2二次函数综合问题例谈
(完整版)二次函数综合题分类讨论带答案.doc

(完整版)二次函数综合题分类讨论带答案.doc二次函数综合题分类讨论一、直角三角形分类讨论:11、已知点 A(1 ,0),B( -5,0),在直线y 2 x 2 上存在点C,使得 ABC 为直角三角形,这样的 C 点你能找到个2、如图 1,已知抛物线C1:y a x 2 2 5 的顶点为 P,与 x 轴相较于 A 、 B 两点(点A 在点B 的左边),点B 的横坐标是1.(1)求P 点坐标及a的值;( 2)如图 1,抛物线C2与抛物线C1关于x 轴对称,将抛物线C2向右平移,平移后得到抛物线C3, C,3的顶点为 M ,当点 P、 M 关于点 B 成中心对称时,求C,3的解析式;( 3)如图 2,点 Q 是 x轴正半轴上一点,将抛物线C1绕点Q 旋转180 后得到抛物线C,4,抛物线 C,4的顶点为N,与 x 轴相交于 E、 F 两点(点 E 在点 F 的左边),当以点 P、N、 F 为顶点的三角形是直角三角形时,求点Q 的坐标。
(2013 汇编 P56+P147)3、如图,矩形A’BC’O’是矩形 OABC( 边 OA 在 x 轴正半轴上,边 OC 在 y 轴正半轴上 )绕 B 点逆时针旋转得到的.O’点在 x 轴的正半轴上, B 点的坐标为 (1,3).(1)如果二次函数 y= ax2+ bx+c(a≠0)的图象经过 O、O’两点且图象顶点 M 的纵坐标为—1.求这个二次函数的解析式;(2) 在 (1)中求出的二次函数图象对称轴的右支上是否存在点P,使得POM 为直角三角形若存在,请求出P 点的坐标和POM 的面积;若不存在,请说明理由;(3)求边C’O’所在直线的解析式.练习( 09 成都 28)已知抛物线与x 轴交于 A 、 B 两点 (点 A 在点 B 的左侧 ),与 y 轴交于点C,其顶点为 M ,若直线 MC 的函数表达式为 y=kx-3 ,与 x 轴的交点为N,且cos∠BCO =(3 √ (10) /10).( 1)求此抛物线的解析式;( 2)在此抛物线上是否存在异于点 C 的点 P,使以 N 、 P、C 为顶点的三角形是以NC 为一条直角边的直角三角形?若存在,求出点P 的坐标;( 3)过点 A 作 x 轴的垂线,交直线 MC 于点 Q. 若将抛物线沿其对称轴上下平移,使抛物线与线段NQ 总有公共点,则抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度5 ?4A 二、4321N2 B 2 4 6 8 10 12 14 16 18123P4M56等腰三角形分类讨论1、如图,已知 Rt Rt ABC , ACB 90 , BAC 30 , 在直线BC或直线AC上取一点P,使得 PAB 是等腰三角形,则符合条件的P 点有个2 A的坐标为(12),,点B的坐标为(31),,二次函数 y x2、①,在平面直角坐标系中,点的图象记为抛物线l1.(1)平移抛物线l1,使平移后的抛物线过点A ,但不过点B ,写出平移后的一个抛物线的函数表达式:(任写一个即可).(2)平移抛物线l1,使平移后的抛物线过A,B两点,记为抛物线l2,如图②,求抛物线l2 的函数表达式.(3)设抛物线l2 △△,求点 K 的坐标.的顶点为 C , K 为 y 轴上一点.若S ABK SABC( 4)请在图③上用尺规作图的方式探究抛物线l 2上是否存在点P ,使△ ABP 为等腰三角形.若存在,请判断点P 共有几个可能的位置(保留作图痕迹);若不存在,请说明师.yyyl 2l 1l 2AAA1B1CBx1BO xOO 111图①图②图③解:( 1 )有多种答案,符合条件即可.例如yx 2 1, y x 2 x , y( x 1)22 或y x 2 2x 3 , y (x2 1)2 , y (x 12) 2 .(2)设抛物线 l 2 的函数表达式为 y x 2bxc ,yl 2Q 点 A(12),, B(31),在抛物线 l 2 上,KGA1 b c ,b9 ,2 29 3b c 解得111c.抛物线 l 2 的函数表达式为y x 2 9 x 11 .2 29 x 119 27 ,9,7(3) yx 2 xC 点的坐标为.2 2 4 164 16 过 A , B , C 三点分别作 x 轴的垂线,垂足分别为 D ,E ,F ,则 AD 2 , CF7 , BE1, DE5 , FE316 2 , DF.44 S △ ABCS 梯形ADEBS梯形 ADFCS梯形 CFEB1(2 1) 2 1 2 75 1 1 73 15 .2 2 164 2 164 16延长 BA 交 y 轴于点 G ,设直线 AB 的函数表达式为 y mx n ,2 m ,m1 ,Q 点 A(12),, B(31),在直线 AB 上, n21 3m 解得5n.n.2直线 AB 的函数表达式为 y1x 5 G 点的坐标为52 .0,.22BCO D F E图②设 K 点坐标为(0,h),分两种情况:若 K 点位于 G 点的上方,则KG h 5 .