二次函数综合问题例谈

合集下载

(完整版)二次函数综合题分类讨论带答案.doc

(完整版)二次函数综合题分类讨论带答案.doc

(完整版)二次函数综合题分类讨论带答案.doc二次函数综合题分类讨论一、直角三角形分类讨论:11、已知点 A(1 ,0),B( -5,0),在直线y 2 x 2 上存在点C,使得 ABC 为直角三角形,这样的 C 点你能找到个2、如图 1,已知抛物线C1:y a x 2 2 5 的顶点为 P,与 x 轴相较于 A 、 B 两点(点A 在点B 的左边),点B 的横坐标是1.(1)求P 点坐标及a的值;( 2)如图 1,抛物线C2与抛物线C1关于x 轴对称,将抛物线C2向右平移,平移后得到抛物线C3, C,3的顶点为 M ,当点 P、 M 关于点 B 成中心对称时,求C,3的解析式;( 3)如图 2,点 Q 是 x轴正半轴上一点,将抛物线C1绕点Q 旋转180 后得到抛物线C,4,抛物线 C,4的顶点为N,与 x 轴相交于 E、 F 两点(点 E 在点 F 的左边),当以点 P、N、 F 为顶点的三角形是直角三角形时,求点Q 的坐标。

(2013 汇编 P56+P147)3、如图,矩形A’BC’O’是矩形 OABC( 边 OA 在 x 轴正半轴上,边 OC 在 y 轴正半轴上 )绕 B 点逆时针旋转得到的.O’点在 x 轴的正半轴上, B 点的坐标为 (1,3).(1)如果二次函数 y= ax2+ bx+c(a≠0)的图象经过 O、O’两点且图象顶点 M 的纵坐标为—1.求这个二次函数的解析式;(2) 在 (1)中求出的二次函数图象对称轴的右支上是否存在点P,使得POM 为直角三角形若存在,请求出P 点的坐标和POM 的面积;若不存在,请说明理由;(3)求边C’O’所在直线的解析式.练习( 09 成都 28)已知抛物线与x 轴交于 A 、 B 两点 (点 A 在点 B 的左侧 ),与 y 轴交于点C,其顶点为 M ,若直线 MC 的函数表达式为 y=kx-3 ,与 x 轴的交点为N,且cos∠BCO =(3 √ (10) /10).( 1)求此抛物线的解析式;( 2)在此抛物线上是否存在异于点 C 的点 P,使以 N 、 P、C 为顶点的三角形是以NC 为一条直角边的直角三角形?若存在,求出点P 的坐标;( 3)过点 A 作 x 轴的垂线,交直线 MC 于点 Q. 若将抛物线沿其对称轴上下平移,使抛物线与线段NQ 总有公共点,则抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度5 ?4A 二、4321N2 B 2 4 6 8 10 12 14 16 18123P4M56等腰三角形分类讨论1、如图,已知 Rt Rt ABC , ACB 90 , BAC 30 , 在直线BC或直线AC上取一点P,使得 PAB 是等腰三角形,则符合条件的P 点有个2 A的坐标为(12),,点B的坐标为(31),,二次函数 y x2、①,在平面直角坐标系中,点的图象记为抛物线l1.(1)平移抛物线l1,使平移后的抛物线过点A ,但不过点B ,写出平移后的一个抛物线的函数表达式:(任写一个即可).(2)平移抛物线l1,使平移后的抛物线过A,B两点,记为抛物线l2,如图②,求抛物线l2 的函数表达式.(3)设抛物线l2 △△,求点 K 的坐标.的顶点为 C , K 为 y 轴上一点.若S ABK SABC( 4)请在图③上用尺规作图的方式探究抛物线l 2上是否存在点P ,使△ ABP 为等腰三角形.若存在,请判断点P 共有几个可能的位置(保留作图痕迹);若不存在,请说明师.yyyl 2l 1l 2AAA1B1CBx1BO xOO 111图①图②图③解:( 1 )有多种答案,符合条件即可.例如yx 2 1, y x 2 x , y( x 1)22 或y x 2 2x 3 , y (x2 1)2 , y (x 12) 2 .(2)设抛物线 l 2 的函数表达式为 y x 2bxc ,yl 2Q 点 A(12),, B(31),在抛物线 l 2 上,KGA1 b c ,b9 ,2 29 3b c 解得111c.抛物线 l 2 的函数表达式为y x 2 9 x 11 .2 29 x 119 27 ,9,7(3) yx 2 xC 点的坐标为.2 2 4 164 16 过 A , B , C 三点分别作 x 轴的垂线,垂足分别为 D ,E ,F ,则 AD 2 , CF7 , BE1, DE5 , FE316 2 , DF.44 S △ ABCS 梯形ADEBS梯形 ADFCS梯形 CFEB1(2 1) 2 1 2 75 1 1 73 15 .2 2 164 2 164 16延长 BA 交 y 轴于点 G ,设直线 AB 的函数表达式为 y mx n ,2 m ,m1 ,Q 点 A(12),, B(31),在直线 AB 上, n21 3m 解得5n.n.2直线 AB 的函数表达式为 y1x 5 G 点的坐标为52 .0,.22BCO D F E图②设 K 点坐标为(0,h),分两种情况:若 K 点位于 G 点的上方,则KG h 5 .连结AK ,BK .2S△ABK S△BKG S△AKG 1 3 h 5 1 1 h 5 h 5 .2 2 2 2 2Q S△ABK15 5 15,解得 h55K 点的坐标为55 S△ABC ,h16 16.0,.16 2 16若 K 点位于 G 点的下方,则KG 5h .同理可得, h25.2 16 yK 点的坐标为25.l 2 0,16 A(4)作图痕迹如图③所示. B由图③可知,点P 共有3个可能的位置.O图③2、如图:在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,y点 A 、 C 的坐标分别为A(10 , 0)、 C( 0,4),点 D 是 OA 的中点,点 P 在PCBC 边上运动,当是腰长为 5 的等腰三角形时,点P 的坐标为O D 3、在菱形 ABCD 中,对角线AC , BD 相交于点 O,以 O 为坐标原点,以 BD 所在直线为 x 轴, CA 所在直线为 y 轴建立如图所示的坐标系,且AC=12 ,BD=16 ,E 为 AD 的中点,点 P 在线段 BD 上移动,若为等腰三角形,则所有符合条件的点P 的坐标为三、最值问题 B类型一:两点之间线段最短 C 1、请写出2m 3 2 1 8 2m 2 4 的最小值为 A2、如图,四边形ABCD 是正方形,ABE 是等边三角形,对角线BD 上60 ,得到BN,连EN任一点,将 BM 绕点 B 逆时针旋转EN、 AM 、CM ,求证:( 1)AMB ENB ,(2)M点在何处时,AM+CM值最小,(3)AM+BM+CN 最小值为3 1 时,求正方形的边长(2012 汇编P52+P137) B xBxAyAExDDMC3、( 2010 年天津 25)在平面直角坐标系中,矩形OACB 的顶点 O 在坐标原点,顶点 A 、B 分别在 x 轴、 y 轴的正半轴上,OA=3 ,OB=4 ,D 为边 OB 的中点。

