2021届中考数学专题复习训练——二次函数 专题14二次函数综合之新定义、探究问题
【2021中考数学】二次函数的综合及其应用含答案

二次函数的综合及其应用1. 有一块矩形地块ABCD ,AB =20米,BC =30米.为美观,拟种植不同的花卉,如图所示,将矩形ABCD 分割成四个等腰梯形及一个矩形,其中梯形的高相等,均为x 米.现决定在等腰梯形AEHD 和BCGF 中种植甲种花卉;在等腰梯形ABFE 和CDHG 中种植乙种花卉;在矩形EFGH 中种植丙种花卉.甲、乙、丙三种花卉的种植成本分别为20元/平方米、60元/平方米、40元/平方米,设三种花卉的种植总成本为y 元. (1)当x =5时,求种植总成本y ;(2)求种植总成本y 与x 的函数表达式,并写出自变量x 的取值范围;(3)若甲、乙两种花卉的种植面积之差不超过120平方米,求三种花卉的最低种植总成本.2. 某单位的帮扶对象种植的农产品在某月(按30天计)的第x 天(x 为正整数)的销售价格p(元/千克)关于x 的函数关系式为p =⎩⎪⎨⎪⎧25x +4(0<x≤20),-15x +12(20<x≤30),销售量y(千克)与x 之间的关系如图所示.(1)求y 与x 之间的函数关系式,并写出x 的取值范围.(2)当月第几天,该农产品的销售额最大,最大销售额是多少?(销售额=销售量×销售价格)3. 在平面直角坐标系中,直线y =-12x +5 与x ,y 轴分别交于A ,B 两点,抛物线y =ax 2+bx(a≠0)过点A.(1)求线段AB 的长;(2)若抛物线y =ax 2+bx 经过线段AB 上另一点C ,且BC =5,求这条抛物线表达式; (3)如果抛物线y =ax 2+bx 的顶点D 在△AOB 内部,求a 的取值范围4. 如图,在直角坐标系中,四边形OABC 是平行四边形,经过A(-2,0),B ,C 三点的抛物线y =ax 2+bx +83(a <0)与x 轴的另一个交点为D ,其顶点为M ,对称轴与x 轴交于点E.(1)求这条抛物线对应的函数表达式;(2)已知R 是抛物线上的点,使得△A DR 的面积是▱OABC 的面积的34,求点R 的坐标;(3)已知P 是抛物线对称轴上的点,满足在直线MD 上存在唯一的点Q ,使得∠PQE=45°,求点P 的坐标.5. 如图,抛物线y =ax 2+bx +2与x 轴交于A ,B 两点,且OA =2OB ,与y 轴交于点C ,连接BC ,抛物线对称轴为直线x =12,D 为第一象限内抛物线上一动点,过点D 作DE⊥OA 于点E ,与AC 交于点F ,设点D的横坐标为m.(1)求抛物线的表达式;(2)当线段DF 的长度最大时,求D 点的坐标;(3)抛物线上是否存在点D ,使得以点O ,D ,E 为顶点的三角形与△BOC 相似?若存在,求出m 的值;若不存在,请说明理由.参考答案1.解:(1)当x =5时,EF =20-2x =10,EH =30-2x =20,y =2×12×(EH +AD)×x×20+2×12×(GH +CD)×x×60+EF·EH×40=(20+30)×5×20+(10+20)×5×60+20×10×40=22 000. (2)EF =20-2x ,EH =30-2x ,参考(1),由题意,得y =(30+30-2x)×x×20+(20+20-2x)×x×60+(30-2x)(20-2x)×40=-400x +24 000(0<x <10).(3)S 甲=2×12(EH +AD)×x=(30-2x +30)x =-2x 2+60x ,同理S 乙=-2x 2+40x.∵甲、乙两种花卉的种植面积之差不超过120米2, ∴-2x 2+60x -(-2x 2+40x)≤120, 解得x≤6,故0<x≤6,而y =-400x +24 000随x 的增大而减小,故当x =6时,y 的最小值为21 600, 故三种花卉的最低种植总成本为21 600元.2.解:(1)当0<x≤20时,设y 与x 的函数关系式为y =ax +b ,⎩⎪⎨⎪⎧b =80.20a +b =40,解得⎩⎪⎨⎪⎧a =-2,b =80,即当0<x≤20时,y 与x 的函数关系式为y =-2x +80;当20<x≤30时,设y 与x 的函数关系式为y =mx +n ,⎩⎪⎨⎪⎧20m +n =40,30m +n =80,解得⎩⎪⎨⎪⎧m =4,n =-40, 即当20<x≤30时,y 与x 的函数关系式为y =4x -40.由上可得,y 与x 的函数关系式为y =⎩⎪⎨⎪⎧-2x +80(0<x≤20),4x -40(20<x≤30). (2)设当月第x 天的销售额为w 元,当0<x≤20时, w =(25x +4)×(-2x +80)=-45(x -15)2+500,∴当x =15时,w 取得最大值,此时w =500;当20<x≤30时,w =(-15x +12)×(4x-40)=-45(x -35)2+500,∴当x =30时,w 取得最大值,此时w=480,由上可得,当x =15时,w 取得最大值,此时w =500.答:当月第15天,该农产品的销售额最大,最大销售额是500元. 3.解:(1)直线y =-12x +5与x 轴、y 轴交于A ,B 两点,则A(10,0),B(0,5),∴AB=102+52=5 5.(2)设点C 坐标为(t ,-12t +5),则BC 2=t 2+(-12t)2=5,解得t =2,∴C(2,4).将A ,C 坐标代入y =ax 2+bx 得⎩⎪⎨⎪⎧0=100a +10b ,4=4a +2b ,解得⎩⎪⎨⎪⎧a =-14,b =52,∴这条抛物线的表达式为y =-14x 2+52x.(3)∵抛物线y =ax 2+bx 过点A ,∴100a+10b =0,解得b =-10a ,∴抛物线顶点D 为(5,-25a). 抛物线顶点D 在△AOB 内部,∴0<-25a <52,解得-110<a <0.4.解:(1)OA =2=BC ,故函数的对称轴为x =1,则x =-b2a =1.①将点A 的坐标代入抛物线表达式得0=4a -2b +83,②联立①②并解得⎩⎪⎨⎪⎧a =-13,b =23,故抛物线的表达式为y =-13x 2+23x +83.③(2)由抛物线的表达式,得点M(1,3),点D(4,0).∵△ADR 的面积是▱OABC 的面积的34,∴12AD·|y R |=34OA·OB,即12×6×|y R |=34×2×83, 解得y R =±43,④联立④③并解得⎩⎪⎨⎪⎧x =1±13,y =-43或⎩⎪⎨⎪⎧x =1±5,y =43. 故点R 的坐标为(1+13,-43)或(1-13,-43)或(1+5,43)或(1-5,43).(3)(Ⅰ)如图,作△PEQ 的外接圆R ,∵∠PQE=45°,∴∠PRE=90°, 则△PRE 为等腰直角三角形. 当直线MD 上存在唯一的点Q , 则RQ⊥MD.点M ,D 的坐标分别为(1,3),(4,0),则ME =3,ED =4-1=3, 则MD =32,过点R 作RH⊥ME 于点H ,设点P(1,2m),则PH =HE =HR =m , 则圆R 的半径为2m ,则点R(1+m ,m), S △MED =S △MRD +S △MRE +S △DRE ,∴12EM·ED=12MD·RQ+12ED·y R +12ME·RH, 即12×3×3=12×32×2m +12×3m+12×3m,解得m =34,故点P(1,32).(Ⅱ)当点Q 与点D 重合时,由点M ,E ,D 的坐标知,ME =ED ,即∠MDE=45°;①当点P 在x 轴上方时,当点P 与点M 重合时,此时∠PQE=45°,此时点P(1,3), ②当点P 在x 轴下方时,同理可得点P(1,-3), 综上所述,点P 的坐标为(1,32)或(1,3)或(1,-3).5.解:(1)设OB =t ,则OA =2t ,则点A ,B 的坐标分别为(2t ,0),(-t ,0),则x =12(2t -t)=12,解得t =1,故点A ,B 的坐标分别为(2,0),(-1,0),则抛物线的表达式为y =a(x -2)(x +1)=ax 2+bx +2, 解得a =-1,b =1,故抛物线的表达式为y =-x 2+x +2.(2)对于y =-x 2+x +2,令x =0,则y =2,故点C(0,2), 由点A ,C 的坐标,得直线AC 的表达式为y =-x +2, 设点D 的横坐标为m ,则点D(m ,-m 2+m +2), 则点F(m ,-m +2),则DF =-m 2+m +2-(-m +2)=-m 2+2m =-(m -1)2+1. ∵-1<0,∴DF 有最大值,此时m =1,点D(1,2). (3)存在,理由:点D(m ,-m 2+m +2)(m >0),则OE =m , DE =-m 2+m +2,以点O ,D ,E 为顶点的三角形与△BOC 相似, 则DE OE =OB OC 或DE OE =OC OB ,即DE OE =2或DE OE =12,即-m 2+m +2m =2或-m 2+m +2m =12,解得m =1或-2(舍去)或1+334或1-334(舍去),故m =1或1+334.。
备考2021年中考数学复习专题:函数_二次函数_二次函数与不等式(组)的综合应用,综合题专训及答案

若
≤-2,比较 与 的大小;
(4) 当抛物线F与线段AB有公共点时,直接写出m的取值范围。
9、 (2017濉溪.中考模拟) 2016年里约奥运会,中国跳水队赢得8个项目中的7块金牌,优秀成绩的取得离不开艰辛的训练 .某跳水运动员在进行跳水训练时,身体(看成一点)在空中的运动路线是如图所示的一条抛物线,已知跳板AB长为2米 ,跳板距水面CD的高BC为3米,训练时跳水曲线在离起跳点水平距离1米时达到距水面最大高度k米,现以CD为横轴,CB 为纵轴建立直角坐标系.
下面是他的探究过程,请将探究过程补充完整: 将不等式按条件进行转化:
当x=0时,原不等式不成立; 当x>0时,原不等式可以转化为x2+4x﹣1> ; 当x<0时,原不等式可以转化为x2+4x﹣1< ; (1) 构造函数,画出图象 设y3=x2+4x﹣1,y4= ,在同一坐标系中分别画出这两个函数的图象.
备考2021年中考数学复习专题:函数_二次函数_二次函数与不等式(组)的综
合应用,综合题专训及答案
备 考 2021中 考 数 学 复 习 专 题 : 函 数 _二 次 函 数 _二 次 函 数 与 不 等 式 ( 组 ) 的 综 合 应 用 , 综 合 题 专 训
1、 (2018长春.中考真卷) 如图,在平面直角坐标系中,矩形ABCD的对称中心为坐标原点O,AD⊥y轴于点E(点A在点D 的左侧),经过E、D两点的函数y=﹣ x2+mx+1(x≥0)的图象记为G1 , 函数y=﹣ x2﹣mx﹣1(x<0)的图象记为G2 , 其中m是常数,图象G1、G2合起来得到的图象记为G.设矩形ABCD的周长为L.
交于A(1,3)和B(﹣3,﹣1)两点.
