三角函数定义是解此题的关键.21. 设每层楼高为x米,由MC−CC′求出MC′的长,进而表示出DC′与EC′的长,在直角三角形DC′A′中,应用锐角三角函数定义表示出C′A′,同理表示出C′B′,由C′B′−C′A′求出AB的长即可.此题属于解直角三角形的运用−仰角俯角效果,熟练掌握锐角三角函数定义是解此题的关键.22. 如图,作AD⊥BC,BH⊥水平线,依据题意确定出∠ABC与∠ACB的度数,应用锐角三角函数定义求出AD与BD的长,由CD+BD求出BC的长,即可求出BH的长.此题考察了解直角三角形的运用−仰角俯角效果,熟练掌握锐角三角函数定义是解此题的关键.23. (1)过点C作CE与BD垂直,依据题意确定出所求角度数即可;(2)在直角三角形CBE中,应用锐角三角函数定义求出BE的长,在直角三角形CDE中,应用锐角三角函数定义求出DE的长,由BE+DE求出BD的长,即为教学楼的高.此题考察了解直角三角形的运用−仰角俯角效果,熟练掌握锐角三角函数定义是解此题的关键.24. (1)在直角三角形DCE中,应用锐角三角函数定义求出DE的长即可;(2)过D作DF垂直于AB,交AB于点F,可得出三角形BDF为等腰直角三角形,设BF= DF=x,表示出BC,BD,DC,由题意失掉三角形BCD为直角三角形,应用勾股定理列出关于x的方程,求出方程的解失掉x的值,即可确定出AB的长.此题考察了解直角三角形−仰角俯角效果,坡度坡角效果,熟练掌握勾股定理是解此题的关键.25. 如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.经过解直角△AFD失掉DF的长度;经过解直角△DCE失掉CE的长度,那么BC=BE−CE.此题考察了解直角三角形−仰角俯角效果.要求先生能借助仰角结构直角三角形并解直角三角形.26. 设PQ=x米,在直角△PAQ和直角△PBQ中区分应用x表示出AQ和BQ的长,依据AB=AQ+BQ,即可列方程求得x的值.此题考察了解直角三角形的运用,解答此题的关键是结构直角三角形,应用三角函数表示出相关线段的长度,难度普通.。
中考数学专题复习生活中的解直角三角形问题赏析试题

卜人入州八九几市潮王学校无棣县埕口中考数学专题复习生活中的解直角三角形问题赏析例1、〔〕图1是小明在健身器材上进展仰卧起坐锻炼时情景.图2是小明锻炼时上半身由位置运动到与地面垂直的位置时的示意图.米,米,米.〔1〕求的倾斜角的度数〔准确到〕;〔2〕假设测得米,试计算小明头顶由点运动到点的途径弧的长度〔准确到〕 作,分别交延长线于.从而把问题转化为在中,,求即倾斜角.求得后易求度数,从而求得弧的长度. 解:〔1〕过作,分别交延长线于.,,.四边形为矩形..在中,,.即的倾斜角度数约为.〔2〕,..∴弧的长〔米〕.答:小明头顶运动的途径弧的长约为. 图1 BC EDA M NF H 图2例2、()某商场门前的台阶截面如图3所示.每级台阶的宽度(如CD)均为30cm ,高度(如BE)均为20cm .为了方便残疾人行走,商场决定将其中一个门的门前台阶改造成供轮椅行走的斜坡,并且设计斜坡的倾斜角为9°.请计算从斜坡起点A 到台阶前的点B 的程度间隔.(参考数据:sin9°≈0.16,cos9°≈0.99,tan9°≈0.16)线于点,由条件易知的值,由的正切函数可求的值,从而求得的值. 解:过作,交的延长线于点.由条件,得,.在中,..〔cm 〕.答:从斜坡起点到台阶前点的间隔为410cm . 例3、〔〕如图4,一枚运载HY 从地面处发射,当HY 到达点时,从地面处的雷达站测得的间隔是,仰角是.后,HY 到达点,此时测得的间隔是,仰角为,解答以下问题:〔1〕HY 到达点时间隔发射点有多远〔准确到〕?〔2〕HY 从点到点的平均速度是多少〔准确到/s 〕?解析:〔1〕在中,〔km 〕∴HY 到达点时距发射点约.〔2〕在中,A B图3F图4答:HY从点到点的平均速度约为.由以上例题的解析可知,同学们应进一步增强应用意识,联络实际,综合运用知识,抽象概括,构建数学模型,使之转化为解直角三角形问题,从而到达解决实际问题的目的.。
九年级数学中考专题--解直角三角形 精炼卷(含答案)

九年级数学中考专题--解直角三角形精炼卷1.如图,在Rt△ACB中,∠ACB=90°,CD为AB边上的高,BD=3,AD=,求sin A,cos A,tan A的值.2.如图,有一段斜坡BC长为30米,坡角∠CBD=30°,为方便车辆通行,现准备把坡角降为∠CAD=15°.(1)求坡高CD;(2)求tan75°的值(结果保留根号)3.如图,在Rt△ACB中,∠C=90°,AB=3,BC=1,求∠A的三角函数值.4.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.(1)求∠BPQ的度数;(2)求该电线杆PQ的高度(结果精确到1m).备用数据:,5.如图,某城市市民广场一入口处有五级高度相等的小台阶.已知台阶总高1.5米,为了安全现要作一个不锈钢扶手AB及两根与FG垂直且长为1米的不锈钢架杆AD和BC(杆子的地段分别为D、C),且∠DAB=66.5°.(参考数据:cos66.5°≈0.40,sin66.5°≈0.92)(1)求点D与点C的高度DH;(2)求所有不锈钢材料的总长度(即AD+AB+BC的长,结果精确到0.1米)6.如图,两条互相平行的河岸,在河岸一边测得AB为20米,在另一边测得CD为70米,用测角器测得∠ACD=30°,测得∠BDC=45°,求两条河岸之间的距离.(≈1.7,结果保留整数)7.如图,在南北方向的海岸线MN上,有A.B两艘巡逻船,现均收到故障船C的求救信号.已3知A.B两船相距100(+1)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.(1)分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号);(2)已知距观测点D处100海里范围内有暗礁,若巡逻船A沿直线AC航行去营救船C,在去营23救的途中有无触暗礁危险(参考数据:≈1.41,≈1.73)?8.如图,已知斜坡AP的坡度为1:2.4,坡长AP为26米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PQ的距离;(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)9.某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆桥?请说明理由.10.如图,已知在△ABC中,∠ABC=30°,BC=8,sin∠A=,BD是AC边上的中线.求:(1)△ABC的面积;(2)∠ABD的余切值.11.如图,为测量一座山峰CF的高度,将此山的某侧山坡划分为AB和BC两段,每一段山坡近似是“直”的,测得坡长AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.(1)求AB段山坡的高度EF;(2)求山峰的高度CF.( 1.414,CF结果精确到米)12.如图,地面上两个村庄C、D处于同一水平线上,一飞行器在空中以6千米/小时的速度沿MN方向水平飞行,航线MN与C、D在同一铅直平面内.当该飞行器飞行至村庄C的正上方A处时,测得∠NAD=60°;该飞行器从A处飞行40分钟至B处时,测得∠ABD=75°.求村庄C、D 间的距离(取1.73,结果精确到0.1千米)13.如图,小明在自家楼顶上的点A处测量建在与小明家楼房同一水平线上邻居的电梯的高度,测得电梯楼顶部B处的仰角为45°,底部C处的俯角为26°,已知小明家楼房的高度AD=15米,求电梯楼的高度BC(结果精确到0.1米)(参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49)14.如图,河的两岸l1与l2相互平行,A.B是l1上的两点,C、D是l2上的两点,某人在点A 处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求C、D两点间的距离.15.如图,甲、乙两数学兴趣小组测量山CD 的高度. 甲小组在地面A处测量,乙小组在上坡B处测量,AB=200 m. 甲小组测得山顶D的仰角为45°,山坡B处的仰角为30°;乙小组测得山顶D的仰角为58°. 求山CD的高度(结果保留一位小数).参考数据:,,供选用.参考答案1.解:∵∠ACB=90°,CD⊥AB,∴△ACD∽△CBD,∴CD2=AD·DB=16,∴CD=4,∴AC=.∴sin A==,cos A =,tan A=.2.解:(1)∵∠CDB=90°,∠CBD=30°,BC=30米,∴CD=15米,即坡高CD为15米;(2))∵∠CDB=90°,∠CBD=30°,∠CAD=15°,∴∠BCD=60°,∠BCA=15°,∴∠ACD=75°,AB=BC,∵BC=30米,∴AB=30米,BD=BC•sin60°=30×=15米,CD=15米,∴tan∠ACD=,即tan75°=2+.3.提示:sin A=,cos A=,tan A=.4.5.解:(1)DH=1.5米×=1.2米;(2)过B作BM⊥AD于M,在矩形BCHM中,MH=BC=1米,AM=AD+DH﹣MH=1米+1.2米﹣1米=1.2米=1.2米,在Rt△AMB中,AB=≈3.0米,所以有不锈钢材料的总长度为1米+3.0米+1米=5.0米.6.解:如图,分别过点A.B作CD的垂线交CD于点E、F,令两条河岸之间的距离为h.∵AE⊥CD,BF⊥CD,AB∥CD,AB=20,∴AE=BF=h,EF=AB=20.在Rt△ACE中,∵∠AEC=90°,∠ACE=30°,∴tan∠ACE=,即tan30°=,∴CE=h.在Rt△BDF中,∵∠BFD=90°,∠BDF=45°,∴DF=BF=h.∵CD=70,∴CE+EF+FD=70,∴h+20+h=70,∴h=25(﹣1)≈18.答:两条河岸之间的距离约为18米.7.解:8.解:(1)过点A作AH⊥PQ,垂足为点H.∵斜坡AP的坡度为1:2.4,∴AH:PH=5:12,设AH=5km,则PH=12km,由勾股定理,得AP=13km.∴13k=26m.解得k=2.∴AH=10m.答:坡顶A到地面PQ的距离为10m.(2)延长BC交PQ于点D.∵BC⊥AC,AC∥PQ,∴BD⊥PQ.∴四边形AHDC是矩形,CD=AH=10,AC=DH.