二次函数的综合运用

二次函数的综合运用

二次函数的综合运用二次函数是一种形式为 y = ax² + bx + c 的函数,其中 a、b、c 是常数且a ≠ 0。

二次函数在数学中有广泛的应用,涉及到诸如物理学、经济学和工程学等多个领域。

本文将探讨二次函数在各个领域中的综合运用,包括最值问题、图像分析、实际问题的建模等。

一、最值问题对于二次函数 y = ax² + bx + c,其中a ≠ 0,我们可以通过一些方法求得其最值。

为了简化讨论,我们以函数 y = x² + 2x - 3 为例。

1. 定义域和值域首先,我们需要确定该二次函数的定义域和值域。

对于二次函数 y= x² + 2x - 3,由于 x²的值始终大于等于 0,所以该函数的定义域为全体实数。

而二次函数在开口向上的情况下,其最小值即为函数的值域的下界。

根据二次函数的顶点公式,可以求得该函数的顶点为(-1, -4),因此该函数的最小值为 -4。

2. 求解极值点我们可以通过求导数的方法求得二次函数的极值点。

对于函数 y =x² + 2x - 3,将其对 x 求导后可得 y' = 2x + 2。

令 y' = 0,解得 x = -1。

将 x = -1 代入函数 y = x² + 2x - 3 中可得 y = -4,即函数在 x = -1 处取得极小值 -4。

同样,对于开口向下的二次函数,可以通过类似的方法求得其极大值。

二、图像分析二次函数的图像一般为抛物线,通过分析图像可以获得更多关于函数的信息。

下面以函数 y = x² + 2x - 3 为例进行具体分析。

1. 对称轴和顶点二次函数的对称轴是由函数的一阶导数确定的直线,其方程形式为x = -b/(2a)。

对于函数 y = x² + 2x - 3,对称轴的方程为 x = -1。

根据二次函数的顶点公式,可以求得该函数的顶点坐标为 (-1, -4)。

例谈三类二次函数问题的解法

例谈三类二次函数问题的解法

余弦定理即可求得∠BHD 的大小,进而求得二面角B -PC -D 的大小.值得注意的是,二面角α的范围为:[0,π].三、三垂线法三垂线法是利用三垂线定理解题的方法.运用三垂线法求解二面角问题,需先找到平面的垂线,然后过垂线上的一点作平面的斜线,若平面内的一条直线与平面的斜线垂直,那么这条直线与斜线在平面内的射影垂直,根据这些垂直关系就可以确定二面角的平面角,最后根据勾股定理、正余弦定理即可求得平面角的大小.例3.如图3所示,在四棱锥P -ABCD 中,ABCD 是平行四边形,PA ⊥平面ABCD ,PA =AB =a ,∠ABC =30°,求二面角P -BC -A 的大小.图3解:如图3,过A 作AH ⊥BC 于H ,连接PH ,因为PA ⊥平面ABCD ,所以PA ⊥BC ,PA ⊥AH ,所以BC ⊥平面PHA ,所以BC ⊥PH ,可知∠PHA 是二面角P -BC -A 的平面角,在Rt△ABH 中,AB =a ,∠ABH =∠ABC =30°所以AH =AB sin ∠ABH =a sin 30°=12a ,因为PA ⊥AH ,所以在Rt△PHA 中,tan ∠PHA =PA AH=2,所以∠PHA =arctan 2,故二面角P -BC -A 的大小为arctan 2.根据题意作AH ⊥BC ,便可知AH 为PH 在平面ABCD 内的射影,由三垂线定理可得BC ⊥PH ,由此可确定∠PHA 是二面角P -BC -A 的平面角,再在Rt△PHA 中根据正切函数的定义求得∠PHA 的大小,进而可得到二面角P -BC -A 的大小.由此可见,求解二面角问题的关键有两步:第一步,根据二面角的平面角的定义、三垂线定理、垂面的性质,确定二面角的平面角;第二步,根据勾股定理、正余弦定理、三角函数的定义求得平面角的大小.(作者单位:江西省赣州市南康第三中学)二次函数是一种基本初等函数.二次函数问题的常见命题形式有求二次函数的解析式、最值、对称轴、单调区间、零点等.这类问题侧重于考查二次函数的图象和性质.下面重点谈一谈如何求解有关二次函数的最值问题、零点问题和不等式问题.一、二次函数的最值问题二次函数y =ax 2+bx +c 的图象是一条抛物线,若a >0,则抛物线的开口向上;若a <0,则抛物线的开口向下.当x =-b 2a 时,函数在R 上有最值b 2-4ac 4a.