三角函数与二次函数综合专题(含解析)

合集下载

高三数学三角函数综合试题答案及解析

高三数学三角函数综合试题答案及解析

高三数学三角函数综合试题答案及解析1.已知函数,则的值为 .【答案】.【解析】∵,两边求导,∴,令,得,∴,∴,即.【考点】导数的运用.2.已知函数.(1)求的最小正周期和最小值;(2)若,且,求的值.【答案】(1),;(2).【解析】(1)首先根据二倍角公式进行化简,并将函数的解析式化为的形式,然后利用最小正周期公式,最小值为,可得结果;(2)将代入,化简,利用得到三角函数值,根据,得到的值.此题考察三角函数的化简求值,属于基础题.试题解析:(1)解:, 4分,,所以的最小正周期为,最小值为. 8分(2)解:,所以, 11分因为,,所以,因此的值为. 13分【考点】1.三角函数的化简;2.三角函数的求值.3.函数的值域为.【答案】【解析】令,则.【考点】1、三角函数;2、二次函数;3、换元法.4.已知,,则x= .(结果用反三角函数表示)【答案】【解析】本题关键是注意反三角函数值的取值范围,适当利用诱导公式,,,而,故,即.【考点】反正弦函数.5.已知函数.(Ⅰ)求的单调减区间;(Ⅱ)求在区间上最大值和最小值.【答案】(Ⅰ)函数的单调减区间是:;(Ⅱ).【解析】(Ⅰ)将降次化一,化为的形式,然后利用正弦函数的单调区间,即可求得其单调递增区间.(Ⅱ)由(Ⅰ)可得,又的范围为,由此可得的范围,进而求得的范围.试题解析:.函数的单调减区间是:.的范围为,所以,所以即:【考点】1、三角恒等变换;2、三角函数的单调区间及范围.6.如图,两座建筑物的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是9和15,从建筑物的顶部看建筑物的视角.⑴求的长度;⑵在线段上取一点点与点不重合),从点看这两座建筑物的视角分别为问点在何处时,最小?【答案】⑴;⑵当为时,取得最小值.【解析】⑴根据题中图形和条件不难想到作,垂足为,则可题中所有条件集中到两个直角三角形中,由,而在中,再由两角和的正切公式即可求出的值,又,可求出的值;⑵由题意易得在两直角三角形中,可得,再由两角和的正切公式可求出的表达式,由函数的特征,可通过导数求出函数的单调性和最值,进而求出的最小值,即可确定出的最小值.试题解析:⑴作,垂足为,则,,设,则 2分,化简得,解之得,或(舍)答:的长度为. 6分⑵设,则,. 8分设,,令,因为,得,当时,,是减函数;当时,,是增函数,所以,当时,取得最小值,即取得最小值, 12分因为恒成立,所以,所以,,因为在上是增函数,所以当时,取得最小值.答:当为时,取得最小值. 14分【考点】1.两角和差的正切公式;2.直角三角形中正切的表示;3.导数在函数中的运用7.已知以角为钝角的的三角形内角的对边分别为、、,,且与垂直.(1)求角的大小;(2)求的取值范围【答案】(1);(2).【解析】(1)观察要求的结论,易知要列出的边角之间的关系,题中只有与垂直提供的等量关系是,即,这正是我们需要的边角关系.因为要求角,故把等式中的边化为角,我们用正弦定理,,,代入上述等式得,得出,从而可求出角;(2)要求的范围,式子中有两个角不太好计算,可以先把两个角化为一个角,由(1),从而,再所其化为一个三角函数(这是解三角函数问题常用方法),下面只要注意这个范围即可.试题解析:1)∵垂直,∴(2分)由正弦定理得(4分)∵,∴,(6分)又∵∠B是钝角,∴∠B(7分)(2)(3分)由(1)知A∈(0,),, (4分),(6分)∴的取值范围是(7分)【考点】(1)向量的垂直,正弦定理;(2)三角函数的值域.8.已知向量,,(Ⅰ)若,求的值;(Ⅱ)在中,角的对边分别是,且满足,求函数的取值范围.【答案】(1);(2).【解析】本题主要考查两角和与差的正弦公式、二倍角公式、余弦定理、三角函数的值域等基础知识,考查运用三角公式进行三角变换的能力和基本的运算能力.第一问,利用向量的数量积将坐标代入得表达式,利用倍角公式、两角和的正弦公式化简表达式,因为,所以得到,而所求中的角是的2倍,利用二倍角公式计算;第二问,利用余弦定理将已知转化,得到,得到,得到角的范围,代入到中求值域.试题解析:(Ⅰ)∵,而,∴,∴,(Ⅱ)∵,∴,即,∴,又∵,∴,又∵,∴,∴.【考点】1.向量的数量积;2.倍角公式;3.两角和与差的正弦公式;4.余弦公式;5.三角函数的值域.9.若,且,则 ( )A.B.C.D.【答案】B.【解析】,故选B.【考点】1.三角函数诱导公式;2.三角函数平方关系.10.在△ABC中,角均为锐角,且,则△ABC的形状是()A.锐角三角形B.直角三角形C.等腰三角形D.钝角三角形【答案】D.【解析】又角均为锐角,则且中,,故选D.【考点】1.诱导公式;2.正弦函数的单调性.11.已知函数为常数).(Ⅰ)求函数的最小正周期;(Ⅱ)若时,的最小值为,求a的值.【答案】(Ⅰ)的最小正周期;(Ⅱ).【解析】(Ⅰ)求函数的最小正周期,由函数为常数),通过三角恒等变化,把它转化为一个角的一个三角函数,从而可求函数的最小正周期;(Ⅱ)利用三角函数的图像,及,可求出的最小值,让最小值等于,可求出a的值.试题解析:(Ⅰ)∴的最小正周期(Ⅱ)时,时,取得最小值【考点】三角函数的性质.12.已知函数.(1)求函数的最小正周期;(2)求函数在区间上的函数值的取值范围.【答案】(1);(2).【解析】(1)函数.通过二倍角的逆运算将单角升为二倍角,再化为一个三角函数的形式,从而求出函数的周期.(2)x的范围是所以正弦函数在是递增的.所以f(x)的范围是本题考查三角函数的单调性,最值,三角函数的化一公式,涉及二倍角的逆运算等.三角函数的问题要关注角度的变化,角度统一,二次式化为一次的,三角函数名称相互转化.切化弦,弦化切等数学思想.试题解析:(1) 4分6分故的最小正周期为 8分(2)当时, 10分故所求的值域为 12分【考点】1.三角函数的化一公式.2.二倍角公式.3.函数的单调性最值问题.13.下列命题中:函数的最小值是;②在中,若,则是等腰或直角三角形;③如果正实数满足,则;④如果是可导函数,则是函数在处取到极值的必要不充分条件.其中正确的命题是_____________.【答案】②③④.【解析】当,等号成立时当且仅当“即”,显然不成立,则命题①不正确;在中,若,则或,则是等腰或直角三角形,故②正确;由,因为正实数,满足,所以,故③正确;如果是可导函数,若函数在处取到极值,则,当,,但函数在处无极值,则是函数在处取到极值的必要不充分条件,故④正确.【考点】基本不等式、三角函数性质、不等式及导数的性质.14.已知向量,函数.(1)求函数的最小正周期;(2)已知分别为内角、、的对边, 其中为锐角,且,求和的面积.【答案】(1);(2).【解析】(1)根据题意,再利用二倍角公式及辅助角公式将化简为;(2)将代入,得,因为,所以,再利用余弦定理,解出,最后根据三角形面积公式求出. 试题解析:(1)由题意所以.由(1),因为,所以,解得.又余弦定理,所以,解得,所以.【考点】1.三角函数恒等变形;2.三角函数周期;3.余弦定理及三角形面积公式.15.已知,,其中,若函数,且函数的图象与直线y=2两相邻公共点间的距离为.(l)求的值;(2)在△ABC中,以a,b,c(分别是角A,B,C的对边,且,求△ABC周长的取值范围.【答案】(1);(2).【解析】(1)先根据,结合二倍角公式以及和角公式化简,求得,函数最大值是,那么函数的图像与直线两相邻公共点间的距离正好是一个周期,然后根据求解的值;(2)先将代入函数的解析式得到:,由已知条件以及,结合三角函数的图像与性质可以解得,所以,由正弦定理得,那么的周长可以表示为:,由差角公式以及和角公式将此式化简整理得,,结合角的取值以及三角函数的图像与性质可得.试题解析:(1), 3分∵,∴函数的周期,∵函数的图象与直线两相邻公共点间的距离为.∴,解得. 4分(2)由(Ⅰ)可知,,∵,∴,即,又∵,∴,∴,解得. 7分由正弦定理得:,所以周长为:, 10分,所以三角形周长的取值范围是. 12分【考点】1.和角公式;2.差角公式;3.二倍角公式;4.三角函数的图像与性质;5.正弦定理16.已知向量,(Ⅰ)当时,求的值;(Ⅱ)求函数在上的值域.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)本小题主要利用向量平行的坐标运算得到,然后解出,再利用二倍角正切公式可得;(Ⅱ)本小题首先化简函数解析式,然后根据三角函数的图像与性质,得到三角函数的取值范围,进而求值域;试题解析:(Ⅰ),, 2分即,, 4分6分(Ⅱ)=10分,12分,即 14分【考点】1.平行向量;2.三角函数的图像与性质.17.已知 .【答案】【解析】.【考点】1.两角差的正切公式;2.三角函数的拆角方法.18.已知∈(,),sin=,则tan()等于()A.-7B.-C.7D.【答案】A.【解析】由题意,则.【考点】三角函数运算.19.在中,的对边分别为且成等差数列.(1)求B的值;(2)求的范围.【答案】(1);(2)【解析】(1)对于三角形问题中的边角混合的式子,可以利用正弦定理和余弦定理边角转化,或边化角转化为三角函数问题,或角化边转化为代数问题来处理,该题由等差中项列式,再利用正弦定理边化角为,,又根据三角形内角的关系,得,进而求;(2)由(1)得,可得,代入所求式中,化为自变量为的函数解析式,再化为,然后根据的范围,确定的范围,进而结合的图象确定的范围,进而求的范围.试题解析:(1)成等差数列,∴,由正弦定理得,,代入得,,即:,,又在中,,∵,∴;(2)∵,∴,∴===,∵,∴,∴,∴的取值范围是.【考点】1、等差中项;2、正弦定理;3、型函数的值域.20.取得最小值a时,此时x的值为b,则取得最大值时,的值等于________。

三角函数与二次函数的综合问题

三角函数与二次函数的综合问题

ʏ黄林平第四章我们学习了指数函数㊁对数函数与二次函数的综合问题,运用类比学习的方法,来研究三角函数与二次函数的综合问题㊂下面从二次函数的 身份 明显㊁二次函数的 身份 不明显两个方面举例说明㊂一㊁二次函数的 身份 明显二次函数的 身份 明显,即在二次函数的系数或常数项中含有三角函数,此类问题不难解决,但要注意三角函数的有界性㊂可谓是二次函数 搭桥 ,三角函数 唱戏㊂例1 已知函数f (x )=2x 2-2x s i n θ+c o s θ,θɪ0,2π[],若f (x )在区间14,34éëêêùûúú上不单调,则θ的取值范围为㊂解:二次函数的对称轴为直线x =s i n θ2,函数f (x )在区间14,34éëêêùûúú上不单调,说明直线x =s i n θ2在区间14,34éëêêùûúú内部,所以14<s i n θ2<34,即12<s i n θ<32㊂因为θɪ0,2π[],所以θɪπ6,π3()ɣ2π3,5π6()㊂变式1:已知函数f (x )=x 2c o s θ-2x s i n θ+34,对于任意的实数x 恒有f (x )>0,且θ是三角形的一个锐角,则θ的取值范围是㊂提示:对于任意的实数x 恒有f (x )>0成立,所以Δ=2s i n 2θ-3c o s θ=-2c o s 2θ-3c o s θ+2<0,解得c o s θ>12或c o s θ<-2(舍去)㊂又θ为锐角,所以θɪ0,π3()㊂二㊁二次函数的 身份 不明显形如y =a s i n 2θ+b s i n θ+c (a ʂ0)或y =a c o s 2θ+b c o s θ+c (a ʂ0)的函数,表面上看是三角函数,二次函数的 身份 不明显,可利用换元法转化为二次函数㊂这类问题的本质没有变,仍然是已学过的二次函数,可谓是新瓶装旧酒㊂例2 已知0ɤθɤπ2,求函数f (θ)=c o s 2θ-2a c o s θ的最大值M (a )与最小值m (a )㊂解:函数f (θ)=(c o s θ-a )2-a2㊂设t =c o s θ,由0ɤθɤπ2得t ɪ0,1[],所以原函数等价于g (t )=(t -a )2-a 2,t ɪ0,1[]㊂故所求的最大值M (a )与最小值m (a )如下:当a <0时,M (a )=g (1)=1-2a ,m (a )=g (0)=0;当0ɤa <12时,M (a )=g (1)=1-2a ,m (a )=g (a )=-a 2;当12ɤa <1时,M (a )=g (0)=0,m (a )=g (a )=-a 2;当a ȡ1时,M (a )=g (0)=0,m (a )=g (1)=1-2a ㊂变式2:已知函数f (x )=c o s 2x +a s i n x ㊂(1)当a =2时,求函数f (x )的值域㊂(2)若f (x )的最小值为-6,求a 的值㊂提示:(1)当a =2时,f (x )=-(s i n x -1)2+2㊂设t =s i n x ,则-1ɤt ɤ1,所以原函数等价于函数g (t )=-(t -1)2+2㊂由-1ɤt ɤ1,可得-2ɤg (t )ɤ2,即f (x )的值域为[-2,2]㊂(2)f (x )=-s i n x -a2()2+a24+1㊂设t =s i n x ,则-1ɤt ɤ1,所以原函数等价于g (t )=-t -a2()2+a24+1(-1ɤt ɤ1)㊂当a2>0,即a >0时,g (t )m i n =g (-1)=a ;当a2ɤ0,即a ɤ0时,g (t )m i n =g (1)=-a ㊂又f (x )的最小值为-6,所以a =ʃ6㊂作者单位:江西省赣州市于都第二中学(责任编辑 郭正华)6数学部分㊃知识结构与拓展 高一使用 2021年12月Copyright ©博看网. All Rights Reserved.。

题型九 二次函数综合题 类型四 二次函数与角度有关的问题(专题训练)(解析版)

题型九 二次函数综合题 类型四 二次函数与角度有关的问题(专题训练)(解析版)