∵∠BPD=45°,∴PD=BD.设BC=x,则x+10=24+DH.∴AC=DH=x﹣14.在Rt△ABC中,tan76°=BC:AC,即x:(x-14)≈4.0,解得x≈19,答:古塔BC的高度约为19米.9.解:(1)∵新坡面的坡度为1:,∴tanα=tan∠CAB==,∴∠α=30°.答:新坡面的坡角a为30°;(2)文化墙PM不需要拆除.过点C作CD⊥AB于点D,则CD=6,∵坡面BC的坡度为1:1,新坡面的坡度为1:,∴BD=CD=6,AD=6,∴AB=AD﹣BD=6﹣6<8,∴文化墙PM不需要拆除.(2)过点D作DH⊥AB与点H知DH∥CE,由D是AC中点可得HE=AE、DH=CE.10.解:(1)如图,过点C作CE⊥AB与点E,在RT△BCE中,∵BC=8,∠ABC=30°,∴BE=BC•cos∠ABC=8×=4,CE=BC•sin∠ABC=8×=4,在RT△ACE中,∵sin∠A=,∴AC===4,∴AE===8,则AB=AE+BE=8+4,故S△ABC=•AB•CE=×(8+4)×4=16+8;(2)过点D作DH⊥AB与点H,∵CE⊥AB,∴DH∥CE,又∵D是AC中点,∴AH=HE=AE=4,DH=CE=2,∴在RT△BDH中,cot∠ABD===2+2.11.解:(1)作BH⊥AF于H,如图,在Rt△ABF中,∵sin∠BAH=,∴BH=800•sin30°=400,∴EF=BH=400m;(2)在Rt△CBE中,∵sin∠CBE=,∴CE=200•sin45°=100≈141.4,∴CF=CE+EF=141.4+400≈541(m).答:AB段山坡高度为400米,山CF的高度约为541米.12.解:过B作BE⊥AD于E,∵∠NAD=60°,∠ABD=75°,∴∠ADB=45°,∵AB=6×=4,∴AE=2.BE=2,∴DE=BE=2,∴AD=2+2,∵∠C=90,∠CAD=30°,∴CD=AD=1+.13.解:过点A作AE⊥BC于E,∵AD⊥CD,BC⊥CD,∴四边形ADCE是矩形,∴CE=AD=15米,在Rt△ACE中,AE==≈30.6(米),在Rt△ABE中,BE=AE•tan45°=30.6(米),∴BC=CE+BE=15+30.6=45.6(米).答:电梯楼的高度BC为45.6米.14.解:过点D作l1的垂线,垂足为F,∵∠DEB=60°,∠DAB=30°,∴∠ADE=∠DEB﹣∠DAB=30°,∴△ADE为等腰三角形,∴DE=AE=20,在Rt△DEF中,EF=DE•cos60°=20×=10,∵DF⊥AF,∴∠DFB=90°,∴AC∥DF,由已知l1∥l2,∴CD∥AF,∴四边形ACDF为矩形,CD=AF=AE+EF=30,答:C、D两点间的距离为30m.15.解:过B作BE⊥AC,BF⊥DC,E,F为垂足.根据题意,有∠DAC=45°,∠BAC=30°,∠DBF=58°,AB=200.∵ BE⊥AC,BF⊥DC,DC⊥AC,∴四边形BECF是矩形.∴,.设BF=x,则CE=BF=x.在Rt△ABE中,,,∴,.在Rt△DBF中,,∴.在Rt△DAC中,∠DAC=45°,∴ AC=DC. 即∴. 解得,.∴. 答:山高约为295.2 m.。
2020年九年级数学中考复习题型 解直角三角形(带答案)

解直角三角形题型一 利用勾股定理求面积例 1.在Rt AED ∆中,90E ∠=︒,3AE =,4ED =,以AD 为边在AED ∆的外侧作正方形ABCD ,则正方形ABCD 的面积是( )A .5B .25C .7D .10【解析】根据勾股定理得到225AD AE DE =+=,根据正方形的面积公式即可得到结论.【答案】解:在Rt AED ∆中,90E ∠=︒,3AE =,4ED =,225AD AE DE ∴=+=,四边形ABCD 是正方形,∴正方形ABCD 的面积22525AD ===,故选:B .变式训练1.如图,图中所有的三角形都是直角三角形,四边形都是正方形,其中最大正方形E 的边长为10,则四个正方形A ,B ,C ,D 的面积之和为( )A .24B .56C .121D .100【解析】根据正方形的性质和勾股定理的几何意义解答即可.【答案】解:根据勾股定理的几何意义,可知:E F G S S S =+A B C D S S S S =+++100=;即四个正方形A ,B ,C ,D 的面积之和为100;故选:D .题型二 勾股定理逆定理的应用例2-1.在以线段a ,b ,c 的长三边的三角形中,不能构成直角三角形的是( )A .4a =,5b =,6c =B .::5:12:13a b c =C .2a =,3b =,5c =D .4a =,5b =,3c =【解析】知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.【答案】解:A .222456+≠,不能构成直角三角形,故本选项符合题意;B .设三角形三边为5k ,12k ,13k ,2(5)(k +2212)(13)k k =,能构成直角三角形,故本选项不符合题意;C .(22)(+23)(=25),能构成直角三角形,故本选项不符合题意;D .222345+=,能构成直角三角形,故本选项不符合题意;故选:A .例2-2.如图,已知在四边形ABCD 中,20AB cm =,15BC cm =,7CD cm =,24AD cm =,90ABC ∠=︒.(1)连结AC ,求AC 的长;(2)求ADC ∠的度数;(3)求出四边形ABCD 的面积【解析】(1)连接AC ,利用勾股定理解答即可;(2)利用勾股定理的逆定理解答即可;(3)根据三角形的面积公式解答即可.【答案】解:(1)连接AC ,在Rt ABC ∆中,90ABC ∠=︒,20AB cm =,15BC cm =,∴由勾股定理可得:2222201525AC AB BC cm ++=;(2)在ADC ∆中,7CD cm =,24AD cm =,222CD AD AC ∴+=,90ADC ∴∠=︒;(3)由(2)知,90ADC ∠=︒,∴四边形ABCD 的面积2112015724234()22ABC ACD S S cm ∆∆=+=⨯⨯+⨯⨯=. 变式训练1.下列说法中,正确的有( )①如果0A B C ∠+∠-∠=,那么ABC ∆是直角三角形;②如果::5:12:13A B C ∠∠∠=,则ABC ∆是直角三角形; 71017ABC ∆为直角三角形;④如果三角形三边长分别是24n -、4n 、24(2)n n +>,则ABC ∆是直角三角形;A .1个B .2个C .3个D .4个【解析】根据直角三角形的判定进行分析,从而得到答案.【答案】解:①正确,由三角形内角和定理可求出C ∠为90度;②不正确,因为根据三角形的内角和得不到90︒的角;7x ,10x 17x ,则有2271017x +=;④正确,因为222(4)(4)(4)n n n -+=+.所以正确的有三个.故选:C .变式训练2.如图,在四边形ABCD 中,已知12AB =,9BC =,90ABC ∠=︒,且39CD =,36DA =.求四边形ABCD 的面积.【解析】连接AC ,在Rt ADC ∆中,已知AB ,BC 的长,运用勾股定理可求出AC 的长,在ADC ∆中,已知三边长,运用勾股定理逆定理,可得此三角形为直角三角形,故四边形ABCD 的面积为Rt ACD ∆与Rt ABC ∆的面积之差.【答案】解:连接AC ,90ABC ∠=︒,12AB =,9BC =,15AC ∴=,39CD =,36DA =,222215361521AC DA +=+=,22391521CD ==,ADC ∴∆为直角三角形,ACD ABC ABCD S S S ∆∆∴=-四边形1122AC AD AB BC =⨯-⨯ 11153612922=⨯⨯-⨯⨯ 27054=-216=.故四边形ABCD 的面积为216.题型三 利用勾股定理求最短路径例3.如图,一圆柱高BC 为20cm ,底面周长是10cm ,一只蚂蚁从点A 爬到点P 处吃食,且35PC BC =,则最短路线长为( )A.20cm B.13cm C.14cm D.18cm【解析】根据题意画出图形,连接AP,则AP就是蚂蚁爬行的最短路线长,根据勾股定理求出AP即可.【答案】解:如图展开,连接AP,则AP就是蚂蚁爬行的最短路线长,则90C∠=︒,11052AC cm cm=⨯=,20BC cm=,35PC BC=,12CP cm∴=,由勾股定理得:222251213()AP AC CP cm=+=+=,即蚂蚁爬行的最短路线长是13cm,故选:B.变式训练1.如图,三级台阶,每一级的长、宽、高分别为8dm、3dm、2dm.A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为()A.15 dm B.17 dm C.20 dm D.25 dm【解析】先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.【答案】解:三级台阶平面展开图为长方形,长为8dm,宽为(23)3dm+⨯,则蚂蚁沿台阶面爬行到B 点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B 点最短路程为xdm ,由勾股定理得:22228[(23)3]17x =++⨯=,解得17x =.故选:B .变式训练 2.如图,长方体的底面边长为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达B ,那么所用细线最短需要( )A .12cmB .11cmC .10cmD .9cm【解析】要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【答案】解:将长方体展开,连接A 、B ',则13138()AA cm '=+++=,6A B cm ''=,根据两点之间线段最短,228610AB cm '=+=.故选:C .变式训练3.如图,桌上有一个圆柱形玻璃杯(无盖)高6厘米,底面周长16厘米,在杯口内壁离杯口1.5厘米的A 处有一滴蜜糖,在玻璃杯的外壁,A 的相对方向有一小虫P ,小虫离杯底的垂直距离为1.5厘米,小虫爬到蜜糖A 处的最短距离是( )A .73厘米B .10厘米C .82厘米D .8厘米【解析】由于小虫从外壁进入内壁,要先到杯子上沿,再进入杯子,故先求出到杯子沿的最短距离即可解答.