若函数的定义域为[m ,n ],则需分三种情况考虑:(1)当-b 2a ∈[m ,n ]时,函数在x =-b 2a 处取得最值;(2)当x =-b 2a,在[m ,n ]的左侧时,若a >0,则函数在x =m处取最小值,在x =n 处取最大值,若a <0,则相反;(3)当x =-b2a在[m ,n ]的右侧时,若a >0,则函数在x =m 处取最大值,在x =n 处取最小值;若a <0,则相反.例1.求y=-5x 2-6x +1的最大值.解:y =-5x 2-6x +1是二次函数,x 2的系数是-5,所以二次函数图象的开口向下,当x =-65时,函数有最大值1.利用二次函数的图象,即可确定二次函数在对称轴处取得最值.除了用图象法求解最值问题,还可以用配方法,比如y =x 2+4x +3=()x +22-1,可知当x =-2时函数的最小值为-1.例2.已知函数f (x )=x 2+(2a -1)x -3.方法集锦44(1)当a =2,x ∈[-2,3]时,求函数f (x )的最值;(2)若函数f (x )在[-1,3]上的最大值为1,求实数a的值.解:(1)当a =2时,f (x )=x 2+3x -3,x ∈[-2,3],对称轴为x =-32∈[-2,3],∴f (x )min =f æèöø-32=94-92-3=-214,f (x )max =f (3)=15.(2)∵函数f (x )的对称轴为x =-2a -12.①当-2a -12≤1,即a ≥-12时,f (x )max =f (3)=6a +3,∴6a +3=1,即a =-13,满足题意;②当-2a -12>1,即a <-12时,f (x )max =f (-1)=-2a -1,∴-2a -1=1,即a =-1,满足题意.综上可知,a =-13或-1.第一个问题中的函数对称轴x =-32∈[-2,3],所以函数在x =-32处取得最小值,在距离对称轴较远的点处取最大值.第二个问题中的函数对称轴为x =-2a -12,其中含有参数,需对其取值范围及其与定义域[-1,3]之间的关系进行讨论,才能确定函数的最小值.二、二次函数的零点问题我们知道,一元二次方程的根就是二次函数与x 轴的交点的横坐标,即二次函数的零点.在求解二次函数的零点问题时,可以通过求一元二次方程的根来求函数的零点.求解一元二次方程的根的方法很多,比如利用求根公式、配方法、十字相乘法.例3.已知二次函数y =(k -3)x 2+2x +1有零点,则k 的取值范围是().A.k <4B.k ≤4C.k <4且k ≠3D.k ≤4且k ≠3解:由题意可知k -3≠0,且(k -3)x 2+2x +1=0有实数根,∴Δ=4-4(k -3)≥0,解得k ≤4,所以k ≤4且k ≠3.一元二次函数y =ax 2+bx +c (a ≠0)的零点与一元二次方程ax 2+bx +c =0(a ≠0)的判别式Δ有以下关系:当Δ>0时,ax 2+bx +c =0(a ≠0)有两个不相等的实数根x 1,x 2,此时,二次函数与x 轴有两个不同的交点,即x 1,x 2是函数的零点;当Δ=0时,ax 2+bx +c =0(a ≠0)有两个相等的实数根x 1=x 2,此时,二次函数与x 轴有1个交点,即x 1(x 2)是函数的零点;当Δ<0时,ax 2+bx +c =0(a ≠0)无实数根,此时,二次函数与x 轴没有交点,即函数没有零点.三、二次函数不等式问题解二次函数不等式ax 2+bx +c >0或ax 2+bx +c <0,往往要先求方程ax 2+bx +c =0的根,然后根据二次函数的图象,确定y >0或<0时对应的x 的取值.一般地,ax 22例4.解不等式:(1)x 22解:(1)方程x 2-2x -3=0的两根是x 1=-1,x 2=3.函数y =x 2-2x -3的图象是开口向上的抛物线,与x轴有两个交点(-1,0)和(3,0),如图1所示.图1观察图象可得不等式的解集为{x |x <-1或x >3}.(2)原不等式可化为x 2-6x +9≤0,即(x -3)2≤0,则函数y =(x -3)2的图象如图2所示,图2根据图象可得,原不等式的解集为{x |x =3}.解含参数的二次函数不等式的一般步骤为:第一步,将不等式化二次项系数大于0的方程;第二步,根据求根公式,或通过因式分解,求得方程的根;第三步,根据一元二次方程根的分布情况画出对应的二次函数草图;第四步,根据图象写出不等式的解集.可见,求解二次函数的最值、零点问题、不等式问题,都需要运用函数的图象、性质,方程的根以及判别式,因此,在解答二次函数问题时,同学们要学会将问题与函数的图象、方程关联起来,灵活运用数形结合思想、方程思想来辅助解题.(作者单位:甘肃省靖远县第一中学)方法集锦45。