观察图象可知:
2020-2021中考数学压轴题专题复习—二次函数的综合及详细答案

2020-2021中考数学压轴题专题复习—二次函数的综合及详细答案一、二次函数1.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.【答案】(1)y=﹣x2﹣2x+3;(2)抛物线与x轴的交点为:(﹣3,0),(1,0)(3)15.【解析】【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B 点坐标代入,即可求出二次函数的解析式;(2)根据函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标;(3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积.【详解】(1)设抛物线顶点式y=a(x+1)2+4,将B(2,﹣5)代入得:a=﹣1,∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3;(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3),令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即抛物线与x轴的交点为:(﹣3,0),(1,0);(3)设抛物线与x轴的交点为M、N(M在N的左侧),由(2)知:M(﹣3,0),N(1,0),当函数图象向右平移经过原点时,M与O重合,因此抛物线向右平移了3个单位,故A'(2,4),B'(5,﹣5),∴S△OA′B′=12×(2+5)×9﹣12×2×4﹣12×5×5=15.【点睛】本题考查了用待定系数法求抛物线解析式、函数图象与坐标轴交点、图形面积的求法等知识.熟练掌握待定系数法、函数图象与坐标轴的交点的求解方法、不规则图形的面积的求解方法等是解题的关键.2.如图,已知抛物线2y ax bx c =++经过A (-3,0),B (1,0),C (0,3)三点,其顶点为D ,对称轴是直线l ,l 与x 轴交于点H .(1)求该抛物线的解析式;(2)若点P 是该抛物线对称轴l 上的一个动点,求△PBC 周长的最小值;(3)如图(2),若E 是线段AD 上的一个动点( E 与A 、D 不重合),过E 点作平行于y 轴的直线交抛物线于点F ,交x 轴于点G ,设点E 的横坐标为m ,△ADF 的面积为S . ①求S 与m 的函数关系式;②S 是否存在最大值?若存在,求出最大值及此时点E 的坐标; 若不存在,请说明理由.【答案】(1)2y x 2x 3=--+.(2)3210. (3)①2S m 4m 3=---.②当m=﹣2时,S 最大,最大值为1,此时点E 的坐标为(﹣2,2). 【解析】 【分析】(1)根据函数图象经过的三点,用待定系数法确定二次函数的解析式即可.(2)根据BC 是定值,得到当PB+PC 最小时,△PBC 的周长最小,根据点的坐标求得相应线段的长即可.(3)设点E 的横坐标为m ,表示出E (m ,2m+6),F (m ,2m 2m 3--+),最后表示出EF 的长,从而表示出S 于m 的函数关系,然后求二次函数的最值即可. 【详解】解:(1)∵抛物线2y ax bx c =++经过A (-3,0),B (1,0), ∴可设抛物线交点式为()()y a x 3x 1=+-.又∵抛物线2y ax bx c =++经过C (0,3),∴a 1=-. ∴抛物线的解析式为:()()y x 3x 1=-+-,即2y x 2x 3=--+. (2)∵△PBC 的周长为:PB+PC+BC ,且BC 是定值. ∴当PB+PC 最小时,△PBC 的周长最小.∵点A 、点B 关于对称轴I 对称, ∴连接AC 交l 于点P ,即点P 为所求的点.∵AP=BP ,∴△PBC 的周长最小是:PB+PC+BC=AC+BC.∵A (-3,0),B (1,0),C (0,3),∴2,10. ∴△PBC 的周长最小是:3210.(3)①∵抛物线2y x 2x 3=--+顶点D 的坐标为(﹣1,4),A (﹣3,0),∴直线AD 的解析式为y=2x+6∵点E 的横坐标为m ,∴E (m ,2m+6),F (m ,2m 2m 3--+) ∴()22EF m 2m 32m 6m 4m 3=--+-+=---.∴()22DEF AEF 1111S S S EF GH EF AG EF AH m 4m 32m 4m 32222∆∆=+=⋅⋅+⋅⋅=⋅⋅=⋅---⋅=---.∴S 与m 的函数关系式为2S m 4m 3=---. ②()22S m 4m 3m 21=---=-++,∴当m=﹣2时,S 最大,最大值为1,此时点E 的坐标为(﹣2,2).3.某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用. 设每个房间每天的定价增加x 元.求:(1)房间每天的入住量y (间)关于x (元)的函数关系式; (2)该宾馆每天的房间收费p (元)关于x (元)的函数关系式;(3)该宾馆客房部每天的利润w (元)关于x (元)的函数关系式;当每个房间的定价为每天多少元时,w 有最大值?最大值是多少?【答案】(1)y=60-10x;(2)z=-110x 2+40x+12000;(3)w=-110x 2+42x+10800,当每个房间的定价为每天410元时,w 有最大值,且最大值是15210元. 【解析】试题分析:(1)根据题意可得房间每天的入住量=60个房间﹣每个房间每天的定价增加的钱数÷10;(2)已知每天定价增加为x 元,则每天要(200+x )元.则宾馆每天的房间收费=每天的实际定价×房间每天的入住量;(3)支出费用为20×(60﹣10x ),则利润w =(200+x )(60﹣10x )﹣20×(60﹣10x),利用配方法化简可求最大值. 试题解析:解:(1)由题意得:y =60﹣10x (2)p =(200+x )(60﹣10x )=﹣2110x +40x +12000 (3)w =(200+x )(60﹣10x )﹣20×(60﹣10x ) =﹣2110x +42x +10800 =﹣110(x ﹣210)2+15210 当x =210时,w 有最大值.此时,x +200=410,就是说,当每个房间的定价为每天410元时,w 有最大值,且最大值是15210元.点睛:求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.本题主要考查的是二次函数的应用,难度一般.4.已知抛物线26y x x c =-++.(1)若该抛物线与x 轴有公共点,求c 的取值范围;(Ⅱ)设该抛物线与直线21y x =+交于M ,N 两点,若MN =C 的值; (Ⅲ)点P ,点Q 是抛物线上位于第一象限的不同两点,,PA QB 都垂直于x 轴,垂足分别为A ,B ,若OPA OQB ∆≅∆,求c 的取值范围.【答案】(I )9c -…;(Ⅱ)2c =-;(Ⅲ)c 的取值范围是2174c -<< 【解析】 【分析】(1) 抛物线与x 轴有公共点,则判别式为非负数,列不等式求解即可;(2)求出二次函数与直线的交点,并根据勾股定理求出MN 的长度,列方程即可求解; (3)由OPA OQB ∆≅∆可知,P ,Q 两点的坐标特点,设坐标得到设点P 的坐标为(, )m n ,则点Q 的坐标为(,)n m ,代入二次函数,得到n,m 的关系,则只需保证该方程有正根即可求解. 【详解】解:(I )∵抛物线26y x x c =-++与x 轴有交点,∴一元二次方程260x x c -++=有实根。
2020-2021备战中考数学复习二次函数专项综合练含答案解析

2020-2021备战中考数学复习二次函数专项综合练含答案解析一、二次函数1.如图:在平面直角坐标系中,直线l :y=13x ﹣43与x 轴交于点A ,经过点A 的抛物线y=ax 2﹣3x+c 的对称轴是x=32. (1)求抛物线的解析式;(2)平移直线l 经过原点O ,得到直线m ,点P 是直线m 上任意一点,PB ⊥x 轴于点B ,PC ⊥y 轴于点C ,若点E 在线段OB 上,点F 在线段OC 的延长线上,连接PE ,PF ,且PE=3PF .求证:PE ⊥PF ;(3)若(2)中的点P 坐标为(6,2),点E 是x 轴上的点,点F 是y 轴上的点,当PE ⊥PF 时,抛物线上是否存在点Q ,使四边形PEQF 是矩形?如果存在,请求出点Q 的坐标,如果不存在,请说明理由.【答案】(1)抛物线的解析式为y=x 2﹣3x ﹣4;(2)证明见解析;(3)点Q 的坐标为(﹣2,6)或(2,﹣6). 【解析】 【分析】(1)先求得点A 的坐标,然后依据抛物线过点A ,对称轴是x=32列出关于a 、c 的方程组求解即可;(2)设P (3a ,a ),则PC=3a ,PB=a ,然后再证明∠FPC=∠EPB ,最后通过等量代换进行证明即可;(3)设E (a ,0),然后用含a 的式子表示BE 的长,从而可得到CF 的长,于是可得到点F 的坐标,然后依据中点坐标公式可得到22x x x x Q P F E ++=,22y y y yQ P F E ++=,从而可求得点Q 的坐标(用含a 的式子表示),最后,将点Q 的坐标代入抛物线的解析式求得a 的值即可. 【详解】(1)当y=0时,14033x -=,解得x=4,即A (4,0),抛物线过点A ,对称轴是x=32,得161203322a c a -+=⎧⎪-⎨-=⎪⎩,解得14a c =⎧⎨=-⎩,抛物线的解析式为y=x 2﹣3x ﹣4;(2)∵平移直线l 经过原点O ,得到直线m ,∴直线m 的解析式为y=13x . ∵点P 是直线1上任意一点,∴设P (3a ,a ),则PC=3a ,PB=a . 又∵PE=3PF , ∴PC PBPF PE=. ∴∠FPC=∠EPB . ∵∠CPE+∠EPB=90°, ∴∠FPC+∠CPE=90°, ∴FP ⊥PE .(3)如图所示,点E 在点B 的左侧时,设E (a ,0),则BE=6﹣a .∵CF=3BE=18﹣3a , ∴OF=20﹣3a . ∴F (0,20﹣3a ). ∵PEQF 为矩形, ∴22x x x x Q P F E ++=,22y y y yQ P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0, ∴Q x =a ﹣6,Q y =18﹣3a .将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=4或a=8(舍去). ∴Q (﹣2,6).如下图所示:当点E 在点B 的右侧时,设E (a ,0),则BE=a ﹣6.∵CF=3BE=3a ﹣18, ∴OF=3a ﹣20. ∴F (0,20﹣3a ). ∵PEQF 为矩形,∴22x x x x Q P F E ++=,22y y y yQ P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0, ∴Q x =a ﹣6,Q y =18﹣3a .将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=8或a=4(舍去). ∴Q (2,﹣6).综上所述,点Q 的坐标为(﹣2,6)或(2,﹣6). 【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了矩形的性质、待定系数法求二次函数的解析式、中点坐标公式,用含a 的式子表示点Q 的坐标是解题的关键.2.抛物线y =ax 2+bx ﹣3(a≠0)与直线y =kx+c (k≠0)相交于A (﹣1,0)、B (2,﹣3)两点,且抛物线与y 轴交于点C . (1)求抛物线的解析式; (2)求出C 、D 两点的坐标(3)在第四象限抛物线上有一点P ,若△PCD 是以CD 为底边的等腰三角形,求出点P 的坐标.【答案】(1)y =x 2﹣2x ﹣3;(2)C (0,﹣3),D (0,﹣1);(3)P (2,﹣2). 【解析】【分析】(1)把A (﹣1,0)、B (2,﹣3)两点坐标代入y =ax 2+bx ﹣3可得抛物线解析式. (2)当x =0时可求C 点坐标,求出直线AB 解析式,当x =0可求D 点坐标. (3)由题意可知P 点纵坐标为﹣2,代入抛物线解析式可求P 点横坐标. 【详解】解:(1)把A (﹣1,0)、B (2,﹣3)两点坐标代入 y =ax 2+bx ﹣3可得 304233a b a b --=⎧⎨+-=-⎩解得12a b =⎧⎨=-⎩ ∴y =x 2﹣2x ﹣3(2)把x =0代入y =x 2﹣2x ﹣3中可得y =﹣3∴C (0,﹣3) 设y =kx+b ,把A (﹣1,0)、B (2,﹣3)两点坐标代入23k b k b -+=⎧⎨+=-⎩解得11k b =-⎧⎨=-⎩∴y =﹣x ﹣1 ∴D (0,﹣1)(3)由C (0,﹣3),D (0,﹣1)可知CD 的垂直平分线经过(0,﹣2) ∴P 点纵坐标为﹣2, ∴x 2﹣2x ﹣3=﹣2解得:x =∵x >0∴x =. ∴P (,﹣2) 【点睛】本题是二次函数综合题,用待定系数法求二次函数的解析式,把x =0代入二次函数解析式和一次函数解析式可求图象与y 轴交点坐标,知道点P 纵坐标带入抛物线解析式可求点P 的横坐标.3.在平面直角坐标系中,有两点(),A a b 、(),B c d ,若满足:当a b ≥时,c a =,2d b =-;当a b <时,c a <-,d b <,则称点为点的“友好点”.(1)点()4,1的“友好点”的坐标是_______.(2)点(),A a b 是直线2y x =-上的一点,点B 是点A 的“友好点”. ①当B 点与A 点重合时,求点A 的坐标.②当A 点与A 点不重合时,求线段AB 的长度随着a 的增大而减小时,a 的取值范围. 【答案】(1)()41-,;(2)①点A 的坐标是()2,0或()1,1-;②当1a <或322a ≤<时,AB 的长度随着a 的增大而减小; 【解析】 【分析】(1)直接利用“友好点”定义进行解题即可;(2)先利用 “友好点”定义求出B 点坐标,A 点又在直线2y x =-上,得到2b a =-;①当点A 和点B 重合,得2b b =-.解出即可,②当点A 和点B 不重合, 1a ≠且2a ≠.所以对a 分情况讨论,1°、当1a <或2a >时,()222313224AB b b a a a ⎛⎫=--=-+=-- ⎪⎝⎭,所以当a ≤32时,AB 的长度随着a 的增大而减小,即取1a <.2°当12a <<时,()22231+3224AB b b a a a ⎛⎫=--=--=--+ ⎪⎝⎭,当32a ≥时,AB 的长度随着a 的增大而减小,即取322a ≤<. 综上,当1a <或322a ≤<时,AB 的长度随着a 的增大而减小. 【详解】(1)点()4,1,4>1,根据“友好点”定义,得到点()4,1的“友好点”的坐标是()41-, (2)点(),A a b 是直线2y x =-上的一点,∴2b a =-.2a a >-,根据友好点的定义,点B 的坐标为()2,B a b -,①当点A 和点B 重合,∴2b b =-. 解得0b =或1b =-. 当0b =时,2a =;当1b =-时,1a =,∴点A 的坐标是()2,0或()1,1-.②当点A 和点B 不重合,1a ≠且2a ≠.当1a <或2a >时,()222313224AB b b a a a ⎛⎫=--=-+=-- ⎪⎝⎭. ∴当a ≤32时,AB 的长度随着a 的增大而减小, ∴取1a <.当12a <<时, ()22231+3224AB b b a a a ⎛⎫=--=--=--+ ⎪⎝⎭ .∴当32a ≥时,AB 的长度随着a 的增大而减小, ∴取322a ≤<. 综上,当1a <或322a ≤<时,AB 的长度随着a 的增大而减小.