连结AK ,BK .2S△ABK S△BKG S△AKG 1 3 h 5 1 1 h 5 h 5 .2 2 2 2 2Q S△ABK15 5 15,解得 h55K 点的坐标为55 S△ABC ,h16 16.0,.16 2 16若 K 点位于 G 点的下方,则KG 5h .同理可得, h25.2 16 yK 点的坐标为25.l 2 0,16 A(4)作图痕迹如图③所示. B由图③可知,点P 共有3个可能的位置.O图③2、如图:在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,y点 A 、 C 的坐标分别为A(10 , 0)、 C( 0,4),点 D 是 OA 的中点,点 P 在PCBC 边上运动,当是腰长为 5 的等腰三角形时,点P 的坐标为O D 3、在菱形 ABCD 中,对角线AC , BD 相交于点 O,以 O 为坐标原点,以 BD 所在直线为 x 轴, CA 所在直线为 y 轴建立如图所示的坐标系,且AC=12 ,BD=16 ,E 为 AD 的中点,点 P 在线段 BD 上移动,若为等腰三角形,则所有符合条件的点P 的坐标为三、最值问题 B类型一:两点之间线段最短 C 1、请写出2m 3 2 1 8 2m 2 4 的最小值为 A2、如图,四边形ABCD 是正方形,ABE 是等边三角形,对角线BD 上60 ,得到BN,连EN任一点,将 BM 绕点 B 逆时针旋转EN、 AM 、CM ,求证:( 1)AMB ENB ,(2)M点在何处时,AM+CM值最小,(3)AM+BM+CN 最小值为3 1 时,求正方形的边长(2012 汇编P52+P137) B xBxAyAExDDMC3、( 2010 年天津 25)在平面直角坐标系中,矩形OACB 的顶点 O 在坐标原点,顶点 A 、B 分别在 x 轴、 y 轴的正半轴上,OA=3 ,OB=4 ,D 为边 OB 的中点。
二次函数的综合运用

二次函数的综合运用二次函数是一种形式为 y = ax² + bx + c 的函数,其中 a、b、c 是常数且a ≠ 0。
二次函数在数学中有广泛的应用,涉及到诸如物理学、经济学和工程学等多个领域。
本文将探讨二次函数在各个领域中的综合运用,包括最值问题、图像分析、实际问题的建模等。
一、最值问题对于二次函数 y = ax² + bx + c,其中a ≠ 0,我们可以通过一些方法求得其最值。
为了简化讨论,我们以函数 y = x² + 2x - 3 为例。
1. 定义域和值域首先,我们需要确定该二次函数的定义域和值域。
对于二次函数 y= x² + 2x - 3,由于 x²的值始终大于等于 0,所以该函数的定义域为全体实数。
而二次函数在开口向上的情况下,其最小值即为函数的值域的下界。
根据二次函数的顶点公式,可以求得该函数的顶点为(-1, -4),因此该函数的最小值为 -4。
2. 求解极值点我们可以通过求导数的方法求得二次函数的极值点。
对于函数 y =x² + 2x - 3,将其对 x 求导后可得 y' = 2x + 2。
令 y' = 0,解得 x = -1。
将 x = -1 代入函数 y = x² + 2x - 3 中可得 y = -4,即函数在 x = -1 处取得极小值 -4。
同样,对于开口向下的二次函数,可以通过类似的方法求得其极大值。
二、图像分析二次函数的图像一般为抛物线,通过分析图像可以获得更多关于函数的信息。
下面以函数 y = x² + 2x - 3 为例进行具体分析。
1. 对称轴和顶点二次函数的对称轴是由函数的一阶导数确定的直线,其方程形式为x = -b/(2a)。
对于函数 y = x² + 2x - 3,对称轴的方程为 x = -1。
根据二次函数的顶点公式,可以求得该函数的顶点坐标为 (-1, -4)。
二次函数代数推理综合问题解析

二次函数代数推理综合问题解析二次函数是一种常见的二次曲线,其一般形式为:y = ax^2 + bx + c,其中a、b、c为常数,且a ≠ 0。
在代数推理的综合问题中,有一些与二次函数相关的问题需要解析。
下面将介绍几个常见的二次函数代数推理综合问题,并给出解析。
问题一:已知二次函数y = ax^2 + bx + c的顶点坐标为(2,3),且过点(-1,0),求该函数的表达式。
解析:由题可知,二次函数的顶点坐标为(2,3),则顶点坐标中的x坐标为2,代入函数表达式可以得到:3=a*2^2+b*2+c另外,已知过点(-1,0),把该点的坐标代入函数表达式可以得到:0=a*(-1)^2+b*(-1)+c将上述两个方程组成一个方程组:4a+2b+c=3----(1)a-b+c=0----(2)解决方程组(1)和(2),可以采用消元法或代入法:将公式(2)的c解出来得到c=-a+b,代入公式(1)可以得到:4a+2b+(-a+b)=3,整理得到3a+3b=3,整理为a+b=1由公式a+b=1可以得到a=1-b,代入公式(2)可以得到(1-b)-b+c=0,整理得到c=2b-1综上所述,函数表达式为:y = (1 - b)x^2 + bx + (2b - 1)。