题型九 二次函数综合题类型四 二次函数与角度有关的问题(专题训练)1.已知抛物线23y ax bx =+-与x 轴相交于(1,0)A -,(3,0)B 两点,与y 轴交于点C ,点(,0)N n 是x 轴上的动点.(1)求抛物线的解析式;(2)如图1,若3n <,过点N 作x 轴的垂线交抛物线于点P ,交直线BC 于点G .过点P 作PD BC ^于点D ,当n 为何值时,PDG BNG V V ≌;(3)如图2,将直线BC 绕点B 顺时针旋转,使它恰好经过线段OC 的中点,然后将它向上平移32个单位长度,得到直线1OB .①1tan BOB Ð=______;②当点N 关于直线1OB 的对称点1N 落在抛物线上时,求点N 的坐标.【答案】(1)223y x x =--;(2)n =;(3)①12;②或.【分析】(1)根据点,A B 的坐标,利用待定系数法即可得;(2)先根据抛物线的解析式可得点,C P 的坐标,再利用待定系数法可得直线BC 的解析式,从而可得点G 的坐标,然后分别求出,PG BG 的长,最后根据全等三角形的性质可得PG BG =,由此建立方程求解即可得;(3)①先利用待定系数法求出直线BD 的解析式,再根据平移的性质可得直线1OB 的解析式,从而可得点E 的坐标,然后根据正切三角函数的定义即可得;②先求出直线1NN 的解析式,再与直线1OB 的解析式联立求出它们的交点坐标,从而可得点1N 的坐标,然后代入抛物线的解析式求解即可得.【详解】解:(1)将点(1,0)A -,(3,0)B 代入23y ax bx =+-得:309330a b a b --=ìí+-=î,解得12a b =ìí=-î,则抛物线的解析式为223y x x =--;(2)由题意得:点P 的坐标为2(,23)P n n n --,对于二次函数223y x x =--,当0x =时,3y =-,即(0,3)C -,设直线BC 的解析式为y kx c =+,将点(3,0)B ,(0,3)C -代入得:303k c c +=ìí=-î,解得13k c =ìí=-î,则直线BC 的解析式为3y x =-,(,3)G n n \-,223(23)3PG n n n n n \=----=-+,(3BG n ==-PDG BNG @V QV ,PG BG \=,即23(3n n n -+=-,解得n =3n =(与3n <不符,舍去),故当n =PDG BNG @V V ;(3)①如图,设线段OC 的中点为点D ,过点B 作x 轴的垂线,交直线1OB 于点E ,则点D 的坐标为3(0,2D -,点E 的横坐标为3,设直线BD 的解析式为00y k x c =+,将点(3,0)B ,3(0,2D -代入得:0003032k c c +=ìïí=-ïî,解得001232k c ì=ïïíï=-ïî,则直线BD 的解析式为1322y x =-,由平移的性质得:直线1OB 的解析式为12y x =,当3x =时,32y =,即3(3,)2E ,33,2OB BE \==,11tan 2BE BOB OB Ð==\,故答案为:12;②由题意得:11NN OB ^,则设直线1NN 的解析式为12y x c =-+,将点(,0)N n 代入得:120n c -+=,解得12c n =,则直线1NN 的解析式为22y x n =-+,联立2212y x n y x =-+ìïí=ïî,解得4525x n y n ì=ïïíï=ïî,即直线1NN 与直线1OB 的交点坐标为42(,)55n n ,设点1N 的坐标为1(,)N s t ,则4250225s n n t n +ì=ïïí+ï=ïî,解得3545s n t n ì=ïïíï=ïî,即134(,)55N n n ,将点134(,)55N n n 代入223y x x =--得:2334()55235n n n -´-=,整理得:2507509n n --=,解得n =或n =则点N的坐标为或.【点睛】本题考查了二次函数与一次函数的综合、全等三角形的性质、正切三角函数等知识点,熟练掌握待定系数法和二次函数的性质是解题关键.2.二次函数2()40y ax bx a =++¹的图象经过点(4,0)A -,(1,0)B ,与y 轴交于点C ,点P 为第二象限内抛物线上一点,连接BP 、AC ,交于点Q ,过点P 作PD x ^轴于点D .(1)求二次函数的表达式;(2)连接BC ,当2DPB BCO Ð=Ð时,求直线BP的表达式;(3)请判断:PQ QB是否有最大值,如有请求出有最大值时点P 的坐标,如没有请说明理由.【答案】(1)234y x x =--+;(2)151588y x =-+;(3)PQ QB 有最大值为45,P 点坐标为()2,6-【分析】(1)将(4,0)A -,(1,0)B 代入2()40y ax bx a =++¹中,列出关于a 、b 的二元一次方程组,求出a 、b 的值即可;(2)设BP 与y 轴交于点E ,根据//PD y 轴可知,DPB OEB Ð=Ð,当2DPB BCO Ð=Ð,即2OEB BCO Ð=Ð,由此推断OEB V 为等腰三角形,设OE a =,则4CE a =-,所以4BE a =-,由勾股定理得222BE OE OB =+,解出点E 的坐标,用待定系数法确定出BP 的函数解析式即可;(3)设PD 与AC 交于点N ,过B 作y 轴的平行线与AC 相交于点M .由A 、C 两点坐标可得AC 所在直线表达式,求得 M 点坐标,则5BM =,由//BM PN ,可得PNQ BMQ △∽△,5PQ PN PN QB BM ==,设20000(,34)(40)P a a a a --+-<<,则00(,4)N a a +22200000034(4)4(2)4555a a a a a a PQ QB --+-+---++===,根据二次函数性质求解即可.【详解】解:(1)由题意可得:2(4)(4)40+40a b a b ì×-+×-+=í+=î解得:13a b =-ìí=-î,∴二次函数的表达式为234y x x =--+;(2)设BP 与y 轴交于点E ,∵//PD y 轴,DPB OEB Ð=Ð∴,2DPB BCO Ð=Ð∵,2OEB BCO Ð=Ð∴,ECB EBC \Ð=Ð,BE CE \=,设OE a =,则4CE a =-,4BE a =-∴,在Rt BOE V 中,由勾股定理得222BE OE OB =+,222(4)1a a -=+∴解得158a =,150,8E æöç÷èø∴,设BE 所在直线表达式为(0)y kx e k =+¹150,81+0.k e k e ì×+=ï\íï×=î解得15,815.8k e ì=-ïïíï=ïî∴直线BP 的表达式为151588y x =-+.(3)设PD 与AC 交于点N .过B 作y 轴的平行线与AC 相交于点M.由A 、C 两点坐标分别为(4,0)-,(0,4)可得AC 所在直线表达式为4y x =+∴M 点坐标为(1,5),5BM =由//BM PN ,可得PNQ BMQ △∽△,5PQ PN PN QB BM ==∴设20000(,34)(40)P a a a a --+-<<,则00(,4)N a a +22200000034(4)4(2)4555a a a a a a PQ QB --+-+---++===∴,∴当02a =-时,PQ QB有最大值0.8,此时P 点坐标为()2,6-.【点睛】本题主要考查二次函数以及一次函数解析式的确定,函数图像的性质,相似三角形,勾股定理等知识点,熟练运用待定系数法求函数解析式是解题关键,本题综合性强,涉及知识面广,难度较大,属于中考压轴题.3.如图,抛物线()223(69)y mx m x m =++-+与x 轴交于点A 、B ,与y 轴交于点C ,已知(3,0)B .(1)求m 的值和直线BC 对应的函数表达式;(2)P 为抛物线上一点,若PBC ABC S S =△△,请直接写出点P 的坐标;(3)Q 为抛物线上一点,若45ACQ Ð=°,求点Q 的坐标.【答案】(1)1m =-,3y x =-;(2)()2,1P ,P ,P ;(3)75,24æö-ç÷èøQ 【分析】(1)求出A ,B 的坐标,用待定系数法计算即可;(2)做点A 关于BC 的平行线1AP ,联立直线1AP 与抛物线的表达式可求出1P 的坐标,设出直线1AP 与y 轴的交点为G ,将直线BC 向下平移,平移的距离为GC 的长度,可得到直线23P P ,联立方程组即可求出P ;(3)取点Q ,连接CQ ,过点A 作AD CQ ^于点D ,过点D 作DF x ^轴于点F ,过点C 作CE DF ^于点E ,得直线CD 对应的表达式为132y x =-,即可求出结果;【详解】(1)将()3,0B 代入()()22369=++-+y mx m x m ,化简得20m m +=,则0m =(舍)或1m =-,∴1m =-,得:243y x x =-+-,则()0,3C -.设直线BC 对应的函数表达式为y kx b =+,将()3,0B 、()0,3C -代入可得033k b b =+ìí-=î,解得1k =,则直线BC 对应的函数表达式为3y x =-.(2)如图,过点A 作1AP ∥BC ,设直线1AP 与y 轴的交点为G ,将直线BC 向下平移 GC 个单位,得到直线23P P ,由(1)得直线BC 的解析式为3y x =-,()1,0A ,∴直线AG 的表达式为1y x =-,联立2143y x y x x =-ìí=-+-î,解得:10x y =ìí=î(舍),或21x y =ìí=î,∴()12,1P ,由直线AG 的表达式可得()1,0G -,∴2GC =,2CH =,∴直线23P P 的表达式为5y x =-,联立2543y x y x x =-ìí=-+-î,解得:11x y ìïïíï=ï,22xy ìïïíï=ïî,∴3P ,2P ,∴()2,1P ,P ,P .(3)如图,取点Q ,连接CQ ,过点A 作AD CQ ^于点D ,过点D 作DF x ^轴于点F ,过点C 作CE DF ^于点E ,∵45ACQ Ð=°,∴AD=CD ,又∵90ADC Ð=°,∴90ADF CDE Ð+Ð=°,∵90CDE DCE Ð+Ð=°,∴DCE ADF Ð=Ð,又∵90E AFD Ð=Ð=°,∴CDE DAF D D ≌,则AF DE =,CE DF =.设==DE AF a ,∵1OA =,OF CE =,∴1CE DF a ==+.由3OC =,则3=-DF a ,即13+=-a a ,解之得,1a =.所以()2,2D -,又()0,3C -,可得直线CD 对应的表达式为132y x =-,设1,32Q m m æö-ç÷èø,代入243y x x =-+-,得213432-=-+-m m m ,2142=-+m m m ,2702-=m m ,又0m ¹,则72m =.所以75,24æö-ç÷èøQ .【点睛】本题主要考查了二次函数综合题,结合一元二次方程求解是解题的关键.4.如图,抛物线(1)()y x x a =+-(其中1a >)与x 轴交于A 、B 两点,交y 轴于点C .(1)直接写出OCA Ð的度数和线段AB 的长(用a 表示);(2)若点D 为ABC V 的外心,且BCD △与ACO △:4,求此抛物线的解析式;(3)在(2)的前提下,试探究抛物线(1)()y x x a =+-上是否存在一点P ,使得CAP DBA Ð=Ð若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)∠OCA=45°,AB= a +1;(2)2y x x 2=--;(3)存在,P 1(12-,54-),P 2(1,-2).【分析】(1)根据二次函数解析式可得A (a ,0),C (0,-a ),B (-1,0),即可得出OA=OB=a ,OB=1,即可证明△OCA 是等腰直角三角形,可得∠OCA=45°,根据线段的和差关系可表示AB 的长;(2)如图,作△ABC 的外接圆⊙D ,根据等腰直角三角形的性质可得,利用两点间距离公式可用a 表示出BC 的长,根据圆周角定理可得∠D=2∠OAC=90°,可得△DBC 是等腰直角三角形,即可证明△DBC ∽△OCA ,根据相似三角形周长之比等于相似比列方程求出a 值即可得答案;(3)如图,过点D 作DH ⊥AB 于H ,过点C 作AC 的垂线,交x 轴于F ,过点O 作OG ⊥AC 于G ,连接AP 交CF 于E ,可得△OCF 是等腰直角三角形,利用待定系数法可得直线CF 的解析式,根据外心的定义及等腰直角三角形的性质可求出点D 坐标,即可得出BH 、DH 的长,根据CAP DBA Ð=Ð,∠BHD=∠ACE=90°可证明△BHD ∽△ACE ,根据相似三角形的性质可求出CE 的长,根据两点间距离公式可得点E 坐标,利用待定系数法可得直线AE 解析式,联立直线AE 与抛物线的解析式求出点P 坐标即可得答案.【详解】(1)∵抛物线(1)()y x x a =+-(其中1a >)与x 轴交于A 、B 两点,交y 轴于点C .∴当x=0时,y=-a ,当y=0时,(1)()0x x a +-=,解得:11x =-,2x a =,∴A (a ,0),C (0,-a ),B (-1,0),∴OB=1,OA=OC=a ,∴△OCA 是等腰直角三角形,∴∠OCA=45°,AB=OA+OB=a+1.(2)如图,作△ABC 的外接圆⊙D ,∵点D 为ABC V 的外心,∴DB=DC ,∵△OCA 是等腰直角三角形,OA=a ,∴∠OAC=45°,,∵∠BDC 和∠BAC 是 BC所对的圆心角和圆周角,∴∠BDC=2∠BAC=90°,∴∠DBC=45°,∴∠DBC=∠OAC ,∴△DBC ∽△OCA ,∵BCD △与ACO △:4,∴BC AC ==,解得:2a =±,经检验:2a =±是原方程的根,∵1a >,∴a=2,∴抛物线解析式为:(1)(2)y x x =+-=22x x --.(3)如图,过点D 作DH ⊥AB 于H ,过点C 作AC 的垂线,交x 轴于F ,过点O 作OG ⊥AC 于G ,连接AP 交CF 于E ,∵a=2,∴C (0,-2),A (2,0),AC=,∵∠OCA=45°,∴∠OCF=45°,∴△OCF 是等腰直角三角形,∴F (-2,0),设直线CF 的解析式为y=kx+b ,∴202k b b -+=ìí=-î,解得:12k b =-ìí=-î,∴直线CF 的解析式为2y x =--,∵△OCA 是等腰直角三角形,OG ⊥AC ,∴OG 所在直线为AC 的垂直平分线,点G 为AC 中点,∵点D 为ABC V 的外心,∴点D 在直线OG 上,∵A (2,0),C (0,-2),∴G (1,-1),设直线OG 的解析式y=mx ,∴m=-1,∴直线OG 的解析式y=-x ,∵点D 为△ABC 的外心,∴点D 在AB 的垂直平分线上,∴点D 的横坐标为122-+=12,把x=12代入y=-x 得y=-12,∴D (12,-12),∴DH=12,BH=1+12=32,∵CAP DBA Ð=Ð,∠BHD=∠ACE=90°,∴△BHD ∽△ACE ,∴DH BHCE AC=,即12CE =解得:CE =,∵点E 在直线CF 上,∴设点E 坐标为(n ,-n-2),∴,解得:23n =±,∴1E (23-,43-),2E (23,83-),设直线AE 1的解析式为y=k 1x+b 1,∴1111243320k b k b ì-+=-ïíï+=î,解得:11121k b ì=ïíï=-î,∴直线AE 1的解析式为112y x =-,同理:直线AE 2的解析式为24y x =-,联立直线AE 1解析式与抛物线解析式得21122y x y x x ì=-ïíï=--î,解得:111254x y ì=-ïïíï=-ïî,1220x y =ìí=î(与点A 重合,舍去),∴P 1(12-,54-),联立直线AE 2解析式与抛物线解析式得2242y x y x x =-ìí=--î,解得:1112x y =ìí=-î,2220x y =ìí=î(与点A 重合,舍去),∴P 2(1,-2).综上所述:存在点P ,使得CAP DBA Ð=Ð,点P 坐标为P 1(12-,54-),P 2(1,-2).【点睛】本题考查二次函数的综合,考查了二次函数的性质、待定系数法求一次函数解析式、圆周角定理、等腰三角形的性质、相似三角形的判定与性质,熟练掌握相关性质及定理是解题关键5.已知二次函数图象过点A (﹣2,0),B (4,0),C (0,4).(1)求二次函数的解析式.(2)如图,当点P 为AC 的中点时,在线段PB 上是否存在点M ,使得∠BMC =90°?若存在,求出点M 的坐标;若不存在,请说明理由.(3)点K 在抛物线上,点D 为AB 的中点,直线KD 与直线BC 的夹角为锐角θ,且tan θ=53,求点K 的坐标.【分析】(1)设二次函数的解析式为y =a (x+2)(x ﹣4),将点C 坐标代入可求解;(2)利用中点坐标公式可求P (﹣1,2),点Q (2,2),由勾股定理可求BC 的长,由待定系数法可求PB 解析式,设点M (c ,―25c +85),由两点距离公式可得(c ﹣2)2+(―25c +85―2)2=8,可求c =4或―2429,即可求解;(3)过点D 作DE ⊥BC 于点E ,设直线DK 与BC 交于点N ,先求出DE =BE=角三角函数可求NE =DEtanθDK 与射线EC 交于点N (m ,4﹣m )和DK 与射线EB 交于N (m ,4﹣m )两种情况讨论,求出直线DK 解析式,联立方程组可求点K 坐标.【解析】(1)∵二次函数图象过点B (4,0),点A (﹣2,0),∴设二次函数的解析式为y =a (x+2)(x ﹣4),∵二次函数图象过点C (0,4),∴4=a (0+2)(0﹣4),∴a =―12,∴二次函数的解析式为y =―12(x+2)(x ﹣4)=―12x 2+x+4;(2)存在,理由如下:如图1,取BC 中点Q ,连接MQ ,∵点A (﹣2,0),B (4,0),C (0,4),点P 是AC 中点,点Q 是BC 中点,∴P (﹣1,2),点Q (2,2),BC =设直线BP 解析式为:y =kx+b ,由题意可得:2=―k +b 0=4k +b ,解得:k =―25b =85∴直线BP 的解析式为:y =―25x +85,∵∠BMC =90°∴点M 在以BC 为直径的圆上,∴设点M (c ,―25c +85),∵点Q 是Rt △BCM 的中点,∴MQ =12BC =∴MQ 2=8,∴(c ﹣2)2+(―25c +85―2)2=8,∴c =4或―2429,当c =4时,点B ,点M 重合,即c =4,不合题意舍去,∴c =―2429,则点M 坐标(―2429,5629),故线段PB 上存在点M (―2429,5629),使得∠BMC =90°;(3)如图2,过点D 作DE ⊥BC 于点E ,设直线DK 与BC 交于点N ,∵点A (﹣2,0),B (4,0),C (0,4),点D 是AB 中点,∴点D (1,0),OB =OC =4,AB =6,BD =3,∴∠OBC =45°,∵DE ⊥BC ,∴∠EDB =∠EBD =45°,∴DE =BE∵点B (4,0),C (0,4),∴直线BC 解析式为:y =﹣x+4,设点E (n ,﹣n+4),∴﹣n+4=32,∴n =52,∴点E (52,32),在Rt △DNE 中,NE =DEtanθ253=①若DK 与射线EC 交于点N (m ,4﹣m ),∵NE =BN ﹣BE ,4﹣m )―∴m =85,∴点N (85,125),∴直线DK 解析式为:y =4x ﹣4,联立方程组可得:y =4x ―4y =―12x 2+x +4,解得:x 1=2y 1=4或x 2=―8y 2=―36,∴点K 坐标为(2,4)或(﹣8,﹣36);②若DK 与射线EB 交于N (m ,4﹣m ),∵NE =BE ﹣BN ,―4﹣m ),∴m =175,∴点N (175,35),∴直线DK 解析式为:y =14x ―14,联立方程组可得:y =14x ―14y =―12x 2+x +4,解得:x 3=y 3=x 4=y 4=∴点K ,综上所述:点K 的坐标为(2,4)或(﹣8,﹣3616).6.如图,在平面直角坐标系xOy 中,直线y =kx+3分别交x 轴、y 轴于A ,B 两点,经过A ,B 两点的抛物线y =﹣x 2+bx+c 与x 轴的正半轴相交于点C (1,0).(1)求抛物线的解析式;(2)若P 为线段AB 上一点,∠APO =∠ACB ,求AP 的长;(3)在(2)的条件下,设M 是y 轴上一点,试问:抛物线上是否存在点N ,使得以A ,P ,M ,N 为顶点的四边形为平行四边形?若存在,求出点N 的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法解决问题即可.(2)求出AB,OA,AC,利用相似三角形的性质求解即可.(3)分两种情形:①PA为平行四边形的边时,点M的横坐标可以为±2,求出点M的坐标即可解决问题.②当AP为平行四边形的对角线时,点M″的横坐标为﹣4,求出点M″的坐标即可解决问题.【解析】(1)由题意抛物线经过B(0,3),C(1,0),∴c=3―1+b+c=0,解得b=―2 c=3,∴抛物线的解析式为y=﹣x2﹣2x+3(2)对于抛物线y=﹣x2﹣2x+3,令y=0,解得x=﹣3或1,∴A(﹣3,0),∵B(0,3),C(1,0),∴OA=OB=3OC=1,AB=∵∠APO=∠ACB,∠PAO=∠CAB,∴△PAO∽△CAB,∴APAC =AOAB,∴AP4∴AP=(3)由(2)可知,P(﹣1,2),AP=①当AP为平行四边形的边时,点N的横坐标为2或﹣2,∴N(﹣2,3),N′(2,﹣5),②当AP为平行四边形的对角线时,点N″的横坐标为﹣4,∴N″(﹣4,﹣5),综上所述,满足条件的点N的坐标为(﹣2,3)或(2,﹣5)或(﹣4,﹣5).。