高中数学二次函数分类讨论经典例题

高中数学二次函数分类讨论经典例题

高中数学二次函数分类讨论经典例题一、二次函数的定义和基本性质二次函数是形如y=ax²+bx+c的函数,其中a、b、c都是实数且a≠0。

二次函数的图像是抛物线,其开口方向取决于a的正负性。

下面将讨论二次函数的分类及其相关的经典例题。

二、二次函数的分类讨论1. a>0的情况:抛物线开口向上当a>0时,二次函数的图像是开口向上的抛物线。

此时,函数的最值为最小值,且最小值点的横坐标为-b/2b。

例如,考虑函数y=x²+2x+1,其图像为一条开口向上的抛物线,最小值点为(-1,0)。

2. a<0的情况:抛物线开口向下当a<0时,二次函数的图像是开口向下的抛物线。

此时,函数的最值为最大值,且最大值点的横坐标为-b/2b。

例如,考虑函数y=-x²+2x+1,其图像为一条开口向下的抛物线,最大值点为(1,0)。

3. a=0的情况:一次函数当a=0时,二次函数变为一次函数,即y=bx+c。

此时,函数的图像是一条直线,且不会有最值点。

例如,考虑函数y=2x+1,其图像为一条斜率为2的直线。

三、经典例题1. 求解二次函数的最值例如,求解函数y=x²-4x+3的最值。

首先,可以将该二次函数写成标准形式y=(x-2)²-1,从中可以得知最小值点为(2,-1)。

2. 求解二次函数与坐标轴的交点例如,求解函数y=2x²-5x+2与x轴和y轴的交点。

首先,将y=0代入函数方程得到2x²-5x+2=0,然后可以通过因式分解或者求解一元二次方程的方法求解得到x的值。

进而可以求得函数与x轴的交点。

类似地,可以将x=0代入函数方程得到y的值,从而求得函数与y轴的交点。

3. 求解二次函数的对称轴例如,求解函数y=-x²+4x-3的对称轴。

对称轴是过抛物线最高点(或最低点)的一条直线,其方程可以通过x=-b/2b得到。

对于该函数,对称轴方程为x=-2。

二次函数代数推理综合问题解析

二次函数代数推理综合问题解析

二次函数代数推理综合问题解析二次函数是一种常见的二次曲线,其一般形式为:y = ax^2 + bx + c,其中a、b、c为常数,且a ≠ 0。

在代数推理的综合问题中,有一些与二次函数相关的问题需要解析。

下面将介绍几个常见的二次函数代数推理综合问题,并给出解析。

问题一:已知二次函数y = ax^2 + bx + c的顶点坐标为(2,3),且过点(-1,0),求该函数的表达式。

解析:由题可知,二次函数的顶点坐标为(2,3),则顶点坐标中的x坐标为2,代入函数表达式可以得到:3=a*2^2+b*2+c另外,已知过点(-1,0),把该点的坐标代入函数表达式可以得到:0=a*(-1)^2+b*(-1)+c将上述两个方程组成一个方程组:4a+2b+c=3----(1)a-b+c=0----(2)解决方程组(1)和(2),可以采用消元法或代入法:将公式(2)的c解出来得到c=-a+b,代入公式(1)可以得到:4a+2b+(-a+b)=3,整理得到3a+3b=3,整理为a+b=1由公式a+b=1可以得到a=1-b,代入公式(2)可以得到(1-b)-b+c=0,整理得到c=2b-1综上所述,函数表达式为:y = (1 - b)x^2 + bx + (2b - 1)。