问题二:已知二次函数y = ax^2 + bx + c的两个零点为-2和5,求该函数的表达式。
解析:已知二次函数的两个零点为-2和5,可得到两个方程:a*(-2)^2+b*(-2)+c=0a*5^2+b*5+c=0整理得到:4a-2b+c=0----(3)25a+5b+c=0----(4)解决方程组(3)和(4),可以采用消元法或代入法:将公式(3)的c解出来得到c=2b-4a,代入公式(4)可以得到:25a+5b+(2b-4a)=0,整理得到-21a+7b=0,整理为-3a+b=0。
由公式-3a+b=0可以得到b=3a,代入公式(3)可以得到4a-2(3a)+c=0,整理得到c=2a。
二次函数中常见的几种综合题型

二次函数中常见的几种综合题型二次函数常见的几类综合题型一、求线段最大值及根据面积求点坐标问题1.已知抛物线 $y=x^2+bx+c$ 的图象与 $x$ 轴的一个交点为 $B(5,0)$,另一个交点为 $A$,且与 $y$ 轴交于点 $C(0,5)$。
1) 求直线 $BC$ 与抛物线的解析式;2) 若点 $M$ 是抛物线在 $x$ 轴下方图象上的一个动点,过点 $M$ 作 $MN\parallel y$ 轴交直线 $BC$ 于点 $N$,求$MN$ 的最大值;3) 在 (2) 的条件下,$MN$ 取得最大值时,若点 $P$ 是抛物线在 $x$ 轴下方图象上任意一点,以 $BC$ 为边作平行四边形 $CBPQ$,设平行四边形 $CBPQ$ 的面积为 $S_1$,$\triangle ABN$ 的面积为 $S_2$,且 $S_1=6S_2$,求点$P$ 的坐标。
2.对称轴为直线 $x=-1$ 的抛物线$y=ax^2+bx+c(a\neq0)$ 与 $x$ 轴相交于 $A$、$B$ 两点,其中点 $A$ 的坐标为 $(-3,0)$。
1) 求点 $B$ 的坐标;2) 已知 $a=1$,$C$ 为抛物线与 $y$ 轴的交点。
①若点 $P$ 在抛物线上,且 $S_{\trianglePOC}=4S_{\triangle BOC}$,求点 $P$ 的坐标;②设点 $Q$ 是线段 $AC$ 上的动点,作 $QD\perp x$ 轴交抛物线于点 $D$,求线段 $QD$ 长度的最大值。
二、求三角形周长及面积的最值问题3.已知抛物线 $y=ax^2+bx+c$ 经过 $A(-3,a-b+c)$,$B(1,a+b+c)$,$C(c,a+3c-b)$ 三点,其顶点为 $D$,对称轴是直线 $l$,$l$ 与 $x$ 轴交于点 $H$。
1) 求该抛物线的解析式;2) 若点 $P$ 是该抛物线对称轴 $l$ 上的一个动点,求$\triangle PBC$ 周长的最小值;3) 如图 (2),若 $E$ 是线段 $AD$ 上的一个动点($E$ 与$A$、$D$ 不重合),过点 $E$ 作平行于 $y$ 轴的直线交抛物线于点 $F$,交 $x$ 轴于点 $G$,设点 $E$ 的横坐标为 $m$,$\triangle ADF$ 的面积为 $S$。
二次函数的综合应用

二次函数的综合应用㈠一、典例精析考点一:二次函数与方程1.已知抛物线与x轴没有交点.(1)求c的取值范围;(2)试确定直线y=cx+l经过的象限,并说明理由.2.已知函数y=mx2-6x+1(m是常数).⑴求证:不论m为何值,该函数的图象都经过y轴上的一个定点;⑵若该函数的图象与x轴只有一个交点,求m的值.考点二:二次函数与最大问题3、如图,二次函数的图像经过点,且与轴交于点. (1)试求此二次函数的解析式;(2)试证明:(其中是原点);(3)若是线段上的一个动点(不与、重合),过作轴的平行线,分别交此二次函数图像及轴于、两点,试问:是否存在这样的点,使?若存在,请求出点的坐标;若不存在,请说明理由。
5、如图,抛物线与x轴交与A(1,0),B(- 3,0)两点,(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?,若存在,求出点P的坐标及△PBC的面积最大值.若没有,请说明理由.考点三:二次函数与等腰三角形、直角三角形6.如图,直线交轴于A点,交轴于B点,过A、B两点的抛物线交轴于另一点C (3,0).⑴求抛物线的解析式;⑵在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的Q 点坐标;若不存在,请说明理由.7、如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB=90,AC=BC ,OA=1,OC=4,抛物线y=x 2+bx+c 经过A ,B 两点,抛物线的顶点为D .