二次函数与三角形的综合-中考数学函数考点全突破

二次函数与三角形的综合-中考数学函数考点全突破

二次函数与三角形的综合-中考数学函数考点全突破一、考点分析:二次函数与三角形的综合解答题一般涉及到这样几个方面:1.三角形面积最值问题2.特殊三角形的存在问题包括等腰等边和直角三角形。

这类题目一般出现在压轴题最后两道上,对知识的综合运用要求比较高。

一解决此类题目的基本步骤与思路1.抓住目标三角形,根据动点设点坐标2.根据所设未知数去表示三角形的底和高,一般常用割补法去求解三角形的面积从而得出面积的关系式3.根据二次函数性质求出最大值.4.特殊三角形问题首先要画出三角形的大概形状,分类讨论的去研究。

例如等腰三角形要弄清楚以哪两条边为要,直角三角形需要搞清楚哪个角作为直角都需要我们去分类讨论。

注意事项:1.简单的直角三角形可以直接利用底乘高进行面积的表示2.复杂的利用“补”的方法构造矩形或者大三角形,整体减去部分的思想3.利用“割”的方法时,一般选用横割或者竖割,也就是做坐标轴的垂线。

4.利用点坐标表示线段长度时注意要用大的减去小的。

5.围绕不同的直角进行分类讨论,注意检验答案是否符合要求。

6.在勾股定理计算复杂的情况下,灵活的构造K字形相似去处理。

二、二次函数问题中三角形面积最值问题(一)例题演示1.如图,已知抛物线(a为常数,且a>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线与抛物线的另一交点为D,且点D的横坐标为﹣5.(1)求抛物线的函数表达式;(2)P为直线BD下方的抛物线上的一点,连接PD、PB,求△PBD面积的最大值.DBOAyxC解答:(1)抛物线令y=0,解得x=-2或x=4,∴A(-2,0),B(4,0).∵直线经过点B(4,0),∴,解得,∴直线BD解析式为:当x=-5时,y=3,∴D(-5,3)∵点D(-5,)在抛物线上,∴,∴.∴抛物线的函数表达式为:.(2)设P(m,)∴∴△BPD面积的最大值为.【试题精炼】2.如图,在平面直角坐标系中,抛物线()与x轴交于A、B两点(点A在点B左侧),经过点A的直线l:与y轴交于点C,与抛物线的另一个交点为D,且.(1)直接写出点A的坐标,并用含a的式子表示直线l的函数表达式(其中k、b用含a的式子表示).(2)点E为直线l下方抛物线上一点,当△ADE的面积的最大值为时,求抛物线的函数表达式;HF解答:1)A(-1,0)∵CD=4AC,∴点D的横坐标为4∴,∴.∴直线l的函数表达式为y=ax+a(2)过点E作EH∥y轴,交直线l于点H设E(x,ax2-2ax-3a),则H(x,ax+a).∴∴.∴△ADE的面积的最大值为,∴,解得.∴抛物线的函数表达式为.【中考链接】3.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;解答:(1)令x=0代入y=﹣3x+3,∴y=3,∴B(0,3),把B (0,3)代入y=ax2﹣2ax+a+4,∴3=a+4,∴a=﹣1,∴二次函数解析式为:y=﹣x2+2x+3;(2)令y=0代入y=﹣x2+2x+3,∴0=﹣x2+2x+3,∴x=﹣1或3,∴抛物线与x轴的交点横坐标为﹣1和3,∴S=DM•BE+DM•OE=DM(BE+OE)=DM•OB=××3==(m﹣)2+∵0<m<3,∴当m=时,S有最大值,最大值为;二、二次函数问题中直角三角形问题(一)例题演示如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)设点P为抛物线的对称轴x=1上的一个动点,求使△BPC为直角三角形的点P的坐标.解答:(1)依题意得:,解得,∴抛物线解析式为.把B(,0)、C(0,3)分别代入直线y=mx+n,得,解得,∴直线y=mx+n的解析式为y=x+3;(2)设P(,t),又∵B(-3,0),C(0,3),∴BC2=18,PB2=(+3)2+t2=4+t2,PC2=()2+(t-3)2=t26t+10,①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2-6t+10解得:t=;②若点C为直角顶点,则BC2+PC2=PB2即:18+t2-6t+10=4+t2解得:t=4,③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2-6t+10=18解得:,.综上所述P的坐标为(,)或(,4)或(,)或(,).【试题精炼】如图,二次函数(其中a,m是常数,且a>0,m>0)的图象与x轴分别交于点A,B(点A位于点B的左侧),与y轴交于点C(0,-3),点D在二次函数的图象上,CD∥AB,连接AD.过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.(1)用含m的代数式表示a;(2))求证:为定值;(3)设该二次函数图象的顶点为F.探索:在x轴的负半轴上是否存在点G,连接CF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.【答案】(1);(2)证明见解析;(3)以线段GF、AD、AE 的长度为三边长的三角形是直角三角形,此时点G的横坐标为-3m.【解析】试题分析:(1)将C点代入函数解析式即可求得.(2)令y=0求A、B的坐标,再根据,CD∥AB,求点D的坐标,由△ADM∽△AEN,对应边成比例,将求的比转化成求比,结果不含m即为定值.(3)连接FC并延长,与x轴负半轴的交点即为所求点G..过点F作FH⊥x轴于点H,在Rt△CGO和Rt△FGH中根据同角的同一个三角函数相等,可求OG(用m表示),然后利用勾股定理求GF和AD(用m表示),并求其比值,由(2)是定值,所以可得AD∶GF∶AE=3∶4∶5,由此可根据勾股定理逆定理判断以线段GF、AD、AE的长度为三边长的三角形是直角三角形,直接得点G的横坐标.试题解析:解:(1)将C (0,-3)代入函数表达式得,∴.(2)证明:如答图1,过点D、E分别作x轴的垂线,垂足为M、N.由解得x1=-m,x2=3m.∴A(-m,0),B(3m,0).∵CD∥AB,∴点D的坐标为(2m,-3).∵AB平分∠DAE.∴∠DAM=∠EAN.∵∠DMA=∠ENA=900,∴△ADM∽△AEN,∴.设点E的坐标为(x,),∴,∴x=4m.∴为定值.(3)存在,如答图2,连接FC并延长,与x轴负半轴的交点即为所求点G.由题意得:二次函数图像顶点F的坐标为(m,-4),过点F作FH⊥x轴于点H,在Rt△CGO和Rt△FGH 中,∵tan∠CGO=,tan∠FGH=,∴=.∴OG=“3m,“由勾股定理得,GF=,AD=∴.由(2)得,∴AD∶GF∶AE=3∶4∶5.∴以线段GF、AD、AE的长度为三边长的三角形是直角三角形,此时点G的横坐标为-3m.考点:1.二次函数综合题;2.定值和直角三角形存在性问题;3.曲线上点的坐标与方程的关系;4.二次函数的性质;5.勾股定理和逆定理;6相似三角形的判定和性质;7.锐角三角函数定义.【中考链接】如图所示,在平面直角坐标系中,将一块等腰直角三角板ABC斜靠在两坐标轴上放在第二象限,点C的坐标为(-1,0).B点在抛物线y=x2+x-2的图像上,过点B作BD⊥x轴,垂足为D,且B点的横坐标为-3.(1)求BC所在直线的函数关系式.(2)抛物线的对称轴上是否存在点P,使△ACP是以AC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.解答:(1)∵C点坐标为(-1,0),∴BD=CO=1.∵B点的横坐标为-3,∴B点坐标为(-3,1)设BC所在直线的函数关系式为y=kx+b,则有,解得∴BC所在直线的函数关系式为y=x.(2)①若以为AC直角边,点C为直角顶点,如图所示,作CP1⊥AC,因为BC⊥AC,所以点P1为直线BC与对称轴直线的交点,即点P1的横坐标为-。

二次函数与三角函数的综合题目

二次函数与三角函数的综合题目

二次函数与三角函数的综合题目首先,我们来讨论二次函数和三角函数的基本概念和性质。

二次函数的一般形式为f(x) = ax^2 + bx + c,其中a、b、c为实数且a≠0。

它的图像一般为抛物线,开口方向取决于a的正负。

而三角函数有正弦函数sin(x)、余弦函数cos(x)和正切函数tan(x)等等。

这些函数的图像是周期性的波动曲线。

其中,正弦函数的图像沿y 轴偏移sin(a)个单位,余弦函数的图像沿x轴偏移cos(b)个单位,正切函数的图像存在垂直渐近线。

接下来,我们以一个综合题目来展示二次函数和三角函数的运用。

题目:已知函数f(x) = a(x - h)^2 + k与g(x) = A*sin(Bx + C)的图像如下,请求解以下问题:1. 函数f(x)的顶点坐标是多少?2. 函数g(x)的振幅是多少?3. 函数f(x)和g(x)的图像是否有交点?若有,请给出交点坐标。

4. 若函数f(x)和g(x)的图像相切,求切点的横坐标。

解答:1. 函数f(x)的顶点坐标可以通过将函数转化为顶点形式来求得。

对于二次函数f(x) = a(x - h)^2 + k,顶点坐标即为(h, k)。

根据图像可得,顶点坐标为(-2, 1)。

2. 函数g(x)的振幅可以通过观察图像来求得。

振幅即为函数图像在纵向波动中的最大值的一半。

根据图像可以看出,振幅为3。

3. 函数f(x)和g(x)的图像是否有交点可以通过联立方程求解。

将f(x)和g(x)等式相等,即可得到交点。

联立方程为:a(x - h)^2 + k = A*sin(Bx + C)根据题目给定的图像,我们不妨选择x = 0作为方程求解的初始点。

代入 x = 0,化简得:ah^2 + k = A*sin(C)我们知道正弦函数的取值范围为[-1, 1],而ah^2 + k为二次函数的常数项。

所以,当 A ≥ |ah^2 + k|时,两个图像相交。

根据给定的图像,可以看出A = 0.5,而|ah^2 + k| = 1,所以A < |ah^2 + k|,即函数f(x)和g(x)的图像没有交点。

三角函数与二次函数综合专题(含解析)

三角函数与二次函数综合专题(含解析)