问题二:已知二次函数y = ax^2 + bx + c的两个零点为-2和5,求该函数的表达式。

解析:已知二次函数的两个零点为-2和5,可得到两个方程:a*(-2)^2+b*(-2)+c=0a*5^2+b*5+c=0整理得到:4a-2b+c=0----(3)25a+5b+c=0----(4)解决方程组(3)和(4),可以采用消元法或代入法:将公式(3)的c解出来得到c=2b-4a,代入公式(4)可以得到:25a+5b+(2b-4a)=0,整理得到-21a+7b=0,整理为-3a+b=0。

由公式-3a+b=0可以得到b=3a,代入公式(3)可以得到4a-2(3a)+c=0,整理得到c=2a。

二次函数中常见的几种综合题型

二次函数中常见的几种综合题型

二次函数中常见的几种综合题型二次函数常见的几类综合题型一、求线段最大值及根据面积求点坐标问题1.已知抛物线 $y=x^2+bx+c$ 的图象与 $x$ 轴的一个交点为 $B(5,0)$,另一个交点为 $A$,且与 $y$ 轴交于点 $C(0,5)$。

1) 求直线 $BC$ 与抛物线的解析式;2) 若点 $M$ 是抛物线在 $x$ 轴下方图象上的一个动点,过点 $M$ 作 $MN\parallel y$ 轴交直线 $BC$ 于点 $N$,求$MN$ 的最大值;3) 在 (2) 的条件下,$MN$ 取得最大值时,若点 $P$ 是抛物线在 $x$ 轴下方图象上任意一点,以 $BC$ 为边作平行四边形 $CBPQ$,设平行四边形 $CBPQ$ 的面积为 $S_1$,$\triangle ABN$ 的面积为 $S_2$,且 $S_1=6S_2$,求点$P$ 的坐标。

2.对称轴为直线 $x=-1$ 的抛物线$y=ax^2+bx+c(a\neq0)$ 与 $x$ 轴相交于 $A$、$B$ 两点,其中点 $A$ 的坐标为 $(-3,0)$。

1) 求点 $B$ 的坐标;2) 已知 $a=1$,$C$ 为抛物线与 $y$ 轴的交点。

①若点 $P$ 在抛物线上,且 $S_{\trianglePOC}=4S_{\triangle BOC}$,求点 $P$ 的坐标;②设点 $Q$ 是线段 $AC$ 上的动点,作 $QD\perp x$ 轴交抛物线于点 $D$,求线段 $QD$ 长度的最大值。

二、求三角形周长及面积的最值问题3.已知抛物线 $y=ax^2+bx+c$ 经过 $A(-3,a-b+c)$,$B(1,a+b+c)$,$C(c,a+3c-b)$ 三点,其顶点为 $D$,对称轴是直线 $l$,$l$ 与 $x$ 轴交于点 $H$。

1) 求该抛物线的解析式;2) 若点 $P$ 是该抛物线对称轴 $l$ 上的一个动点,求$\triangle PBC$ 周长的最小值;3) 如图 (2),若 $E$ 是线段 $AD$ 上的一个动点($E$ 与$A$、$D$ 不重合),过点 $E$ 作平行于 $y$ 轴的直线交抛物线于点 $F$,交 $x$ 轴于点 $G$,设点 $E$ 的横坐标为 $m$,$\triangle ADF$ 的面积为 $S$。

二次函数与实际问题典型例题

二次函数与实际问题典型例题

二次函数与实际问题典型例题摘要:一、二次函数简介1.二次函数的定义2.二次函数的图像和性质二、二次函数与实际问题的联系1.实际问题中的二次函数模型2.二次函数在实际问题中的应用案例三、二次函数典型例题解析1.求解二次函数的顶点坐标2.求解二次函数的图像与x 轴的交点3.求解二次函数的最值问题4.二次函数在实际问题中的综合应用正文:二次函数与实际问题典型例题一、二次函数简介二次函数是数学中一种常见的函数形式,一般表示为f(x) = ax^2 + bx + c,其中a、b、c 为常数,x 为自变量。