(1)求b ,c 的值;(2)点E 是直角三角形ABC 斜边AB 上一动点(点A 、B 除外),过点E 作x 轴的垂线交抛物线于点F ,当线段EF 的长度最大时,求点E 的坐标;(3)在(2)的条件下:①求以点E 、B 、F 、D 为顶点的四边形的面积;②在抛物线上是否存在一点P ,使△EFP 是以EF 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,说明理由.8如图,抛物线y=21x 2+bx ﹣2与x 轴交于A ,B 两点,与y 轴交于C 点,且A (﹣1,0).(1)求抛物线的解析式及顶点D 的坐标;(2)判断△ABC 的形状,证明你的结论;(3)点M (m ,0)是x 轴上的一个动点,当MC+MD 的值最小时,求m 的值.9.如图所示,在平面直角坐标系Oxy 中,已知点A (-,0),点C (0,3),点B 是x 轴上一点(位于点A 的右侧),以AB 为直径的圆恰好经过点C .(1)求∠ACB 的度数;(2)已知抛物线y =ax 2+bx +3经过A 、B 两点,求抛物线的解析式;(3)线段BC 上是否存在点D ,使△BOD 为等腰三角形.若存在,则求出所有符合条件的点D 的坐标;若不存在,请说明理由.10如图,抛物线254y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC BC =.(1)求抛物线的对称轴;(2)写出A B C ,,三点的坐标并求抛物线的解析式;(3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.11在平面直角坐标系中,已知抛物线经过()40A -,,()04B -,,()20C ,三点. (1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,AMB △的面积为S .求S 关于m 的函数关系式,并求出S 的最大值.(3)若点P 是抛物线上的动点,点Q 是直线y x =-上的动点,判断有几个位置能够使得点P Q B O ,,,为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.12如图,在平面直角坐标系中,直线y=x+2交x 轴于点P ,交y 轴于点A .抛物线y=x 2+bx+c 的图象过点E (﹣1,0),并与直线相交于A 、B 两点.(1)求抛物线的解析式(关系式);(2)过点A 作AC ⊥AB 交x 轴于点C ,求点C 的坐标;(3)除点C 外,在坐标轴上是否存在点M ,使得△MAB 是直角三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.。
完整版)二次函数含参综合专题

完整版)二次函数含参综合专题轴平移3个单位,得到抛物线y=x-2ax+(b+3),求新抛物线的表达式;2)若a=2,b=3,求点P、Q的坐标和抛物线的对称轴;3)将抛物线在x轴上方的部分沿y轴平移2个单位,得到抛物线G,求G与x轴交点的横坐标。
综合专题:二次函数二次函数的特征很多时候是隐藏在式子中的,需要找到关键点才能解决问题。
下面分别对不等关系类、翻折类、平移类的例题进行分析。
例1.在平面直角坐标系xOy中,抛物线y=ax²与x轴交于A、B两点(点A在点B左侧)。
1) 当抛物线过原点时,a的值为0;2) ①对称轴为x=0,顶点纵坐标为0;②顶点为原点,纵坐标为0;3) 当AB≤4时,a∈[-2,2]。
巩固练:在平面直角坐标系xOy中,抛物线y=ax²-4ax+3a(a>0)与x轴交于A、B两点(A在B的左侧)。
1) 对称轴为x=2,A(-a,0),B(3a,0);2) 点C(t,3)在抛物线上,过C作x轴的垂线交x轴于D,①CD=AD时,a=t²-4t+3;②CD>AD时,t∈(-∞,0)∪(1,∞)。
例2.在平面直角坐标系xOy中,抛物线y=nx²-4nx+4n-1(n≠0),与x轴交于点C、D(C在D的左侧),与y轴交于点A。
1) 顶点坐标为(M,n-1),其中M=n;2) A(0,n-1),B(3-n,n-1);3) 翻折后的图象记为G,直线y=n-1与G有一个交点时,m∈(-∞,n-1)。
巩固练:在平面直角坐标系xOy中,抛物线y=ax²-4ax+3a的最高点纵坐标为2.1) 对称轴为x=1,表达式为y=(a-1)²-1;2) 图象G1在x∈[1,4]上,将G1沿直线x=1翻折得到G2,图象G由G1和G2组成,直线y=b与G只有两个公共点时,b∈(-∞,-1)∪(3,∞),x1+x2=2.例3.在平面直角坐标系xOy中,已知抛物线y=x-2ax+b 的顶点在x轴上,P(x1,m)、Q(x2,m)(x1<x2)是此抛物线上的两点。
二次函数综合问题(高考专题,含答案)