【点睛】本题属于阅读理解题型,结合二次函数的基本性质进行解题,第二问的第二小问的关键是求出AB 的长用a 进行表示,然后利用二次函数基本性质进行分类讨论4.如图,已知二次函数的图象过点O (0,0).A (8,4),与x 轴交于另一点B ,且对称轴是直线x =3.(1)求该二次函数的解析式;(2)若M 是OB 上的一点,作MN ∥AB 交OA 于N ,当△ANM 面积最大时,求M 的坐标;(3)P 是x 轴上的点,过P 作PQ ⊥x 轴与抛物线交于Q .过A 作AC ⊥x 轴于C ,当以O ,P ,Q 为顶点的三角形与以O ,A ,C 为顶点的三角形相似时,求P 点的坐标.【答案】(1)21342y x x =-;(2)当t =3时,S △AMN 有最大值3,此时M 点坐标为(3,0);(3)P 点坐标为(14,0)或(﹣2,0)或(4,0)或(8,0). 【解析】 【分析】(1)先利用抛物线的对称性确定B (6,0),然后设交点式求抛物线解析式;(2)设M (t ,0),先其求出直线OA 的解析式为12y x =直线AB 的解析式为y=2x-12,直线MN 的解析式为y=2x-2t ,再通过解方程组1222y x y x t ⎧=⎪⎨⎪=-⎩得N (42t,t 33),接着利用三角形面积公式,利用S △AMN =S △AOM -S △NOM 得到AMN 112S 4t t t 223∆=⋅⋅-⋅⋅然后根据二次函数的性质解决问题; (3)设Q 213m,m m 42⎛⎫- ⎪⎝⎭,根据相似三角形的判定方法,当PQ PO OC AC=时,△PQO ∽△COA ,则213m m 2|m |42-=;当PQ POAC OC=时,△PQO ∽△CAO ,则2131m m m 422-=,然后分别解关于m 的绝对值方程可得到对应的P 点坐标. 【详解】解:(1)∵抛物线过原点,对称轴是直线x =3, ∴B 点坐标为(6,0),设抛物线解析式为y =ax (x ﹣6), 把A (8,4)代入得a•8•2=4,解得a =14, ∴抛物线解析式为y =14x (x ﹣6),即y =14x 2﹣32x ; (2)设M (t ,0),易得直线OA 的解析式为y =12x , 设直线AB 的解析式为y =kx+b ,把B (6,0),A (8,4)代入得6084k b k b +=⎧⎨+=⎩,解得k 2b 12=⎧⎨=-⎩,∴直线AB 的解析式为y =2x ﹣12, ∵MN ∥AB ,∴设直线MN 的解析式为y =2x+n , 把M (t ,0)代入得2t+n =0,解得n =﹣2t , ∴直线MN 的解析式为y =2x ﹣2t ,解方程组1222y x y x t ⎧=⎪⎨⎪=-⎩得4323x t y t ⎧=⎪⎪⎨⎪=⎪⎩,则42N t,t 33⎛⎫ ⎪⎝⎭, ∴S △AMN =S △AOM ﹣S △NOM1124t t t 223=⋅⋅-⋅⋅ 21t 2t 3=-+21(t 3)33=--+,当t =3时,S △AMN 有最大值3,此时M 点坐标为(3,0); (3)设213m,m m 42⎛⎫- ⎪⎝⎭, ∵∠OPQ =∠ACO , ∴当PQ PO OC AC =时,△PQO ∽△COA ,即PQ PO 84=,∴PQ =2PO ,即213m m 2|m |42-=, 解方程213m m 2m 42-=得m 1=0(舍去),m 2=14,此时P 点坐标为(14,0); 解方程213m m 2m 42-=-得m 1=0(舍去),m 2=﹣2,此时P 点坐标为(﹣2,0); ∴当PQ PO AC OC =时,△PQO ∽△CAO ,即PQ PO 48=, ∴PQ =12PO ,即2131m m m 422-=, 解方程2131m m m 422=-=得m 1=0(舍去),m 2=8,此时P 点坐标为(8,0); 解方程2131m m m 422=-=-得m 1=0(舍去),m 2=4,此时P 点坐标为(4,0); 综上所述,P 点坐标为(14,0)或(﹣2,0)或(4,0)或(8,0). 【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;灵活运用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题.5.已知抛物线2(5)6y x m x m =-+-+-. (1)求证:该抛物线与x 轴总有交点;(2)若该抛物线与x 轴有一个交点的横坐标大于3且小于5,求m 的取值范围;(3)设抛物线2(5)6y x m x m =-+-+-与y 轴交于点M ,若抛物线与x 轴的一个交点关于直线y x =-的对称点恰好是点M ,求m 的值.【答案】(1)证明见解析;(2)1?<?m?3<;(3)56m m ==或 【解析】 【分析】(1)本题需先根据判别式解出无论m 为任何实数都不小于零,再判断出物线与x 轴总有交点.(2)根据公式法解方程,利用已有的条件,就能确定出m 的取值范围,即可得到结果. (3)根据抛物线y=-x 2+(5-m )x+6-m ,求出与y 轴的交点M 的坐标,再确定抛物线与x 轴的两个交点关于直线y=-x 的对称点的坐标,列方程可得结论. 【详解】(1)证明:∵()()()222454670b ac m m m ∆=-=-+-=-≥ ∴抛物线与x 轴总有交点.(2)解:由(1)()27m ∆=-,根据求根公式可知,方程的两根为:2572m m x ()-±-=-即1216x x m =-=-+, 由题意,有 3<-m 6<5+1<?m 3∴<(3)解:令 x = 0, y =6m -+ ∴ M (0,6m -+)由(2)可知抛物线与x 轴的交点为(-1,0)和(6m -+,0), 它们关于直线y x =-的对称点分别为(0 , 1)和(0, 6m -), 由题意,可得:6166m m m 或-+=-+=- 56m m ∴==或 【点睛】本题考查对抛物线与x 轴的交点,解一元一次方程,解一元一次不等式,根的判别式,对称等,解题关键是熟练理解和掌握以上性质,并能综合运用这些性质进行计算.6.如图1,已知抛物线y =ax 2+bx+3(a≠0)与x 轴交于点A(1,0)和点B(﹣3,0),与y 轴交于点C .(1)求抛物线的解析式;(2)设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由. (3)在(1)中抛物线的对称轴上是否存在点Q ,使得△QAC 的周长最小?若存在,求出Q 点的坐标;若不存在,请说明理由.(4)如图2,若点E 为第二象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标.【答案】(1)y =﹣x 2﹣2x+3;(2)存在符合条件的点P ,其坐标为P (﹣110)或P (﹣110P (﹣1,6)或P (﹣1,53);(3)存在,Q (﹣1,2);(4)638,315,24E ⎛⎫- ⎪⎝⎭.【解析】【分析】(1)已知抛物线过A、B两点,可将两点的坐标代入抛物线的解析式中,用待定系数法即可求出二次函数的解析式;(2)可根据(1)的函数解析式得出抛物线的对称轴,也就得出了M点的坐标,由于C是抛物线与y轴的交点,因此C的坐标为(0,3),根据M、C的坐标可求出CM的距离.然后分三种情况进行讨论:①当CP=PM时,P位于CM的垂直平分线上.求P点坐标关键是求P的纵坐标,过P作PQ⊥y轴于Q,如果设PM=CP=x,那么直角三角形CPQ中CP=x,OM的长,可根据M 的坐标得出,CQ=3﹣x,因此可根据勾股定理求出x的值,P点的横坐标与M的横坐标相同,纵坐标为x,由此可得出P的坐标.②当CM=MP时,根据CM的长即可求出P的纵坐标,也就得出了P的坐标(要注意分上下两点).③当CM=C P时,因为C的坐标为(0,3),那么直线y=3必垂直平分PM,因此P的纵坐标是6,由此可得出P的坐标;(3)根据轴对称﹣最短路径问题解答;(4)由于四边形BOCE不是规则的四边形,因此可将四边形BOCE分割成规则的图形进行计算,过E作EF⊥x轴于F,S四边形BOCE=S△BFE+S梯形FOCE.直角梯形FOCE中,FO为E的横坐标的绝对值,EF为E的纵坐标,已知C的纵坐标,就知道了OC的长.在△BFE中,BF=BO﹣OF,因此可用E的横坐标表示出BF的长.如果根据抛物线设出E的坐标,然后代入上面的线段中,即可得出关于四边形BOCE的面积与E的横坐标的函数关系式,根据函数的性质即可求得四边形BOCE的最大值及对应的E的横坐标的值.即可求出此时E的坐标.【详解】(1)∵抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),∴30 9330 a ba b++=⎧⎨-+=⎩,解得:12 ab=-⎧⎨=-⎩.∴所求抛物线解析式为:y=﹣x2﹣2x+3;(2)如答图1,∵抛物线解析式为:y=﹣x2﹣2x+3,∴其对称轴为x =22-=﹣1, ∴设P 点坐标为(﹣1,a ),当x =0时,y =3,∴C (0,3),M (﹣1,0)∴当CP =PM 时,(﹣1)2+(3﹣a )2=a 2,解得a =53, ∴P 点坐标为:P 1(﹣1,53); ∴当CM =PM 时,(﹣1)2+32=a 2,解得a =±10,∴P 点坐标为:P 2(﹣1,10)或P 3(﹣1,﹣10);∴当CM =CP 时,由勾股定理得:(﹣1)2+32=(﹣1)2+(3﹣a )2,解得a =6, ∴P 点坐标为:P 4(﹣1,6).综上所述存在符合条件的点P ,其坐标为P (﹣1,10)或P (﹣1,﹣10)或P (﹣1,6)或P (﹣1,53); (3)存在,Q (﹣1,2),理由如下:如答图2,点C (0,3)关于对称轴x =﹣1的对称点C′的坐标是(﹣2,3),连接AC′,直线AC′与对称轴的交点即为点Q .设直线AC′函数关系式为:y =kx+t (k≠0).将点A (1,0),C′(﹣2,3)代入,得023k t k t +=⎧⎨-+=⎩, 解得11k t =-⎧⎨=⎩, 所以,直线AC′函数关系式为:y =﹣x+1.将x =﹣1代入,得y =2,即:Q (﹣1,2);(4)过点E 作EF ⊥x 轴于点F ,设E (a ,﹣a 2﹣2a+3)(﹣3<a <0)∴EF=﹣a2﹣2a+3,BF=a+3,OF=﹣a∴S四边形BOCE=12BF•EF+12(OC+EF)•OF=12(a+3)•(﹣a2﹣2a+3)+12(﹣a2﹣2a+6)•(﹣a)=﹣32a2﹣92a+92=﹣32(a+32)2+638,∴当a=﹣32时,S四边形BOCE最大,且最大值为638.此时,点E坐标为(﹣32,154).【点睛】本题主要考查了二次函数的综合知识,要注意的是(2)中,不确定等腰三角形哪条边是底边的情况下,要分类进行求解,不要漏解.7.如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE 面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)y=x2-4x+3.(2)当m=52时,四边形AOPE面积最大,最大值为758.(3)P点的坐标为:P13+515-),P2(352,1+52),P35+5,1+52),P4(552-,152).【解析】分析:(1)利用对称性可得点D的坐标,利用交点式可得抛物线的解析式;(2)设P(m,m2-4m+3),根据OE的解析式表示点G的坐标,表示PG的长,根据面积和可得四边形AOPE的面积,利用配方法可得其最大值;(3)存在四种情况:如图3,作辅助线,构建全等三角形,证明△OMP≌△PNF,根据OM=PN列方程可得点P 的坐标;同理可得其他图形中点P的坐标.详解:(1)如图1,设抛物线与x轴的另一个交点为D,由对称性得:D(3,0),设抛物线的解析式为:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,∴抛物线的解析式;y=x2-4x+3;(2)如图2,设P(m,m2-4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式为:y=x,过P作PG∥y轴,交OE于点G,∴G(m,m),∴PG=m-(m2-4m+3)=-m2+5m-3,∴S四边形AOPE=S△AOE+S△POE,=12×3×3+12PG•AE , =92+12×3×(-m 2+5m-3), =-32m 2+152m , =32(m-52)2+758, ∵-32<0, ∴当m=52时,S 有最大值是758; (3)如图3,过P 作MN ⊥y 轴,交y 轴于M ,交l 于N , ∵△OPF 是等腰直角三角形,且OP=PF ,易得△OMP ≌△PNF ,∴OM=PN ,∵P (m ,m 2-4m+3),则-m 2+4m-3=2-m ,解得:5+555- ∴P 5+51+555-152); 如图4,过P 作MN ⊥x 轴于N ,过F 作FM ⊥MN 于M ,同理得△ONP ≌△PMF ,∴PN=FM ,则-m 2+4m-3=m-2,解得:x=3+52或352; P 的坐标为(3+52,152-)或(352,1+52); 综上所述,点P 的坐标是:(5+52,1+52)或(552-,152-)或(3+52,152-)或(352,1+52). 点睛:本题属于二次函数综合题,主要考查了二次函数的综合应用,相似三角形的判定与性质以及解一元二次方程的方法,解第(2)问时需要运用配方法,解第(3)问时需要运用分类讨论思想和方程的思想解决问题.8.(10分)(2015•佛山)如图,一小球从斜坡O 点处抛出,球的抛出路线可以用二次函数y=﹣x 2+4x 刻画,斜坡可以用一次函数y=x 刻画.(1)请用配方法求二次函数图象的最高点P 的坐标;(2)小球的落点是A ,求点A 的坐标;(3)连接抛物线的最高点P 与点O 、A 得△POA ,求△POA 的面积;(4)在OA 上方的抛物线上存在一点M (M 与P 不重合),△MOA 的面积等于△POA 的面积.请直接写出点M的坐标.【答案】(1)(2,4);(2)(,);(3);(4)(,).【解析】试题分析:(1)利用配方法抛物线的一般式化为顶点式,即可求出二次函数图象的最高点P的坐标;(2)联立两解析式,可求出交点A的坐标;(3)作PQ⊥x轴于点Q,AB⊥x轴于点B.根据S△POA=S△POQ+S△梯形PQBA﹣S△BOA,代入数值计算即可求解;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,由于两平行线之间的距离相等,根据同底等高的两个三角形面积相等,可得△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,将P(2,4)代入,求出直线PM的解析式为y=x+3.再与抛物线的解析式联立,得到方程组,解方程组即可求出点M的坐标.试题解析:(1)由题意得,y=﹣x2+4x=﹣(x﹣2)2+4,故二次函数图象的最高点P的坐标为(2,4);(2)联立两解析式可得:,解得:,或.故可得点A的坐标为(,);(3)如图,作PQ⊥x轴于点Q,AB⊥x轴于点B.S△POA=S△POQ+S△梯形PQBA﹣S△BOA=×2×4+×(+4)×(﹣2)﹣××=4+﹣=;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,则△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,∵P的坐标为(2,4),∴4=×2+b,解得b=3,∴直线PM的解析式为y=x+3.由,解得,,∴点M的坐标为(,).考点:二次函数的综合题9.某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x (元/件)之间满足一次函数关系.(1)试求y与x之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?【答案】(1)y10000x80000=-+(2)当销售价格定为6元时,每月的利润最大,每月的最大利润为40000元【解析】解:(1)由题意,可设y=kx+b,把(5,30000),(6,20000)代入得:5k b300006k b20000+=⎧⎨+=⎩,解得:k10000b80000=-⎧⎨=⎩。