二次函数的图像通常为抛物线,具有一定的对称性和顶点特征。

根据a 的值,二次函数可以分为开口向上或向下的两种情况,分别具有不同的性质。

二、二次函数与实际问题的联系1.实际问题中的二次函数模型在实际问题中,二次函数常常作为问题的数学模型出现。

例如,物体在重力作用下的自由落体运动、抛射物体的运动轨迹、电池的放电过程等都可以用二次函数来描述。

2.二次函数在实际问题中的应用案例(1)物体自由落体运动:假设物体从高度h 自由落下,空气阻力不计,仅受重力作用。

根据牛顿第二定律,物体下落的速度v 与时间t 的关系可以表示为v = gt - 1/2gt^2,其中g为重力加速度。

可以看出,这是一个开口向下的二次函数模型。

(2)抛射物体运动:假设一个物体在水平方向以初速度v0 抛出,仅受重力作用。

根据牛顿第二定律,物体在竖直方向上的运动可以表示为h = v0t - 1/2gt^2,其中h为物体的高度,t为时间。

这也是一个开口向下的二次函数模型。

三、二次函数典型例题解析1.求解二次函数的顶点坐标顶点坐标是二次函数的一个重要特征,可以通过公式法或配方法求解。

例如,对于二次函数f(x) = ax^2 + bx + c,顶点的x 坐标为x = -b/2a,y坐标为y = f(x) = c - b^2/4a。

2.求解二次函数的图像与x 轴的交点二次函数与x 轴的交点即为函数值为0 时的自变量解。

完整版)二次函数含参综合专题

完整版)二次函数含参综合专题

完整版)二次函数含参综合专题轴平移3个单位,得到抛物线y=x-2ax+(b+3),求新抛物线的表达式;2)若a=2,b=3,求点P、Q的坐标和抛物线的对称轴;3)将抛物线在x轴上方的部分沿y轴平移2个单位,得到抛物线G,求G与x轴交点的横坐标。

综合专题:二次函数二次函数的特征很多时候是隐藏在式子中的,需要找到关键点才能解决问题。

下面分别对不等关系类、翻折类、平移类的例题进行分析。

例1.在平面直角坐标系xOy中,抛物线y=ax²与x轴交于A、B两点(点A在点B左侧)。

1) 当抛物线过原点时,a的值为0;2) ①对称轴为x=0,顶点纵坐标为0;②顶点为原点,纵坐标为0;3) 当AB≤4时,a∈[-2,2]。

巩固练:在平面直角坐标系xOy中,抛物线y=ax²-4ax+3a(a>0)与x轴交于A、B两点(A在B的左侧)。

1) 对称轴为x=2,A(-a,0),B(3a,0);2) 点C(t,3)在抛物线上,过C作x轴的垂线交x轴于D,①CD=AD时,a=t²-4t+3;②CD>AD时,t∈(-∞,0)∪(1,∞)。

例2.在平面直角坐标系xOy中,抛物线y=nx²-4nx+4n-1(n≠0),与x轴交于点C、D(C在D的左侧),与y轴交于点A。

1) 顶点坐标为(M,n-1),其中M=n;2) A(0,n-1),B(3-n,n-1);3) 翻折后的图象记为G,直线y=n-1与G有一个交点时,m∈(-∞,n-1)。