二次函数综合问题一、转化为最值问题(值域)1、设m 是实数,记M={m |m >1},f(x)=log 3(x 2-4mx+4m 2+m+11-m ). (1)证明:当m ∈M 时,f(x)对所有实数都有意义;反之,若f(x)对所有实数x 都有意义,则m ∈M ; (2)当m ∈M 时,求函数f(x)的最小值;(3)求证:对每个m ∈M,函数f(x)的最小值都不小于1. 解:(1)证明:先将f(x)变形:f(x)=log 3[(x -2m)2+m+11-m ], 当m ∈M 时,m>1,∴(x -m)2+m+11-m >0恒成立,故f(x)的定义域为R 。
反之,若f(x)对所有实数x 都有意义,则只须x 2-4mx+4m 2+m+11-m >0。
令Δ<0,即16m 2-4(4m 2+m+11-m )<0,解得m>1,故m ∈M 。
(2)解析:设u=x 2-4mx+4m 2+m+11-m ,∵y=log 3u 是增函数,∴当u 最小时,f(x)最小。
而u=(x -2m)2+m+11-m ,显然,当x=m 时,u 取最小值为m+11-m ,此时f(2m)=log 3(m+11-m )为最小值。
(3)证明:当m ∈M 时,m+11-m =(m -1)+ 11-m +1≥3,当且仅当m=2时等号成立。
∴log 3(m+11-m )≥log 33=1。
2、x x f f bx ax x f a b a ==+=≠)(0)2()(02,并使方程,且,为常数,,已知有等根 (1)求()x f 的解析式;(2)是否存在实数()n m n m <,,使f(x)的定义域和值域分别为[]n m ,和[]n m 2,2。
解:0)2()(12=+=f bx ax x f ,且)( ∴+=420a b又方程,即f x x ax bx x ()=+=2即有等根ax b x 210+-=()211004)1(2-===⨯⨯--=∆∴a b a b ,从而,即 x x x f +-=∴221)( 2121)1(2121)(222≤+--=+-=x x x x f )( 41212≤≤n n ,则有又f(x)在[m ,n ]上是增函数(或对称轴x =1≥n ) ⎪⎪⎩⎪⎪⎨⎧==≤<∴n n f m m f n m 2)(2)(41 解得,m n =-=20∴存在m =-2,n =0使f(x)的定义域和值域分别为[m ,n ]和[2m ,2n ]。
二次函数综合题分类汇总

二次函数综合题解题方法解数学压轴题一般可以分为三个步骤:认真审题,理解题意、探究解题思路、正确解答。
解题方法:1、待定系数法求二次函数的解析式;2、会用配方法、公式法求抛物线的顶点坐标、对称轴方程重要数学思想:转化思想、数形结合思想、分类讨论思想及方程的思想等。
一、距离问题例1:(2014•枣庄)如图,在平面直角坐标系中,二次函数y=x2﹣2x﹣3的图象与x轴交于A、B两点,与y轴交于点C,连接BC,点D为抛物线的顶点,点P是第四象限的抛物线上的一个动点(不与点D重合).(3)过点P作PF⊥x轴交BC于点F,求线段PF长度的最大值.例2:(2014年山东泰安)二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x 轴,垂足为点C(﹣3,0).(1)求二次函数的表达式;(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;例3:(2014年山东日照)(2014•日照)如图1,在菱形OABC中,已知OA=2,∠AOC=60°,抛物线y=ax2+bx+c(a≠0)经过O,C,B三点.(Ⅰ)求出点B、C的坐标并求抛物线的解析式.(Ⅱ)如图2,点E是AC的中点,点F是AB的中点,直线AG垂直BC于点G,点P在直线AG上.(1)当OP+PC的最小值时,求出点P的坐标;二、面积问题:1、面积最大问题例1:(2009临沂)如图,抛物线经过(40)(10)(02)A B C -,,,,,三点. (1)求出抛物线的解析式;(3)在直线AC 上方的抛物线上有一点D ,使得DCA △的面积最大,求出点D 的坐标.例2:(2014•莱芜)如图,过A (1,0)、B (3,0)作x 轴的垂线,分别交直线y=4﹣x 于C 、D 两点.抛物线y=ax 2+bx+c 经过O 、C 、D 三点. (1)求抛物线的表达式;(3)若△AOC 沿CD 方向平移(点C 在线段CD 上,且不与点D 重合),在平移的过程中△AOC 与△OBD 重叠部分的面积记为S ,试求S 的最大值.2、面积为定值的问题例1:(2014潍坊)如图,抛物线y=ax 2+bx+c (a≠O )与y 轴交于点C(O ,4),与x 轴交于点A 和点B ,其中点A 的坐标为(-2,0),抛物线的对称轴x=1与抛O xyAB C4 12-(第26题图)物线交于点D,与直线BC交于点E(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC 的面积为17,若存在,求出点F的坐标;若不存在,请说明理由;例2:(2014•枣庄)如图,在平面直角坐标系中,二次函数y=x2﹣2x﹣3的图象与x轴交于A、B两点,与y轴交于点C,连接BC,点D为抛物线的顶点,点P是第四象限的抛物线上的一个动点(不与点D重合).