【答案】解:如图所示:最短路径为:P A '→,将圆柱展开,2222(162)(6 1.5 1.5)10PA PE EA cm ''=+=÷+-+=,最短路程为10PA cm '=.故选:B .题型四 利用勾股定理解折叠问题例4.如图,有一块直角三角形纸片,两直角边6AC cm =,8BC cm =,将纸片沿AD 折叠,直角边AC 恰好落在斜边上,且与AE 重合,求BDE ∆的面积.【解析】由勾股定理可求AB 的长,由折叠的性质可得6AC AE cm ==,90DEB ∠=︒,由勾股定理可求DE 的长,由三角形的面积公式可求解.【答案】解:6AC cm =,8BC cm =2210AB AC CB cm ∴=+=将纸片沿AD 折叠,直角边AC 恰好落在斜边上,且与AE 重合,6AC AE cm ∴==,90DEB ∠=︒1064BE cm ∴=-=设CD DE x ==,则在Rt DEB ∆中,2224(8)x x +=-解得3x =,即DE 等于3cmBDE ∴∆的面积14362=⨯⨯= 答:BDE ∆的面积为26cm变式训练1.如图,把长为12cm 的纸条ABCD 沿EF ,GH 同时折叠,B 、C 两点恰好落在AD 边的P 点处,且90FPH ∠=︒,3BF cm =,求FH 的长.【解析】由翻折不变性可知:BF PF =,CH PH =,设FH x cm =,则(9)PH x cm =-,在Rt PFH ∆中,根据222FH PH PF =+,构建方程即可解决问题.【答案】解:由翻折不变性可知:BF PF =,CH PH =,设FH x cm =,则(9)PH x cm =-,在Rt PFH ∆中,90FPH ∠=︒,222FH PH PF ∴=+,222(9)3x x ∴=-+,5x ∴=,FH ∴的长是5cm .变式训练 2.如图,把长方形ABCD 沿AC 折叠,AD 落在AD '处,AD '交BC 于点E ,已知2AB cm =,4BC cm =.(长方形的对边相等,四个角都为直角)(1)求证:AE EC =;(2)求EC 的长;(3)求重叠部分的面积.【解析】(1)根据轴对称的性质和矩形的性质就可以得出EAC ECA ∠=∠,就可以得出AE CE =,(2)设EC x =,就有AE x =,4BE x =-,在Rt ABE ∆中,由勾股定理就可以求出结论;(3)根据(2)的结论直接根据三角形的面积公式就可以求出结论.【答案】解:(1)四边形ABCD 是矩形,AB CD ∴=,AD BC =,90B ∠=︒,//AD BC ,DAC BCA ∴∠=∠.ADC ∆与△AD C '关于AC 成轴对称ADC ∴∆≅△AD C ',DAC D AC ∴∠=∠',D AC ACB ∴∠'=∠,AE EC ∴=;(2)2AB cm =,4BC cm =,2CD cm ∴=,4AD cm =.设EC x =,就有AE x =,4BE x =-,在Rt ABE ∆中,由勾股定理,得224(4)x x +-=,解得: 2.5x =.答:EC 的长为2.5cm ;(3)2AEC EC AB S ∆=, 22.52 2.52AEC S cm ∆⨯==. 答:重叠部分的面积为22.5cm .题型五 勾股定理的实际应用例5.数学综合实验课上,同学们在测量学校旗杆的高度时发现:将旗杆顶端升旗用的绳子垂到地面还多2米;当把绳子的下端拉开8米后,下端刚好接触地面,如图,根据以上数据,同学们准确求出了旗杆的高度,你知道他们是如何计算出来的吗?【解析】由题可知,旗杆,绳子与地面构成直角三角形,根据题中数据,用勾股定理即可解答.【答案】解:设旗杆高xm ,则绳子长为(2)x m +,旗杆垂直于地面,∴旗杆,绳子与地面构成直角三角形,由题意列式为2228(2)x x +=+,解得15x m =,∴旗杆的高度为15米.变式训练1.如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为17米,此人以1米每秒的速度收绳,7秒后船移动到点D 的位置,问船向岸边移动了多少米?(假设绳子是直的,结果保留根号)【解析】在Rt ABC ∆中,利用勾股定理计算出AB 长,再根据题意可得CD 长,然后再次利用勾股定理计算出AD 长,再利用BD AB AD =-可得BD 长.【答案】解:在Rt ABC ∆中:90CAB ∠=︒,17BC =米,8AC =米, 2215AB BC AC ∴=-=(米),此人以1米每秒的速度收绳,7秒后船移动到点D 的位置,171710CD ∴=-⨯=(米),22100646AD CD AC ∴=-=-=(米),1569BD AB AD ∴=-=-=(米),答:船向岸边移动了9米.变式训练 2.勾股定理是几何学中的明珠,它充满魅力,在现实世界中有着广泛的应用.请你尝试应用勾股定理解决下列问题:一架2.6m 长的梯子AB 斜靠在一竖直的墙AO 上,这时AO 为2.4m ,如果梯子的顶端A 沿墙下滑0.5m ,那么梯子底端B 向外移了多少米?(注意:3.15 1.77)≈【解析】先根据勾股定理求出OB 的长,再根据梯子的长度不变求出OD 的长,根据BD OD OB =-即可得出结论.【答案】解:Rt OAB ∆中, 2.6AB m =, 2.4AO m =,222226241OB AB AO m ∴=-=-=;同理,Rt OCD ∆中,2.6CD m =, 2.40.5 1.9OC m =-=,22222619 3.15 1.77OD CD OC m ∴=-=-=,1.7710.77()BD OD OB m ∴=-=-=.答:梯子底端B 向外移了0.77米.题型六 锐角三角函数定义例1.在Rt ABC ∆中,90C ∠=︒,3AB BC =,则sin B 的值为( )A.12B.22C.32D.223【解析】设BC为x,根据题意用x表示出AB,根据勾股定理求出BC,运用正弦的定义解答即可.【答案】解:设BC为x,则AB=3x,由勾股定理得,AC===2x,∴sin B===,故选:D.变式训练1.如图,在Rt ABC∆中,90ACB∠=︒,CD是斜边AB上的高,下列线段的比值等于cos A的值的有()个(1)ADAC(2)ACAB(3)BDBC(4)CDBC.A.1 B.2 C.3 D.4【解析】根据锐角三角函数关系的定义分析得出答案.【答案】解:∵在Rt△ABC中,∠ACB=90°,CD是斜边AB上的高,∴∠A+∠ACD=90°,∠ACD+∠BCD=90°,∴∠A=∠BCD,∴cos A===,故(1),(2),(4)正确.故选:C.题型七网格中的锐角三角函数值例7.如图,A,B,C是正方形网格中的格点(小正方形的顶点),则sin ACB∠的值为( )A .55B .255C .12D .33【解析】由勾股定理可求AC ,BC 的长,由三角形的面积公式可求BD 的长,即可求sin ∠ACB 的值.【答案】解:设小正方形的边长为1,过点B 作BD ⊥AC 于D ,过点B 作BF ⊥AE 于点F , ∵S △ABC =2×7﹣=5 由勾股定理可知:AC ==5, ∵AC •BD =5,∴BD =,由勾股定理可知:BC ==, ∴sin ∠ACB === 故选:A .变式训练 1.如图,在22⨯正方形网格中,以格点为顶点的ABC ∆的面积等于32,则sin (CAB ∠= )A.332B.35C.105D.310【解析】根据勾股定理,可得AC、AB、BC的长,根据三角形的面积公式,可得CD的长,根据正弦函数的定义,可得答案.【答案】解:如图:作CD⊥AB于D,AE⊥BC于E,由勾股定理,得AB=AC=,BC=.由等腰三角形的性质,得BE=BC=.由勾股定理,得AE==,由三角形的面积,得AB•CD=BC•AE.即CD==.sin∠CAB===,故选:B.题型八特殊角三角函数值的计算例8.计算:2sin60cos45sin30tan60︒+︒-︒︒.【解析】首先代入特殊角的三角函数值,再计算乘方,后算乘除,最后算加减即可.【答案】解:原式=+﹣×,=+﹣,=.变式训练1.计算:(1)222sin 30sin60sin 45cos 30︒+︒-︒+︒;(2)tan30tan 45tan 60tan 45︒+︒︒︒. 【解析】(1)直接利用特殊角的三角函数值代入求出答案;(2)直接利用特殊角的三角函数值代入求出答案.【答案】解:(1)原式=()2+﹣()2+()2=+﹣+ =+; (2)原式==.变式训练2.22cos30tan30cos60(1tan60)︒+︒︒--︒【解析】把特殊角的三角函数值代入原式,根据二次根式的加减运算法则计算.【答案】解:原式=2×+×﹣+1=+1. 题型九 解直角三角形例9.如图,在ABD ∆中,AC BD ⊥于点C ,32BC CD =,点E 是AB 的中点,tan 2D =,1CE =,求sin ECB ∠的值和AD 的长.【解析】利用已知表示出BC ,CD 的长,再利用勾股定理表示出AB 的长,进而求出sin ∠ECB 的值和AD 的长.【答案】解:∵AC ⊥BD ,∴∠ACB =∠ACD =90°.∵点E 是AB 的中点,CE =1,∴BE =CE =1,AB =2CE =2,∴∠B =∠ECB .∵=,∴设BC =3x ,CD =2x .在Rt △ACD 中,tan D =2,∴=2,∴AC =4x .在Rt △ACB 中,由勾股定理得AB ==5x , ∴sin ∠ECB =sin B ==. 由AB =2,得x =,∴AD ===2x =2×=.变式训练1.如图,在等腰Rt ABC ∆中,90C ∠=︒,6AC =,D 是AC 上一点,若1tan 5DBA ∠=. (1)求AD 的长;(2)求sin DBC ∠的值.【解析】(1)过点D 作DH ⊥AB 于点H ,根据等腰直角三角形的性质,勾股定理以及锐角三角形函数的定义即可求出答案.(2)由(1)可求出CD =4,根据勾股定理可求出BD 的长度,然后根据锐角三角函数的定义即可求出答案.【答案】解:(1)过点D 作DH ⊥AB 于点H ,∵等腰三角形ABC ,∠C =90°∴∠A =45°,∴AH =DH ,设AH =x ,∴DH =x ,∵tan∠DBA=,∴BH=5x,∴AB=6x,∵AC=6,∴由勾股定理可知:AB=6,∴x=,∴AH=DH=,∴由勾股定理可知:AD=2;(2)由于AD=2∴DC=4,∴由勾股定理可知:DB=2,∴,变式训练 2.如图,已知Rt ABC∠=︒,CD是斜边AB上的中线,过点A作∆中,90ACB=.AH CH⊥,AE分别与CD、CB相交于点H、E,2AE CD(1)求sin CAH∠的值;(2)如果5CD=,求BE的值.