2020-2021备战中考数学专题复习二次函数的综合题附详细答案

2020-2021备战中考数学专题复习二次函数的综合题附详细答案一、二次函数1.如图1,对称轴为直线x=1的抛物线y=1 2x2+bx+c,与x轴交于A、B两点(点A在点B的左侧),且点A坐标为(-1,0).又P是抛物线上位于第一象限的点,直线AP与y轴交于点D,与抛物线对称轴交于点E,点C与坐标原点O关于该对称轴成轴对称.(1)求点B 的坐标和抛物线的表达式;(2)当AE:EP=1:4 时,求点E 的坐标;(3)如图 2,在(2)的条件下,将线段 OC 绕点 O 逆时针旋转得到OC ′,旋转角为α(0°<α<90°),连接C ′D、C′B,求C ′B+23C′D 的最小值.【答案】(1)B(3,0);抛物线的表达式为:y=12x2-x-32;(2)E(1,6);(3)C′B+23C′D4103【解析】试题分析:(1)由抛物线的对称轴和过点A,即可得到抛物线的解析式,令y=0,解方程可得B的坐标;(2)过点P作PF⊥x轴,垂足为F.由平行线分线段弄成比例定理可得AEAP=AGAF=EGPF=15,从而求出E的坐标;(3)由E(1,6)、A(-1,0)可得AP的函数表达式为y=3x+3,得到D(0,3).如图,取点M(0,43),连接MC′、BM.则可求出OM,BM的长,得到△MOC′∽△C′OD.进而得到MC′=23C′D,由C′B+23C′D=C′B+MC′≥BF可得到结论.试题解析:解:(1)∵抛物线y=12x2+bx+c的对称轴为直线x=1,∴-122b=1,∴b=-1.∵抛物线过点A(-1,0),∴12-b+c=0,解得:c=-32,即:抛物线的表达式为:y=12x2-x-32.令y=0,则12x2-x-32=0,解得:x1=-1,x2=3,即B(3,0);(2)过点P作PF⊥x轴,垂足为F.∵EG∥PF,AE:EP=1:4,∴AEAP =AGAF=EGPF=15.又∵AG=2,∴AF=10,∴F(9,0).当x=9时,y=30,即P(9,30),PF=30,∴EG=6,∴E(1,6).(3)由E(1,6)、A(-1,0)可得AP的函数表达式为y=3x+3,则D(0,3).∵原点O与点C关于该对称轴成轴对称,∴EG=6,∴C(2,0),∴OC′=OC=2.如图,取点M(0,43),连接MC′、BM.则OM=43,BM=2243()3+=97.∵423'23OMOC==,'23OCOD=,且∠DOC′=∠C′OD,∴△MOC′∽△C′OD.∴'2'3MCC D=,∴MC′=23C′D,∴C′B+23C′D=C′B+MC′≥BM=4103,∴C′B+23C′D的最小值为4103.点睛:本题是二次函数的综合题,解答本题主要应用了待定系数法求二次函数的解析式,相似三角形的性质和判定,求得AF的长是解答问题(2)的关键;和差倍分的转化是解答问题(3)的关键.2.如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣12x﹣1交于点C.(1)求抛物线解析式及对称轴;(2)在抛物线的对称轴上是否存在一点P ,使四边形ACPO 的周长最小?若存在,求出点P 的坐标,若不存在,请说明理由;(3)点M 为y 轴右侧抛物线上一点,过点M 作直线AC 的垂线,垂足为N .问:是否存在这样的点N ,使以点M 、N 、C 为顶点的三角形与△AOC 相似,若存在,求出点N 的坐标,若不存在,请说明理由.【答案】(1)抛物线解析式为:y=211184x x --,抛物线对称轴为直线x=1;(2)存在P 点坐标为(1,﹣12);(3)N 点坐标为(4,﹣3)或(2,﹣1) 【解析】分析:(1)由待定系数法求解即可;(2)将四边形周长最小转化为PC+PO 最小即可;(3)利用相似三角形对应点进行分类讨论,构造图形.设出点N 坐标,表示点M 坐标代入抛物线解析式即可.详解:(1)把A (-2,0),B (4,0)代入抛物线y=ax 2+bx-1,得042101641a b a b --⎧⎨+-⎩== 解得1814a b ⎧⎪⎪⎨⎪-⎪⎩== ∴抛物线解析式为:y=18x 2−14x−1 ∴抛物线对称轴为直线x=-141228ba -=-⨯=1 (2)存在使四边形ACPO 的周长最小,只需PC+PO 最小∴取点C (0,-1)关于直线x=1的对称点C′(2,-1),连C′O 与直线x=1的交点即为P 点.设过点C′、O直线解析式为:y=kx∴k=-1 2∴y=-1 2 x则P点坐标为(1,-12)(3)当△AOC∽△MNC时,如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E∵∠ACO=∠NCD,∠AOC=∠CND=90°∴∠CDN=∠CAO由相似,∠CAO=∠CMN∴∠CDN=∠CMN∵MN⊥AC∴M、D关于AN对称,则N为DM中点设点N坐标为(a,-12a-1)由△EDN∽△OAC ∴ED=2a∴点D坐标为(0,-52a−1)∵N为DM中点∴点M坐标为(2a,32a−1)把M代入y=18x2−14x−1,解得a=4则N点坐标为(4,-3)当△AOC∽△CNM时,∠CAO=∠NCM∴CM∥AB则点C关于直线x=1的对称点C′即为点N由(2)N (2,-1)∴N 点坐标为(4,-3)或(2,-1)点睛:本题为代数几何综合题,考查了待定系数、两点之间线段最短的数学模型构造、三角形相似.解答时,应用了数形结合和分类讨论的数学思想.3.已知抛物线26y x x c =-++.(1)若该抛物线与x 轴有公共点,求c 的取值范围;(Ⅱ)设该抛物线与直线21y x =+交于M ,N 两点,若MN =C 的值; (Ⅲ)点P ,点Q 是抛物线上位于第一象限的不同两点,,PA QB 都垂直于x 轴,垂足分别为A ,B ,若OPA OQB ∆≅∆,求c 的取值范围.【答案】(I )9c -…;(Ⅱ)2c =-;(Ⅲ)c 的取值范围是2174c -<< 【解析】 【分析】(1) 抛物线与x 轴有公共点,则判别式为非负数,列不等式求解即可;(2)求出二次函数与直线的交点,并根据勾股定理求出MN 的长度,列方程即可求解; (3)由OPA OQB ∆≅∆可知,P ,Q 两点的坐标特点,设坐标得到设点P 的坐标为(, )m n ,则点Q 的坐标为(,)n m ,代入二次函数,得到n,m 的关系,则只需保证该方程有正根即可求解. 【详解】解:(I )∵抛物线26y x x c =-++与x 轴有交点,∴一元二次方程260x x c -++=有实根。
2021北京市中考数学新定义问题专题练习(含答案)

专题突破(十) 新定义问题新定义题型的构造注重学生数学思考的过程及不同认知阶段特征的表现.其内部逻辑构造呈现出比较严谨、整体性强的特点.其问题模型可以表示为阅读材料、研究对象、给出条件、需要完成认识.而规律探究、方法运用、学习策略等则是“条件”隐形存在的“魂”.这种新定义问题虽然在构造方式上“五花八门”,但是经过整理也能发现它们存在着一定的规律.新定义题型是北京中考最后一题的热点题型.“该类题从题型上看,有展示全貌,留空补缺的;有说明解题理由的;有要求归纳规律再解决问题的;有理解新概念再解决新问题的,等等.这类试题不来源于课本且高于课本,结构独特.1.[202X·北京] 在平面直角坐标系xOy 中,⊙C 的半径为r ,P 是与圆心C 不重合的点,点P 关于⊙O 的反称点的定义如下:若在射线..CP 上存在一点P ′,满足CP +CP ′=2r ,则称P ′为点P 关于⊙C 的反称点,如图Z10-1为点P 及其关于⊙C 的反称点P ′的示意图.(1)当⊙O 的半径为1时.①分别判断点M (2,1),N (32,0),T (1,3)关于⊙O 的反称点是否存在,若存在,求其坐标;②点P 在直线y =-x +2上,若点P 关于⊙O 的反称点P ′存在,且点P ′不在x 轴上,求点P 的横坐标的取值范围.(2)当⊙C 的圆心在x 轴上,且半径为1,直线y =-33x +2 3与x 轴、y 轴分别交于点A ,B.若线段AB 上存在点P ,使得点P 关于⊙C 的反称点P ′在⊙C 的内部,求圆心C 的横坐标的取值范围.图Z10-12.[202X·北京] 对某一个函数给出如下定义:若存在实数M >0,对于任意的函数值y ,都满足-M ≤y ≤M ,则称这个函数是有界函数.在所有满足条件的M 中,其最小值称为这个函数的边界值.例如,图Z10-2中的函数是有界函数,其边界值是1.(1)分别判断函数y =1x (x >0)和y =x +1(-4<x ≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y =-x +1(a ≤x ≤b ,b >a )的边界值是2,且这个函数的最大值也是2,求b 的取值范围;(3)将函数y =x 2(-1≤x ≤m ,m ≥0)的图象向下平移m 个单位长度,得到的函数的边界值是t ,当m 在什么范围时,满足34≤t ≤1?图Z10-23.[2013·北京] 对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下定义:若⊙C 上存在两个点A ,B ,使得∠APB =60°,则称P 为⊙C 的关联点.已知点D (12,12),E (0,-2),F (2 3,0).(1)当⊙O 的半径为1时,①在点D ,E ,F 中,⊙O 的关联点是________; ②过点F 作直线l 交y 轴正半轴于点G ,使∠GFO =30°,若直线l 上的点P (m ,n )是⊙O 的关联点,求m 的取值范围;(2)若线段EF 上的所有点都是某个圆的关联点,求这个圆的半径r 的取值范围.图Z10-34.[2012·北京] 在平面直角坐标系xOy 中,对于任意两点P 1(x 1,y 1)与P 2(x 2,y 2)的“非常距离”,给出如下定义:若|x 1-x 2|≥|y 1-y 2|,则点P 1与点P 2的“非常距离”为|x 1-x 2|; 若|x 1-x 2|<|y 1-y 2|,则点P 1与点P 2的“非常距离”为|y 1-y 2|.例如:点P 1(1,2),点P 2(3,5),因为|1-3|<|2-5|,所以点P 1与点P 2的“非常距离”为|2-5|=3,也就是图Z10-4(a)中线段P 1Q 与线段P 2Q 长度的较大值(点Q 为垂直于y 轴的直线P 1Q 与垂直于x 轴的直线P 2Q 的交点).(1)已知点A (-12,0),B 为y 轴上的一个动点.①若点A 与点B 的“非常距离”为2,写出一个满足条件的点B 的坐标; ②直接写出点A 与点B 的“非常距离”的最小值. (2)已知C 是直线y =34x +3上的一个动点,①如图(b),点D 的坐标是(0,1),求点C 与点D 的“非常距离”的最小值及相应的点C 的坐标.②如图(c),E 是以原点O 为圆心,1为半径的圆上的一个动点,求点C 与点E 的“非常距离”的最小值及相应的点E 和点C 的坐标.图Z10-41.[202X·平谷一模] b 是任意两个不等实数,我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于一个函数,如果它的自变量x 与函数值y 满足:当m ≤x ≤n 时,有m ≤y ≤n ,我们就称此函数是闭区间[m ,n ]上的“闭函数”.如函数y =-x +4,当x =1时,y =3;当x =3时,y =1,即当1≤x ≤3时,有1≤y ≤3,所以说函数y =-x +4是闭区间[1,3]上的“闭函数”.(1)反比例函数y =202Xx 是闭区间[1,202X]上的“闭函数”吗?请判断并说明理由;(2)若二次函数y =x 2-2x -k 是闭区间[1,2]上的“闭函数”,求k 的值;(3)若一次函数y =kx +b (k ≠0)是闭区间[m ,n ]上的“闭函数”,求此函数的解析式(用含m ,n 的代数式表示).2.[202X·东城一模] 定义符号min {}a ,b 的含义为:当a ≥b 时,min {}a ,b =b ;当a <b 时,min {}a ,b =a .如:min {}1,-2=-2,min {}-1,2=-1.(1)求min {}x 2-1,-2;(2)已知min{x 2-2x +k ,-3}=-3,求实数k 的取值范围;(3)已知当-2≤x ≤3时,min{x 2-2x -15,m (x +1)}=x 2-2x -15.直接写出实数m 的取值范围.3.[202X·海淀二模] 如图Z10-5(a ),在平面直角坐标系xOy 中,已知点A (-1,0),B (-1,1),C (1,0),D (1,1),记线段AB 为T 1,线段CD 为T 2,点P 是坐标系内一点.给出如下定义:若存在过点P 的直线l 与T 1,T 2都有公共点,则称点P 是T 1-T 2联络点.例如,点P (0,12)是T 1-T 2联络点.(1)以下各点中,________是T 1-T 2联络点(填出所有正确的序号); ①(0,2);②(-4,2);③(3,2).(2)直接在图(a )中画出所有T 1-T 2联络点所组成的区域,用阴影部分表示.(3)已知点M 在y 轴上,以M 为圆心,r 为半径画圆,⊙M 上只有一个点为T 1-T 2联络点,①若r =1,求点M 的纵坐标; ②求r 的取值范围.图Z10-54.[202X·门头沟一模] 如图Z10-6,在平面直角坐标系xOy 中,抛物线y =ax 2+bx +c (a >0)的顶点为M ,直线y =m 与x 轴平行,且与抛物线交于点A 和点B ,如果△AMB 为等腰直角三角形,我们把抛物线上A 、B 两点之间的部分与线段AB 围成的图形称为该抛物线的准蝶形,顶点M 称为碟顶,线段AB 的长称为碟宽.图Z10-6(1)抛物线y =12x 2的碟宽为________,抛物线y =ax 2(a >0)的碟宽为________.(2)如果抛物线y =a (x -1)2-6a (a >0)的碟宽为6,那么a =________.(3)将抛物线y n =a n x 2+b n x +c n (a n >0)的准蝶形记为F n (n =1,2,3,…),我们定义F 1,F 2,…,F n 为相似准蝶形,相应的碟宽之比即为相似比.如果F n 与F n -1的相似比为12,且F n的碟顶是F n -1的碟宽的中点,现在将(2)中求得的抛物线记为y 1,其对应的准蝶形记为F 1.①求抛物线y 2的函数解析式.②请判断F 1,F 2,…,F n 的碟宽的右端点是否在一条直线上?如果是,直接写出该直线的函数解析式;如果不是,说明理由.图Z10-75.[202X·朝阳一模] 定义:对于平面直角坐标系xOy 中的线段PQ 和点M ,在△MPQ 中,当PQ 边上的高为2时,称M 为PQ 的“等高点”,称此时MP +MQ 为PQ 的“等高距离”.(1)若P (1,2),Q (4,2).①在点A (1,0),B (52,4),C (0,3)中,PQ 的“等高点”是________;②若M (t ,0)为PQ 的“等高点”,求PQ 的“等高距离”的最小值及此时t 的值. (2)若P (0,0),PQ =2,当PQ 的“等高点”在y 轴正半轴上且“等高距离”最小时,直接写出点Q 的坐标.图Z10-86.[202X·通州一模] 如图Z10-9,在平面直角坐标系中,已知点A (2,3),B (6,3),连接A B.若对于平面内一点P ,线段AB 上都存在点Q ,使得PQ ≤1,则称点P 是线段AB 的“邻近点”.(1)判断点D (75,195)是否是线段AB 的“邻近点”.