三角函数与二次函数综合卷21.如图,在矩形ABCD中,点E为AB的中点,EF⊥EC交AD于点F,连接CF(AD>AE),下列结论:①∠AEF=∠BCE;②AF+BC>CF;③S△CEF=S△EAF+S△CBE;④若=,则△CEF≌△CDF.其中正确的结论是.(填写所有正确结论的序号)2.已知:BD是四边形ABCD的对角线,AB⊥BC,∠C=60°,AB=1,BC=33+,CD=23. (1)求tan∠ABD的值;(2)求AD的长.DCBA3.海上有一小岛,为了测量小岛两端A、B的距离,测量人员设计了一种测量方法,如图所示,已知B点是CD的中点,E是BA延长线上的一点,测得AE=10海里,DE=30海里,且DE⊥EC,cos∠D=35.(1)求小岛两端A、B的距离;(2)过点C作CF⊥AB交AB的延长线于点F,求sin∠BCF的值.EABFDC4.如图,在△ABC中,90ACB∠=,AC BC=,点P是△ABC一点,且135APB APC∠=∠=.AB C P(1)求证:△CPA ∽△APB ;(2)试求tan PCB ∠的值.5.如图,在梯形ABCD 中,︒=∠=∠90B A ,=AB 25,点E 在AB 上,︒=∠45AED ,6=DE ,7=CE .(1)求AE 的长;(2)求BCE ∠sin 的值.6.如图,在△ABC 中,AD 是BC 边上的高,AE 是BC 边上的中线,∠C=45°,sinB=23,AD=4.(1)求BC 的长;(2)求tan ∠DAE 的值.7.如图,在Rt △ABC 中,∠ABO=90°,OB=4,AB=8,且反比例函数xk y =在第一象限的图象分别交OA 、AB 于点C 和点D ,连结OD ,若4=∆BOD S ,(1)求反比例函数解析式;(2)求C 点坐标.8.如图,在△ABC 中,BD ⊥AC 于点D ,22AB =6BD =并且12ABD CBD ∠=∠.求AC 的长.D ABC9.下图是某河上一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的距离都是1 m,拱桥的跨度为10 m,桥洞与水面的最大距离是5 m,桥洞两侧壁上各有一盏距离水面4 m的景观灯.若把拱桥的截面图放在平面直角坐标系中(如下右图).(10分)(1)求抛物线的关系式;(2)求两盏景观灯之间的水平距离.10.已知二次函数的图象的一部分如图所示,求:(1)这个二次函数关系式,(2)求图象与x轴的另一个交点,(3)看图回答,当x取何值时y ﹤0.(12分)11.如图,直线l经过A(3,0),B(0,3)两点与二次函数y=x2+1的图象在第一象限相交于点C.(1)求△AOC的面积;(2)求二次函数图象的顶点D与点B,C构成的三角形的面积.12.抛物线y=-x2+(m-1)x+m与y轴交于点(0,3).(1)求抛物线的解析式;(2)求抛物线与x轴的交点坐标;(3)画出这条抛物线大致图象;(4)根据图象回答:①当x取什么值时,y>0 ?②当x取什么值时,y的值随x的增大而减小?13.立定跳远时,以小明起跳时重心所在竖直方向为y轴(假设起跳时重心与起跳点在同一竖直方向上),地平线为x轴,建立平面直角坐标系(如图),则小明此跳重心所走过的路径是一条形如y=-0.2(x-1)2+0.7的抛物线,在最后落地时重心离地面0.3m(假如落地时重心与脚后跟在同一竖直方向上).(1)小明在这一跳中,重心离地面最高时距离地面多少米?此时他离起跳点的水平距离有多少米?(2)小明此跳在起跳时重心离地面有多高?(3)小明这一跳能得满分吗(2.40m为满分)?参考答案1.①③④【解析】试题分析:∵EF⊥EC,∴∠AEF+∠BEC=90°,∵∠BEC+∠BCE=90°,∴∠AEF=∠BCE,故①正确;又∵∠A=∠B=90°,∴△AEF∽△BCE,∴ECEFBEAF=,∵点E是AB的中点,∴AE=BE,∴ECEFAEAF=,又∵∠A=∠CEF=90°,∴△AEF∽△ECF,∴∠AFE=∠EFC,过点E作EH⊥FC于H,则AE=DH,在Rt△AEF和Rt△HEF中,⎩⎨⎧==EHAEEFEF,∴Rt△AEF≌Rt△HEF(HL),∴AF=FH,同理可得△BCE≌△HCE,∴BC=CH,∴AF+BC=CF,故②错误;∵△AEF≌△HEF,△BCE≌△HCE,∴S△CEF=S△EAF+S△CBE,故③正确;若23=CDBC,则tan∠BCE=323222121=⨯====CDBCCDBCABBCBEBC,∴∠BEC=60°,∴∠BCE=30°∴∠DCF=∠ECF=30°,又∵∠D=∠CEF, CF=CF∴△CEF≌△CDF(AAS),故④正确,综上所述,正确的结论是①③④.故答案为:①③④.考点:1、矩形的性质;2、全等三角形;3、三角函数;4、相似三角形2.(1)1;(2【解析】试题分析:(1)过点D作DE⊥BC于点E,根据∠C=60°求出CE、DE,再求出BE,从而得到DE=BE,然后求出∠EDB=∠EBD=45°,再求出∠ABD=45°,然后根据特殊角的三角函数值解答.(2)过点A作AF⊥BD于点F,求出BD,然后求出DF,在Rt△ADF中,利用勾股定理列式计算即可得解.⊥于点E.试题解析:(1)如图,作DE BC∵在Rt△CDE 中,∠C=60°,∵∴DE BE 3.==∴在Rt△BDE 中,∠EDB= ∠EBD=45º.∵AB⊥BC,∠ABC=90º,∴∠ABD=∠ABC-∠EBD=45º.∴tan∠ABD=1.(2)如图,作AF BD⊥于点F.在Rt△ABF 中,∠ABF=45º, AB=1,∵在Rt△BDE 中,DE BE3==,∴在Rt△AFD考点:1.勾股定理;2.锐角三角函数定义;3.特殊角的三角函数值.3.(1) 16.7(海里).【解析】试题分析:(1)在Rt△CED中,利用三角函数求出CE,CD的长,根据中点的定义求得BE 的长,AB=BE-AE即可求解;(2)设BF=x海里.在Rt△CFB中,利用勾股定理求得CF2=CB2-BF2=252-x2=625-x2.在Rt △CFE中,列出关于x的方程,求得x的值,从而求得sin∠BCF的值.(1)在Rt△CED中,∠CED=90°,DE=30海里,∴cos∠∴CE=40(海里),CD=50(海里).∵B点是CD的中点,∴(海里)∴AB=BE-AE=25-8.3=16.7(海里).答:小岛两端A、B的距离为16.7海里.(2)设BF=x海里.在Rt△CFB中,∠CFB=90°,∴CF2=CB2-BF2=252-x2=625-x2.在Rt△CFE中,∠CFE=90°,∴CF2+EF2=CE2,即625-x2+(25+x)2=1600.解得x=7.∴sin∠考点: 解直角三角形的应用.4.(1)证明见解析;(2)2.【解析】试题分析:(1)应用△ABC中角的关系求出∠PAC=∠PBA和∠APB=∠APC即可证得;(2)由等腰直角三角形,相似三角形的性质和锐角三角函数定义即可求得.试题解析:(1)∵在△ABC中,∠ACB=90º,AC=BC∴∠BAC=45º,即∠PAC+∠PAB=45º,又在△APB中,∠APB=135º,∴∠PBA+∠PAB=45º,∴∠PAC=∠PBA,又∠APB=∠APC,∴△CPA ∽△APB.(2)∵△ABC 是等腰直角三角形,又∵△CPA ∽△APB ,令CP=k ,则,PB=2k ,又在△BCP 中,∠BPC=360º-∠APC-∠BPC=90º,考点:1. 等腰直角三角形的性质;2.相似三角形的判定和性质;3.锐角三角函数定义.5.(1(2 【解析】试题分析:(1)在DAE Rt ∆中,∠A=90°,∠AED=45°,DE=6,根据这些条件利用余弦函数求AE ;(2)在BCE Rt ∆中,EC=7,再利用(1)的解答结果,根据正弦函数来解答sin BCE ∠的值. 中,︒=∠90A ,︒=∠45AED ,6=DE ∴AED DE AE ∠⨯=cos =︒⨯45cos 6=;(2)∵AE AB BE -=在BCE Rt ∆中,7=EC , 考点:解直角三角形.6.(1(2【解析】 试题分析:(1)先由三角形的高的定义得出∠ADB=∠ADC=90°,再解Rt △ADC ,得出DC=4;解Rt △ADB ,得出AB=6,根据勾股定理求出BC=BD+DC 即可求解;(2)先由三角形的中线的定义求出CE 的值,则DE=CE-CD ,然后在Rt △ADE 中根据正切函数的定义即可求解.试题解析:(1)在△ABC 中,∵AD 是BC 边上的高,∴∠ADB=∠ADC=90°.在△ADC 中,∵∠ADC=90°,∠C=45°,AD=4,∴DC=AD=4.在△ADB 中,∵∠ADB=90°,AD=4,∴∴∴(2)∵AE 是BC 边上的中线,∴∴∴tan ∠ 考点: 解直角三角形.7.(1(2)(2,4). 【解析】试题分析:(1)由4=∆BOD S ,且OB=4,可求BD 的长,因此D 点坐标可求,从而确定反比例函数解析式.(2)过点C 作CE ⊥OB 于点E .在AOB Rt ∆中,利用锐角三角函数可求出CE 和OE 的长,从而求出C 点坐标.试题解析:(1)设D (x ,y ),则有OB=x ,BD=y .由 4=∆BOD S ,得xy=8.k=xy ,∴k=8, (2)过点C 作CE ⊥OB 于点E .在AOB Rt ∆中,︒=∠90ABO ,4=OB ,8=AB ,∴tan ∠AOB 2==BO AB , ∴2=EOCE ,CE=2EO , 设C 点坐标为(a ,2a ), 把点C (a ,2a )代入x y 8=中,得 822=a ,解得2±=a ,∵点C 在第一象限,∴a>0,取a=2.∴C 点坐标为(2,4).考点: 反比例函数综合题.8.42.【解析】试题分析:在Rt △ABD 中,tan ∠ABD=33AD BD =,即可求出∠ABD=30°,从而判断△ABC 为直角三角形,且∠C=30°,利用30°所对的直角边等于斜边的一半即可求出AC 的长. 试题解析:在Rt △ABD 中,∠BDA=90°,AB=22,BD=6∴tan ∠ABD=33AD BD =, ∴∠ABD=30°,∠A=60°∵∠ABD=12∠CBD ∴∠CBD=60°,∠ABC=90°在Rt △ABD 中,42cos AB AC A== 考点: 解直角三角形. 9.(1)y= (x-5)2 +5(0≤x ≤10). (2)两景观灯间的距离为5米.试题分析:(1)抛物线的顶点坐标为(5,5),与y 轴交点坐标是(0,1) 设抛物线的解析式是y=A (x ﹣5)2+5把(0,1)代入y=A (x ﹣5)2+5得A=﹣∴y=﹣(x ﹣5)2+5(0≤x ≤10);(2)由已知得两景观灯的纵坐标都是4∴4=﹣(x ﹣5)2+5 ∴(x ﹣5)2=1∴x 1=,x 2= ∴两景观灯间的距离为﹣=5米考点:二次函数的应用10.(1)二次函数关系式为y=2x 2 -4x-6;(2)与x 轴的另一个交点是(-1,0),(3)-1﹤x ﹤3【解析】试题分析:(1)由图象可知,抛物线顶点为(1,-8)所以可设二次函数为y=A (x-1)2-8,则该二次函数过(3,0)这个点所以4A-8=0;即A=2所以二次函数关系式为:y=2(x-1)2-8= y=2x 2 -4x-6;(2)当y=0时, 2x 2 -4x-6=0所以(x-3)(x+1)=0;得x=3或者x=-1所以图像与x 轴的另一个交点为(-1,0);(3)根据图象可知:当-1<x <3时,y <0考点:二次函数的图象及性质11.(1)3;(2)1【解析】试题分析:(1)由A (3,0),B (0,3)两点可求出一次函数的解析式为y =-x +3.联立⎩⎨⎧+=+-=132x y x y 并根据图中点C 的位置,得C 点坐标为(1,2).∴S △AOC =12·|OA|·|y C |=12×3×2=3. (2)二次函数y =x 2+1的顶点坐标为D (0,1). ∴S △BCD =12·|BD|·|x C |=12×|3-1|×1=1. 考点:1.函数图象的交点;2.二次函数性质12.(1)抛物线的解析式为y=-x 2+2x+3;(2)抛物线与x 轴的交点坐标(-1,0),(3,0);(3)详见解析;(4)①当-1<x <3时,y >0;②当x >1时,y 的值随x 的增大而减小.试题分析:(1)将(0,3)代入y=-x2+(m-1)x+m求得m,即可得出抛物线的解析式;(2)令y=0,求得与x轴的交点坐标;令x=0,求得与y轴的交点坐标;(3)得出对称轴,顶点坐标,画出图象即可;(4)当y>0时,即图象在一、二象限的部分;当y<0时,即图象在一、二象限的部分;在对称轴的右侧,y的值随x的增大而减小.试题解析:(1)∵抛物线y=-x2+(m-1)x+m与y轴交于(0,3)点,∴m=3,∴抛物线的解析式为y=-x2+2x+3;(2)令y=0,得x2-2x-3=0,解得x=-1或3,∴抛物线与x轴的交点坐标(-1,0),(3,0);令x=0,得y=3,∴抛物线与y轴的交点坐标(0,3);(3)对称轴为x=1,顶点坐标(1,4),图象如图,(4)如图,①当-1<x<3时,y>0;当x<-1或x>3时,y<0;②当x>1时,y的值随x的增大而减小.考点:1.抛物线与x轴的交点;2.二次函数的图象;3.待定系数法求二次函数解析式.13.(1)小明在这一跳中,重心离地面最高时距离地面0.7米,此时他离起跳点的水平距离有1米;(2)小明此跳在起跳时重心离地面有0.5米高;(3)小明这一跳能得满分;【解析】试题分析:(1)由解析式即可得到;(2)在解析式中令x=0,则可得到小明在起跳时重心离地面有高度;(3)在解析式中令y=0,解方程即可得到;试题解析:(1)由解析式y=-0.2(x-1)2+0.7可知抛物线的开口向下,顶点坐标为(1,0.7),所以小明在这一跳中,重心离地面最高时距离地面0.7米,此时他离起跳点的水平距离有1米;(2)令x=0,则y=-0.2(x-1)2+0.7=-0.2+0.7=0.5,即小明此跳在起跳时重心离地面有0.5米高;(3)令y=0,则有-0.2(x-1)2+0.7=0,解得x1=2142+≈2.87>2.4,x2=2142-<0(舍去)所以小明这一跳能得满分;考点:二次函数的应用。

专题11二次函数与角综合问题-挑战2022年中考数学压轴题之学霸秘笈大揭秘(原卷版)

专题11二次函数与角综合问题-挑战2022年中考数学压轴题之学霸秘笈大揭秘(原卷版)