【解析】(1)由勾股定理得出AC==CH,由锐角三角函数定义即可得出答案;(2)根据sinB的值,可得出AC:AB=1:,由AB=2,得AC=2,设CE=x(x>0),则AE=x,由勾股定理得出方程,求出CE=1,从而得出BE.【答案】解:(1)∵AE⊥CD,∴∠AHC=90°,∵AH=2CH,∴由勾股定理得:AC==CH,∴sin∠CAH===;(2)∵∠ACB=90°,CD是斜边AB上的中线,∴AB=2CD=2,∴∠B=∠BCD,∵AE⊥CD,∴∠CAH+∠ACH=90°,又∵∠ACB=90°,∴∠BCD+∠ACH=90°,∴∠B=∠BCD=∠CAH,∵sinB==sin∠CAH==,∴AC:AB=1:,∴AC=2.设CE=x(x>0),则AE=x,在Rt△ACE中,由勾股定理得:x2+22=(x)2,解得:x=1,∴CE=1,在Rt△ABC中,由勾股定理得:BC===4,∴BE=BC﹣CE=3.题型十解直角三角形的应用之坡度坡角问题例10.如图,扶梯AB坡比为1:2,滑梯CD坡比为3.若40=,某人BC mAE m=,30m≈,从扶梯上去,经过顶部BC,再沿滑梯滑下,共经过多少路径?(结果精确到0.1)(2 1.41≈3 1.73≈5 2.24)【解析】首先在直角△ABE中根据AE=40m和坡比求得AB和BE,然后得出CF的长,最后在直角△CFD中求得CD的长即可,继而求出经过的路径=AB+BC+CD的长度即可.【答案】解:∵扶梯AB的坡比为1:2,即BE:AE=1:2,AE=40m,∴BE=20m,∴AB===20(m),∵CF=BE=20米,CF:DF=1:,∴FD=CF=20(m),∴CD===40(m),∴经过的路径=AB+BC+CD=20+30+40=70+20≈114.8(m).答:共经过路径长114.8m.变式训练1.今年“五一”假期,某教学活动小组组织一次登山活动,他们从山脚下A点出发沿斜坡AB到达B点,再从B点沿斜坡BC到达山顶C点,路线如图所示,斜坡AB的长为20013米,斜坡BC的长为2002米,坡度是1:1,已知A点海拔121米,C点海拔721米(1)求B点的海拔;(2)求斜坡AB的坡度;(3)为了方便上下山,若在A到C之间架设一条钢缆,求钢缆AC的长度.【解析】(1)根据题意和图形,可以求得点B的海波,本题得以解决;(2)根据题目中的数据可以求得AF和BF的长度,从而可以求得斜坡AB的坡度;(3)根据题目中的数据可以求得AD和CD的长度,然后根据勾股定理即可求得AC的长度.【答案】解:(1)作CD⊥AM于点D,作BE⊥CD于点E,作BF⊥AM于点F,连接AC,∵斜坡BC的长为200米,坡度是1:1,∴BE=CE=200米,∵A点海拔121米,C点海拔721米,∴CD=600米,∴BF=400米,∵121+400=521(米),∴点B的海拔是521米;(2)∵斜坡AB的长为200米,BF=400米,∴AF==600米,∴BF:AF=400:600=2:3,即斜坡AB的坡度是2:3;(3)∵CD=600米,AD=AF+FD=AF+BE=600+200=800(米),∴AC==1000米,即钢缆AC的长度是1000米.题型十一解直角三角形的应用之仰角俯角问题例11.如图,某大楼的顶部竖有一块广告牌CD,小明与同学们在山坡的坡脚A处测得广告牌底部D的仰角为53︒,沿坡面AB向上走到B处测得广告牌顶部C的仰角为45︒,已知山坡AB的坡度1:3,10AB=米,21AE=米,求广告牌CD的高度.(测角器的高度忽略不计,参考数据:4tan533︒≈,cos530.60)︒≈【解析】过B作DE的垂线,设垂足为G,BH⊥AE.在△ADE解直角三角形求出DE的长,进而可求出EH即BG的长,在Rt△CBG中,∠CBG=45°,则CG=BG,由此可求出CG的长然后根据CD=CG+GE﹣DE即可求出宣传牌的高度.【答案】解:过B作BG⊥DE于G,BH⊥AE,Rt△ABF中,i=tan∠BAH==,∴∠BAH=30°,∴BH=AB=5米;∴AH=5米,∴BG=AH+AE=(5+21)米,Rt△BGC中,∠CBG=45°,∴CG=BG=(5+21)米.Rt△ADE中,∠DAE=53°,AE=21米,∴DE=AE=28米.∴CD=CG+GE﹣DE=26+5﹣28=(5﹣2)m.答:宣传牌CD高为(5﹣2)米.变式训练1.如图(1),在豫西南邓州市大十字街西南方,耸立着一座古老建筑-福胜寺梵塔,建于北宋天圣十年(公元1032年),当地民谚云:“邓州有座塔,离天一丈八.”学完了三角函数知识后,某校“数学社团”的刘明和王华决定用自己学到的知识测量“福胜寺梵塔”的高度.如图(2),刘明在点C处测得塔顶B的仰角为45︒,王华在高台上的点D处测得塔顶B的仰角为40︒,若高台DE高为5米,点D到点C的水平距离EC为1.3米,且A、C、E三点共线,求该塔AB的高度.(参考数据:sin400.64︒≈,︒≈,cos400.77︒≈,tan400.84结果保留整数)【解析】作DM⊥AB于M,交CB于F,CG⊥DM于G,根据矩形的性质得到CG=DE=5,DG=EC=1.3,设FM=x米,根据正切的定义用x表示出DM、BM,结合图形列出方程,解方程得到答案.【答案】解:作DM⊥AB于M,交CB于F,CG⊥DM于G,则四边形DECG为矩形,∴CG=DE=5,DG=EC=1.3,设FM=x米,由题意得,∠BDM=40°,∠BFM=∠BCA=45°,∴∠CFG=45°,BM=FM=x,∴GF=GC=5,∴DF=DG+GF=5+1.3=6.3,在Rt△BDM中,tan∠BDM=,∴DM=≈,由题意得,DM﹣DF=FM,即﹣6.3=x,解得,x≈33.2,则BA=BM+AM=38.2≈38(米),答:该塔AB的高度约为38米.四、易错点辨析1.三角形构成问题中,忘记对构成三角形的前提(三边关系)进行检验.2.忽视直角三角形致错,题中没有说明角是直角,而直接应用正弦、余弦函数的定义.3.边角关系理解不透致错.4.记忆特殊三角函数值不准确,造成计算错误.五、直击中考1.(2017河北(11))如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确的( ).【答案】A.【解析】试题分析:正方形的对角线的长是10214.14,所以正方形内部的每一个点,到正方形的顶点的距离都有小于14.14,故答案选A.2.(2015河北(16))如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则( )A.甲、乙都可以B.甲、乙都不可以C.甲不可以,乙可以D.甲可以,乙不可以【答案与解析】所作图形如图所示,甲乙都可以拼一个与原来面积相等的正方形.故选A.3.(2014河北(8))如图,将长为2,宽为1的矩形纸片分割成n个三角形后,拼成面积为2的正方形,则n≠【】A.2B.3C.4D.5【答案】A.【解析】4.(2019河北(19))勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C的距离相等,则C,D间的距离为km.【答案】(1)20;(2)13;【解析】解:(1)由A、B两点的纵坐标相同可知:AB∥x轴,∴AB=12﹣(﹣8)20;(2)过点C作l⊥AB于点E,连接AC,作AC的垂直平分线交直线l于点D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,设CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13.5.(2013河北(26))一透明的敞口正方体容器ABCD -A′B′C′D′装有一些液体,棱AB 始终在水平桌面上,容器底部的倾斜角为α(∠CBE = α,如图1所示).探究如图1,液面刚好过棱CD,并与棱BB′交于点Q,此时液体的形状为直三棱柱,其三视图及尺寸如图2所示.解决问题:(1)CQ与BE的位置关系是___________,BQ的长是____________dm;(2)求液体的体积;(参考算法:直棱柱体积V液 = 底面积SBCQ×高AB)(3)求α的度数.(注:sin49°=cos41°=34,tan37°=34)拓展在图1的基础上,以棱AB为轴将容器向左或向右旋转,但不能使液体溢出,图3或图4是其正面示意图.若液面与棱C′C或CB交于点P,设PC = x,BQ = y.分别就图3和图4求y与x的函数关系式,并写出相应的α的范围.图1图2图3图4延伸在图4的基础上,于容器底部正中间位置,嵌入一平行于侧面的长方形隔板(厚度忽略不计),得到图5,隔板高NM = 1 dm,BM = CM,NM⊥BC.继续向右缓慢旋转,当α = 60°时,通过计算,判断溢出容器的液体能否达到4 dm3.图5【答案与解析】。
初三数学解直角三角形试题答案及解析