________(填“是”或“否”);(2)若点H (m ,n )在一次函数y =x -1的图象上,且是线段AB 的“邻近点”,求m 的取值范围;(3)若一次函数y =x +b 的图象上至少存在一个邻近点,直接写出b 的取值范围.图Z10-97.[202X·海淀一模] 在平面直角坐标系xOy 中,对于点P (a ,b )和点Q (a ,b ′),给出如下定义:若b ′=⎩⎪⎨⎪⎧b ,a ≥1,-b ,a<1,则称点Q 为点P 的限变点.例如:点()2,3的限变点的坐标是()2,3,点()-2,5的限变点的坐标是()-2,-5.(1)①点()3,1的限变点的坐标是________;②在点A ()-2,-1,B ()-1,2中有一个点是函数y =2x 的图象上某一个点的限变点,这个点是________.(2)若点P 在函数y =-x +3(-2≤x ≤k ,k >-2)的图象上,其限变点Q 的纵坐标b ′的取值范围是-5≤b ′≤2,求k 的取值范围.(3)若点P 在关于x 的二次函数y =x 2-2tx +t 2+t 的图象上,其限变点Q 的纵坐标b ′的取值范围是b ′≥m 或b ′<n ,其中m >n .令s =m -n ,求s 关于t 的函数解析式及s 的取值范围.图Z10-108.[202X·西城一模] 给出如下规定:两个图形G 1和G 2,点P 为G 1上任一点,点Q 为G 2上任一点,如果线段PQ 的长度存在最小值,就称该最小值为两个图形G 1和G 2之间的距离.在平面直角坐标系xOy 中,O 为坐标原点.(1)点A 的坐标为A (1,0),则点B (2,3)和射线OA 之间的距离为________,点C (-2,3)和射线OA 之间的距离为________.(2)如果直线y =x 和双曲线y =kx 之间的距离为2,那么k =________.(可在图Z10-11(a )中进行研究)(3)点E 的坐标为(1,3),将射线OE 绕原点O 逆时针旋转60°,得到射线OF ,在坐标平面内所有和射线OE ,OF 之间的距离相等的点所组成的图形记为图形M .①请在图(b )中画出图形M ,并描述图形M 的组成部分;(若涉及平面中某个区域时可以用阴影表示)②将射线OE ,OF 组成的图形记为图形W ,抛物线y =x 2-2与图形M 的公共部分记为图形N ,请直接写出图形W 和图形N 之间的距离.图Z10-11参考答案1.解:(1)①点M (2,1)关于⊙O 的反称点不存在. 点N (32,0)关于⊙O 的反称点存在,反称点N ′(12,0).点T (1,3)关于⊙O 的反称点存在,反称点T ′(0,0).②如图①,直线y =-x +2与x 轴、y 轴分别交于点E (2,0),点F (0,2).设点P 的横坐标为x .(i )当点P 在线段EF 上,即0≤x ≤2时,0<OP ≤2, ∴在射线OP 上一定存在一点P ′,使得OP +OP ′=2,∴点P 关于⊙O 的反称点存在,其中点P 与点E 或点F 重合时,OP =2,点P 关于⊙O 的反称点为O ,不符合题意,∴0<x <2.(ii )当点P 不在线段EF 上,即x <0或x >2时,OP >2, ∴对于射线OP 上任意一点P ′,总有OP +OP ′>2, ∴点P 关于⊙O 的反称点不存在.综上所述,点P 的横坐标x 的取值范围是0<x <2.(2)若线段AB 上存在点P ,使得点P 关于⊙C 的反称点P ′在⊙C 的内部,则1<CP ≤2.依题意可知点A 的坐标为(6,0),点B 的坐标为(0,2 3),∠BAO =30°. 设圆心C 的坐标为(x ,0).①当x <6时,过点C 作CH ⊥AB 于点H ,如图②,∴0<CH ≤CP ≤2,∴0<CA ≤4, ∴0<6-x ≤4,∴2≤x <6,并且,当2≤x <6时,CB >2,CH ≤2, ∴在线段AB 上一定存在点P ,使得CP =2,∴此时点P 关于⊙C 的反称点为C ,且点C 在⊙C 的内部,∴2≤x <6. ②当x ≥6时,如图③.∴0≤CA ≤CP ≤2,∴0≤x -6≤2,∴6≤x ≤8.并且,当6≤x ≤8时,CB >2,CA ≤2,∴在线段AB 上一定存在一点P ,使得CP =2,∴此时点P 关于⊙C 的反称点为C ,且点C 在⊙C 的内部,∴6≤x ≤8. 综上所述,圆心C 的横坐标x 的取值范围是2≤x ≤8. 2.解:(1)y =1x (x >0)不是有界函数.y =x +1(-4<x ≤2)是有界函数,边界值为3. (2)对于y =-x +1,y 随x 的增大而减小, 当x =a 时,y =-a +1=2,a =-1, 当x =b 时,y =-b +1.⎩⎪⎨⎪⎧-2≤-b +1<2,b >a , ∴-1<b ≤3.(3)由题意,函数平移后的表达式为 y =x 2-m (-1≤x ≤m ,m ≥0).当x =-1时,y =1-m ;当x =0时,y =-m ; 当x =m 时,y =m 2-m . 根据二次函数的对称性,当0≤m ≤1时,1-m ≥m 2-m . 当m >1时,1-m <m 2-m . ①当0≤m ≤12时,1-m ≥m .由题意,边界值t =1-m . 当34≤t ≤1时,0≤m ≤14, ∴0≤m ≤14.②当12<m ≤1时,1-m <m .由题意,边界值t =m . 当34≤t ≤1时,34≤m ≤1, ∴34≤m ≤1. ③当m >1时,由题意,边界值t ≥m , ∴不存在满足34≤t ≤1的m 值.综上所述,当0≤m ≤14或34≤m ≤1时,满足34≤t ≤1.3.解:(1)①如图(a)所示,过点E 作⊙O 的切线,设切点为R .∵⊙O 的半径为1,∴RO =1.∵EO =2,∴∠OER =30°,根据切线长定理得出⊙O 的左侧还有一个切点,使得组成的角等于30°, ∴E 点是⊙O 的关联点.∵D (12,12),E (0,-2),F (2 3,0),∴OF >EO ,DO <EO ,∴D 点一定是⊙O 的关联点,而在⊙O 上不可能找到两点与点F 的连线的夹角等于60°, 故在点D ,E ,F 中,⊙O 的关联点是D ,E . ②由题意可知,若P 刚好是⊙C 的关联点,则点P 到⊙C 的两条切线P A 和PB 之间所夹的角为60°, 由图(b)可知∠APB =60°,则∠CPB =30°. 连接BC ,则PC =BCsin ∠CPB=2BC =2r ,∴若点P 为⊙C 的关联点,则需点P 到圆心的距离d 满足0≤d ≤2r .由上述证明可知,考虑临界点位置的P 点,则点P 到原点的距离OP =2×1=2, 如图(c),过点O 作l 轴的垂线OH ,垂足为H ,∵∠GFO =30°, ∴∠OGF =60°,OG =2, 可得点P 1与点G 重合.过点P 2作P 2M ⊥x 轴于点M , 可得∠P 2OM =30°,∴OM =OP 2cos30°=3,从而若点P 为⊙O 的关联点,则P 点必在线段P 1P 2上,∴0≤m ≤ 3.(2)若线段EF 上的所有点都是某个圆的关联点,欲使这个圆的半径最小,则这个圆的圆心应是线段EF 的中点.考虑临界情况,如图(d),即恰好点E ,F 为⊙K 的关联点时,则KF =2KN =12EF =2,此时,r =1,故若线段EF 上的所有点都是某个圆的关联点,则这个圆的半径r 的取值范围为r ≥1.4.解:(1)①点B 的坐标是(0,2)或(0,-2). ②点A 与点B 的“非常距离”的最小值为12.(2)①∵C 是直线y =34x +3上的一个动点,∴设点C 的坐标为(x 0,34x 0+3),∴-x 0=34x 0+2,此时,x 0=-87,∴点C 与点D 的“非常距离”的最小值为87,此时C (-87,157).②E (-35,45).-35-x 0=34x 0+3-45, 解得x 0=-85,则点C 的坐标为(-85,95),点C1.解:(1)反比例函数y =202Xx 是闭区间[1,202X]上的“闭函数”.理由如下:反比例函数y =202Xx 在第一象限,y 随x 的增大而减小,当x =1时,y =202X ; 当x =202X 时,y =1,即图象过点(1,202X)和(202X ,1),∴当1≤x ≤202X 时,有1≤y ≤202X ,符合闭函数的定义, ∴反比例函数y =202Xx是闭区间[1,202X]上的“闭函数”.(2)由于二次函数y =x 2-2x -k 的图象开口向上,对称轴为直线x =1,∴二次函数y =x 2-2x -k 在闭区间[1,2]内,y 随x 的增大而增大. 当x =1时,y =1,∴k =-2. 当x =2时,y =2,∴k =-2. 即图象过点(1,1)和(2,2),∴当1≤x ≤2时,有1≤y ≤2,符合闭函数的定义, ∴k =-2.(3)因为一次函数y =kx +b ()k ≠0是闭区间[]m ,n 上的“闭函数”, 根据一次函数的图象与性质,有:(Ⅰ)当k >0时,图象过点(m ,m )和(n ,n ),∴⎩⎪⎨⎪⎧mk +b =m ,nk +b =n , 解得⎩⎪⎨⎪⎧k =1,b =0,∴y =x .(Ⅱ)当k <0时,图象过点(m ,n )和(n ,m ),∴⎩⎪⎨⎪⎧mk +b =n ,nk +b =m ,解得⎩⎨⎧k =-1,b =m +n ,∴y =-x +m +n ,∴一次函数的解析式为y =x 或y =-x +m +n . 2.解:(1)∵x 2≥0, ∴x 2-1≥-1. ∴x 2-1>-2.∴min {}x 2-1,-2=-2. (2)∵x 2-2x +k =()x -12+k -1, ∴()x -12+k -1≥k -1.∵min{x 2-2x +k ,-3}=-3, ∴k -1≥-3. ∴k ≥-2. (3)-3≤m ≤7. 3.解:(1)②③(2)所有联络点所组成的区域为图(a)中阴影部分(含边界).(3)①∵点M 在y 轴上,⊙M 上只有一个点为T 1-T 2联络点,阴影部分关于y 轴对称, ∴⊙M 与直线AC 相切于(0,0)或与直线BD 相切于(0,1),如图(b)所示.又∵⊙M 的半径r =1,∴点M 的坐标为(0,-1)或(0,2).经检验:此时⊙M 与直线AD ,BC 无交点,⊙M 上只有一个点为T 1-T 2联络点,符合题意.∴点M 的坐标为(0,-1)或(0,2). ∴点M 的纵坐标为-1或2.②阴影部分关于直线y =12对称,故不妨设点M 位于阴影部分下方.∵点M 在y 轴上,⊙M 上只有一个点为T 1-T 2联络点,阴影部分关于y 轴对称, ∴⊙M 与直线AC 相切于O (0,0),且⊙M 与直线AD 相离. 过点M 作ME ⊥AD 于点E ,设AD 与BC 的交点为F ,如图(c). ∴MO =r ,ME >r ,F (0,12).在Rt △AOF 中,∠AOF =90°,AO =1,OF =12,∴AF =AO 2+OF 2=52,sin ∠AFO =AO AF =2 55. 在Rt △FEM 中,∠FEM =90°,FM =FO +OM =r +12,sin ∠EFM =sin ∠AFO =2 55,∴ME =FM ·sin ∠EFM =5(2r +1)5.∴5(2r +1)5>r .又∵r >0,∴0<r <5+2.4.解:(1)4 2a(2)13(3)①∵F 1的碟宽∶F 2的碟宽=2∶1, ∴2a 1∶2a 2=21. ∵a 1=13,∴a 2=23.又∵由题意得F 2的碟顶坐标为(1,1),∴y 2=23()x -12+1.②F 1,F 2,…,F n 的碟宽的右端点在一条直线上; 其解析式为y =-x +5. 5.解:(1)A 、B (2)如图,作点P 关于x 轴的对称点P ′,连接P ′Q ,P ′Q 与x 轴的交点即为“等高点”M ,此时“等高距离”最小,最小值为线段P ′Q 的长.∵P (1,2),∴P ′(1,-2).设直线P ′Q 的函数解析式为y =kx +b , 根据题意,有⎩⎪⎨⎪⎧k +b =-2,4k +b =2,解得⎩⎨⎧k =43,b =-103.∴直线P ′Q 的函数解析式为y =43x -103.当y =0时,解得x =52,即t =52.根据题意,可知PP ′=4,PQ =3,PQ ⊥PP ′, ∴P ′Q =PP ′2+PQ 2=5. ∴“等高距离”最小值为5.(3)Q (4 55,2 55)或Q (-4 55,2 55).6.解:(1)是(2)∵点H (m ,n )是线段AB 的“邻近点”,点H (m ,n )在直线y =x -1上,∴n =m -1. 直线y =x -1与线段AB 交于(4,3). ①当m ≥4时,有n =m -1≥3.又AB ∥x 轴,∴此时点H (m ,n )到线段AB 的距离是n -3, ∴0≤n -3≤1,∴4≤m ≤5.②当m ≤4时,有n =m -1,∴n ≤3.又AB ∥x 轴,∴此时点H (m ,n )到线段AB 的距离是3-n , ∴0≤3-n ≤1,∴3≤m ≤4, 综上所述,3≤m ≤5.(3)如图①,②,-37.解:(1)①(3,1) ②点B(2)依题意,y =-x +3(x ≥-2)的图象上的点P 的限变点必在函数y =⎩⎪⎨⎪⎧-x +3,x ≥1,x -3,-2≤x <1的图象上.∴b ′≤2,即当x =1时,b ′取最大值2. 当b ′=-2时,-2=-x +3.∴x =5.当b ′=-5时,-5=x -3或-5=-x +3. ∴x =-2或x =8. ∵-5≤b ′≤2,由图象可知,k 的取值范围是5≤k ≤8.(3)∵y=x2-2tx+t2+t=(x-t)2+t,∴顶点坐标为(t,t).若t>1,b′的取值范围是b′≥m或b′≤n,与题意不符.若t≥1,当x≥1时,y的最小值为t,即m=t;当x<1时,y的值小于-[(1-t)2+t],即n=-[(1-t)2+t].∴s=m-n=t+(1-t)2+t=t2+1.∴s关于t的函数解析式为s=t2+1(t≥1).当t=1时,s取最小值2.∴s的取值范围是s≥2.8.解:(1)313(2)-1(3)①如图,过点O分别作射线OE,OF的垂线OG,OH,则图形M为:y轴正半轴,∠GOH的边及其内部的所有点(图中的阴影部分).说明:(图形M也可描述为:y轴正半轴,直线y=33x下方与直线y=-33x下方重叠的部分(含边界)②4 3.。
备考2021年中考数学复习专题:函数_二次函数_二次函数与一次函数的综合应用,综合题专训及答案

备考2021年中考数学复习专题:函数_二次函数_二次函数与一次函数的综合应用,综合题专训及答案备考2021中考数学复习专题:函数_二次函数_二次函数与一次函数的综合应用,综合题专训1、(2020黄石.中考模拟) 如图,直线y =﹣x+4与x 轴交于点B ,与y 轴交于点C ,抛物线y =﹣x +bx+c 经过B ,C 两点,与x 轴另一交点为A.点P 以每秒 个单位长度的速度在线段BC 上由点B 向点C 运动(点P 不与点B 和点C 重合),设运动时间为t 秒,过点P 作x 轴垂线交x轴于点E ,交抛物线于点M.(1) 求抛物线的解析式;(2) 如图①,过点P 作y 轴垂线交y 轴于点N ,连接MN 交BC 于点Q ,当时,求t 的值;(3) 如图②,连接AM 交BC 于点D ,当△PDM 是等腰三角形时,直接写出t 的值.2、(2020宁波.中考模拟) 已知抛物线与两坐标轴分别交于A(-1,0),C(0,-3),一次函数的图象与抛物线交于B,C两点(1) 求二次函数的解析式(2) 请求出一次函数的解析式并结合图象,直接写出当一次函数值小于二次函数时自变量x 的取值范围3、(2020南宁.中考模拟) 如图,在平面直角坐标系中,抛物线y=ax +bx ﹣3(a≠0)与x 轴交于点A (﹣2,0)、B (4,0)两点,与y 轴交于点C .(1) 求抛物线的解析式;(2) 点P 从A 点出发,在线段AB 上以每秒3个单位长度的速度向B 点运动,同时点Q 从B 点出发,在线段BC 上以每秒1个单位长度的速度向C 点运动,其中一个点到达终点时,另一个点也停止运动,当△PBQ 存在时,求运动多少秒使△PBQ 的面积最大,最大面积是多少?(3) 当△PBQ 的面积最大时,在BC 下方的抛物线上存在点K ,使S :S =5:2,求K 点坐标.4、(2020扬州.中考模拟) 如图①,一次函数y= x ﹣2的图象交x 轴于点A ,交y 轴于点B ,二次函数y= x +bx+c 的图象22△CBK △PBQ 2经过A 、B 两点,与x 轴交于另一点C.(1) 求二次函数的关系式及点C 的坐标;(2) 如图②,若点P 是直线AB 上方的抛物线上一点,过点P 作PD ∥x 轴交AB 于点D ,PE ∥y 轴交AB 于点E ,求PD+P E 的最大值;(3) 如图③,若点M 在抛物线的对称轴上,且∠AMB=∠ACB ,求出所有满足条件的点M 的坐标.5、(2020平阳.中考模拟)如图,抛物线y=-x²+bx+4交y 轴于点B ,顶点为M ,BA ⊥y 轴,交抛物线于点A 。