专题11二次函数与角综合问题二次函数与角综合问题,常见的主要有三种类型:1.特殊角问题:(1)利用特殊角的三角函数值找到线段之间的数量关系(2)遇到特殊角可以构造特殊三角形,如遇到45°构造等腰直角三角形,遇到30°、60°构造等边三角形,遇到90°构造直角三角形2.角的数量关系问题(1)等角问题:借助特殊图形的性质、全等和相似的性质来解决;构造圆,利用圆周角的性质来解决(2)二倍角问题:利用角平分线的性质、等腰三角形的性质、对称、辅助圆等知识来解答(3)角的和差问题3.角的最值问题:利用辅助圆等知识来解答【例1】(2021•兰州)如图1,二次函数y=a(x+3)(x﹣4)的图象交坐标轴于点A,B(0,﹣2),点P为x轴上一动点.(1)求二次函数y=a(x+3)(x﹣4)的表达式;(2)过点P作PQ⊥x轴分别交线段AB,抛物线于点Q,C,连接AC.当OP=1时,求△ACQ的面积;(3)如图2,将线段PB绕点P逆时针旋转90°得到线段PD.①当点D在抛物线上时,求点D的坐标;②点E(2,﹣)在抛物线上,连接PE,当PE平分∠BPD时,直接写出点P的坐标.【例2】(2021•贵港)如图,已知抛物线y=ax2+bx+c与x轴相交于A(﹣3,0),B两点,与y轴相交于点C(0,2),对称轴是直线x=﹣1,连接AC.(1)求该抛物线的表达式;(2)若过点B的直线l与抛物线相交于另一点D,当∠ABD=∠BAC时,求直线l的表达式;(3)在(2)的条件下,当点D在x轴下方时,连接AD,此时在y轴左侧的抛物线上存在点P,使S△BDP=S△ABD.请直接写出所有符合条件的点P的坐标.【例3】(2021•罗湖区校级模拟)如图,抛物线y=x2+bx+c与x轴交于点A(﹣3,0)、B,与y轴交于点C(0,﹣3).(1)求抛物线的解析式;(2)在抛物线上求点P,使S△BCP=2S△BCO,求点P的坐标;(3)如图2,直线y=x+3交抛物线于第一象限的点M,若N是抛物线y=x2+bx+c上一点,且∠MAN=∠OCB,求点N的坐标.【例4】(2021•溧阳市一模)如图,在平面直角坐标系中,已知抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,经过点C的直线l与该抛物线交于另一点D,并且直线l∥x轴,点P(m,y1)为该抛物线上一个动点,点Q(m,y2)为直线l上一个动点.(1)当m<0,且y1=y2时,连接AQ,BD,说明:四边形ABDQ是平行四边形;(2)当m>0,连接AQ,线段AQ与线段OC交于点E,OE<EC,且OE•EC=2,连接PQ,求线段PQ的长;(3)连接AC,PC,试探究:是否存在点P,使得∠PCQ与∠BAC互为余角?若存在,求出点P的坐标;若不存在,请说明理由.【例5】(2020•十堰)已知抛物线y=ax2﹣2ax+c过点A(﹣1,0)和C(0,3),与x轴交于另一点B,顶点为D.(1)求抛物线的解析式,并写出D点的坐标;(2)如图1,E为线段BC上方的抛物线上一点,EF⊥BC,垂足为F,EM⊥x轴,垂足为M,交BC于点G.当BG=CF时,求△EFG的面积;(3)如图2,AC与BD的延长线交于点H,在x轴上方的抛物线上是否存在点P,使∠OPB=∠AHB?若存在,求出点P的坐标;若不存在,请说明理由.【例6】(2020•包头)如图,在平面直角坐标系中,抛物线y=13x2﹣2x经过坐标原点,与x轴正半轴交于点A,该抛物线的顶点为M,直线y=−12x+b经过点A,与y轴交于点B,连接OM.(1)求b的值及点M的坐标;(2)将直线AB向下平移,得到过点M的直线y=mx+n,且与x轴负半轴交于点C,取点D(2,0),连接DM,求证:∠ADM﹣∠ACM=45°;(3)点E是线段AB上一动点,点F是线段OA上一动点,连接EF,线段EF的延长线与线段OM交于点G.当∠BEF=2∠BAO时,是否存在点E,使得3GF=4EF?若存在,求出点E的坐标;若不存在,请说明理由.【题组一】1.(2021•海陵区一模)如图,点C(0,)(a<0)是y轴负半轴上的一点,经过点C作直线,与抛物线y=ax2交于A、B两点(点A在点B的左侧),连接OA、OB,设点A的横坐标为m(m<0).(1)若点A的坐标为(﹣4,﹣2),求点C的坐标;(2)若AC:BC=1:2,m=﹣1,求a的值,并证明:∠AOB=90°;(3)若AC:BC=1:k(k>1),问“∠AOB=90°”这一结论还成立吗?试说明理由.2.(2021•郫都区模拟)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的图象与轴交于A (﹣1,0),B(4,0),与y轴交于点C(0,﹣3),连接AC、BC.(1)求抛物线的函数表达式;(2)如图1,点D是抛物线上位于第四象限内的一点,连接AD,点E是AD的中点,连接BE、CE,求△BCE面积的最小值;(3)如图2,点P是抛物线上位于第四象限内的一点,点Q在y轴上,∠PBQ=∠OBC,是否存在这样的点P、Q使BP=BQ,若存在,求出点P的坐标;若不存在,请说明理由.3.(2021•新洲区模拟)在平面直角坐标系中,抛物线y=﹣x2+(a﹣2)x+2a与x轴交于A,B两点(A在B的左侧),与y轴的正半轴交于点C.(1)若AB=5,求抛物线的解析式;(2)若经过点C和定点M的直线与该抛物线交于另一点D,且S△ACM=S△ADM(“S”表示面积).①求定点M的坐标;②连接BD交y轴于点E,连接AE,若∠AEO=∠BDC,求a的值.4.(2021•东港区校级二模)如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y =ax2+bx+c上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上有一点P,求△PBC面积的最大值及此时点P的坐标.(3)在对称轴上求一点M,使得BM﹣CM最大;(4)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在.说明理由.【题组二】5.(2021•郑州模拟)如图,已知直线BC的解析式为y=﹣x+3,与x轴,y轴交于点B,C.抛物线y=ax2+bx+3过A(﹣1,0),B,C三点,D点为抛物线的顶点,抛物线的对称轴与x轴交于点E,连接BD,CD.(1)求二次函数及直线CD的解析式;(2)点P是线段CD上一点(不与点C,D重合),当△BCP的面积为时,求点P的坐标.(3)点F是抛物线上一点,过点F作FG⊥CD交直线CD于点G,当∠CFG=∠EDB 时,请直接写出点F的坐标.6.(2021•宝安区模拟)如图,二次函数y=ax2+5ax+7与x轴交于A、C两点,与y轴交于B点,若OB:OC=7:2.点P是抛物线第二象限内的一个动点.连接PC交y轴于点D,连接PB.(1)求抛物线的解析式;(2)如图1,设P点横坐标为t,△PBD的面积为S,求S与t的关系式;(3)如图2,作PE⊥x轴于E,连接ED,点F为ED上一个动点,连接AF交PE于点G,若2∠GAO+∠EDO=90°,DF=2EG,求P点坐标.7.(2021•渭滨区模拟)如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2﹣2x+c 与x轴交于点A(1,0),点B(﹣3,0),与y轴相交于点C.(1)求抛物线的表达式和顶点坐标;(2)已知点C关于抛物线对称轴的对称点为点N,连接BC,BN,点H在x轴上,当∠HCB=∠NBC时,求满足条件的点H的坐标.8.(2021•山西模拟)综合与探究:如图,已知抛物线与x轴相交于A,B两点(点B在点A的右侧),且与y轴交于点C.(1)求A,B,C三点的坐标;(2)如图1,若M(m,y1),N(n,y2)是第四象限内抛物线上的两个动点,且m<n,m+n=4.分别过点M,N作x轴的垂线,分别交线段BC于点D,E.判断四边形MDEN 的形状,并求其周长的最大值;(3)如图2,在(2)的条件下,当四边形MDEN的周长有最大值时,若x轴上有一点H(2m,0),抛物线的对称轴与x轴相交于点F,试探究在抛物线的对称轴上是否存在一点P,使得∠APB=2∠OCH?若存在,请求出点P的坐标;若不存在,请说明理由.【题组三】9.(2021•洪山区模拟)已知抛物线y=ax2+bx﹣3经过A(﹣1,0),且与x轴右侧交于B 点,对称轴为直线x=1,与y轴交于C点.(1)求抛物线的解析式;(2)如图1,过点C作直线l∥x轴交抛物线于点D,点P在抛物线上,且∠DCP=∠ACO,求点P的坐标;(3)如图2,直线y=kx+b(k≠b)交抛物线于M、N两点,NH⊥x轴于点H,HQ∥MA,HQ与MN相交于点Q,求点Q的横坐标.10.(2021•宁波模拟)如图,在平面直角坐标系中二次函数y=ax2+bx+3的图象过点A,B 两点,其坐标分别为(﹣5,0),(﹣2,3).(1)求二次函数的表达式;(2)点C在抛物线上,若∠ABC=90°,求点C的坐标;(3)在(2)的条件下,BC与y轴交于点D,点P在抛物线上,若∠PBC=∠OAD,直接写出点P的坐标.11.(2021•吉安县模拟)已知二次函数y=ax2+bx+c(a≠0)的对称轴为直线x=2,且与x 轴交于A、B两点,与y轴交于点C.其中A(1,0)、C(0,3).(1)求抛物线的解析式;(2)若点P在抛物线上运动(不与点A重合).①当△PBC的面积与△ABC的面积相等时,求点P的坐标;②当∠PCB=∠BCA时,求直线CP的解析式.12.(2021•江西模拟)如图,抛物线y=ax2+k(a>0,k<0)与x轴交于A,B两点(点B 在点A的右侧),其顶点为C,点P为线段OC上一点,且PC=OC.过点P作DE∥AB,分别交抛物线于D,E两点(点E在点D的右侧),连接OD,DC.(1)直接写出A,B,C三点的坐标;(用含a,k的式子表示)(2)猜想线段DE与AB之间的数量关系,并证明你的猜想;(3)若∠ODC=90°,k=﹣4,求a的值.【题组四】13.(2020•碑林区校级二模)如图,已知抛物线y=ax2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x轴的另一个交点为C,顶点为D,连接BD,CD.(1)求该抛物线的表达式;(2)判断△BCD的形状,并说明理由;(3)若点P为该抛物线上一动点(与点B、C不重合),该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,请直接写出满足条件的所有点P的坐标;若不存在,请说明理由.14.(2020•武汉模拟)抛物线y=ax2+bx+c,顶点为P(h,k).(1)如图,若h=1,k=4,抛物线交x轴于A、B,交y轴正半轴于C,OC=3.①求抛物线的解析式;②向下平移直线BC,交抛物线于MN,抛物线上是否存在一定点D,连DM,DN分别交x轴于E,F,使∠DEF=∠DFE?若存在,求D的坐标;若不存在,请说明理由.(2)若c=0,当点P在抛物线y=x2﹣x上且﹣1<h≤2时,求a的取值范围.15.(2020•西华县一模)如图,直线y=12x+c与x轴交于点B(4,0),与y轴交于点C,抛物线y=12x2+bx+c经过点B,C,与x轴的另一个交点为A.(1)求抛物线的解析式;(2)点P是直线BC下方抛物线上一动点,求四边形ACPB面积最大时点P的坐标;(3)若M是抛物线上一点,且∠MCB=∠ABC,请直接写出点M的坐标.16.(2020•硚口区模拟)如图1,该抛物线是由y=x2平移后得到,它的顶点坐标为(−3 2,−254),并与坐标轴分别交于A,B,C三点.(1)求A,B的坐标.(2)如图2,连接BC,AC,在第三象限的抛物线上有一点P,使∠PCA=∠BCO,求点P的坐标.(3)如图3,直线y=ax+b(b<0)与该抛物线分别交于P,G两点,连接BP,BG分别交y轴于点D,E.若OD•OE=3,请探索a与b的数量关系.并说明理由.【题组五】17.(2020•深圳模拟)如图,抛物线y =14x 2+bx +c 与直线y =−12x +3分别交于x 轴,y 轴上的B 、C 两点,设该抛物线与x 轴的另一个交点为A ,顶点为D ,连接CD 交x 轴于点E .(1)求该抛物线的解析式;(2)点F ,G 是对称轴上两个动点,且FG =2,点F 在点G 的上方,请求出四边形ACFG 的周长的最小值;(3)连接BD ,若P 在y 轴上,且∠PBC =∠DBA +∠DCB ,请直接写出点P 的坐标.18.(2020•岱岳区二模)如图,直线y =12x +2与x 轴,y 轴分别交于点A ,C ,抛物线y =−12x 2+bx +c 经过A ,C 两点,与x 轴的另一交点为B .点D 是AC 上方抛物线上一点.(1)求抛物线的函数表达式;(2)连接BC ,CD ,设直线BD 交线段AC 于点E ,如图1,△CDE ,△BCE 的面积分别为S 1,S 2,求S 1S 2的最大值; (3)过点D 作DF ⊥AC 于F ,连接CD ,如图2,是否存在点D ,使得△CDF 中的某个角等于∠BAC 的两倍?若存在,求点D 的横坐标;若不存在,说明理由.19.(2020•曾都区模拟)如图,边长为3的正方形的边AB在x轴负半轴上,点C,D在第三象限内,点A的坐标为(﹣5,0),经过点A,C的抛物线y=x2+bx+c交y轴于点N,其顶点为M.(1)求抛物线的解析式;(2)若y轴左侧抛物线上一点P关于y轴的对称点P'恰好落在直线MC上,求点P的坐标;(3)连接AC,AM,AN,请你探究在y轴左侧的抛物线上,是否存在点Q,使∠ANQ =∠MAC?若存在,求出点Q的坐标;若不存在,说明理由.20.(2020•南岗区校级三模)如图1,抛物线y=−14x2+bx+c与x轴负半轴交于A点,与x轴正半轴交于B点,与y轴正半轴交于C点,CO=BO,AB=14.(1)求抛物线的解析式;(2)如图2,点M、N在第一象限内抛物线上,M在N点下方,连CM、CN,∠OCN +∠OCM =180°,设M 点横坐标为m ,N 点横坐标为n ,求m 与n 的函数关系式(n 是自变量);(3)如图3,在(2)条件下,连AN 交CO 于E ,过M 作MF ⊥AB 于F ,连BM 、EF ,若∠AFE =2∠FMB =2β,求N 点坐标.【题组六】21.(2020•武侯区校级模拟)如图所示,抛物线y =ax 2+bx +4的顶点坐标为(3,254),与y轴交于点A .过点A 作AB ∥x 轴,交抛物线于点B ,点C 是第四象限的抛物线上的一个动点,过点C 作y 轴的平行线,交直线AB 于点D .(1)求抛物线的函数表达式;(2)若点E 在y 轴的负半轴上,且AE =AD ,直线CE 交抛物线y =ax 2+bx +4于点F . ①求点F 的坐标;②过点D 作DG ⊥CE 于点G ,连接OD 、ED ,当∠ODE =∠CDG 时,求直线DG 的函数表达式.22.(2020•滨海县二模)如图1,抛物线y =−12x 2+bx +c 与x 轴交于点A (4,0),B (﹣2,0),与y 轴交于点C ,线段BC 的垂直平分线与对称轴l 交于点D ,与x 轴交于点F ,与BC 交于点E .对称轴l 与x 轴交于点H .(1)求抛物线的函数表达式及对称轴;(2)求点D 和点F 的坐标;(3)如图2,若点P 是抛物线上位于第一象限的一个动点,当∠EFP =45°时,请求出此时点P 的坐标.23.(2020•无锡一模)如图①,一次函数y=12x﹣2的图象交x轴于点A,交y轴于点B,二次函数y=−12x2+bx+c的图象经过A、B两点,与x轴交于另一点C.(1)求二次函数的关系式及点C的坐标;(2)如图②,若点P是直线AB上方的抛物线上一点,过点P作PD∥x轴交AB于点D,PE∥y轴交AB于点E,求PD+PE的最大值;(3)如图③,若点M在抛物线的对称轴上,且∠AMB=∠ACB,求出所有满足条件的点M的坐标.24.(2020•吴江区三模)如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点坐标为C(3,6),并与y轴交于点B(0,3),点A是对称轴与x轴的交点.(1)求抛物线的解析式;(2)如图①所示,P是抛物线上的一个动点,且位于第一象限,连接BP,AP,求△ABP 的面积的最大值;(3)如图②所示,在对称轴AC的右侧作∠ACD=30°交抛物线于点D,求出D点的坐标;并探究:在y轴上是否存在点Q,使∠CQD=60°?若存在,求点Q的坐标;若不存在,请说明理由.。

二次函数综合题经典40题(含知识点与答案解析)(可编辑修改word版)

二次函数综合题经典40题(含知识点与答案解析)(可编辑修改word版)