初三数学解直角三角形试题答案及解析1.(2013浙江衢州)如图,小敏同学想测量一棵大树的高度,她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4m,测得仰角为60°,已知小敏同学身高(AB)为1.6m,则这棵树的高度为(结果精确到0.1m,)()A.3.5mB.3.6mC.4.3mD.5.1m【答案】D【解析】如图,设CD=xm,在Rt△ACD中,∵∠DAC=30°,∴(m).在Rt△ECD中,∵∠DEC=60°,∴(m).∵AE=4m,∴,解得.∴(m).故选D.2.(2014甘肃兰州)如图,在电线杆上的C处引拉线CE,CF固定电线杆.拉线CE和地面成60°角,在离电线杆6米处安置测角仪AB,在A处测得电线杆上C处的仰角为30°.已知测角仪AB的高为1.5米,求拉线CE的长.(结果保留根号)【答案】【解析】过点A作AM⊥CD,垂足为M.∴AM=BD=6,AB=MD=1.5.在Rt△ACM中,,∴.∴.在Rt△CED中,,即,∴.答:拉线CE的长为米.3.钓鱼岛是中国固有领土,为测量钓鱼岛东西两端A、B的距离,如图,我勘测飞机在距海平面垂直高度为1公里的点C处,测得端点A的俯角为45°,然后沿着平行于AB的方向飞行3.2公里到点D,并测得端点B的俯角为37°.求钓鱼岛两端AB的距离.(结果精确到0.1公里,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,)【答案】3.5【解析】过点A作AE⊥CD,过点B作BF⊥CD,垂足分别为E、F,∵AB∥CD,∴四边形ABFE为矩形,∴EF=AB,AE=BF=1,在Rt△AEC中,∵∠C=45°,∴CE=AE=1.在Rt△BFD中,∵∠BDF=37°,∴,∴AB=EF=CD-CE+DF=3.2-1+1.33=3.53≈3.5.所以钓鱼岛两端AB的距离约为3.5公里.4.(2013山东泰安)如图,某海监船向正西方向航行,在A处望见一艘正在作业渔船D在南偏西45°方向,海监船航行到B处时望见渔船D在南偏东45°方向,又航行了半小时到达C处,望见渔船D在南偏东60°方向.若海监船的速度为50海里/小时,则A、B之间的距离为________(取,结果精确到0.1海里).【答案】71.4海里【解析】由题意知∠DBA=∠DAB=45°,∴△DAB是等腰直角三角形,过点D作DE⊥AB于点E,则.设DE=x,则AB=2x,在Rt△CDE中,∠DCE=30°,则.在Rt△BDE中,∠DBE=45°,则DE=BE=x.由题意得,,解得(海里),∴AB=2x=2×35.7=71.4(海里).5.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30°,同一时刻,一根长为1米,垂直于地面放置的标杆在地面上的影长为2米,则树的高度为()A.米B.12米C.米D.10米【答案】A【解析】如图,延长BD与CE的延长线交于点A,过点D作DF⊥AE,垂足为点F,在Rt△DEF中,DE=4米,∠DEF=30°,则DF=DE·sin30°=2米,米,根据同一时刻,标杆与其影长的比值为,可得,所以AF=4米,所以(米),又,故米.6.如图,马航370失联后,“海巡31”船以40海里/时的速度在印度洋搜救,当它行驶到A处时,发现它的北偏东30°方向有一灯塔B,海巡船继续向北航行4小时后到达C处,发现灯塔B在它的北偏东60°方向.若海巡船继续向北航行,那么要再过多少时间海巡船离灯塔B最近()A.1小时B.2小时C.小时D.小时【答案】B【解析】如图所示,作BD⊥AC于D,∵∠DAB=30°,∠DCB=60°,∴∠CBA=30°.∴AC=BC.∵轮船以40海里/时的速度在海面上航行,∴AC=BC=4×40=160(海里),∴CD=BC·cso60°=80海里.故该船需要继续航行的时间为80÷40=2(小时).故选B.7.(2014浙江丽水)如图,河坝横断面迎水坡AB的坡比是(坡比是坡面的铅直高度BC与水平宽度AC之比),坝高BC=3m,则坡面AB的长度是()A.9mB.6mC.mD.m【答案】B【解析】在Rt△ABC中,BC=3米,,∴米,∴(m).故选B.8.(2014广西南宁)如图,一渔船由西往东航行,在A点测得海岛C位于北偏东60°的方向,前进20海里到达B点,此时,测得海岛C位于北偏东30°的方向,则海岛C到航线AB的距离CD等于________海里.【答案】【解析】设CD的长为x海里,由题意知∠CBD=60°,∠CAB=30°,则,,∴,解得.∴CD的长为海里.9.(2014湖南娄底)如图,海上有小岛A和小岛B,轮船以45km/h的速度由C向B航行,在C处测得A的方向角为北偏东60°,测得B的方向角为南偏东45°,轮船航行2小时后到达小岛B处,在B处测得小岛A在小岛B的正北方向.求小岛A和小岛B之间的距离(结果保留整数,参考数据:,).【答案】100km【解析】如图,过点C作CE⊥AB于E,由题意知:∠B=45°,∠A=60°.∴∠BCE=∠B=45°,∠ACE=30°.又∵BC=45×2=90(km),∴km.∴km.∴(km).答:小岛A和小岛B之间的距离约为100km.10.(2014贵州遵义)如图,一楼房AB后有一假山,其坡度,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米.小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)【答案】【解析】如图,过E作EF⊥AB,EM⊥BC,则四边形BFEM是矩形,∴BF=EM,EF=BM.∵,∴,∴∠ECM=30°.∵CE=20米,∴EM=CE·sin30°=10米,∴米.∴(米).又∵从A处观察E点的俯角是45°,∴△AEF是等腰直角三角形,∴AF=EF,∴楼房高(米).11.在Rt△ABC中,∠C=90°,AC=9,,则AB=()A.15B.12C.9D.6【答案】A【解析】在Rt△ABC中,∠C=90°,AC=9,∵,∴,解得AB=15.12.如图,△ABC中,,,则△ABC的面积是()A.B.12C.14D.21【答案】A【解析】如图,过A作AD⊥BC,因为,所以∠B=45°,所以AD=BD,因为,所以,所以AD=BD=3,所以,所以BC=BD+DC=7,所以.13.如图,在梯形ABCD中,AD∥BC,AC⊥AB,AD=CD,,BC=10,则AB的值是()A.3B.6C.8D.9【答案】B【解析】∵AD∥BC,∴∠DAC=∠ACB.∵AD=CD,∴∠DAC=∠DCA.∴∠ACB=∠DCA.∴,即,∴AC=8,∴.14.(2013辽宁锦州)在△ABC中,AB=AC,AB的垂直平分线DE与AC所在的直线相交于点E,垂足为D,连接BE.已知AE=5,,则BE+CE=________.【答案】6或16【解析】∵DE垂直平分AB,∴BE=AE,∵AE=5,,∴AD=3.∴AB=AC=6.如图①,当DE与线段AC相交时,BE+CE=AC=6;如图②,当DE与线段CA的延长线相交时,BE+CE=5+5+6=16.故填6或16.15.在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,且,.(1)求∠A、∠B的大小;(2)求c的大小.【答案】见解析【解析】(1)在Rt△ABC中,,所以∠A=60°,∠B=90°-∠A=30°.(2)由勾股定理得.16.如图所示,A、B、C为三个村庄,A、D、C在一条直线上,AB、BC、AD为公路,CD为湖宽.现在要从D处开始铺设通往村庄C的一条地下电缆,经测量得,千米,AD=2千米,∠A=60°,∠BCA=45°.请求出湖宽CD的长.(结果保留根号)【答案】【解析】如图,作BE⊥AC于E,在Rt△BEC中,∵∠BCA=45°,,∴,∴CE=BE=6.在Rt△ABE中,∵∠A=60°,,∴.∵AD=2,∴,即湖宽千米.17.在Rt△ABC中,∠C=90°,,若BC=1,则AC=()A.1B.2C.D.【答案】C【解析】在Rt△ABC中,∠C=90°,,∴∠B=60°,∵,即,∴.故选C.18.在Rt△ABC中,∠C=90°,若AB=4,,则斜边上的高等于()A.B.C.D.【答案】B【解析】∵,AB=4,∴,解得.如图,过点C作CD⊥AB于点D,∵,,∴.19.如图,为测楼房BC的高,在距离楼房30米的A处测得楼顶的仰角为α,则楼高BC为()A.30tanα米B.米C.30sinα米D.米【答案】A【解析】在Rt△ABC中,,∴BC=AC·tanα,即BC=30tanα米.故选A.20.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”,在Rt△ABC中,∠C=90°,若Rt△ABC是“好玩三角形”,则tanA=________.【答案】或【解析】分两种情况:①如图1,BD是AC边上的中线,BD=AC.设AD=DC=k,则BD=AC=2k.在Rt△BCD中,∵∠C=90°,∴,∴.②如图2,AD是BC边上的中线,AD=BC.设BD=DC=k,则AD=BC=2k.在Rt△ACD中,∵∠C=90°,∴,∴.综上所述,tanA的值为或.。
最新中考数学专题复习解直角三角形(含详细参考答案)

最新中考数学专题复习解直角三角形【基础知识回顾】一、锐角三角函数定义:在Rt△ABC中,∠C=900, ∠A、∠B、∠C的对边分别为a、b、c,则∠A的正弦可表示为:sinA= ,∠A的余弦可表示为cosA= ∠A的正切:tanA= ,它们弦称为∠A的锐角三角函数【名师提醒:1、sinA、cosA、tanA表示的是一个整体,是两条线段的比,这些比值只与有关,与直角三角形的无关2、取值范围<sinA< cosA< tanA> 】二、特殊角的三角函数值:在理解的基础上结合表格进行记忆2、当时,正弦和正切值随着角度的增大而余弦值随着角度的增大而3、几个特殊关系:⑴sinA+cos2A= ,tanA=sin A⑵若∠A+∠B=900,则sinA= cosA.tanB= 】三、解直角三角形:1、定义:由直角三角形中除直角外的个已知元素,求出另外个未知元素的过程叫解直角三角形2、解直角三角形的依据:Rt△ABC中,∠C=900 三边分别为a、b、c⑴三边关系:⑵两锐角关系⑶边角之间的关系:sinA cosA tanAsinB cosB tanB【名师提醒:解直角三角形中已知的两个元素应至少有一个是当没有直角三角形时应注意构造直角三角形,再利用相应的边角关系解决】3、解直角三角形应用中的有关概念⑴仰角和俯角:如图:在用上标上仰角和俯角⑵坡度坡角:如图:斜坡AB的垂直度H和水平宽度L的比叫做坡度,用i表示,即i=坡面与水平面得夹角为用字母α表示,则i=h l=⑶方位角:是指南北方向线与目标方向所成的小于900的水平角如图:OA表示OB表示OC表示(也可称西南方向)3、利用解直角三角形知识解决实际问题的一般步骤:⑴把实际问题抓化为数字问题(画出平面图形,转化为解直角三角形的问题)⑵根据条件特点选取合适的锐角三角函数去解直角三角形⑶解数学问题答案,从而得到实际问题的答案【提醒:在解直角三角形实际应用中,先构造符合题意的三角形,解题的关键是弄清在哪个直角三角形中用多少度角的哪种锐角三角函数解决】【重点考点例析】考点二:特殊角的三角函数值例2 (2012•孝感)计算:cos245°+tan30°•sin60°=.对应训练(2012•南昌)计算:sin30°+cos30°•tan60°.思路分析:分别把各特殊角的三角函数代入,再根据二次根式混合运算的法则进行计算即可.点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.考点三:化斜三角形为直角三角形对应训练3.(2012•重庆)如图,在Rt△ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三角形.若AB=2,求△ABC的周长.