2021年九年级数学中考压轴题之《二次函数与直角三角形综合》专题训练(附答案)

2021年九年级数学中考压轴题之《二次函数与直角三角形综合》专题训练(附答案)1.如图,已知抛物线y=ax2+bx+c(a≠0)经过点A、B,与y轴负半轴交于点C,且OC =OB,其中B点坐标为(3,0),对称轴l为直线x=.(1)求抛物线的解析式;(2)在x轴上方有一点P,连接P A后满足∠P AB=∠CAB,记△PBC的面积为S,求当S=10.5时点P的坐标;(3)在(2)的条件下,当点P恰好落在抛物线上时,将直线BC上下平移,平移后的直线y=x+t与抛物线交于C′、B′两点(C′在B′的左侧),若以点C′、B′、P为顶点的三角形是直角三角形,求出t的值.2.《函数的图象与性质》拓展学习展示:【问题】如图①,在平面直角坐标系中,抛物线G1:y=ax2+bx+与x轴相交于A(﹣1,0),B(3,0)两点,与y轴交于点C,则a=,b=.【操作】将图①中抛物线G1沿BC方向平移BC长度的距离得到抛物线G2,G2在y轴左侧的部分与G1在y轴右侧的部分组成的新图象记为G,如图②.请直接写出图象G 对应的函数解析式.【探究】在图②中,过点C作直线l平行于x轴,与图象G交于D,E两点,如图③.求图象G在直线l上方的部分对应的函数y随x的增大而增大时x的取值范围.【应用】P是抛物线G2对称轴上一个动点,当△PDE是直角三角形时,直接写出P点的坐标.3.如图,直线y=x+4与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A,B两点,与x轴正半轴交于点C,连接BC,P为线段AC上的动点,P与A,C不重合,作PQ∥BC交AB于Q,A关于PQ的对称点为D,连接PD,QD,BD.(1)求抛物线的解析式;(2)当点D在抛物线上时,求点P的坐标;(3)设点P的横坐标为x,△PDQ与△ABC重叠部分的面积为S.①直接写出S与x的函数关系式;②当△BDQ为直角三角形时,直接写出x的值.4.如图,抛物线y=a(x2﹣2mx﹣3m2)(a,m为正的常数)与x轴交于点A,B,与y轴交于点C(0,﹣3),顶点为F,CD∥AB交抛物线于点D.(1)当a=1时,求点D的坐标.(2)若点E是第一象限抛物线上的点,过点E作EM⊥x轴于点M,当OM=2CD时,求证:∠EAB=∠ADC.(3)在(2)的条件下,试探究:在x轴上是否存在点P,使得以PF,AD,AE为边长构成的三角形是以AE为斜边的直角三角形?如果存在,请用含m的代数式表示点P的横坐标;如果不存在,请说明理由.5.如图,已知抛物线y=ax2+bx+c经过A(﹣2,0),B(4,0),C(0,4)三点.(1)求该抛物线的解析式;(2)经过点B的直线交y轴于点D,交线段AC于点E,若BD=5DE.①求直线BD的解析式;②已知点Q在该抛物线的对称轴l上,且纵坐标为1,点P是该抛物线上位于第一象限的动点,且在l右侧,点R是直线BD上的动点,若△PQR是以点Q为直角顶点的等腰直角三角形,求点P的坐标.6.如图,直线y=﹣2x+10分别与x轴,y轴交于A,B两点,点C为OB的中点,抛物线y=x2+bx+c经过A,C两点.(1)求抛物线的函数表达式;(2)点D是直线AB下方的抛物线上的一点,且△ABD的面积为,求点D的坐标;(3)点P为抛物线上一点,若△APB是以AB为直角边的直角三角形,求点P到抛物线的对称轴的距离.7.如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于点A,B,与y轴交于点C.且直线y=x﹣6过点B,与y轴交于点D,点C与点D关于x轴对称,点P是线段OB上一动点,过点P作x轴的垂线交抛物线于点M,交直线BD于点N.(1)求抛物线的函数解析式;(2)当△MDB的面积最大时,求点P的坐标;(3)在(2)的条件下,在y轴上是否存在点Q,使得以Q,M,N三点为顶点的三角形是直角三角形?若存在,直接写出点Q的坐标;若不存在,说明理由.8.如图,在平面直角坐标系中,函数y=﹣ax2+2ax+3a(a>0)的图象交x轴于点A、B,交y轴于点C,它的对称轴交x轴于点E.过点C作CD∥x轴交抛物线于点D,连接DE 并延长交y轴于点F,交抛物线于点G.直线AF交CD于点H,交抛物线于点K,连接HE、GK.(1)点E的坐标为:;(2)当△HEF是直角三角形时,求a的值;(3)HE与GK有怎样的位置关系?请说明理由.9.已知二次函数y=ax2+(3a+1)x+3(a<0).(1)该函数的图象与y轴交点坐标为;(2)当二次函数的图象与x轴的两个交点的横坐标均为整数,且a为负整数.①求a的值及二次函数的表达式;②画出二次函数的大致图象(不列表,只用其与x轴的两个交点A、B,且A在B的左侧,与y轴的交点C及其顶点D,并标出A,B,C,D的位置);(3)在(2)的条件下,二次函数的图象上是否存在一点P,使△PCA为直角三角形,如果存在,求出点P的坐标;如果不存在,请说明理由.10.如图,二次函数y=ax2+bx+4的图象与坐标轴分别交于A、B、C三点,其中A(﹣3,0),点B在x轴正半轴上,连接AC、BC.点D从点A出发,沿AC向点C移动;同时点E从点O出发,沿x轴向点B移动,它们移动的速度都是每秒1个单位长度,当其中一点到达终点时,另一点随之停止移动,连接DE,设移动时间为t秒.(1)若t=3时,△ADE与△ABC相似,求这个二次函数的表达式;(2)若△ADE可以为直角三角形,求a的取值范围.11.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(1,0),B(4,0)两点,与y轴交于点C,直线y=﹣x+2经过B,C两点.(1)直接写出二次函数的解析式;(2)平移直线BC,当直线BC与抛物线有唯一公共点Q时,求此时点Q的坐标;(3)过(2)中的点Q作QE∥y轴,交x轴于点E.若点M是抛物线上一个动点,点N 是x轴上一个动点,是否存在以E,M,N三点为顶点的直角三角形(其中M为直角顶点)与△BOC相似?如果存在,请直接写出满足条件的点M的个数和其中一个符合条件的点M的坐标;如果不存在,请说明理由.12.如图,抛物线y=ax2+bx+c与坐标轴交于点A(0,﹣3)、B(﹣1,0)、E(3,0),点P为抛物线上动点,设点P的横坐标为t.(1)若点C与点A关于抛物线的对称轴对称,求C点的坐标及抛物线的解析式;(2)若点P在第四象限,连接P A、PE及AE,当t为何值时,△P AE的面积最大?最大面积是多少?(3)是否存在点P,使△P AE为以AE为直角边的直角三角形,若存在,直接写出点P 的坐标;若不存在,请说明理由.13.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,与y轴交于点C(0,3),点A的坐标是(3,0),抛物线的对称轴是直线x=1.(1)求抛物线的函数表达式;(2)若点P为第四象限内抛物线上一点,且△PBC是直角三角形,求点P的坐标;(3)在(2)的条件下,在直线BC上是否存在点Q,使∠PQB=∠CPB,若存在,求出点Q坐标:若不存在,请说明理由.14.在平面直角坐标系中,抛物线L1:y=ax2﹣2x的对称轴为直线x=﹣2,顶点为A.将抛物线L1沿y轴对称,得到抛物线L2,顶点为B.(1)求a的值.(2)求抛物线L2的表达式.(3)请问在抛物线L1或L2上是否存在点P,使以点P、A、B为顶点的三角形是直角三角形?若存在,求出点P的坐标;若不存在,说明理由.15.如图1.在平面直角坐标系xOy中,抛物线y=x2+k的顶点A在直线l:y=x﹣3上,将抛物线沿直线l向右上方平移,使其顶点P始终保持在直线l上,设平移后的抛物线与原抛物线交于B点.(1)请直接写出k的值;(2)若抛物线y=x2+k与直线l:y=x﹣3的另一个交点为C.当点B与点C重合时.求平移后抛物线的解析式;(3)连接AB,BP,当△ABP为直角三角形时,求出P点的坐标.16.如图,已知二次函数y=x2+bx+c经过A,B两点,BC⊥x轴于点C,且点A(﹣1,0),C(4,0),AC=BC.(1)求抛物线的解析式;(2)点E是线段AB上一动点(不与A,B重合),过点E作x轴的垂线,交抛物线于点F,当线段EF的长度最大时,求点E的坐标及S△ABF;(3)点P是抛物线对称轴上的一个动点,是否存在这样的P点,使△ABP成为直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.17.已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D.(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD是直角三角形;(3)在对称轴右侧抛物线上找一点P,使得P、D、C构成以PC为底边的等腰三角形,求出点P的坐标及此时四边形PBCD的面积.18.如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与A重合),过点P作PD∥y轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)△APD能否构成直角三角形?若能,请直接写出所有符合条件的点P坐标;若不能,请说明理由.19.如图,抛物线C的顶点坐标为(2,8),与x轴相交于A,B两点(点A在点B的左侧),与y轴交于点D(0,6).(1)求抛物线C的函数表达式以及点B的坐标;(2)平移抛物线C,使平移后的抛物线C′的顶点P落在线段BD上,过P作x轴的垂线,交抛物线C于点Q,再过点Q作QE∥x轴交抛物线C于另一点E,连接PE,若△PQE是等腰直角三角形,请求出所有满足条件的抛物线C′的函数表达式.20.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求抛物线y=ax2+2x+c的解析式;(2)点D为抛物线上对称轴右侧、x轴上方一点,DE⊥x轴于点E,DF∥AC交抛物线对称轴于点F,求DE+DF的最大值;(3)①在拋物线上是否存在点P,使以点A,P,C为顶点的三角形,是以AC为直角边的直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;②点Q在抛物线对称轴上,其纵坐标为t,请直接写出△ACQ为锐角三角形时t的取值范围.参考答案1.解:(1)∵B(3,0),对称轴为直线x=,∴A(﹣2,0),∴抛物线的解析式为y=a(x+2)(x﹣3)=ax2﹣ax﹣6a,令x=0,则y=﹣6a,∵B(3,0),∴OB=3,∵OC=OB,∴OC=3,∴C(0,﹣3),∴﹣6a=﹣3,∴a=,∴抛物线的解析式为y=x2﹣x﹣3;(2)如图1,∵∠P AB=∠CAB,∴所以,作射线AP与y轴的交点记作点C',∵∠BAC=∠BAC',OA=OA,∠AOC=∠AOC'=90°,∴△AOC≌△AOC'(ASA),∴OC'=OC=3,∴C'(0,3),∵A(﹣2,0),∴直线AP的解析式为y=x+3,∵点P(m,n)在直线AP上,∴n=m+3,∵B(3,0),C(0,﹣3),∴直线BC的解析式为y=x﹣3,过点P作y轴的平行线交BC于F,∴F(m,m﹣3),∴PF=m+3﹣(m﹣3)=m+6,∴S=S△PBC=OB•PF=×3(m+6)=m+9(m>﹣2);∴当S=10.5时,10.5=m+9,∴m=2,∴点P(2,6)(3)由(1)知,抛物线的解析式为y=x2﹣x﹣3①由(2)知,直线AP的解析式为y=x+3②,联立①②解得,或,∴P(6,12),如图2,当∠C'PB'=90°时,取B'C'的中点E,连接PE,则B'C'=2PE,即:B'C'2=4PE2,设B'(x1,y1),C'(x2,y2),∵直线B'C'的解析式为y=x+t③,联立①③化简得,x2﹣3x﹣(2t+6)=0,∴x1+x2=3,x1x2=﹣(2t+6),∴点E(,+t),B'C'2=(x1﹣x2)2+(y1﹣y2)2=2(x1﹣x2)2=2[(x1+x2)2﹣4x1x2]=2[9+4(2t+6)]=16t+66,而PE2=(6﹣)2+(12﹣﹣t)2=t2﹣21t+,∴16t+66=4(t2﹣21t+),∴t=6(此时,恰好过点P,舍去)或t=19,当∠PC'B'=90°时,延长C'P交BC于H,交x轴于G,则∠BHC=90°,∵OB=CO,∠BOC=90°,∴∠OBC=45°,∴∠PGO=45°,过点P作PQ⊥x轴于Q,则GQ=PQ=12,∴OG=OQ+GQ=18,∴点G(18,0),∴直线C''G的解析式为y=﹣x+18④,联立①④解得或,∴C''的坐标为(﹣7,25),将点C''坐标代入y=x+t中,得25=﹣7+t,∴t=32,即:满足条件的t的值为19或32.2.解:【问题】y=ax2+bx+=a(x+1)(x﹣3),解得:a=,b=1,故答案为:﹣,1;【操作】抛物线G1沿BC方向平移BC长度的距离得到抛物线G2,相当于抛物线向左平移3个单位,向上平移个单位,G1:y=ax2+bx+=﹣x2+x+=﹣(x﹣1)2+2,G2:y=﹣(x﹣1+3)2+2+=﹣x2﹣2x+,当x<0时,y=﹣x2﹣2x+,当x≥0时,y=﹣x2﹣x+;【探究】C点的坐标为(0,).当y=时,,解得:x1=0,x2=2,∴E(2,),当时,,解得:x1=0,x2=﹣4,∴D(﹣4,),∵,,∴抛物线G1的顶点为(1,2),抛物线G2的顶点为(﹣2,),∴﹣4<x<﹣2或0<x<1时,函数y随x的增大而增大;【应用】如图,过点P作x轴的平行线交过点D与x轴的垂线于点M,交过E点与x轴的垂直的直线于点N,设点P(﹣2,m),则EN=﹣m,PN=4,DM=﹣m,PM=2,∵∠EPN+∠MPD=90°,∠MDP+∠DPM=90°,∴∠EPN=∠MDP,∴tan∠EPN=tan∠MDP,即,即,解得:m=±2,故点P的坐标为:.3.解:(1)直线y=x+4①,令x=0,则y=4,令y=0,则x=﹣3∴A(﹣3,0)B(0,4),∵抛物线经过A,B两点,∴,解得,∴;(2)设P点坐标为(x,0),令=0,解得x1=﹣3,x2=4,∴OB=OC=4,∴∠BCO=45°,又PQ∥BC,∴∠QP A=∠BCO=45°,∴∠APD=90°,∴D(x,x+3),∴,解得x1=﹣3,x2=1,∵P与A,C不重合,∴P(1,0);(3)∵PQ∥BC,∴直线PQ的表达式中的k值为﹣1,则直线PQ的表达式为:y=﹣x+b,将点P的坐标[改设为:点P(m,0)]代入上式并解得:直线PQ的表达式为:y=﹣x+m②,联立①②并解得:x=,故点Q(,);①由点B、C的坐标得,直线BC的表达式为:y=﹣x+4,由(2)知,点D(x,x+3),∵当点D在直线BC上时,即x+3=﹣x+4,解得:x=;当﹣3<x≤时,S=S△PQD=×PD×(xP﹣xQ)=×(x+3)(x﹣)=;当<x<4时,同理可得:S=;②点B的坐标(0,4),点D(x,x+3),点Q(,);(Ⅰ)当∠BDQ为直角时,如图1,过点D作y轴的平行线交过点Q与x轴的平行线于点M,交过点B与x轴的平行线于点N,∵∠NDB+∠NBD=90°,∠NDB+∠MDQ=90°,∴∠MDQ=∠NBD,∴tan∠MDQ=tan∠NBD,即,而MQ=x﹣=,MD=x+3﹣=,BN=x,ND=4﹣(x﹣3)=1﹣x,,解得:x=或﹣3(舍去﹣3),故x=;(Ⅱ)当∠BQD为直角时,如图2,同理可得:tan∠QDN=tan∠MQB,即,则,解得:x=0或﹣3(舍去);(3)当∠QBD为直角时,同理可得:x=;综上,当△BDQ为直角三角形时,x的值是或.4.