(2)连接CD、BD、DP,延长DP交x轴正半轴于点E,且S△OCE=S四边形OCDB,求此时P点的坐标;三角形相似问题:1、直角三角形相似问题例1:(2014•威海)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),B(4,0),C(0,2)三点.(1)求这条抛物线的解析式;xyADBOC(第25题图)(2)E 为抛物线上一动点,是否存在点E 使以A 、B 、E 为顶点的三角形与△COB 相似?若存在,试求出点E 的坐标;若不存在,请说明理由;例2:25.(2014东营) 如图,直线y=2x+2与x 轴交与点A ,与y 轴交与点B ,△AOB 沿y 轴翻折,点A 落到点C ,过点B 的抛物线2y x bx c =-++与直线BC 交于点D (3,4-).(1)求直线BD 和抛物线的解析式;(2)在第一象限内的抛物线上,是否存在一点M ,作MN 垂直于x 轴,垂足为点N ,使得以M 、O 、N 为顶点的三角形与△BOC 相似?若存在,求出点M 的坐标;若不存在,请说明理由;例3:(2011•临沂)如图,已知抛物线经过A (﹣2,0),B (﹣3,3)及原点O ,顶点为C .(1)求抛物线的解析式;:(3)P 是抛物线上的第一象限内的动点,过点P 作PMx 轴,垂足为M ,是否存在点P ,使得以P 、M 、A 为顶点的三角形△BOC 相似?若存在,求出点P 的坐标;若不存在,请说明理由.2、等腰三角形相似问题例1:(2007临沂)如图①,已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一交点为B 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数综合问题例谈二次函数是中学代数的基本内容之一,它既简单又具有丰富的内涵和外延. 作为最基本的初等函数,可以以它为素材来研究函数的单调性、奇偶性、最值等性质,还可建立起函数、方程、不等式之间的有机联系;作为抛物线,可以联系其它平面曲线讨论相互之间关系. 这些纵横联系,使得围绕二次函数可以编制出层出不穷、灵活多变的数学问题. 同时,有关二次函数的内容又与近、现代数学发展紧密联系,是学生进入高校继续深造的重要知识基础. 因此,从这个意义上说,有关二次函数的问题在高考中频繁出现,也就不足为奇了. 学习二次函数,可以从两个方面入手:一是解析式,二是图像特征. 从解析式出发,可以进行纯粹的代数推理,这种代数推理、论证的能力反映出一个人的基本数学素养;从图像特征出发,可以实现数与形的自然结合,这正是中学数学中一种非常重要的思想方法. 本文将从这两个方面研究涉及二次函数的一些综合问题.1.代数推理由于二次函数的解析式简捷明了,易于变形(一般式、顶点式、零点式等),所以,在解决二次函数的问题时,常常借助其解析式,通过纯代数推理,进而导出二次函数的有关性质.1.1 二次函数的一般式c bx ax y ++=2)0(≠c 中有三个参数c b a ,,. 解题的关键在于:通过三个独立条件“确定”这三个参数.例1 已知f x ax bx ()=+2,满足1≤-≤f ()12且214≤≤f (),求f ()-2的取值范围. 分析:本题中,所给条件并不足以确定参数b a ,的值,但应该注意到:所要求的结论不是()2-f 的确定值,而是与条件相对应的“取值范围”,因此,我们可以把1≤-≤f ()12和4)1(2≤≤f 当成两个独立条件,先用()1-f 和()1f 来表示b a ,.解:由()b a f +=1,()b a f -=-1可解得:))1()1((21)),1()1((21--=-+=f f b f f a (*) 将以上二式代入f x ax bx ()=+2,并整理得()()⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛+=2)1(2122x x f x x f x f ,∴ ()()()1312-+=f f f .又∵214≤≤f (),2)1(1≤-≤f ,∴ ()1025≤≤f .例2 设()()f x ax bx c a =++≠20,若()f 01≤,()f 11≤,()f -11≤, 试证明:对于任意-≤≤11x ,有()f x ≤54. 分析:同上题,可以用()()()1,1,0-f f f 来表示c b a ,,.