(结果保留根号)3.考点:解直角三角形;三角形内角和定理;等边三角形的性质;勾股定理.专题:计算题.考点四:解直角三角形的应用例 4 (2012•张家界)黄岩岛是我国南海上的一个岛屿,其平面图如图甲所示,小明据此构造出该岛的一个数学模型如图乙所示,其中∠B=∠D=90°,AB=BC=15千米,CD=米,请据此解答如下问题:(1)求该岛的周长和面积;)(2)求∠ACD的余弦值.考点:解直角三角形的应用.对应训练6.(2012•益阳)超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速.如图,观测点设在A处,离益阳大道的距离(AC)为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B处行驶到C处所用的时间为8秒,∠BAC=75°.(1)求B、C两点的距离;(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?(计算时距离精确到1米,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732,,60千米/小时≈16.7米/秒)【聚焦山东中考】A.不变B.缩小为原来的C.扩大为原来的3倍D.不能确定5.(2012•潍坊)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D 的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1米,参考数据:);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.5.考点:解直角三角形的应用.分析:(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,继而求得AB的长;(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.6.(2012•青岛)如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,教学楼在建筑物的墙上留下高2米的影子CE;而当光线与地面夹角是45°时,教学楼顶A在地面上的影子F与墙角C有13米的距离(B、F、C在一条直线上)(1)求教学楼AB的高度;(2)学校要在A、E之间挂一些彩旗,请你求出A、E之间的距离(结果保留整数).(参考数据:sin22°≈38,cos22°≈1516,tan22°≈25)6.考点:解直角三角形的应用.分析:(1)首先构造直角三角形△AEM,利用tan22°=AM ME,求出即可;(2)利用Rt△AME中,cos22°=MEAE,求出AE即可.【备考真题过关】一、选择题A.1 B C D.24.A考点:特殊角的三角函数值.5.(2012•乐山)如图,在Rt △ABC 中,∠C=90°,AB=2BC ,则sinB 的值为( )A .12 B C D .15.C考点:特殊角的三角函数值. 6.(2012•杭州)如图,在Rt △ABO 中,斜边AB=1.若OC ∥BA ,∠AOC=36°,则( ) A .点B 到AO 的距离为sin54° B .点B 到AO 的距离为tan36° C .点A 到OC 的距离为sin36°sin54° D .点A 到OC 的距离为cos36°sin54°6.考点:解直角三角形;点到直线的距离;平行线的性质.点评:本题考查了对解直角三角形和点到直线的距离的应用,解此题的关键是①找出点A 到OC 的距离和B 到AO 的距离,②熟练地运用锐角三角形函数的定义求出关系式,题目较好,但是一道比较容易出错的题目.7.(2012•宜昌)在“测量旗杆的高度”的数学课题学习中,某学习小组测得太阳光线与水平面的夹角为27°,此时旗杆在水平地面上的影子的长度为24米,则旗杆的高度约为( ) A .24米 B .20米 C .16米 D .12米考点:解直角三角形的应用.8.(2012•广安)如图,某水库堤坝横断面迎水坡AB 的坡比是1BC=50m ,则应水坡面AB的长度是()A.100m B.C.150m D.8.考点:解直角三角形的应用-坡度坡角问题.1.(2012•泰安)如图,为测量某物体AB的高度,在D点测得A点的仰角为30°,朝物体AB方向前进20米,到达点C,再次测得点A的仰角为60°,则物体AB的高度为()0米米2.(2012•深圳)小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30°,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为()23.(2012•福州)如图,从热气球C处测得地面A、B两点的俯角分别是30°、45°,如果此时热气球C处的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是()0020(二、填空题9.(2012•宁夏)在△ABC中∠C=90°,AB=5,BC=4,则tanA= .10.(2012•武汉)tan60°= .11.(2012•常州)若∠a=60°,则∠a的余角为,cosa的值为.12.(2012•南京)如图,将45°的∠AOB按下面的方式放置在一把刻度尺上:顶点O与尺下沿的端点重合,OA与尺下沿重合,OB与尺上沿的交点B在尺上的读数恰为2cm.若按相同的方式将37°的∠AOC放置在该刻度尺上,则OC与尺上沿的交点C在尺上的读数约为cm.(结果精确到0.1cm,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)4.(2012•广西)如图,为测量旗杆AB的高度,在与B距离为8米的C处测得旗杆顶端A 的仰角为56°,那么旗杆的高度约是12米(结果保留整数).(参考数据:sin56°≈0.829,cos56°≈0.559,tan56°≈1.483)三、解答题ctanα= =415.(2012•遵义)为促进我市经济的快速发展,加快道路建设,某高速公路建设工程中需修隧道AB,如图,在山外一点C测得BC距离为200m,∠CAB=54°,∠CBA=30°,求隧道AB的长.(参考数据:sin54°≈0.81,cos54°≈0.59,tan54°≈1.38,,精确到个位)16.(2012•六盘水)如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿岸向前走30m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.17.(2012•新疆)如图,跷跷板AB的一端B碰到地面时,AB与地面的夹角为15°,且OA=OB=3m.(1)求此时另一端A离地面的距离(精确到0.1m);(2)若跷动AB,使端点A碰到地面,请画出点A运动的路线(不写画法,保留画图痕迹),并求出点A运动路线的长.(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)5.(2012•资阳)小强在教学楼的点P处观察对面的办公大楼.为了测量点P到对面办公大楼上部AD的距离,小强测得办公大楼顶部点A的仰角为45°,测得办公大楼底部点B的俯角为60°,已知办公大楼高46米,CD=10米.求点P到AD的距离(用含根号的式子表示).6.(2012•绍兴)如图1,某超市从一楼到二楼的电梯AB的长为16.50米,坡角∠BAC为32°.(1)求一楼于二楼之间的高度BC(精确到0.01米);(2)电梯每级的水平级宽均是0.25米,如图2.小明跨上电梯时,该电梯以每秒上升2级的高度运行,10秒后他上升了多少米(精确到0.01米)?备用数据:sin32°=0.5299,con32°=0.8480,tan32°=6249.7.(2012•郴州)如图,水坝的横断面是梯形,背水坡AB的坡角∠BAE=45°,坝高BE=20米.汛期来临,为加大水坝的防洪强度,将坝底从A处向后水平延伸到F处,使新的背水坡BF的坡角∠F=30°,求AF的长度.(结果精确到1米,参考数据:≈1.414,≈1.732)8.(2012•恩施州)新闻链接,据[侨报网讯]外国炮艇在南海追袭中国渔船被中国渔政逼退.2012年5月18日,某国3艘炮艇追袭5条中国渔船.刚刚完成黄岩岛护渔任务的“中国渔政310”船人船未歇立即追往北纬11度22分、东经110度45分附近海域护渔,保护100多名中国渔民免受财产损失和人身伤害.某国炮艇发现中国目前最先进的渔政船正在疾速驰救中国渔船,立即掉头离去.(见图1)解决问题如图2,已知“中国渔政310”船(A)接到陆地指挥中心(B)命令时,渔船(C)位于陆地指挥中心正南方向,位于“中国渔政310”船西南方向,“中国渔政310”船位于陆地指挥中心南偏东60°方向,AB=海里,“中国渔政310”船最大航速20海里/时.根据以上信息,请你求出“中国渔政310”船赶往出事地点需要多少时间.×=70,AD=70,∠AD=140船赶往出事地点所需时间为=718.(2012•苏州)如图,已知斜坡AB长60米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(请讲下面2小题的结果都精确到0.1).(1)若修建的斜坡BE的坡角(即∠BEF)不大于45°,则平台DE的长最多为米;(2)一座建筑物GH距离坡角A点27米远(即AG=27米),小明在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G、H在同一个平面内,点C、A、G在同一条直线上,且HG⊥CG,问建筑物GH高为多少米?18.考点:解直角三角形的应用-坡度坡角问题.分析:(1)根据题意得出,∠BEF最大为45°,当∠BEF=45°时,EF最短,此时ED最长,进而得出EF的长,即可得出答案;(2)利用在Rt△DPA中,DP=12AD,以及PA=AD•cos30°进而得出DM的长,利用HM=DM•tan30°得出即可.解:(1)∵修建的斜坡BE的坡角(即∠BEF)不大于45°,∴∠BEF最大为45°,当∠BEF=45°时,EF最短,此时ED最长,∵∠DAC=∠BDF=30°,AD=BD=30,∴BF=EF=12BD=15,故:DE=DF-EF=15-1)≈11.0;(2)过点D作DP⊥AC,垂足为P.在Rt△DPA中,DP=12AD=12×30=15,PA=AD•cos30°=2×30=15 .在矩形DPGM中,MG=DP=15,,在Rt△DMH中,()≈45.6.答:建筑物GH高为45.6米.点评:此题主要考查了解直角三角形中坡角问题,根据图象构建直角三角形,进而利用锐角三角函数得出是解题关键.。