解:(1)当a=1时,y=a(x2﹣2mx﹣3m2)=x2﹣2mx﹣3m2,∵与y轴交于点C(0,﹣3),∴﹣3m2=﹣3,解得:m=±1,∵m>0,∴m=1,∴抛物线解析式为:y=x2﹣2x﹣3=(x﹣1)2﹣4,∵CD∥AB,∴C,D关于直线x=1对称,∴D点坐标为:(2,﹣3);(2)如图,过点A作AN⊥CD交CD的延长线于N,对于y=a(x2﹣2mx﹣3m2),当y=0,则0=a(x2﹣2mx﹣3m2),解得:x1=﹣m,x2=3m,当x=0,y=﹣3am2,可得:A(﹣m,0),B(3m,0),C(0,﹣3am2),∵点C,点D关于对称轴直线x=m对称,∴点D(2m,﹣3am2)∴CD=2m,∵OM=2CD=4m,∴点E横坐标为4m,∴点E坐标(4m,5am2),∵A(﹣m,0),B(3m,0),C(0,﹣3am2),点E坐标(4m,5am2),点D(2m,﹣3am2),∴AM=5m,EM=5am2,DN=3m,AN=3am2,∵tan∠EAB==am,tan∠ADC==am,∴tan∠EAB=tan∠ADC∴∠EAB=∠ADC;(3)存在,理由:当x=m时,y=a(m2﹣2m2﹣3m2)=﹣4am2,∴F(m,﹣4am2),∵A(﹣m,0),点E的坐标为(4m,5am2),点D的坐标为(2m,﹣3am2),设P(b,0),∴PF2=(m﹣b)2+16(am2)2,AD2=9m2+9(am2)2,AE2=25m2+25(am2)2,∴(m﹣b)2+9m2=25m2,解得:b1=﹣3m,b2=5m∴P(﹣3m,0)或(5m,0).5.解:(1)∵抛物线y=ax2+bx+c经过A(﹣2,0),B(4,0),∴设抛物线的解析式为y=a(x+2)(x﹣4),将点C坐标(0,4)代入抛物线的解析式为y=a(x+2)(x﹣4)中,得﹣8a=4,∴a=﹣,∴抛物线的解析式为y=﹣(x+2)(x﹣4)=﹣x2+x+4;(2)①如图1,设直线AC的解析式为y=kx+b',将点A(﹣2,0),C(0,4),代入y=kx+b'中,得,∴,∴直线AC的解析式为y=2x+4,过点E作EF⊥x轴于F,∴OD∥EF,∴△BOD∽△BFE,∴,∵B(4,0),∴OB=4,∵BD=5DE,∴==,∴BF=×OB=×4=,∴OF=BF﹣OB=﹣4=,将x=﹣代入直线AC:y=2x+4中,得y=2×(﹣)+4=,∴E(﹣,),设直线BD的解析式为y=mx+n,∴,∴,∴直线BD的解析式为y=﹣x+2;②Ⅰ、当点R在直线l右侧时,∵抛物线与x轴的交点坐标为A(﹣2,0)和B(4,0),∴抛物线的对称轴为直线x=1,∴点Q(1,1),如图2,设点P(x,﹣x2+x+4)(1<x<4),过点P作PG⊥l于G,过点R作RH⊥l于H,∴PG=x﹣1,GQ=﹣x2+x+4﹣1=﹣x2+x+3,∵PG⊥l,∴∠PGQ=90°,∴∠GPQ+∠PQG=90°,∵△PQR是以点Q为直角顶点的等腰直角三角形,∴PQ=RQ,∠PQR=90°,∴∠PQG+∠RQH=90°,∴∠GPQ=∠HQR,∴△PQG≌△QRH(AAS),∴RH=GQ=﹣x2+x+3,QH=PG=x﹣1,∴R(﹣x2+x+4,2﹣x)由①知,直线BD的解析式为y=﹣x+2,∴﹣(﹣x2+x+4)+2=2﹣x,∴x=2或x=﹣4(舍),当x=2时,y=﹣x2+x+4=﹣×4+2+4=4,∴P(2,4),Ⅱ、当点R在直线l左侧时,记作R',设点P'(x,﹣x2+x+4)(1<x<4),过点P'作P'G'⊥l于G',过点R'作R'H'⊥l于H,∴P'G'=x﹣1,G'Q=﹣x2+x+4﹣1=﹣x2+x+3,同Ⅰ的方法得,△P'QG'≌△QR'H'(AAS),∴R'H'=G'Q=﹣x2+x+3,QH'=P'G'=x﹣1,∴R'(x2﹣x﹣2,x),由①知,直线BD的解析式为y=﹣x+2,∴﹣(x2﹣x﹣2)+2=x,∴x=﹣1+或x=﹣1﹣(舍),当x=﹣1+时,y=﹣x2+x+4=2﹣4,∴P'(﹣1+,2﹣4),即满足条件的点P的坐标为(2,4)或(﹣1+,2﹣4).6.解:(1)直线y=﹣2x+10中,令x=0,则y=10,令y=0,则x=5,∴A(5,0),B(0,10),∵点C是OB中点,∴C(0,5),将A和C代入抛物线y=x2+bx+c中,,解得:,∴抛物线表达式为:y=x2﹣6x+5;(2)联立:,解得:或,∴直线AB与抛物线交于点(﹣1,12)和(5,0),∵点D是直线AB下方抛物线上的一点,设D(m,m2﹣6m+5),∴﹣1<m<5,过点D作DE⊥x轴,交直线AB于点E,∴E(m,﹣2m+10),∴DE=﹣2m+10﹣m2+6m﹣5=﹣m2+4m+5,∴S△ABD===,解得:m=2,∴点D的坐标为(2,﹣3);(3)抛物线表达式为:y=x2﹣6x+5,∵△APB是以AB为直角边的直角三角形,设点P(n,n2﹣6n+5),∵A(5,0),B(0,10),∴AP2=(n﹣5)2+(n2﹣6n+5)2,BP2=n2+(n2﹣6n+5﹣10)2,AB2=125,当点A为直角顶点时,BP2=AB2+AP2,解得:n=或5(舍),当点B为直角顶点时,AP2=AB2+BP2,解得:n=或,而抛物线对称轴为直线x=3,则3﹣=,﹣3=,3﹣=,综上:点P到抛物线对称轴的距离为:或或.7.解:(1)令y=0,得y=x﹣6=0,解得x=6,∴B(6,0),令x=0,得y=x﹣6=﹣6,∴D(0,﹣6),∵点C与点D关于x轴对称,∴C(0,6),把B、C点坐标代入y=﹣x2+bx+c中,得,解得,,∴抛物线的解析式为:y=﹣x2+5x+6;(2)设P(m,0),则M(m,﹣m2+5m+6),N(m,m﹣6),则MN=﹣m2+4m+12,∴△MDB的面积==﹣3m2+12m+36=﹣3(m﹣2)2+48,∵﹣3<0,∴当m=2时,△MDB的面积最大,此时,P点的坐标为(2,0);(3)由(2)知,M(2,12),N(2,﹣4),当∠QMN=90°时,QM∥x轴,则Q(0,12);当∠MNQ=90°时,NQ∥x轴,则Q(0,﹣4);当∠MQN=90°时,设Q(0,n),则QM2+QN2=MN2,即4+(12﹣n)2+4+(n+4)2=(12+4)2,解得,n=4±2,∴Q(0,4+2)或(0,4﹣2).综上,存在以Q,M,N三点为顶点的三角形是直角三角形.其Q点坐标为(0,12)或(0,﹣4)或(0,4+2)或(0,4﹣2).8.解:(1)对于抛物线y=﹣ax2+2ax+3a,对称轴x=﹣=1,∴E(1,0),故答案为(1,0).(2)如图,连接EC.对于抛物线y=﹣ax2+2ax+3a,令x=0,得到y=3a,令y=0,﹣ax2+2ax+3a=0,解得x=﹣1或3,∴A(﹣1,0),B(3,0),C(0,3a),∵C,D关于对称轴对称,∴D(2,3a),CD=2,EC=DE,当∠HEF=90°时,∵ED=EC,∴∠ECD=∠EDC,∵∠DCF=90°,∴∠CFD+∠EDC=90°,∠ECF+∠ECD=90°,∴∠ECF=∠EFC,∴EC=EF=DE,∵EA∥DH,∴F A=AH,∴AE=DH,∵AE=2,∴DH=4,∵HE⊥DFEF=ED,∴FH=DH=4,在Rt△CFH中,则有42=22+(6a)2,解得a=或﹣(不符合题意舍弃),∴a=.当∠HFE=90°时,∵OA=OE,FO⊥AE,∴F A=FE,∴OF=OA=OE=1,∴3a=1,∴a=,综上所述,满足条件的a的值为或.(3)结论:EH∥GK.理由:由题意A(﹣1,0),F(0,﹣3a),D(2,3a),H(﹣2,3a),E(1,0),∴直线AF的解析式y=﹣3ax﹣3a,直线DF的解析式为y=3ax﹣3a,由,解得或,∴K(6,﹣21a),由,解得或,∴G(﹣3,﹣12a),∴直线HE的解析式为y=﹣ax+a,直线GK的解析式为y=﹣ax﹣15a,∵k相同,a≠﹣15a,∴HE∥GK.9.解:(1)令x=0时,y=3,∴函数的图象与y轴交点坐标为(0,3),故答案为:(0,3);(2)①令y=0,则ax2+(3a+1)x+3=0,∴(ax+1)(x+3)=0,∴x1=﹣,x2=﹣3,∵二次函数的图象与x轴的两个交点的横坐标均为整数,且a为负整数.∴a=﹣1,∴二次函数的表达式为y=﹣x2﹣2x+3;②图象如图所示:(3)设点P(m,﹣m2﹣2m+3),当点P为直角顶点时,如图,过点P作PF⊥y轴于F,过点A作AE⊥PF,交FP的延长线于E,∵∠APC=90°,∴∠APE+∠CPF=90°,∵∠APE+∠EAP=90°,∴∠CPF=∠EAP,又∵∠AEP=∠CFP=90°,∴△APE∽△PCF,∴,∴=∴∴﹣(m﹣1)(m+2)=1,∴m1=,m2=,经检验,m1=,m2=是原方程的根;∴点P坐标为(,)或(,);若点A为直角顶点时,如图,过点P作PH⊥x轴于P,∵点A(﹣3,0),点C(0,3),∴OA=OC,又∵∠AOC=90°,∴∠CAO=∠ACO=45°,∵∠CAP=90°,∴∠P AH=45°,∵PH⊥x轴,∴∠P AH=∠APH=45°,∴AH=PH,∴m+3=m2+2m﹣3∴m1=﹣3(舍去),m2=2,∴点P坐标为(2,﹣5);若点C为直角顶点,过点P作PE⊥y轴于E,∵∠ACP=90°,∠ACO=45°,∴∠PCE=45°,∵PE⊥y轴,∴∠PCE=∠CPE=45°,∴PE=CE,∴﹣m=﹣m2﹣2m+3﹣3,∴m1=0(舍去),m2=﹣1,∴点P坐标为(﹣1,4);综上所述:点P坐标为(,)或(,)或(2,﹣5)或(﹣1,4).10.解:(1)∵二次函数y=ax2+bx+4的图象与y轴交于点C,∴C(0,4),∴OC=4,∵A(﹣3,0),∴OA=3,∴AC===5,∵t=3,∴AD=OE=3,AE=6,当△ADE∽△ACB时,∴,即,∴AB=10,∴B(7,0),∵二次函数y=ax2+bx+4的图象过点A(﹣3,0),点B(7,0),∴解得:∴抛物线解析式为:,当△ADE∽△ABC时,,即,∴(舍去),综上,二次函数的表达式为:;(2)若△ADE可以为直角三角形,显然∠ADE=90°,∴△ADE∽△AOC,∴,∴,解得:.设B(x,0),则,设抛物线对称轴为直线,∵A(﹣3,0),∴①.把x=﹣3,y=0代入y=ax2+bx+4,得②,把②代入①,∵a<0,解得:.11.解:(1)∵直线y=﹣x+2经过B,C两点.∴点C(0,2),∵二次函数y=ax2+bx+c(a≠0)的图象经过A(1,0),B(4,0),点C(0,2),∴,解得:,∴抛物线解析式为y=x2﹣x+2,故答案为:y=x2﹣x+2;(2)∵直线BC解析式为:y=﹣x+2,∴设平移后的解析式为:y=﹣x+2+m,∵平移后直线BC与抛物线有唯一公共点Q∴x2﹣x+2=﹣x+2+m,∴△=4﹣4××(﹣m)=0,∴m=﹣2,∴设平移后的解析式为:y=﹣x,联立方程组得:,∴,∴点Q(2,﹣1);(3)设点M的坐标为(m,m2﹣m+2),∵以E,M,N三点为顶点的直角三角形(其中M为直角顶点)与△BOC相似,∴当△MEN∽△OBC时,∴∠MEN=∠OBC,过点M作MH⊥x轴于H,∴∠EHM=90°=∠BOC,∴△EHM∽△BOC,∴,∴MH=|m2﹣m+2|,EH=|m﹣2|,∵OB=4,OC=2.∴=2或,∴m=3±或m=2±或m=﹣4或m=﹣1或m=1或m=12,当m=3+时,m2﹣m+2=,∴M(3+,),当m=3﹣时,m2﹣m+2=,∴M(3﹣,),当m=2+时,m2﹣m+2=﹣,∴M(2+,﹣),当m=2﹣时,m2﹣m+2=,∴M(2﹣,),当m=﹣4时,m2﹣m+2=20,∴M(﹣4,20),当m=﹣1时,m2﹣m+2=5,∴M(﹣1,5),当m=1时,m2﹣m+2=0,∴M(1,0),当m=12时,m2﹣m+2=44,∴M(12,44),即满足条件的点M共有8个,其点的坐标为(3+,)或(3﹣,)或(2+,﹣)或(2﹣,)或(﹣4,20)或(﹣1,5)或(1,0)或(12,44).12.解:(1)∵抛物线y=ax2+bx+c经过点B(﹣1,0)、E(3,0),∴抛物线的对称轴为x=1,∵点C与点A关于抛物线的对称轴对称,点A(0,﹣3),∴C(2,﹣3),抛物线表达式为y=a(x﹣3)(x+1)=a(x2﹣2x﹣3),故﹣3a=﹣3,解得:a=1,∴抛物线的表达式为y=x2﹣2x﹣3;(2)如图,过点P作y轴的平行线交AE于点H,由点A,E的坐标得直线AE的表达式为y=x﹣3,设点P(t,t2﹣2t﹣3),则点H(t,t﹣3),∴△P AE的面积S=PH×OE=(t﹣3﹣t2+2t+3)=(﹣t2+3t)=﹣,∴当t=时,S有最大值;(3)∵直线AE表达式中的k值为1,∴∠AEO=45°,①当∠PEA=90°时,∵PE⊥AE,∴直线PE与x轴的夹角为45°,∴设直线PE的表达式为y=﹣x+b,将点E的坐标代入并解得b=3,∴直线PE的表达式为y=﹣x+3,联立得,解得x=﹣2或3(不合题意,舍去)故点P的坐标为(﹣2,5),②当∠P AE=90°时,同理可得,点P(1,﹣4),综上,点P的坐标为(﹣2,5)或(1,﹣4).13.解:(1)由题意,,解得,∴抛物线的解析式为:y=﹣x2+2x+3.(2)如图1中,连接BC,由题意,点P在第四象限,所以∠CBP=90°,过点B作BP⊥BC交抛物线于P,连接PC.对于抛物线y=﹣x2+2x+3,令y=0,可得x2﹣2x﹣3=0,解得x=﹣1或3,∴B(﹣1,0),∵C(0,3),∴直线BC的解析式为y=3x+3,∵PB⊥BC,∴直线PB的解析式为y=﹣x﹣,由,解得或,∴P(,).(3)如图2中,当∠CPB=∠PQB时,∵∠CPB+∠PCB=90°,∴∠PQB+∠PCB=90°,∴∠CPQ=90°,∴PQ⊥PC,∵C(0,3),P(,﹣),∴直线PC的解析式为y=﹣x+3,∴直线PQ的解析式为y=x﹣,由,解得,∴Q(﹣,﹣),根据对称性可知,点Q关于点B的对称点Q′也满足条件,可得Q′(,),综上所述,满足条件的点Q的坐标为(,)或(,).14.解:(1)∵抛物线L1:y=ax2﹣2x的对称轴为直线x=﹣2,∴﹣=﹣2,∴a=﹣.(2)∵抛物线L1:y=﹣x2﹣2x=﹣(x+2)2+2,∴抛物线L1的顶点A(﹣2,2),∵将抛物线L1沿y轴对称,得到抛物线L2,顶点为B,∴B(2,2),∴抛物线L2的解析式为y=﹣(x﹣2)2+2,即y=﹣x2+2x.(3)如图,观察图象可知,以A或B为直角顶点时,可得P(﹣2,﹣6)或(2,﹣6)当AB为斜边时,∵A(﹣2,2),B(2,2),∴OA=OB=2,AB=4,∴AB2=OA2+OB2,∴∠AOB=90°,∴当点P与O重合时,△APB是直角三角形,综上所述,满足条件的点P的坐标为(﹣2,﹣6)或(2,﹣6)或(0,0).15.解:(1)直线l:y=x﹣3,当x=0时,y=﹣3,∴顶点(0,﹣3),∴抛物线的解析式为:y=x2﹣3,即k=﹣3;(2)由题意得:x2﹣3=x﹣3,解得:x1=0,x2=1,∴C(1,﹣2),当点B与点C重合时,如图1,顶点P(1,﹣2),∴平移后抛物线的解析式为:y=(x﹣1)2﹣2=x2﹣2x﹣1;(3)∵抛物线顶点P始终保持在直线l上,∴设P(m,m﹣3),则平移后的抛物线的解析式为:y=(x﹣m)2+m﹣3,∴,解得:,∴B(,),∵抛物线x2﹣3沿直线l向右上方平移,∴当△ABP为直角三角形时,∠P AB不可能为直角,所以分两种情况:①当∠APB=90°时,如图2,AP2+BP2=AB2,∴+=,∴m(m﹣1)(m﹣3)=0,∴m1=0(舍),m2=1(舍),m3=3,∴P(3,0);②当∠ABP=90°时,如图3,过B作EF⊥y轴于F,过P作PE⊥EF于E,∴∠ABF+∠EBP=∠EBP+∠EPB=90°,∴∠ABF=∠EPB,∴tan∠ABF=tan∠EPB,即,∴=,解得:m1=﹣(舍),m2=,∴P(,﹣3),综上,P点的坐标是(3,0)或(,﹣3).16.