2019年03月08日〃子初ぐ的初中数学组卷评卷人得分一.解答题(共40小题)1.已知二次函数y=ax2+bx+c图象的对称轴为y轴,且过点(1,2),(2,5).(1)求二次函数的解析式;(2)如图,过点E(0,2)的一次函数图象与二次函数的图象交于A,B两点(A点在B 点的左侧),过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D.①当CD=3时,求该一次函数的解析式;②分别用S1,S2,S3表示△ACE,△ECD,△EDB的面积,问是否存在实数t,使得S22=tS1S3都成立?若存在,求出t的值;若不存在,说明理由.2.如图,已知抛物线y=x2﹣x﹣k(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C过点B的直线y=﹣x+b与抛物线的另一交点为D.(1)若点D的横坐标为﹣5,求抛物线的函数表达式;(2)过D点向x轴作垂线,垂足为点M,连结AD,若∠MDA=∠ABD,求点D的坐标;(3)若在第一象限的抛物线上有一点P,使得以点A,B,P为顶点的三角形与△ABC相似,请直接写出△ABC的面积.3.如图,已知二次函数y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,图象经过B(﹣3,0)、C(0,3)两点,且与x轴交于点A.(1)求二次函数y=ax2+bx+c(a≠0)的表达式;(2)在抛物线的对称轴上找一点M,使△ACM周长最短,求出点M的坐标;(3)若点P为抛物线对称轴上的一个动点,直接写出使△BPC为直角三角形时点P的坐标.4.定义:在平面直角坐标系xOy中,直线y=a(x﹣m)+k称为抛物线y=a(x﹣m)2+k 的关联直线.(1)求抛物线y=x2+6x﹣1的关联直线;(2)已知抛物线y=ax2+bx+c与它的关联直线y=2x+3都经过y轴上同一点,求这条抛物线的表达式;(3)如图,顶点在第一象限的抛物线y=﹣a(x﹣1)2+4a与它的关联直线交于点A,B(点A在点B的左侧),与x轴负半轴交于点C,连结AC、BC.当△ABC为直角三角形时,求a的值.5.已知抛物线y=﹣x2+mx+m+1与x轴交于A、B两点(点A在点B的左侧).(1)当m=2时,抛物线与y轴交于点C.①直接写出点A、B、C的坐标;②如图1,连接AC,在x轴上方的抛物线上有一点D,若∠ABD=∠ACO,求点D的坐标;③如图2,点P为抛物线位于第一象限图象上一动点,过P作PQ⊥CB,求PQ的最大值;(2)如图3,若点M为抛物线位于x轴上方图象上一动点,过点M作MN⊥x轴,垂足为N,直线MN上有一点H,满足∠HBA与∠MAB互余,试判断HN的长是否变化,若变化,请说明理由,若不变,请求出HN长.6.如图,已知抛物线经过点A(3,0),B(0,3),C(﹣1,0).(1)求抛物线的函数表达式;(2)求抛物线的顶点坐标;(3)如图1,点D是抛物线上一动点,过D作y轴的平行线DE交直线AB于点E,当线段DE=1时,请直接写出D点的横坐标;(4)如图2,当D为直线AB上方抛物线上一动点时,DF⊥AB于F,设AC的中点为M,连接BD,BM,是否存在点D,使得△BDF中有一个角与∠BMO相等?若存在,请直接写出点D的横坐标;若不存在,请说明理由.7.在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A(﹣3,0)、B(1,0),与y轴交于点D(0,3),过顶点C作CH⊥x轴于点H(1)求抛物线的解析式和顶点C的坐标;(2)连结AD、CD,若点E为抛物线上一动点(点E与顶点C不重合),当△ADE与△ACD面积相等时,求点E的坐标;(3)若点P为抛物线上一动点(点P与顶点C不重合),过点P向CD所在的直线作垂线,垂足为点Q,以P、C、Q为顶点的三角形与△ACH相似时,求点P的坐标.8.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),点A的坐标为(﹣1,0),与y轴交于点C(0,2),直线CD:y=﹣x+2与x轴交于点D.动点M在抛物线上运动,过点M作MP⊥x轴,垂足为P,交直线CD于点N.(1)求抛物线的解析式;(2)当点P在线段OD上时,△CDM的面积是否存在最大值,若存在,请求出最大值;若不存在,请说明理由;(3)点E是抛物线对称轴与x轴的交点,点F是x轴上一动点,点M在运动过程中,若以C、E、F、M为顶点的四边形是平行四边形时,请直接写出点F的坐标.9.如图,在直角坐标平面内,抛物线经过原点O、点B(1,3),又与x轴正半轴相交于点A,∠BAO=45°,点P是线段AB上的一点,过点P作PM∥OB,与抛物线交于点M,且点M在第一象限内.(1)求抛物线的表达式;(2)若∠BMP=∠AOB,求点P的坐标;(3)过点M作MC⊥x轴,分别交直线AB、x轴于点N、C,若△ANC的面积等于△PMN 的面积的2倍,求的值.10.在平面直角坐标系中,抛物线y=ax2﹣2ax﹣3与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,顶点为D,且过点(2,﹣3a).(1)求抛物线的解析式;(2)抛物线上是否存在一点P,过点P作PM⊥BD,垂足为点M,PM=2DM?若存在,求点P的坐标;若不存在,说明理由.(3)在(2)的条件下,求△PMD的面积.11.如图,直线y=x+c与x轴交于点A(﹣4,0),与y轴交于点C,抛物线y=﹣x2+bx+c经过点A,C.(1)求抛物线的解析式;(2)已知点P是抛物线上的一个动点,并且点P在第二象限内,过动点P作PE⊥x轴于点E,交线段AC于点D.①如图1,过D作DF⊥y轴于点F,交抛物线于M,N两点(点M位于点N的左侧),连接EF,当线段EF的长度最短时,求点P,M,N的坐标;②如图2,连接CD,若以C,P,D为顶点的三角形与△ADE相似,求△CPD的面积.12.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣3,0)和点B(1,0),与y轴交于点C(0,3),其对称轴l为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P在第二象限内的抛物线上,动点N在对称轴l上.①当PA⊥NA,且PA=NA时,求此时点P的坐标;②当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标.13.如图1,在平面直角坐标系中,抛物线y=ax2+bx+3与直线y=x﹣3交于点A(3,0)和点B(﹣2,n),与y轴交于点C.(1)求出抛物线的函数表达式;(2)在图1中,平移线段AC,点A、C的对应点分别为M、N,当N点落在线段AB上时,M点也恰好在抛物线上,求此时点M的坐标;(3)如图2,在(2)的条件下,在抛物线上是否存在点P(不与点A重合),使△PMC 的面积与△AMC的面积相等?若存在,直接写出点P的坐标;若不存在,请说明理由.14.已知抛物线l1与l2形状相同,开口方向不同,其中抛物线l1:y=ax2﹣6ax﹣10交x轴于A,B两点(点A在点B的左侧),且AB=4,抛物线l2与l1交于点A与C(4,m).(1)求抛物线l1,l2的函数表达式;(2)当x的取值范围是 时,抛物线l1与l2上的点的纵坐标同时随横坐标的增大而增大;(3)直线PQ∥y轴,分别交x轴,l1,l2于点D(n,0),P,Q,当≤n≤5时,求线段PQ的最大值.15.如图,在平面直角坐标系中,二次函数y=ax2+bx﹣3交x轴于点A(﹣3,0)、B(1,0),在y轴上有一点E(0,1),连接AE.(1)求二次函数的表达式;(2)若点D为抛物线在x轴负半轴下方的一个动点,求△ADE面积的最大值;(3)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标;若不存在,请说明理由.16.在平面直角坐标系xOy中抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,3).(1)求抛物线的表达式;(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BCD的面积最大时,求点P的坐标;(3)如图2,抛物线顶点为E,EF⊥x轴于F点,N是线段EF上一动点,M(m,0)是x轴上一动点,若∠MNC=90°,直接写出实数m的取值范围.17.已知直线y=x+4分别交x轴、y轴于A、B两点,抛物线y=x2+mx﹣4经过点A,和x轴的另一个交点为C.(1)求抛物线的解析式;(2)如图1,点D是抛物线上的动点,且在第三象限,求△ABD面积的最大值;(3)如图2,经过点M(﹣4,1)的直线交抛物线于点P、Q,连接CP、CQ分别交y轴于点E、F,求OE•OF的值.18.如图,在平面直角坐标系中,直线y=+2分别交x轴、y轴于点A、B,抛物线y=﹣x2+bx+c经过点A、B.点P是x轴上一个动点,过点P作垂直于x轴的直线分别交抛物线和直线AB于点E和点F.设点P的横坐标为m.(1)点A的坐标为 .(2)求这条抛物线所对应的函数表达式.(3)点P在线段OA上时,若以B、E、F为顶点的三角形与△FPA相似,求m的值.(4)若E、F、P三个点中恰有一点是其它两点所连线段的中点(三点重合除外),称E、F、P三点为“共谐点”.直接写出E、F、P三点成为“共谐点”时m的值.19.如图1,二次函数y=x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,OB=OC.点D在函数图象上,CD∥x轴,且CD=4,直线1是抛物线的对称轴,E是抛物线的顶点.(1)求b、c的值;(2)如图1,连接BE,线段OC上的点F关于直线l的对称点F'恰好在线段BE上,求点F的坐标;(3)如图2,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.抛物线上有一点Q,使得△PQN与△APM的面积相等,请求出点Q到直线PN的距离.20.如图抛物线y=ax2+2交x轴于点A(﹣2,0)、B,交y轴于点C;(1)求抛物线的解析式;(2)点P从点A出发,以1个单位/秒的速度向终点B运动,同时点Q从点C出发,以相同的速度沿y轴正方向向上运动,运动的时间为t秒,当点P到达点B时,点Q也停止运动,设△PQC的面积为S,求S与t间的函数关系式并直接写出t的取值范围;(3)在(2)的条件下,当点P在线段OB上时,设PQ交直线AC于点G,过P作PE⊥AC于点E,求EG的长.21.如图,在平面直角坐标系中,直线y=﹣x+3与抛物线y=﹣x2+bx+c交于A、B两点,点A在x轴上,点B的横坐标为﹣1.动点P在抛物线上运动(不与点A、B重合),过点P作y轴的平行线,交直线AB于点Q,当PQ不与y轴重合时,以PQ为边作正方形PQMN,使MN与y轴在PQ的同侧,连结PM.设点P的横坐标为m.(1)求b、c的值.(2)当点N落在直线AB上时,直接写出m的取值范围.(3)当点P在A、B两点之间的抛物线上运动时,设正方形PQMN周长为c,求c与m之间的函数关系式,并写出c随m增大而增大时m的取值范围.(4)当△PQM与y轴只有1个公共点时,直接写出m的值.22.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y 轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.23.已知:如图,抛物线y=﹣x2+bx+c与x轴、y轴分别相交于点A(﹣1,0)、B(0,3)两点,其顶点为D.(1)求这条抛物线的解析式;(2)若抛物线与x轴的另一个交点为E.求△ODE的面积;抛物线的对称轴上是否存在点P使得△PAB的周长最短.若存在请求出P点的坐标,若不存在说明理由.24.如图,抛物线y=﹣x2﹣2x+3的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求点A、B、C的坐标;(2)点M(m,0)为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q 作QN⊥x轴于点N,可得矩形PQNM.如图,点P在点Q左边,试用含m的式子表示矩形PQNM的周长;(3)当矩形PQNM的周长最大时,m的值是多少?并求出此时的△AEM的面积;(4)在(3)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作y 轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.25.在平面直角坐标系中,已知抛物线y=ax2+bx﹣4与x轴相交于A(﹣4,0)、C(2,0)两点.与y轴相交于点B.(1)求抛物线的解析式;(2)求抛物线与y轴的交点B的坐标和抛物线顶点坐标;(3)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值.26.在平面直角坐标系xOy中抛物线y=ax2﹣2ax+3(a≠0)的顶点A在第一象限,它的对称轴与x轴交于点B,△AOB为等腰直角三角形(1)写出抛物线的对称轴为直线 ;(2)求出抛物线的解析式;(3)垂直于y轴的直线L与该抛物线交于点P(x1,y1),Q(x2,y2)其中x1<x2,直线L与函数y=(x>0)的图象交于点R(x3,y3),若,求x1+x2+x3的取值范围.27.已知抛物线y=x2﹣2mx+m2﹣3(m是常数).(1)证明:无论m取什么实数,该抛物线与x轴都有两个交点;(2)设抛物线的顶点为A,与x轴两个交点分别为B,D,B在D的右侧,与y轴的交点为C.①求证:当m取不同值时,△ABD都是等边三角形;②当|m|≤,m≠0时,△ABC的面积是否有最大值,如果有,请求出最大值,如果没有,请说明理由.28.已知抛物线y=ax2+bx+3经过点A(﹣1,0)、B(3,0),且与y轴交于点C,抛物线的对称轴与x轴交于点D.(1)求抛物线的解析式;(2)点P是y轴正半轴上的一个动点,连结DP,将线段DP绕着点D顺时针旋转90°得到线段DE,点P的对应点E恰好落在抛物线上,求出此时点P的坐标;(3)点M(m,n)是抛物线上的一个动点,连接MD,把MD2表示成自变量n的函数,并求出MD2取得最小值时点M的坐标.29.如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A、B、C三点,其中点A的坐标为(0,2),点B的坐标为(1,0).(1)求该二次函数的表达式及点C的坐标;(2)点D的坐标为(0,1),点F为该二次函数在第二象限内图象上的动点,连接CD、CF,以CD、CF为邻边作平行四边形CDEF,设平行四边形CDEF的面积为S.①求S的最大值;②在点F的运动过程中,当点E落在该二次函数图象上时,求此时S的值及点E的坐标.30.如图1,抛物线y=mx2﹣4mx+3m(m>0)与x轴交于A,B两点(点B在点A右侧).与y轴交点C,与直线l:y=x+1交于D、E两点,(1)当m=1时,连接BC,求∠OBC的度数;(2)在(1)的条件下,连接DB、EB,是否存在抛物线在第四象限上一点P,使得S△DBE=S△DPE?若存在,求出此时P点坐标及PB的长度;若不存在,请说明理由;(3)若以DE为直径的圆恰好与x轴相切,求此时m的值.31.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与直线l:y=kx+m(k<0)交于A(﹣1,﹣1)、B两点,与y轴交于C(0,2).(1)求抛物线的函数表达式;(2)若y轴平分∠ACB,求k的值;(3)若在x轴上有且只有一点P,使∠APB=90°,求k的值.32.