巩固练:在平面直角坐标系xOy中,抛物线y=ax²-4ax+3a的最高点纵坐标为2.1) 对称轴为x=1,表达式为y=(a-1)²-1;2) 图象G1在x∈[1,4]上,将G1沿直线x=1翻折得到G2,图象G由G1和G2组成,直线y=b与G只有两个公共点时,b∈(-∞,-1)∪(3,∞),x1+x2=2.例3.在平面直角坐标系xOy中,已知抛物线y=x-2ax+b 的顶点在x轴上,P(x1,m)、Q(x2,m)(x1<x2)是此抛物线上的两点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数综合问题例谈二次函数是中学代数的基本内容之一,它既简单又具有丰富的内涵和外延. 作为最基本的初等函数,可以以它为素材来研究函数的单调性、奇偶性、最值等性质,还可建立起函数、方程、不等式之间的有机联系;作为抛物线,可以联系其它平面曲线讨论相互之间关系. 这些纵横联系,使得围绕二次函数可以编制出层出不穷、灵活多变的数学问题. 同时,有关二次函数的内容又与近、现代数学发展紧密联系,是学生进入高校继续深造的重要知识基础. 因此,从这个意义上说,有关二次函数的问题在高考中频繁出现,也就不足为奇了. 学习二次函数,可以从两个方面入手:一是解析式,二是图像特征. 从解析式出发,可以进行纯粹的代数推理,这种代数推理、论证的能力反映出一个人的基本数学素养;从图像特征出发,可以实现数与形的自然结合,这正是中学数学中一种非常重要的思想方法. 本文将从这两个方面研究涉及二次函数的一些综合问题.1. 代数推理由于二次函数的解析式简捷明了,易于变形(一般式、顶点式、零点式等),所以,在解决二次函数的问题时,常常借助其解析式,通过纯代数推理,进而导出二次函数的有关性质.1.1 二次函数的一般式c bx ax y ++=2)0(≠c 中有三个参数c b a ,,. 解题的关键在于:通过三个独立条件“确定”这三个参数.例1 已知f x ax bx ()=+2,满足1≤-≤f ()12且214≤≤f (),求f ()-2的取值范围.分析:本题中,所给条件并不足以确定参数b a ,的值,但应该注意到:所要求的结论不是()2-f 的确定值,而是与条件相对应的“取值范围”,因此,我们可以把1≤-≤f ()12和4)1(2≤≤f 当成两个独立条件,先用()1-f 和()1f 来表示b a ,.解:由()b a f +=1,()b a f -=-1可解得:))1()1((21)),1()1((21--=-+=f f b f f a (*) 将以上二式代入f x ax bx ()=+2,并整理得()()⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛+=2)1(2122x x f x x f x f , ∴ ()()()1312-+=f f f .又∵214≤≤f (),2)1(1≤-≤f ,∴ ()1025≤≤f .例2 设()()f x ax bx c a =++≠20,若()f 01≤,()f 11≤,()f -11≤, 试证明:对于任意-≤≤11x ,有()f x ≤54. 分析:同上题,可以用()()()1,1,0-f f f 来表示c b a ,,.解:∵ ()()()c f c b a f c b a f =++=+-=-0,1,1,∴ ()()()()0)),1()1((21),0211(21f c f f b f f f a =--=--+=, ∴ ()()()()()222102121x f x x f x x f x f -+⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛+=. ∴ 当01≤≤-x 时,()()()().4545)21(1)1(2212210212122222222222≤++-=+--=-+⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+-=-+-++≤-⋅+-⋅-++⋅≤x x x x x x x x x x x x x x f x x f x x f x f当10-≤≤x 时, ()()()()222102121x f x x f x x f x f -⋅+-⋅-++⋅≤ 222122x x x x x -+-++≤ )1(22222x x x x x -+⎪⎪⎭⎫ ⎝⎛+-+⎪⎪⎭⎫ ⎝⎛+= .4545)21(122≤+--=++-=x x x 综上,问题获证.1.2 利用函数与方程根的关系,写出二次函数的零点式()().21x x x x a y --=例3 设二次函数()()f x ax bx c a =++>20,方程()f x x -=0的两个根x x 12,满足0112<<<x x a. 当()x x ∈01,时,证明()x f x x <<1. 分析:在已知方程()f x x -=0两根的情况下,根据函数与方程根的关系,可以写出函数()x x f -的表达式,从而得到函数)(x f 的表达式.证明:由题意可知))(()(21x x x x a x x f --=-.ax x x 1021<<<< , ∴ 0))((21>--x x x x a ,∴ 当()x x ∈01,时,x x f >)(.又)1)(())(()(211211+--=-+--=-ax ax x x x x x x x x a x x f ,,011,0221>->+-<-ax ax ax x x 且∴ 1)(x x f <,综上可知,所给问题获证. 1.3 紧扣二次函数的顶点式,44222a b ac a b x a y -+⎪⎭⎫ ⎝⎛+=对称轴、最值、判别式显合力例4 已知函数x z a x f 22)(-=。

(1)将)(x f y =的图象向右平移两个单位,得到函数)(x g y =,求函数)(x g y =的解析式;(2)函数)(x h y =与函数)(x g y =的图象关于直线1=y 对称,求函数)(x h y =的解析式;(3)设)()(1)(x h x f a x F +=,已知)(x F 的最小值是m 且72+>m ,求实数a 的取值范围。