解:(1)∵点A(﹣1,0),C(4,0),∴AC=5,OC=4,∵AC=BC=5,∴B(4,5),把A(﹣1,0)和B(4,5)代入二次函数y=x2+bx+c中得:,解得:,∴二次函数的解析式为:y=x2﹣2x﹣3;(2)如图1,∵直线AB经过点A(﹣1,0),B(4,5),设直线AB的解析式为y=kx+b,∴,解得:,∴直线AB的解析式为:y=x+1,∵二次函数y=x2﹣2x﹣3,∴设点E(t,t+1),则F(t,t2﹣2t﹣3),∴EF=(t+1)﹣(t2﹣2t﹣3)=﹣(t﹣)2+,∴当t=时,EF的最大值为,∴点E的坐标为(,),∴S△ABF===.(3)存在,y=x2﹣2x﹣3=(x﹣1)2﹣4,∴设P(1,m),分三种情况:①以点B为直角顶点时,由勾股定理得:PB2+AB2=P A2,∴(4﹣1)2+(m﹣5)2+(4+1)2+52=(1+1)2+m2,解得:m=8,∴P(1,8);②以点A为直角顶点时,由勾股定理得:P A2+AB2=PB2,∴(1+1)2+m2+(4+1)2+52=(4﹣1)2+(m﹣5)2,解得:m=﹣2,∴P(1,﹣2);③以点P为直角顶点时,由勾股定理得:PB2+P A2=BA2,∴(1+1)2+m2+(4﹣1)2+(m﹣5)2=(4+1)2+52,解得:m=6或﹣1,∴P(1,6)或(1,﹣1);综上,点P的坐标为(1,8)或(1,﹣2)或(1,6)或(1,﹣1).17.解:(1)∵二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),∴,∴,∴抛物线的解析式为y=﹣x2+2x+3;(2)由y=﹣x2+2x+3=﹣(x﹣1)2+4得,D点坐标为(1,4),∵y=﹣x2+2x+3与x轴交于另一点B,∴令y=0,﹣x2+2x+3=0,解得x=﹣1或3,∴A(﹣1,0),B(3,0),∴CD==,BC==3,BD==2,∵CD2+BC2=()2+(3)2=20,BD2=(2)2=20,∴CD2+BC2=BD2,∴△BCD是直角三角形;(3)如图,∵P、D、C构成以PC为底边的等腰三角形,∴点D在PC的垂直平分线上,∴点C与点P关于对称轴直线x=1对称,∴点P的坐标为(2,3),∵S四边形PBCD=S△DCP+S△CBP,∴S四边形PBCD=×2×(4﹣3)+×2×3=4.18.解:(1)∵抛物线y=x2+bx+c过点A(3,0),B(1,0),∴,解得,∴抛物线解析式为y=x2﹣4x+3;(2)令x=0,则y=3,∴点C(0,3),则直线AC的解析式为y=﹣x+3,设点P(x,x2﹣4x+3),∵PD∥y轴,∴点D(x,﹣x+3),∴PD=(﹣x+3)﹣(x2﹣4x+3)=﹣x2+3x=﹣(x﹣)2+,∵a=﹣1<0,∴当x=时,线段PD的长度有最大值;(3)①∠APD是直角时,点P与点B重合,此时,点P(1,0),②∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1),∵A(3,0),∴点P为在抛物线顶点时,∠P AD=45°+45°=90°,此时,点P(2,﹣1),综上所述,点P(1,0)或(2,﹣1)时,△APD能构成直角三角形.19.解:(1)∵抛物线C的顶点坐标为(2,8),∴可以假设抛物线C的解析式为y=a(x﹣2)2+8,把(0,6)代入y=a(x﹣2)2+8,得a=﹣,∴抛物线C的解析式为y=﹣(x﹣2)2+8,即y=﹣x2+2x+6,令y=0,则有﹣x2+2x+6=0,解得x=﹣2或6,∴A(﹣2,0),B(6,0).(2)设直线BD的解析式为y=kx+b,则,解得,∴直线BD的解析式为y=﹣x+6,设P(t,﹣t+6),则0<t<6,Q(t,﹣t2+2t+6),∵E,Q关于x=2的长,∴E(﹣t+4,﹣t2+2t+6),∴QP=﹣t2+2t+6﹣(﹣t+6)=﹣t2+3t,QE=|2t﹣4|,∵QP⊥x轴,QE∥x轴,∴∠PQE=90°,∴当QE=PQ时,△PQE是等腰直角三角形,即﹣t2+3t=|2t﹣4|,①当﹣t2+3t=2t﹣4时,解得t=4或﹣2(舍弃),此时P(4,2).②当﹣t2+3t=﹣2t+4时,解得t=5﹣或5+(舍弃),此时P(5﹣,1+).∴满足条件的抛物线C′的解析式为y=﹣(x﹣4)2+2或y=﹣(x﹣5+)2+1+.20.解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;(2)当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得,解得,∴直线AC的解析式为y=3x+3,如图1,过D作DG垂直抛物线对称轴于点G,设D(x,﹣x2+2x+3),∵DF∥AC,∴∠DFG=∠ACO,而抛物线对称轴为x=1,∴DG=x﹣1,DF=(x﹣1),∴DE+DF=﹣x2+2x+3+(x﹣1)=﹣x2+(2+)x+3﹣=﹣(x﹣)2+,∵﹣1<0,∴当x=,DE+DF有最大值为;(3)①存在;如图2,过点C作AC的垂线交抛物线于点P1,∵直线AC的解析式为y=3x+3,则直线AC倾斜角的正切值为3,则直线P1C倾斜角的正切值为,∴直线P1C的解析式可设为y=﹣x+m,把C(0,3)代入得m=3,∴直线P1C的解析式为y=﹣x+3,解方程组,解得,则此时P1点坐标为(,);过点A作AC的垂线交抛物线于P2,同理可设直线AP2的解析式可设为y=﹣x+n,把A(﹣1,0)代入上式并解得n=﹣,∴直线PC的解析式为y=﹣x﹣,解方程组,解得,则此时P2点坐标为(,﹣),综上所述,符合条件的点P的坐标为(,)或(,﹣);②答:﹣<t<1或2<t<.如图3,抛物线y=﹣x2+2x+3对称轴为直线x=1,过点C作CQ1⊥AC交对称轴于Q1,过点A作AQ2⊥AC交对称轴于Q2,∵A(﹣1,0),C(0,3),∴直线AC解析式为y=3x+3,∵CQ1⊥AC,∴直线CQ1解析式为y=﹣x+3,令x=1,得y=﹣×1+3=,∴Q1(1,);∵AQ2⊥AC,∴直线AQ2解析式为y═﹣x﹣,令x=1,得y=﹣×1﹣=﹣,∵∠AQC=90°时,AQ2+CQ2=AC2,∴(﹣1﹣1)2+t2+(1﹣0)2+(t﹣3)2=()2,解得:t1=1,t2=2,∴当1≤t≤2时,∠AQC≥90°,∵△ACQ为锐角三角形,点Q(1,t)必须在线段Q1Q2上(不含端点Q1、Q2),∴﹣<t<1或2<t<。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 新定义探究问题 类型一:新定义类问题 【经典例题1】阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.
问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线nmxy2)(41经过B、C两点,顶点D在正方形内部. (1)直接写出点D(m,n)所有的特征线; (2)若点D有一条特征线是y=x+1,求此抛物线的解析式; (3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上? 【解析】(1)∵点D(m,n), ∴点D(m,n)的特征线是x=m,y=n,y=x+n−m,y=−x+m+n; (2)点D有一条特征线是y=x+1, ∴n−m=1,
∵抛物线解析式为y=41(x−m)2+n,
∴y=41(x−m)2+m+1, ∵四边形OABC是正方形,且D点为正方形的对称轴,D(m,n), ∴B(2m,2m), 2
∴41(2m−m)2+n=2m,将n=m+1带入得到m=2,n=3; ∴D(2,3), ∴抛物线解析式为y=41(x−2)2+3 (3)如图,当点A′在平行于y轴的D点的特征线时, 根据题意可得,D(2,3), ∴OA′=OA=4,OM=2, ∴∠A′OM=60∘, ∴∠A′OP=∠AOP=30∘,
∴MN=3OM=332,
∴抛物线需要向下平移的距离=3−332=3329. 如图,当点A′在平行于x轴的D点的特征线时,设A′(p,3), 则OA′=OA=4,OE=3,EA′=73422, ∴A′F=4−7, 设P(4,c)(c>0), ,在Rt△A′FP中,(4−7)2+(3−c)2=c2,
∴c=37416,
∴P(4,37416) ∴直线OP解析式为y=374x, ∴N(2,3728), ∴抛物线需要向下平移的距离=3−3728=3721, 即:抛物线向下平移3329或3721距离,其顶点落在OP上。 3
练习1-1在平面直角坐标系xoy中,对“隔离直线”给出如下定义:点P(x,m)是图形G1上的任意一点,点Q(x,n)是图形G2上的任意一点,若存在直线l:y=kx+b(k≠0)满足m≤kx+b且n≥kx+b,则称直线l:y=kx+b(k≠0)是图形G1与G2的“隔离直线”,
如图1,直线l:y=-x-2是函数)0(4xxy的图像与正方形OABC的一条“隔离直线”.
(1)在直线①y1=-x-1,②y2=3x+1,③y3=-x+4,④y4=-2x中,是图1函数)0(4xxy
的图像与正方形OABC的“隔离直线”的为 . (2)如图2,第一象限的等腰直角三角形EDF的两腰分别与坐标轴平行,直角顶点D的坐标是(2,1),⊙O的半径为5,是否存在△EDF与⊙O的“隔离直线”?若存在,求出此“隔离直线”的表达式:若不存在,请说明理由; (3)正方形A1B1C1D1的一边在y轴上,其它三边都在y轴的左侧,点M(-1,t)是此正方形的中心,若存在直线y=-2x+b是函数y=x2+2x-3(-4≤x≤0)的图像与正方形A1B1C1D1的“隔离直线”,请直接写出t的取值范围. 4
练习1-2已知:抛物线C1:y=−(x+m)2+m2(m>0),抛物线C2:y=(x−n)2+n2(n>0),称抛物线C1,C2互为派对抛物线,例如抛物线C1:y=−(x+1)2+1与抛物线C2:y=(x−2)2+2是派对抛物线,已知派对抛物线C1,C2的顶点分别为A,B,抛物线C1的对称轴交抛物线C2于C,抛物线C2的对称轴交抛物线C1与D.
(1)已知抛物线①y=−x2−2x,②y=(x−3)2+3,③y=(x−2)2+2,④y=x2−x+21,则抛物线①②③④中互为派对抛物线的是 (请在横线上填写抛物线的数字序号); (2)如图1,当m=1,n=2时,证明AC=BD; (3)如图2,连接AB,CD交于点F,延长BA交x轴的负半轴于点E,记BD交x轴于G,CD交x轴于点H,∠BEO=∠BDC. ①求证:四边形ACBD是菱形;②若已知抛物线C2:y=(x−2)2+4,请求出m的值。
练习1-3如图1,直线y=43x+m与x轴、y轴分别交于点A和点B(0,−1),抛物线y=21x2+bx+c经过点B,点C的横坐标为4. (1)请直接写出抛物线的解析式; (2)将△AOB绕平面内某点M旋转90∘或180∘,得到△A1O1B1,点A. O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180∘时点A1的横坐标。 5
【经典例题2】阅读下列材料: 我们知道,一次函数y=kx+b的图象是一条直线,而y=kx+b经过恒等变形可化为直线的另一种表达形式:Ax+Bx+C=0(A、B、C是常数,且A、B 不同时为0).如 图1,点 P(m,n)到直线l:Ax+By+C=0的距离(d)计算公式是:d=
22BACnBmA
.
例:求点P(1,2)到直线y=125x−16的距离d时,先将y=125x−61化为5x−12y−2=0,再由上述距离公式求得d=1321)12(5)2(2)12(1522. 解答下列问题: 如图2,已知直线y=−34x−4与x轴交于点A,与y轴交于点B,抛物线y=x2−4x+5
上的一点M(3,2). (1)求点M到直线AB的距离。 6
(2)抛物线上是否存在点P,使得△PAB的面积最小?若存在,求出点P的坐标及△PAB面积的最小值;若不存在,请说明理由。 【解析】(1)将直线AB变为:4x+3y+12=0, 又M(3,2),
则点M到直线AB的距离d=223412612=6; (2)假设抛物线上存在点P,使得△PAB的面积最小,设P坐标为(a,a2−4a+5),
∵y=3a2−8a+27中,△=64−12×27=−260<0,
∴y=3a2−8a+27中函数值恒大于0,
∴点M到直线AB的距离d=2223412)54(34aaa=527832aa, 又函数y=3a2−8a+27,当a=34时,ymin=365,
∴dmin=5365=313,此时P坐标为(34,913); 又y=−34x−4,令x=0求出y=−4,令y=0求出x=−3, ∴OA=3,OB=4, ∴在Rt△AOB中,根据勾股定理得:AB=54322, ∴S△PAB的最小值为21×5×313=665.
练习2-1已知点 P(x0,y0)和直线 y=kx+b,则点 P 到直线 y=kx+b 的距离证明可用公式 d=2001kbykx计算. 例如:求点 P(﹣1,2)到直线 y=3x+7 的距离. 解:因为直线 y=3x+7,其中 k=3,b=7. 7
所以点 P(﹣1,2)到直线 y=3x+7 的距离为:d=2001kbykx=23172)1(3=510. 根据以上材料,解答下列问题:
(1)求点 P(1,﹣1)到直线y=x﹣1 的距离; (2)已知⊙Q 的圆心 Q 坐标为(0,5),半径r为,判断⊙Q与直线y=3x+9 的位置关系并说明理由; (3)已知直线y=﹣2x+4 与y=﹣2x﹣6平行,求这两条直线之间的距离.
类型二:探究类问题 【经典例题3】已知:如图,抛物线y=a(x﹣1)2+c与x轴交于点A(1-3,0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P'(1,3)处. (1)求原抛物线的解析式; (2)在原抛物线上,是否存在一点,与它关于原点对称的点也在该抛物线上?若存在,求满足条件的点的坐标;若不存在,说明理由。 (3)学校举行班徽设计比赛,九年级5班的小明在解答此题时顿生灵感:过点P'作x轴的平行线交抛物线于C、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接
近黄金分割比21-5(约等于 0.618).请你计算这个“W”图案的高与宽的比到底是多少?(参考数据:236.25,449.26,结果可保留根号) 8
【解析】(1)由题意得,点P与点P′关于x轴对称 所以由P′(1,3)得,P(1,−3) 将A(1−3,0),P(1,−3)代入方程y=a(x−1)2+c中 3a+c=0;c=−3 解得,a=1,c=−3 所以原抛物线的解析式为y=(x−1)2−3;
(2)假设存在满足题意的点(x,y),其关于原点对称的点为(−x,−y),
则222222xxyxxy,解得22211yx,22222yx, ∴存在满足题意的点为(−2,22)和(2,−22); (3)∵CD∥x轴,P′(1,3)在CD上; ∴C、D两点纵坐标为3,有(x−1)2−3=3,
解得:x1=1−6,x2=1+6, ∴CD=(1+6)−(1−6)=26,
∴“W”图案的高与宽(CD)的比为:623=4
6≈0.612.
练习3-1如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3交x轴于A,B两点(点A在点B的左侧),将该抛物线位于x轴上方的曲线记作M,将该抛物线位于x轴下方的部分沿x轴翻折,翻折后所得曲线记作N,曲线N交y轴于点C,连接AC,BC. (1)求曲线N所在抛物线的函数表达式; (4)在直线BC上方的曲线M上确定两个点D1,D2,使得S△D1BC=S△D2BC
=
S△ABC.并求出点D1,D2的坐标;在曲线M或N上是否存在五个点T1,T2,T3,