解:∵ ()()()c f c b a f c b a f =++=+-=-0,1,1,∴ ()()()()0)),1()1((21),0211(21f c f f b f f f a =--=--+=, ∴ ()()()()()222102121x f x x f x x f x f -+⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛+=. ∴ 当01≤≤-x 时,()()()().4545)21(1)1(2212210212122222222222≤++-=+--=-+⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+-=-+-++≤-⋅+-⋅-++⋅≤x x x x x x x x x x x x x x f x x f x x f x f当10-≤≤x 时, ()()()()222102121x f x x f x x f x f -⋅+-⋅-++⋅≤ 222122x x x x x -+-++≤ )1(22222x x x x x -+⎪⎪⎭⎫ ⎝⎛+-+⎪⎪⎭⎫ ⎝⎛+= .4545)21(122≤+--=++-=x x x 综上,问题获证.1.2 利用函数与方程根的关系,写出二次函数的零点式()().21x x x x a y --=例3 设二次函数()()f x ax bx c a =++>20,方程()f x x -=0的两个根x x 12,满足0112<<<x x a . 当()x x ∈01,时,证明()x f x x <<1.分析:在已知方程()f x x -=0两根的情况下,根据函数与方程根的关系,可以写出函数()x x f -的表达式,从而得到函数)(x f 的表达式.证明:由题意可知))(()(21x x x x a x x f --=-.a x x x 1021<<<< , ∴ 0))((21>--x x x x a ,∴ 当()x x ∈01,时,x x f >)(.又)1)(())(()(211211+--=-+--=-ax ax x x x x x x x x a x x f ,,011,0221>->+-<-ax ax ax x x 且∴ 1)(x x f <,综上可知,所给问题获证. 1.3紧扣二次函数的顶点式,44222a b ac a b x a y -+⎪⎭⎫ ⎝⎛+=对称轴、最值、判别式显合力 例4 已知函数x z a x f 22)(-=。
(1)将)(x f y =的图象向右平移两个单位,得到函数)(x g y =,求函数)(x g y =的解析式;(2)函数)(x h y =与函数)(x g y =的图象关于直线1=y 对称,求函数)(x h y =的解析式;(3)设)()(1)(x h x f a x F +=,已知)(x F 的最小值是m 且72+>m ,求实数a 的取值范围。
解:(1)()();22222---=-=x x ax f x g(2)设()x h y =的图像上一点()y x P ,,点()y x P ,关于1=y 的对称点为()y x Q -2,,由点Q 在()x g y =的图像上,所以 y ax x -=---22222, 于是 ,22222--+-=x x a y 即 ();22222--+-=x x a x h(3)22)14(2411)()(1)(+-+⎪⎭⎫ ⎝⎛-=+=x x a a x h x f a x F . 设x t 2=,则21444)(+-+-=ta t a a x F . 问题转化为:7221444+>+-+-ta t a a 对0>t 恒成立. 即 ()0147442>-+--a t t aa 对0>t 恒成立. (*) 故必有044>-a a .(否则,若044<-aa ,则关于t 的二次函数()14744)(2-+--=a t t a a t u 开口向下,当t 充分大时,必有()0<t u ;而当044=-aa 时,显然不能保证(*)成立.),此时,由于二次函数()14744)(2-+--=a t t a a t u 的对称轴0847>-=a a t ,所以,问题等价于0<∆t ,即()⎪⎪⎩⎪⎪⎨⎧<-⋅-⋅->-0144447044a a a a a , 解之得:221<<a . 此时,014,044>->-a a a ,故21444)(+-+-=t a t a a x F 在aa a t --=4)14(4取得最小值()214442+-⋅-=a aa m 满足条件. 2. 数形结合二次函数()0)(2≠++=a c bx ax x f 的图像为抛物线,具有许多优美的性质,如对称性、单调性、凹凸性等. 结合这些图像特征解决有关二次函数的问题,可以化难为易.,形象直观.2.1 二次函数的图像关于直线a b x 2-=对称, 特别关系ab x x -=+21也反映了二次函数的一种对称性.例 5 设二次函数()()f x ax bx c a =++>20,方程()f x x -=0的两个根x x 12,满足0112<<<x x a . 