解:(1)()();22222---=-=x x ax f x g(2)设()x h y =的图像上一点()y x P ,,点()y x P ,关于1=y 的对称点为()y x Q -2,,由点Q 在()x g y =的图像上,所以 y ax x -=---22222,于是 ,22222--+-=x x a y 即 ();22222--+-=x x a x h (3)22)14(2411)()(1)(+-+⎪⎭⎫ ⎝⎛-=+=x x a a x h x f a x F . 设x t 2=,则21444)(+-+-=ta t a a x F . 问题转化为:7221444+>+-+-ta t a a 对0>t 恒成立. 即 ()0147442>-+--a t t aa 对0>t 恒成立. (*) 故必有044>-a a .(否则,若044<-aa ,则关于t 的二次函数()14744)(2-+--=a t t a a t u 开口向下,当t 充分大时,必有()0<t u ;而当044=-aa 时,显然不能保证(*)成立.),此时,由于二次函数()14744)(2-+--=a t t a a t u 的对称轴0847>-=a a t ,所以,问题等价于0<∆t ,即()⎪⎪⎩⎪⎪⎨⎧<-⋅-⋅->-0144447044a a a a a , 解之得:221<<a . 此时,014,044>->-a a a ,故21444)(+-+-=ta t a a x F 在a a a t --=4)14(4取得最小值()214442+-⋅-=a a a m 满足条件. 2. 数形结合二次函数()0)(2≠++=a c bx ax x f 的图像为抛物线,具有许多优美的性质,如对称性、单调性、凹凸性等. 结合这些图像特征解决有关二次函数的问题,可以化难为易.,形象直观.2.1 二次函数的图像关于直线a b x 2-=对称, 特别关系ab x x -=+21也反映了二次函数的一种对称性.例5 设二次函数()()f x ax bx c a =++>20,方程()f x x -=0的两个根x x 12,满足0112<<<x x a . 且函数()f x 的图像关于直线x x =0对称,证明:x x 012<.解:由题意 ()c x b ax x x f +-+=-)1(2. 由方程()f x x -=0的两个根x x 12,满足0112<<<x x a, 可得 ,121021a x a b x <<--<<且ab x x a b 212121---=---, ∴ a b a a b x x a b 211212121---<---=---, 即 1x ab <-,故 x x 012<. 2.2 二次函数)(x f 的图像具有连续性,且由于二次方程至多有两个实数根. 所以存在实数n m ,使得n m <且0)()(<n f m f ⇔在区间()n m ,上,必存在0)(=x f 的唯一的实数根.例6 已知二次函数)0,,(1)(2>∈++=a R b a bx ax x f ,设方程x x f =)(的两个实数根为1x 和2x .(1)如果4221<<<x x ,设函数)(x f 的对称轴为0x x =,求证:10->x ;(2)如果21<x ,212=-x x ,求b 的取值范围.分析:条件4221<<<x x 实际上给出了x x f =)(的两个实数根所在的区间,因此可以考虑利用上述图像特征去等价转化.解:设1)1()()(2+-+=-=x b ax x x f x g ,则0)(=x g 的二根为1x 和2x .(1)由0>a 及4221<<<x x ,可得 ⎩⎨⎧><0)4(0)2(g g ,即⎩⎨⎧>-+<-+034160124b a b a ,即 ⎪⎪⎩⎪⎪⎨⎧<+⋅--<-⋅+,043224,043233a a b a a b 两式相加得12<ab ,所以,10->x ; (2)由aa b x x 4)1()(2221--=-, 可得 1)1(122+-=+b a . 又0121>=a x x ,所以21,x x 同号.∴ 21<x ,212=-x x 等价于⎪⎩⎪⎨⎧+-=+<<<1)1(1220221b a x x 或⎪⎩⎪⎨⎧+-=+<<-<1)1(1202212b a x x , 即 ⎪⎪⎩⎪⎪⎨⎧+-=+>>1)1(120)0(0)2(2b a g g 或⎪⎪⎩⎪⎪⎨⎧+-=+>>-1)1(120)0(0)2(2b a g g解之得 41<b 或47>b . 2.3 因为二次函数()0)(2≠++=a c bx ax x f 在区间]2,(ab --∞和区间),2[+∞-ab 上分别单调,所以函数()x f 在闭区间上的最大值、最小值必在区间端点或顶点处取得;函数)(x f 在闭区间上的最大值必在区间端点或顶点处取得.例7 已知二次函数f x ax bx c ()=++2,当-≤≤11x 时,有-≤≤11f x (),求证:当-≤≤22x 时,有-≤≤77f x ().分析:研究)(x f 的性质,最好能够得出其解析式,从这个意义上说,应该尽量用已知条件来表达参数c b a ,,. 确定三个参数,只需三个独立条件,本题可以考虑)1(f ,)1(-f ,)0(f ,这样做的好处有两个:一是c b a ,,的表达较为简洁,二是由于01和±正好是所给条件的区间端点和中点,这样做能够较好地利用条件来达到控制二次函数范围的目的.要考虑()x f 在区间[]7,7-上函数值的取值范围,只需考虑其最大值,也即考虑()x f 在区间端点和顶点处的函数值.解:由题意知:c b a f c f c b a f ++==+-=-)1(,)0(,)1(,∴ )0()),1()1((21)),0(2)1()1((21f c f f b f f f a =--=--+=, ∴ f x ax bx c ()=++2()2221)0(2)1(2)1(x f x x f x x f -+⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛+=. 由-≤≤11x 时,有-≤≤11f x (),可得 ,1)1(≤f (),11≤-f ()10≤f . ∴ ()()()()7)0(3)1(1303113)2(≤+-+≤--+=f f f f f f f ,()()()()7)0(3)1(3103131)2(≤+-+≤--+=-f f f f f f f .(1)若[]2,22-∉-ab ,则()x f 在[]2,2-上单调,故当[]2,2-∈x 时, ))2(,)2(max()(max f f x f -=∴ 此时问题获证.(2)若[]2,22-∈-a b ,则当[]2,2-∈x 时,)2,)2(,)2(max()(max ⎪⎭⎫ ⎝⎛--=a b f f f x f 又()72411214)1()1(2022422<=+⋅+≤--⋅+=⋅+≤-=⎪⎭⎫ ⎝⎛-f f a b f b a b c a b c a b f , ∴ 此时问题获证.综上可知:当-≤≤22x 时,有-≤≤77f x ().。

相关文档
最新文档