初三数学解直角三角形试题答案及解析

初三数学解直角三角形试题答案及解析1.如图,某航天飞船在地球表面P点的正上方A处,从A处观测到地球上的最远点Q,若∠QAP=α,地球半径为R,则航天飞船距离地球表面的最近距离AP是()A.B.C.D.【答案】B【解析】连接OQ.根据切线的性质可知OQ⊥AQ.在Rt△AOQ中,,所以,所以.2.(2014甘肃兰州)如图,在电线杆上的C处引拉线CE,CF固定电线杆.拉线CE和地面成60°角,在离电线杆6米处安置测角仪AB,在A处测得电线杆上C处的仰角为30°.已知测角仪AB的高为1.5米,求拉线CE的长.(结果保留根号)【答案】【解析】过点A作AM⊥CD,垂足为M.∴AM=BD=6,AB=MD=1.5.在Rt△ACM中,,∴.∴.在Rt△CED中,,即,∴.答:拉线CE的长为米.3.(2013甘肃兰州)如图,在活动课上,小明和小红合作用一副三角板来测量学校旗杆的高度.已知小明的眼睛与地面的距离(AB)是1.7m,他调整自己的位置,设法使得三角板的一条直角边保持水平,且斜边与旗杆顶端M在同一条直线上,测得旗杆顶端M的仰角为45°;小红的眼睛与地面的距离(CD)是1.5m,用同样的方法测得旗杆顶端M的仰角为30°.两人相距28米且位于旗杆两侧(点B、N、D在同一条直线上).求出旗杆MN的高度.(参考数据:,,结果保留整数)【答案】12【解析】如图,过点A作AE⊥MN于E,过点C作CF⊥MN于F,则EF=AB-CD=1.7-1.5=0.2.在Rt△AEM中,∵∠MAE=45°,∴AE=ME.设AE=ME=x(不设参数也可),∴MF=x+0.2,CF=28-x.在Rt△MFC中,∠MFC=90°,∠MCF=30°,∴MF=CF·tan∠MCF,∴,∴x≈10.0.∴MN=10.0+1.7≈12.答:旗杆的高度约为12米.4.(2013山东莱芜)如图,有一艘渔船在捕鱼作业时出现故障,急需抢修,调度中心通知附近两个小岛A、B上的观测点进行观测,从A岛测得渔船在南偏东37°方向C处,B岛在南偏东66°方向,从B岛测得渔船在正西方向,已知两个小岛间的距离是72海里,A岛上维修船的速度为每小时20海里,B岛上维修船的速度为每小时28.8海里,为及时赶到维修,问调度中心应该派遣哪个岛上的维修船?(参考数据:cos37°≈0.8,sin37°≈0.6,sin66°≈0.9,cos66°≈0.4)【答案】B岛【解析】如图,作AD⊥BC,交BC的延长线于点D,在Rt△ADB中,AD=AB·cos∠BAD=72×cos66°≈72×0.4=28.8(海里),BD=AB·sin∠BAD=72×sin66°≈72×0.9=64.8(海里).在Rt△ADC中,(海里),CD=AC·sin∠CAD=36×sin37°≈36×0.6=21.6(海里).∴BC=BD-CD=64.8-21.6=43.2(海里).∴A岛上维修船需要的时间(小时),B岛上维修船需要的时间(小时).∵tA >tB,∴调度中心应该派遣B岛上的维修船.5.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30°,同一时刻,一根长为1米,垂直于地面放置的标杆在地面上的影长为2米,则树的高度为()A.米B.12米C.米D.10米【答案】A【解析】如图,延长BD与CE的延长线交于点A,过点D作DF⊥AE,垂足为点F,在Rt△DEF中,DE=4米,∠DEF=30°,则DF=DE·sin30°=2米,米,根据同一时刻,标杆与其影长的比值为,可得,所以AF=4米,所以(米),又,故米.6.如图,小明在某风景区的观景台O处观测到东北方向的P处有一艘货船,该船正向南匀速航行,30分钟后再观察时,该船已航行到O的南偏东30°,且与O相距6km的Q处.则货船的航行速度是________km/h.(结果保留根号)【答案】【解析】如图,由题意知PQ⊥OA,则在Rt△OAQ中,∠OAQ=90°,∠Q=30°,OQ=6km,∴OA=OQ·sin30°=3km,km.在Rt△OAP中,∠OAP=90°,∠AOP=45°,OA=3km,∴PA=OA=3km,∴km.∴货船的航行速度是(km/h).7.如图,我国为了维护对钓鱼岛P的主权,决定对钓鱼岛进行常态化的立体巡航.在一次巡航中,轮船和飞机的航向相同(AP∥BD),当轮船航行到距钓鱼岛20km的A处时,飞机在B处测得轮船的俯角是45°.当轮船航行到C处时,飞机在轮船正上方的E处,此时EC=5km.轮船到达钓鱼岛P时,测得D处的飞机的仰角为30°.试求飞机的飞行距离BD(结果保留根号).【答案】【解析】作AF⊥BD,PG⊥BD,垂足分别为F,G,由题意得AF=PG=CE=5km,FG=4P=20km,在Rt△AFB中,∠B=45°,则∠BAF=45°,∴BF=AF=EC=5km,∵AP∥BD,∴∠D=30°,在Rt△PGD中,,即,∴km.∴(km).答:飞机的飞行距离BD为km.8.(2014浙江丽水)如图,河坝横断面迎水坡AB的坡比是(坡比是坡面的铅直高度BC与水平宽度AC之比),坝高BC=3m,则坡面AB的长度是()A.9mB.6mC.mD.m【答案】B【解析】在Rt△ABC中,BC=3米,,∴米,∴(m).故选B.9.(2014湖南怀化)如图,小明爬一土坡,他从A处到B处所走的直线距离AB=4米,此时,他距离地面的高度为h=2米,则这个土坡的坡角∠A=________°.【答案】30【解析】,所以∠A=30°.10.(2014广西南宁)如图,一渔船由西往东航行,在A点测得海岛C位于北偏东60°的方向,前进20海里到达B点,此时,测得海岛C位于北偏东30°的方向,则海岛C到航线AB的距离CD等于________海里.【答案】【解析】设CD的长为x海里,由题意知∠CBD=60°,∠CAB=30°,则,,∴,解得.∴CD的长为海里.11.(2014湖北襄阳)如图,在建筑平台CD的顶部C处,测得大树AB的顶部A的仰角为45°,测得大树AB的底部B的俯角为30°,已知平台CD的高度为5m,则大树的高度为________m (结果保留根号).【答案】【解析】作CE⊥AB于点E,则∠ACE=45°,∠BCE=30°,BE=CD=5.∴.∵∠ACE=45°,∴,∴.故大树的高度为m.12.(2014四川巴中)如图,一水库大坝的横断面为梯形ABCD,坝顶BC宽6米,坝高20米,斜坡AB的坡度i=1︰2.5,斜坡CD的坡角为30°,求坝底AD的长度(精确到0.1米,参考数据:,,提示:坡度等于坡面的铅垂高度与水平长度之比).【答案】90.6米【解析】如图,分别过点B、C作BE⊥AD、CF⊥AD,垂足分别为E、F,由题意可知:BE=CF=20,BC=EF=6,∠D=30°,在Rt△ABE中,,即,∴AE=50.在Rt△CDF中,,即,∴.∴AD=AE+EF+FD=50+6+34.64≈90.6.即坝底AD的长度为90.6米.13.在Rt△ABC中,∠C=90°,AC=9,,则AB=()A.15B.12C.9D.6【答案】A【解析】在Rt△ABC中,∠C=90°,AC=9,∵,∴,解得AB=15.14.如图,在梯形ABCD中,AD∥BC,AC⊥AB,AD=CD,,BC=10,则AB的值是()A.3B.6C.8D.9【答案】B【解析】∵AD∥BC,∴∠DAC=∠ACB.∵AD=CD,∴∠DAC=∠DCA.∴∠ACB=∠DCA.∴,即,∴AC=8,∴.15.(2013四川绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=()A.cmB.cmC.cmD.cm【答案】B【解析】∵四边形ABCD是菱形,对角线AC=8cm,BD=6cm,∴AO=4cm,BO=3cm.在Rt△AOB中,cm.∵,∴cm.在Rt△DHB中,cm,则.∵,∴cm.故选B.16.(2013辽宁锦州)在△ABC中,AB=AC,AB的垂直平分线DE与AC所在的直线相交于点E,垂足为D,连接BE.已知AE=5,,则BE+CE=________.【答案】6或16【解析】∵DE垂直平分AB,∴BE=AE,∵AE=5,,∴AD=3.∴AB=AC=6.如图①,当DE与线段AC相交时,BE+CE=AC=6;如图②,当DE与线段CA的延长线相交时,BE+CE=5+5+6=16.故填6或16.17.(2014贵州毕节)如图,将四根木条钉成的长方形木框变形为平行四边形ABCD的形状,并使其面积为长方形面积的一半(木条宽度忽略不计),则这个平行四边形的一个最小内角为________度.【答案】30【解析】作□ABCD中BC边上的高AE,则由题意可知:AB=2AE.在Rt△ABE中,,∴∠B=30°.18.如图所示,A、B、C为三个村庄,A、D、C在一条直线上,AB、BC、AD为公路,CD为湖宽.现在要从D处开始铺设通往村庄C的一条地下电缆,经测量得,千米,AD=2千米,∠A=60°,∠BCA=45°.请求出湖宽CD的长.(结果保留根号)【答案】【解析】如图,作BE⊥AC于E,在Rt△BEC中,∵∠BCA=45°,,∴,∴CE=BE=6.在Rt△ABE中,∵∠A=60°,,∴.∵AD=2,∴,即湖宽千米.19.在Rt△ABC中,∠C=90°,,若BC=1,则AC=()A.1B.2C.D.【答案】C【解析】在Rt△ABC中,∠C=90°,,∴∠B=60°,∵,即,∴.故选C.20.(2014浙江杭州)在直角三角形ABC中,已知∠C=90°,∠A=40°,BC=3,则AC=()A.3sin40°B.3sin50°C.3tan40°D.3tan50°【答案】D【解析】∵∠C=90°,∠A=40°,∴∠B=50°,∵,∴AC=BCtanB=3tan50°,故选D.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年九年级中考数学
《解直角三角形实际问题》专项复习试卷及解析
1.如图,小山岗的斜坡AC的坡度是tan α=,在与山脚C距离200米的D处,测得山顶A的仰
角为26.6°,求小山岗的高AB(结果取整数:参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50).