且函数()f x 的图像关于直线x x =0对称,证明:x x 012<. 解:由题意 ()c x b ax x x f +-+=-)1(2.由方程()f x x -=0的两个根x x 12,满足0112<<<x x a, 可得 ,121021a x a b x <<--<<且ab x x a b 212121---=---, ∴ a b a a b x x a b 211212121---<---=---, 即 1x ab <-,故 x x 012<. 2.2 二次函数)(x f 的图像具有连续性,且由于二次方程至多有两个实数根. 所以存在实数n m ,使得n m <且0)()(<n f m f ⇔在区间()n m ,上,必存在0)(=x f 的唯一的实数根. 例6 已知二次函数)0,,(1)(2>∈++=a R b a bx ax x f ,设方程x x f =)(的两个实数根为1x 和2x .(1)如果4221<<<x x ,设函数)(x f 的对称轴为0x x =,求证:10->x ;(2)如果21<x ,212=-x x ,求b 的取值范围.分析:条件4221<<<x x 实际上给出了x x f =)(的两个实数根所在的区间,因此可以考虑利用上述图像特征去等价转化.解:设1)1()()(2+-+=-=x b ax x x f x g ,则0)(=x g 的二根为1x 和2x . (1)由0>a 及4221<<<x x ,可得 ⎩⎨⎧><0)4(0)2(g g ,即⎩⎨⎧>-+<-+034160124b a b a ,即 ⎪⎪⎩⎪⎪⎨⎧<+⋅--<-⋅+,043224,043233a a b a a b 两式相加得12<ab ,所以,10->x ; (2)由aa b x x 4)1()(2221--=-, 可得 1)1(122+-=+b a . 又0121>=a x x ,所以21,x x 同号. ∴ 21<x ,212=-x x 等价于⎪⎩⎪⎨⎧+-=+<<<1)1(1220221b a x x 或⎪⎩⎪⎨⎧+-=+<<-<1)1(1202212b a x x ,即 ⎪⎪⎩⎪⎪⎨⎧+-=+>>1)1(120)0(0)2(2b a g g 或⎪⎪⎩⎪⎪⎨⎧+-=+>>-1)1(120)0(0)2(2b a g g解之得 41<b 或47>b . 2.3 因为二次函数()0)(2≠++=a c bx ax x f 在区间]2,(a b --∞和区间),2[+∞-ab 上分别单调,所以函数()x f 在闭区间上的最大值、最小值必在区间端点或顶点处取得;函数)(x f 在闭区间上的最大值必在区间端点或顶点处取得.例7 已知二次函数f x ax bx c ()=++2,当-≤≤11x 时,有-≤≤11f x (),求证:当-≤≤22x 时,有-≤≤77f x ().分析:研究)(x f 的性质,最好能够得出其解析式,从这个意义上说,应该尽量用已知条件来表达参数c b a ,,. 确定三个参数,只需三个独立条件,本题可以考虑)1(f ,)1(-f ,)0(f ,这样做的好处有两个:一是c b a ,,的表达较为简洁,二是由于01和±正好是所给条件的区间端点和中点,这样做能够较好地利用条件来达到控制二次函数范围的目的.要考虑()x f 在区间[]7,7-上函数值的取值范围,只需考虑其最大值,也即考虑()x f 在区间端点和顶点处的函数值.解:由题意知:c b a f c f c b a f ++==+-=-)1(,)0(,)1(,∴ )0()),1()1((21)),0(2)1()1((21f c f f b f f f a =--=--+=, ∴ f x ax bx c ()=++2()2221)0(2)1(2)1(x f x x f x x f -+⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛+=. 由-≤≤11x 时,有-≤≤11f x (),可得 ,1)1(≤f (),11≤-f ()10≤f . ∴ ()()()()7)0(3)1(1303113)2(≤+-+≤--+=f f f f f f f ,()()()()7)0(3)1(3103131)2(≤+-+≤--+=-f f f f f f f .(1)若[]2,22-∉-ab ,则()x f 在[]2,2-上单调,故当[]2,2-∈x 时, ))2(,)2(max()(max f f x f -=∴ 此时问题获证.(2)若[]2,22-∈-a b ,则当[]2,2-∈x 时,)2,)2(,)2(max()(max ⎪⎭⎫ ⎝⎛--=a b f f f x f 又()72411214)1()1(2022422<=+⋅+≤--⋅+=⋅+≤-=⎪⎭⎫ ⎝⎛-f f ab f b a bc a b c a b f , ∴ 此时问题获证.综上可知:当-≤≤22x 时,有-≤≤77f x ().。