如图,已知点E在x轴上,⊙E交x轴于A,B两点(点A在点B的左侧),交y轴于点C,OB=3OA=3,抛物线y=ax2+bx+c的图象过A、B、C三点,顶点为M.(1)写出A、B两点的坐标A ,B ;(2)求二次函数的关系式;(3)点P为线段BM上的一个动点,过点P作x轴的垂线PQ垂足为Q,若OQ=m,四边形ACPQ的面积为S,求S关于m的函数关系式,和四边形ACPQ的面积的最大值.33.如图,点M(4,0),以点M为圆心、2为半径的圆与x轴交于点A、B.已知抛物线y=x2+bx+c过点A和B,与y轴交于点C.(1)求点C的坐标,并画出抛物线的大致图象(要求过点A、B、C,开口方向、顶点和对称轴相对准确)(2)点Q(8,m)在抛物线y=x2+bx+c上,点P为此抛物线对称轴上一个动点,求PQ+PB的最小值;(3)CE是过点C的⊙M的切线,点E是切点,求OE所在直线的解析式.34.如图,抛物线y=ax2+2x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=3.(1)求该抛物线的函数解析式.(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD.OD交BC于点F,当S△COF:S△CDF=3:2时,求点D的坐标.(3)如图2,点E的坐标为(0,),点P是抛物线上第一象限上的点,连接EB,PB,PE形成的△PBE中,是否存在点P,使∠PBE或∠PEB等于2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.35.如图,顶点为D的抛物线y=﹣x2+x+4与y轴交于点A,与x轴交于两点B、C(点B在点C的左边),点A与点E关于抛物线的对称轴对称,点B、E在直线y=kx+b(k,b为常数)上.(1)求k,b的值;(2)点P为直线AE上方抛物线上的任意一点,过点P作AE的垂线交AE于点F,点G为y轴上任意一点,当△PBE的面积最大时,求PF+FG+OG的最小值;(3)在(2)中,当PF+FG+OG取得最小值时,将△AFG绕点A按顺时方向旋转30°后得到△AF1G1,过点G1作AE的垂线与AE交于点M.点D向上平移个单位长度后能与点N重合,点Q为直线DN上任意一点,在平面直角坐标系中是否存在一点S,使以S、Q、M、N为顶点且MN为边的四边形为菱形?若存在,直接写出点S的坐标;若不存在,请说明理由.36.如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)求PE的长最大时m的值.(3)Q是平面直角坐标系内一点,在(2)的情况下,以P、Q、C、D为顶点的四边形是平行四边形是否存在?若存在,直接写出点Q的坐标;若不存在,请说明理由.37.已知在平面直角坐标系xOy中,O为坐标原点,线段AB的两个端点的坐标分别为A (0,2),B(﹣1,0),点C为线段AB的中点,现将线段BA绕点B按逆时针方向旋转90°得到线段BD,抛物线y=ax2+bx+c(a≠0)、经过点D.(1)如图1,若该抛物线经过原点O,且a=﹣1.①求点D的坐标及该抛物线的解析式;②连结CD,问:在抛物线上是否存在点P,使得∠POB与∠BCD互余?若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由.(2)如图2,若该抛物线y=ax2+bx+c(a<0)经过点E(﹣1,1),点Q在抛物线上,且满足∠QOB与∠BCD互余,若符合条件的Q点的个数是4个,请直接写出a的取值范围 .38.在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于A(1,0),B(3,0),与y轴交于C(0,3),抛物线顶点为D点.(1)求此抛物线解析式;(2)如图1,点P为抛物线上的一个动点,且在对称轴右侧,若△ADP面积为3,求点P 的坐标;(3)在(2)的条件下,PA交对称轴于点E,如图2,过E点的任一条直线与抛物线交于M,N两点,直线MD交直线y=﹣3于点F,连结NF,求证:NF∥y轴.39.如图1,正方形ABCD的一边AB在x轴的正半轴上,⊙M是正方形ABCD的外接圆,连接OD,与⊙M相交于E点,连接BE与AD交于点F,已知AB=4,(1)求证:△ODA≌△FBA;(2)如图2,当E是OD中点时,点G是过E、A、B的抛物线的顶点,连接AG,①求点E的坐标;②求证:AG是⊙M的切线.(3)如图3,连接CE,若ED+EA=3,直接写出EC+EB的值.40.如图,在平面直角坐标系xOy中,抛物线顶点为C(1,2),且与直线y=x交于点B(,);点P为抛物线上O,B两点之间一个动点(不与O,B两点重合),过P 作PQ∥y轴交线段OB于点Q.(1)求抛物线的解析式;(2)当PQ的长度为最大值时,求点Q的坐标;(3)点M为抛物线上O,B两点之间一个动点(不与O,B两点重合),点N为线段OB 上一个动点;当四边形PQNM为平行四边形,且PN⊥OB时,请直接写出Q点坐标.2019年03月08日〃子初ぐ的初中数学组卷参考答案与试题解析一.解答题(共40小题)1.已知二次函数y=ax2+bx+c图象的对称轴为y轴,且过点(1,2),(2,5).(1)求二次函数的解析式;(2)如图,过点E(0,2)的一次函数图象与二次函数的图象交于A,B两点(A点在B 点的左侧),过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D.①当CD=3时,求该一次函数的解析式;②分别用S1,S2,S3表示△ACE,△ECD,△EDB的面积,问是否存在实数t,使得S22=tS1S3都成立?若存在,求出t的值;若不存在,说明理由.【考点】HF:二次函数综合题.【分析】(1)把点(1,2),(2,5)坐标和对称轴为y轴三个条件,代入二次函数的表达式即可求解;(2)①将一次函数表达式与二次函数表达式联立并整理得:x2﹣kx﹣1=0,利用x2﹣x1===3,即可求解;②分别求出S1、S2、S3,用韦达定理化简,即可求解.【解答】解:(1)由题意得:,解得:,故:二次函数的表达式为:y=x2+1;(2)①设过点E的一次函数表达式为:y=kx+2,将一次函数表达式与二次函数表达式联立并整理得:x2﹣kx﹣1=0,设点A、B的坐标分别为(x1,y1)、(x2,y2)(x1<x2),则:x1+x2=k,x1x2=﹣1,x2﹣x1===3,解得:k=,∴该一次函数表达式为:y=x+2或y=﹣x+2;②S1=AC•OC=﹣x1y1,S2=CD•OE=(x2﹣x1)=k2+4,S3=BD•OD=x2y2,x1+x2=k,x1x2=﹣1,则:S1•S2=﹣x1x2[k2x1x2+2k(x1+x2)+4]=(k2+4)=4S2,∴t=4.【点评】本题考查的是二次函数综合运用,主要考查利用韦达定理处理复杂的数据,难度不大.2.如图,已知抛物线y=x2﹣x﹣k(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C过点B的直线y=﹣x+b与抛物线的另一交点为D.(1)若点D的横坐标为﹣5,求抛物线的函数表达式;(2)过D点向x轴作垂线,垂足为点M,连结AD,若∠MDA=∠ABD,求点D的坐标;(3)若在第一象限的抛物线上有一点P,使得以点A,B,P为顶点的三角形与△ABC相似,请直接写出△ABC的面积.【考点】HF:二次函数综合题.【分析】(1)求出A、B的坐标,把点B坐标代入直线表达式即可求解;(2)利用△AMD∽△DMB,=,即可求解;(3)分△ABC∽△APB、△ABC∽△PAB两种情况,分别求解即可.【解答】解:(1)抛物线y=x2﹣x﹣k=(x+2)(x﹣4),令y=0,则x=﹣2或4,即点A、B的坐标分别为(﹣2,0)、(4,0),把点B坐标代入直线y=﹣x+b得:﹣×4+b=0,解得:b=,∴直线BD的表达式为:y=﹣x+,当x=﹣5时,y=3,∴D(﹣5,3),把点D的坐标代入抛物线表达式得:(﹣5+2)(﹣5﹣4)=3,k=,∴抛物线的表达式为:y=x2﹣x﹣;(2)设点D的坐标为(x,﹣x+),则:DM=﹣x+,BM=4﹣x,AM=﹣2﹣x,∵∠MDA=∠ABD,∠AMD=∠DMB,∴△AMD∽△DMB,∴=,即:(﹣x+)2=(4﹣x)(﹣2﹣x),解得:x=﹣5或4(舍去x=4),∴点D的坐标为(﹣5,3);(3)由抛物线的表达式,令x=0,则y=﹣k,∴点C的坐标为(0,﹣k),OC=k,①当△ABC∽△APB时,则∠BAC=∠PAB,设点P的坐标为(x,y),过点P作PN⊥x轴交于点N,则ON=x,PN=y,tan∠BAC=tan∠PAB,即:,∴y=kx+k,把点P(x,)代入抛物线表达式并解得:x=8或﹣2(舍去﹣2),故点P的坐标为(8,5k),∵△ABC∽△APB,∴AB2=AC•AP,即:62=,解得:k=,S△ABC=AB•OC==;②△ABC∽△PAB时,同理可得:k=,S△ABC=AB•OC==3,故:△ABC的面积为=或3.【点评】本题考查的是二次函数综合运用,涉及到三角形相似、解直角三角形等,(2)(3)的关键是通过相似确定线段间的比例关系.3.如图,已知二次函数y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,图象经过B(﹣3,0)、C(0,3)两点,且与x轴交于点A.(1)求二次函数y=ax2+bx+c(a≠0)的表达式;(2)在抛物线的对称轴上找一点M,使△ACM周长最短,求出点M的坐标;(3)若点P为抛物线对称轴上的一个动点,直接写出使△BPC为直角三角形时点P的坐标.【考点】HF:二次函数综合题.【分析】(1)由抛物线的对称轴及点B的坐标可求出点A的坐标,由点A,B,C的坐标,利用待定系数法即可求出二次函数的表达式;(2)连接BC,交直线x=﹣1于点M,此时△ACM周长最短,由点B,C的坐标,利用待定系数法可求出直线BC的函数表达式,再利用一次函数图象上点的坐标特征即可求出点M的坐标;(3)设点P的坐标为(﹣1,m),结合点B,C的坐标可得出PB2,PC2,BC2的值,分∠BCP=90°,∠CBP=90°,∠BPC=90°三种情况考虑,①当∠BCP=90°时,利用勾股定理可得出关于m的一元一次方程,解之可得出m的值,进而可得出点P的坐标;②当∠CBP=90°时,利用勾股定理可得出关于m的一元一次方程,解之可得出m的值,进而可得出点P的坐标;③当∠BPC=90°时,利用勾股定理可得出关于m 的一元二次方程,解之可得出m的值,进而可得出点P的坐标.综上,此题得解.【解答】解:(1)∵二次函数y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,点B的坐标为(﹣3,0),∴点A的坐标为(1,0).将A(1,0),B(﹣3,0),C(0,3)代入y=ax2+bx+c,得:,解得:,∴二次函数的表达式为y=﹣x2﹣2x+3.(2)连接BC,交直线x=﹣1于点M,如图1所示.∵点A,B关于直线x=﹣1对称,∴AM=BM.∵点B,C,M三点共线,∴此时AM+CM取最小值,最小值为BC.设直线BC的函数表达式为y=kx+d(k≠0),将B(﹣3,0),C(0,3)代入y=kx+d,得:,解得:,∴直线BC的函数表达式为y=x+3.当x=﹣1时,y=x+3=2,∴当点M的坐标为(﹣1,2)时,△ACM周长最短.(3)设点P的坐标为(﹣1,m),∵点B的坐标为(﹣3,0),点C的坐标为(0,3),∴PB2=[﹣3﹣(﹣1)]2+(0﹣m)2=m2+4,PC2=[0﹣(﹣1)]2+(3﹣m)2=m2﹣6m+10,BC2=[0﹣(﹣3)]2+(3﹣0)2=18.分三种情况考虑(如图2):①当∠BCP=90°时,BC2+PC2=PB2,∴18+m2﹣6m+10=m2+4,解得:m=4,∴点P的坐标为(﹣1,4);②当∠CBP=90°时,BC2+PB2=PC2,∴18+m2+4=m2﹣6m+10,解得:m=﹣2,∴点P的坐标为(﹣1,﹣2);③当∠BPC=90°时,PB2+PC2=BC2,∴m2+4+m2﹣6m+10=18,整理得:m2﹣3m﹣2=0,解得:m1=,m2=,∴点P的坐标为(﹣1,)或(﹣1,).综上所述:使△BPC为直角三角形时点P的坐标为(﹣1,﹣2),(﹣1,),(﹣1,)或(﹣1,4).【点评】本题考查了二次函数的性质、待定系数法求二次函数解析式、三角形的三边关系、待定系数法求一次函数解析式、一次函数图象上点的坐标特征、两点间的距离公式、勾股定理以及解一元一次(二次)方程,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)利用二次函数的对称性及三角形的三边关系,找出点M所在的位置;(3)分∠BCP=90°,∠CBP=90°,∠BPC=90°三种情况,找出关于m的方程.4.定义:在平面直角坐标系xOy中,直线y=a(x﹣m)+k称为抛物线y=a(x﹣m)2+k 的关联直线.(1)求抛物线y=x2+6x﹣1的关联直线;(2)已知抛物线y=ax2+bx+c与它的关联直线y=2x+3都经过y轴上同一点,求这条抛物线的表达式;(3)如图,顶点在第一象限的抛物线y=﹣a(x﹣1)2+4a与它的关联直线交于点A,B(点A在点B的左侧),与x轴负半轴交于点C,连结AC、BC.当△ABC为直角三角形时,求a的值.【考点】HF:二次函数综合题.【分析】(1)根据关联直线的定义可求;(2)由题意可得a=2,c=3,设抛物线的顶点式为y=2(x﹣m)2+k,可得,可求m和k的值,即可求这条抛物线的表达式;(3)由题意可得A(1,4a)B(2,3a)C(﹣1,0),可求AB2=1+a2,BC2=9+9a2,AC2=4+16a2,分BC,AC为斜边两种情况讨论,根据勾股定理可求a的值.【解答】解:(1)∵y=x2+6x﹣1=(x+3)2﹣10∴关联直线为y=x+3﹣10=x﹣7(2)∵抛物线y=ax2+bx+c与它的关联直线y=2x+3都经过y轴上同一点,∴a=2,c=3,可设抛物线的顶点式为y=2(x﹣m)2+k,则其关联直线为y=2(x﹣m)+k=2x﹣2m+k,∴解得∴抛物线y=2x2+3或y=2(x+1)2+1,(3)由题意:A(1,4a)B(2,3a)C(﹣1,0),∴AB2=1+a2,BC2=9+9a2,AC2=4+16a2,显然AB2<BC2且AB2<AC2,故AB不能成为△ABC的斜边,当AB2+BC2=AC2时:1+a2+9+9a2=4+16a2解得a=±1,当AB2+AC2=BC2时:1+a2+4+16a2=9+9a2解得,∵抛物线的顶点在第一象限∴a>0,即【点评】本题是二次函数综合题,直角三角形的性质,熟练掌握二次函数图象上点的坐标特征和二次函数的性质;理解坐标与图象性质,记住两点间的距离公式,注意分情况讨论思想的应用.5.已知抛物线y=﹣x2+mx+m+1与x轴交于A、B两点(点A在点B的左侧).(1)当m=2时,抛物线与y轴交于点C.①直接写出点A、B、C的坐标;②如图1,连接AC,在x轴上方的抛物线上有一点D,若∠ABD=∠ACO,求点D的坐标;③如图2,点P为抛物线位于第一象限图象上一动点,过P作PQ⊥CB,求PQ的最大值;(2)如图3,若点M为抛物线位于x轴上方图象上一动点,过点M作MN⊥x轴,垂足为N,直线MN上有一点H,满足∠HBA与∠MAB互余,试判断HN的长是否变化,若变化,请说明理由,若不变,请求出HN长.【考点】HF:二次函数综合题.