2.如图,以AB为直径的⊙O交△ABC的边AC于D、BC于E,过D作⊙O的切线交BC于F,
交BA延长线于G,且DF⊥BC.
(1)求证:BA=BC;
(2)若AG=2,cos B=0.6,求DE的长.
3.为有效开发海洋资源,保护海洋权益,我国对南海诸岛进行了全面调查.如图,一测量船在A 岛测得B岛在北偏西30°方向,C岛在北偏东15°方向,航行100海里到达B岛,在B岛测得C 岛在北偏东45°,求B,C两岛及A,C两岛的距离.(结果保留到整数,≈1.41,≈2.45)
4.如图,为测量一座山峰CF的高度,将此山的某侧山坡划分为AB和BC两段,每一段山坡近似是“直”的,测得坡长AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.(1)求AB段山坡的高度EF;
(2)求山峰的高度CF.( 1.414,CF结果精确到米)
5.如图,在两建筑物之间有一旗杆,高15米,从A点经过旗杆顶点恰好看到矮建筑物的墙角C
点,且俯角α为60°,又从A点测得D点的俯角β为30°,若旗杆底点G为BC的中点,则矮建筑物的高CD为多少?
6.如图所示,某数学活动小组要测量山坡上的电线杆PQ的高度,他们在A处测得信号塔顶
端P的仰角是45°,信号塔底端点Q的仰角为31°,沿水平地面向前走100米到B处,测得信号塔顶端P的仰角是68°,求信号塔PQ的高度.
(结果精确到0.1米,参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.48,tan31°≈0.60,sin31°≈0.52,cos31°≈0.86)
7.如图,已知在△ABC中,AD是BC边上的高,E是AC边的中点,BC=14,AD=12,sinB=0.8.
(1)求线段CD的长;(2)求tan∠EDC的值.
8.如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障
碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到0.1m)(参考数据:≈1.414,≈1.732)
9.如图,某大楼的顶部竖有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为
60°,沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°.已知山坡AB的坡度为i=1:,
AB=10米,AE=15米.
(1)求点B距水平面AE的高度BH;
(2)求广告牌CD的高度.
(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732)
10.某型号飞机的机翼形状如图,AB∥CD,∠DAE=37º,∠CBE=45º,CD=1.3m,AB、CD之间的距离为5.1m.求AD、AB的长.(参考数据:,,)
11.已知:如图,在△ABC中,∠A=30°, tan B=3
4
,AC=18,求BC、AB的长.
C
B A
12.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠
A=45°,AC=,试求CD的长.
13.如图,在△ABC中,AB=AC,以AC边为直径作⊙O交BC边于点D,过点D作DE⊥AB于点E,ED、AC的延长线交于点F.
(1)求证:EF是⊙O的切线;
(2)若BE=1.5,且sin∠CFD=0.6,求⊙O的半径与线段AE的长.
14.如图是我市投入使用的“大鼻子”校车,其安全隐患主要是超速和超载,某中学九年级
数学活动小组设计了如下检测公路上行驶汽车速度的实验,先在笔直的车道l旁边选取一点A,再在l上确定点B,使AB⊥l,测得AB的长为30米,又在l上选取点C,D,使∠CAB=30°,∠DAB=60°,如图所示.
(1)求CD的长;(精确到0.1米,参考数据:≈1.41,≈1.73)
(2)已知本路段对校车的限速为40千米/时,若测得某校车从点C到点D用时3秒,则这辆校车是否超速?并说明理由.
参考答案
1.解:∵在直角三角形ABC中,=tan α=,∴BC=
∵在直角三角形ADB中,∴=tan26.6°=0.50即:BD=2AB
∵BD﹣BC=CD=200∴2AB﹣AB=200解得:AB=300米,答:小山岗的高度为300米.
2.(1)证明:连结OD,如图,∵DF为切线,∴OD⊥DF,
∵DF⊥BC,∴OD∥BC,∴∠ODA=∠C,
而OA=OD,∴∠ODA=∠OAD,∴∠OAD=∠C,∴BA=BC;
(2)作DH⊥AB于H,如图,设⊙O的半径为r,
∵OD∥BC,∴∠B=∠DOG,∴cos∠DOG=cos B=0.6,
在Rt△ODG中,∵cos∠DOG=,即=,∴r=3,
在Rt△ODH中,∵cos∠DOH==,∴OH=,∴AH=3﹣=,
在Rt△ADH中,AD==,
∵∠DEC=∠C,∴DE=DC,而OA=OB,OD∥BC,∴AD=CD,∴DE=AD=.
3.解:由题意知∠BAC=45°,∠FBA=30°,∠EBC=45°,AB=100海里,过B点作BD⊥AC
于点D,
∵∠BAC=45°,∴△BAD为等腰直角三角形,∴BD=AD=50,∠ABD=45°,
∴∠CBD=180°-30°-45°-45°=60°,∴∠C=30°,
∴在Rt△BCD中,BC=100≈141(海里),CD=50,
∴AC=AD+CD=50+50≈193(海里)
4.解:(1)作BH⊥AF于H,如图,
在Rt△ABF中,∵sin∠BAH=,∴BH=800•sin30°=400,∴EF=BH=400m;
(2)在Rt△CBE中,∵sin∠CBE=,∴CE=200•sin45°=100≈141.4,
∴CF=CE+EF=141.4+400≈541(m).
答:AB段山坡高度为400米,山CF的高度约为541米.
5.GE//AB//CD,BC=2GC,GE=15米,AB=2GE=30米,AF=BC=AB•cot∠ACB=30×cot60º=10米,DF=AF•tan30º=10×=10米,CD=A B-D F=30-10=20米。
答:略
6.
7.略
8.解:如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,
在直角△ADF中,∵AF=80m﹣10m=70m,∠ADF=45°,∴DF=AF=70m.
在直角△CDE中,∵DE=10m,∠DCE=30°,∴CE===10(m),
∴BC=BE﹣CE=70﹣10≈70﹣17.32≈52.7(m).答:障碍物B,C两点间的距离约为
52.7m.
9.解:(1)∵tan∠BAH=i=,∴∠BAH=300,又∵AB=10,∴AH=5(米),BH=5(米)
(2)过B作BF⊥CE于F 在Rt△BFC中,∠CBF=450,BF=15+5,∴CF=15+5∴CE=20+5
在Rt△AED中,∠DAE=600,AE=15,∴DE=15
∴CD=20+5-15=20-10 2.7(米)
答:广告牌CD的高度为2.7米.
10.解:作AH⊥CD于H,作CF⊥AB于F.在Rt△AHD中,∠ADH=37º,
由,得(m)
由,得
在Rt△BCF中,∠CBF=45º,所以BF=CF=5.1,因为AB+BF=HD+DC,所以AB=6.8+1.3-5.1=3(m)
11.
12.解:∠2=∠1=∠A=45°,∠3=60°,BC=AC=,作BH⊥FC于点H,则BH=CH=BC=12,
Rt△BDH中,DH=BH÷tan∠3=12÷=4,∴ CD=C H-D H=12-4
13.解:
(1)证明:如图2所示,连结,
∵,∴.
∵,∴.∴,∴∥.
∵,∴.∴是⊙的切线.
(2)在和中,∵,∴ .
设,则.∴,.
∵,∴.∴,解得=,
∴⊙的半径长为,=.
九年级中考数学《解直角三角形实际问题》专项复习试卷及解析14.
第11 页共11 页。