【分析】(1)①先解方程﹣x2+2x+3=0得A点和B点坐标;然后计算自变量为0时的函数值得到C点坐标;②OD交y轴于E,如图2,通过证明Rt△OBE∽Rt△OCA,利用相似比得到OE=OA=1,则E(0,1),再利用待定系数法求出直线BE的解析式为y=﹣x+1,然后解方程得D点坐标;③作PK⊥x轴于K,交BC于F,如图2,易得直线BC的解析式为y=﹣x+3,设P(x,﹣x2+2x+3)(0<x<3),则F(x,﹣x+3),所以PF=﹣x2+3x,再证明∠BFK=∠PFQ=45°,所以PQ=PF=﹣x2+x,然后根据二次函数的性质解决问题;(2)先解方程﹣x2+mt+m+1=0得A(﹣1,0),B(m+1,0),延长BH交AM于G,如图3,证明Rt△BNH∽△MNA,则=,设M(t,﹣t2+mt+m+1),则N(t,0),所以=,然后根据分式的运算可得到HN=1.【解答】解:(1)①当m=2时,抛物线解析式为y=﹣x2+2x+3,当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),当y=0时,y=﹣x2+2x+3=3,则C(0,3);②OD交y轴于E,如图2,∵∠OBE=∠ACO,∴Rt△OBE∽Rt△OCA,∴==,∴OE=OA=1,∴E(0,1),设直线BE的解析式为y=kx+b,把B(3,0),E(0,1)代入得,解得,∴直线BE的解析式为y=﹣x+1,解方程组得或﹣,∴D点坐标为(﹣,);③作PK⊥x轴于K,交BC于F,如图2,易得直线BC的解析式为y=﹣x+3,设P(x,﹣x2+2x+3)(0<x<3),则F(x,﹣x+3),∴PF=﹣x2+2x+3﹣(﹣x+3)=﹣x2+3x,∵OB=OC=3,∴△OCB为等腰直角三角形,∴∠KBF=45°,∴∠BFK=∠PFQ=45°,∴PQ=PF=﹣x2+x=﹣(x﹣)2+,当x=时,PQ有最大值,最大值为;(2)HN的长度不变,它的长度为1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数与二次函数综合卷21.如图,在矩形ABCD 中,点E 为AB 的中点,EF ⊥EC 交AD 于点F ,连接CF (AD >AE ),下列结论:①∠AEF=∠BCE ;②AF+BC >CF ;③S △CEF =S △EAF +S △CBE ;④若=,则△CEF ≌△CDF .其中正确的结论是 .(填写所有正确结论的序号)2.已知:BD 是四边形ABCD 的对角线,AB ⊥BC ,∠C=60°,AB=1,BC=33+,CD=23.(1)求tan ∠ABD 的值;(2)求AD 的长.D C BA3.海上有一小岛,为了测量小岛两端A 、B 的距离,测量人员设计了一种测量方法,如图所示,已知B 点是CD 的中点,E 是BA 延长线上的一点,测得AE =10海里,DE =30海里,且DE ⊥EC ,cos ∠D =35. (1)求小岛两端A 、B 的距离;(2)过点C 作CF ⊥AB 交AB 的延长线于点F ,求sin ∠BCF 的值.E ABFD C4.如图,在△ABC 中,90ACB ∠=,AC BC =,点P 是△ABC 内一点,且135APB APC ∠=∠=.AB C P(1)求证:△CPA ∽△APB ;(2)试求tan PCB ∠的值.5.如图,在梯形ABCD 中,︒=∠=∠90B A 点E 在AB 上,︒=∠45AED ,6=DE ,7=CE .(1)求AE 的长;(2)求BCE ∠sin 的值.6.如图,在△ABC 中,AD是BC 边上的高,AE 是BC 边上的中线,∠C=45°,AD=4.(1)求BC 的长;(2)求tan ∠DAE 的值.7.如图,在Rt △ABC 中,∠ABO=90°,OB=4,AB=8内的图象分别交OA 、AB 于点C 和点D ,连结OD ,若4=∆BOD S ,(1)求反比例函数解析式;(2)求C 点坐标.8.如图,在△ABC 中,BD ⊥AC 于点D ,,,并且.求的长.AB =BD =12ABD CBD ∠=∠ACBD9.下图是泰州某河上一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的距离都是1 m,拱桥的跨度为10 m,桥洞与水面的最大距离是5 m,桥洞两侧壁上各有一盏距离水面4 m的景观灯.若把拱桥的截面图放在平面直角坐标系中(如下右图).(10分)(1)求抛物线的关系式;(2)求两盏景观灯之间的水平距离.10.已知二次函数的图象的一部分如图所示,求:(1)这个二次函数关系式,(2)求图象与x轴的另一个交点,(3)看图回答,当x取何值时y ﹤0.(12分)11.如图,直线l经过A(3,0),B(0,3)两点与二次函数y=x2+1的图象在第一象限内相交于点C.(1)求△AOC的面积;(2)求二次函数图象的顶点D与点B,C构成的三角形的面积.12.抛物线y=-x2+(m-1)x+m与y轴交于点(0,3).(1)求抛物线的解析式;(2)求抛物线与x轴的交点坐标;(3)画出这条抛物线大致图象;(4)根据图象回答:①当x取什么值时,y>0 ?②当x取什么值时,y的值随x的增大而减小?13.立定跳远时,以小明起跳时重心所在竖直方向为y轴(假设起跳时重心与起跳点在同一竖直方向上),地平线为x轴,建立平面直角坐标系(如图),则小明此跳重心所走过的路径是一条形如y=-0.2(x-1)2+0.7的抛物线,在最后落地时重心离地面0.3m(假如落地时重心与脚后跟在同一竖直方向上).(1)小明在这一跳中,重心离地面最高时距离地面多少米?此时他离起跳点的水平距离有多少米?(2)小明此跳在起跳时重心离地面有多高?(3)小明这一跳能得满分吗(2.40m为满分)?参考答案1.①③④【解析】试题分析:∵EF ⊥EC ,∴∠AEF+∠BEC=90°,∵∠BEC+∠BCE=90°,∴∠AEF=∠BCE ,故①正确;又∵∠A=∠B=90°,∴△AEF ∽△BCE ,∴ECEF BE AF =, ∵点E 是AB 的中点,∴AE=BE ,∴ECEF AE AF =, 又∵∠A=∠CEF=90°, ∴△AEF ∽△ECF ,∴∠AFE=∠EFC ,过点E 作EH ⊥FC 于H ,则AE=DH ,在Rt △AEF 和Rt △HEF 中,⎩⎨⎧==EHAE EF EF , ∴Rt △AEF ≌Rt △HEF (HL ),∴AF=FH ,同理可得△BCE ≌△HCE ,∴BC=CH ,∴AF+BC=CF ,故②错误;∵△AEF ≌△HEF ,△BCE ≌△HCE ,∴S △CEF =S △EAF +S △CBE ,故③正确;若23=CD BC ,则tan ∠BCE=323222121=⨯====CD BC CD BC AB BC BE BC , ∴∠BEC=60°,∴∠BCE=30°∴∠DCF=∠ECF=30°,又∵∠D=∠CEF, CF=CF∴△CEF≌△CDF(AAS),故④正确,综上所述,正确的结论是①③④.故答案为:①③④.考点:1、矩形的性质;2、全等三角形;3、三角函数;4、相似三角形2.(1)1;(2【解析】试题分析:(1)过点D作DE⊥BC于点E,根据∠C=60°求出CE、DE,再求出BE,从而得到DE=BE,然后求出∠EDB=∠EBD=45°,再求出∠ABD=45°,然后根据特殊角的三角函数值解答.(2)过点A作AF⊥BD于点F,求出再求出BD,然后求出DF,在Rt△ADF中,利用勾股定理列式计算即可得解.⊥于点E.试题解析:(1)如图,作DE BC∵在Rt△CDE 中,∠C=60°,∵==∴DE BE 3.∴在Rt△BDE 中,∠EDB= ∠EBD=45º.∵AB⊥BC,∠ABC=90º,∴∠ABD=∠ABC-∠EBD=45º.∴ tan∠ABD=1.⊥于点F.(2)如图,作AF BD在Rt△ABF 中,∠ABF=45º, AB=1,==,∵在Rt△BDE 中,DE BE3∴在Rt△AFD考点:1.勾股定理;2.锐角三角函数定义;3.特殊角的三角函数值.3.(1) 16.7(海里).【解析】试题分析:(1)在Rt△CED中,利用三角函数求出CE,CD的长,根据中点的定义求得BE 的长,AB=BE-AE即可求解;(2)设BF=x海里.在Rt△CFB中,利用勾股定理求得CF2=CB2-BF2=252-x2=625-x2.在Rt△CFE中,列出关于x的方程,求得x的值,从而求得sin∠BCF的值.(1)在Rt△CED中,∠CED=90°,DE=30海里,∴cos∠∴CE=40(海里),CD=50(海里).∵B点是CD的中点,∴(海里)∴AB=BE-AE=25-8.3=16.7(海里).答:小岛两端A、B的距离为16.7海里.(2)设BF=x海里.在Rt△CFB中,∠CFB=90°,∴CF2=CB2-BF2=252-x2=625-x2.在Rt△CFE中,∠CFE=90°,∴CF2+EF2=CE2,即625-x2+(25+x)2=1600.解得x=7.∴sin∠考点: 解直角三角形的应用.4.(1)证明见解析;(2)2.【解析】试题分析:(1)应用△ABC中角的关系求出∠PAC=∠PBA和∠APB=∠APC即可证得;(2)由等腰直角三角形,相似三角形的性质和锐角三角函数定义即可求得.试题解析:(1)∵在△ABC中,∠ACB=90º,AC=BC∴∠BAC=45º,即∠PAC+∠PAB=45º,又在△APB中,∠APB=135º,∴∠PBA+∠PAB=45º,∴∠PAC=∠PBA,又∠APB=∠APC,∴△CPA ∽△APB.(2)∵△ABC 是等腰直角三角形,又∵△CPA ∽△APB ,令CP=k ,则,PB=2k ,又在△BCP 中,∠BPC=360º-∠APC-∠BPC=90º,考点:1. 等腰直角三角形的性质;2.相似三角形的判定和性质;3.锐角三角函数定义.5.(1(2 【解析】试题分析:(1)在DAE Rt ∆中,∠A=90°,∠AED=45°,DE=6,根据这些条件利用余弦函数求AE ;(2)在BCE Rt ∆中,EC=7,再利用(1)的解答结果,根据正弦函数来解答sin BCE ∠的值. 中,︒=∠90A ,︒=∠45AED ,6=DE ∴AED DE AE ∠⨯=cos =︒⨯45cos 6=;(2)∵AE AB BE -=在BCE Rt ∆中,7=EC , 考点:解直角三角形.6.(1(2 【解析】试题分析:(1)先由三角形的高的定义得出∠ADB=∠ADC=90°,再解Rt △ADC ,得出DC=4;解Rt △ADB ,得出AB=6,根据勾股定理求出BC=BD+DC 即可求解;(2)先由三角形的中线的定义求出CE 的值,则DE=CE-CD ,然后在Rt △ADE 中根据正切函数的定义即可求解.试题解析:(1)在△ABC 中,∵AD 是BC 边上的高,∴∠ADB=∠ADC=90°.在△ADC 中,∵∠ADC=90°,∠C=45°,AD=4,∴DC=AD=4.在△ADB 中,∵∠ADB=90°,AD=4,∴∴∴(2)∵AE 是BC 边上的中线,∴∴∴tan ∠ 考点: 解直角三角形.7.(1(2)(2,4). 【解析】试题分析:(1)由4=∆BOD S ,且OB=4,可求BD 的长,因此D 点坐标可求,从而确定反比例函数解析式.(2)过点C 作CE ⊥OB 于点E .在AOB Rt ∆中,利用锐角三角函数可求出CE 和OE 的长,从而求出C 点坐标.试题解析:(1)设D (x ,y ),则有OB=x ,BD=y .由 4=∆BOD S ,得 xy=8.k=xy ,∴k=8,(2)过点C 作CE ⊥OB 于点E .在AOB Rt ∆中,︒=∠90ABO ,4=OB ,8=AB ,∴tan ∠CE=2EO , 设C 点坐标为(a ,2a ),把点C (a ,2a 822=a ,解得2±=a ,∵点C 在第一象限,∴a>0,取a=2.∴C 点坐标为(2,4).考点: 反比例函数综合题.8【解析】试题分析:在Rt △ABD 中,tan ∠即可求出∠ABD=30°,从而判断△ABC 为直角三角形,且∠C=30°,利用30°所对的直角边等于斜边的一半即可求出AC 的长.试题解析:在Rt △ABD 中,∠BDA=90°,∴tan ∠ ∴∠ABD=30°,∠A=60°∵∠CBD ∴∠CBD=60°,∠ABC=90°在Rt △ABD 中,42cos AB AC A== 考点: 解直角三角形.9.(1)y= (x-5)2+5(0≤x ≤10). (2)两景观灯间的距离为5米. 【解析】试题分析:(1)抛物线的顶点坐标为(5,5),与y 轴交点坐标是(0,1)设抛物线的解析式是y=A (x ﹣5)2+5把(0,1)代入y=A (x ﹣5)2+5得A=﹣∴y=﹣(x ﹣5)2+5(0≤x≤10);(2)由已知得两景观灯的纵坐标都是4∴4=﹣(x ﹣5)2+5 ∴(x ﹣5)2=1 ∴x 1=,x 2=∴两景观灯间的距离为﹣=5米考点:二次函数的应用10.(1)二次函数关系式为y=2x 2 -4x-6;(2)与x 轴的另一个交点是(-1,0),(3)-1﹤x﹤3【解析】试题分析:(1)由图象可知,抛物线顶点为(1,-8)所以可设二次函数为y=A (x-1)2-8,则该二次函数过(3,0)这个点所以4A-8=0;即A=2所以二次函数关系式为:y=2(x-1)2-8= y=2x 2 -4x-6;(2)当y=0时, 2x 2 -4x-6=0所以(x-3)(x+1)=0;得x=3或者x=-1所以图像与x 轴的另一个交点为(-1,0);(3)根据图象可知:当-1<x <3时,y <0考点:二次函数的图象及性质11.(1)3;(2)1【解析】试题分析:(1)由A (3,0),B (0,3)两点可求出一次函数的解析式为y =-x +3.联立⎩⎨⎧+=+-=132x y x y 并根据图中点C 的位置,得C 点坐标为(1,2).∴S △AOC =12·|OA|·|y C |=12×3×2=3.(2)二次函数y=x2+1的顶点坐标为D(0,1).∴S△BCD=12·|BD|·|x C|=12×|3-1|×1=1.考点:1.函数图象的交点;2.二次函数性质12.(1)抛物线的解析式为y=-x2+2x+3;(2)抛物线与x轴的交点坐标(-1,0),(3,0);(3)详见解析;(4)①当-1<x<3时,y>0;②当x>1时,y的值随x的增大而减小.【解析】试题分析:(1)将(0,3)代入y=-x2+(m-1)x+m求得m,即可得出抛物线的解析式;(2)令y=0,求得与x轴的交点坐标;令x=0,求得与y轴的交点坐标;(3)得出对称轴,顶点坐标,画出图象即可;(4)当y>0时,即图象在一、二象限内的部分;当y<0时,即图象在一、二象限内的部分;在对称轴的右侧,y的值随x的增大而减小.试题解析:(1)∵抛物线y=-x2+(m-1)x+m与y轴交于(0,3)点,∴m=3,∴抛物线的解析式为y=-x2+2x+3;(2)令y=0,得x2-2x-3=0,解得x=-1或3,∴抛物线与x轴的交点坐标(-1,0),(3,0);令x=0,得y=3,∴抛物线与y轴的交点坐标(0,3);(3)对称轴为x=1,顶点坐标(1,4),图象如图,(4)如图,①当-1<x<3时,y>0;当x<-1或x>3时,y<0;②当x>1时,y的值随x的增大而减小.考点:1.抛物线与x轴的交点;2.二次函数的图象;3.待定系数法求二次函数解析式.13.(1)小明在这一跳中,重心离地面最高时距离地面0.7米,此时他离起跳点的水平距离有1米;(2)小明此跳在起跳时重心离地面有0.5米高;(3)小明这一跳能得满分;【解析】试题分析:(1)由解析式即可得到;(2)在解析式中令x=0,则可得到小明在起跳时重心离地面有高度;(3)在解析式中令y=0,解方程即可得到;试题解析:(1)由解析式y=-0.2(x-1)2+0.7可知抛物线的开口向下,顶点坐标为(1,0.7),所以小明在这一跳中,重心离地面最高时距离地面0.7米,此时他离起跳点的水平距离有1米;(2)令x=0,则y=-0.2(x-1)2+0.7=-0.2+0.7=0.5,即小明此跳在起跳时重心离地面有0.5米高;(3)令y=0,则有-0.2(x-1)2+0.7=0,解得x1 2.87>2.4,x2(舍去)所以小明这一跳能得满分;考点:二次函数的应用。

相关文档
最新文档