方程的认识优秀6篇
七年级二元一次方程组教案(必备6篇)

七年级二元一次方程组教案(必备6篇)七年级二元一次方程组教案第1篇【教学目标】知识目标:①使学生初步理解二元一次方程与一次函数的关系。
②能根据一次函数的图象求二元一次方程组的近似解。
能力目标:通过学生的思考和操作,力图提示出方程与图象之间的关系,引入二元一次方程组图象解法,同时培养学生初步的数形结合的意识和能力。
情感目标:通过学生的自主探索,提示出方程和图象之间的对应关系,加强新旧知识的联系,培养学生的创新意识,激发学生学习数学的兴趣。
重点要求:1、二元一次方程和一次函数的关系。
2、根据一次函数的图象求二元一次方程组的近似解。
难点突破:经历观察、思考、操作、探究、交流等数学活动,培养学生抽象思维能力,并体会方程和函数之间的对应关系,即数形结合思想。
【教学过程】一、学前先思师:请同学们思考,我们已经学过的二元一次方程组的解法有哪些?生:代入消元法、加减消元法。
师:请你猜测还有其他的解法吗?生:(小声议论,有人提出图象解法)师:看来的同学似乎已经提前做了预习工作,很好!那么对于课题“二元一次方程组的图象解法”,你想提什么问题?生:二元一次方程组怎么会有图象?它的图象应该怎样画?生:二元一次方程组的图象解法怎么做?师:同学们都问得很好!那你有喜欢的二元一次方程组吗?生:(比较害羞)师:看来大家比较害羞,那么请大家把各自喜欢的二元一次方程组留在心里。
让我们带着同学们提出的问题从二元一次方程开始今天的学习。
二、探究导学题目:判断上面几组解中哪些是二元一次方程的解?生:和不是,其余各组均是方程的解。
师:请在学案上的直角坐标系中先画出一次函数的图象,再标出以上述的方程的解中为横坐标,为纵坐标的点,思考:二元一次方程的解与一次函数图象上的点有什么关系?教学引入师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。
现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。
动画演示:场景一:正方形折叠演示师:这就是我们得到的正方形。
解方程教学反思优质6篇

解方程教学反思优质6篇如果没有将教学反思写得具体,那我们的教学就无法得到明显提升,撰写教学反思可以增强教师的教学科研意识,本店铺今天就为您带来了解方程教学反思优质6篇,相信一定会对你有所帮助。
解方程教学反思篇1本节课,我利用课件进行教学,课前展示了一架天平,从学生认识天平平衡的特性导入新课,在新事物面前,学生学习积极性非常高,课堂上同学们积极参与,认真思考,提出疑问,顺利掌握了方程的定义。
上完这节课我的主要收获如下:1、用天平创设情境直观形象,有助学生理解式子的意思等式是一个数学概念。
如果离开现实情境出现含有未知数的等式,学生很难体会等式的具体含义。
通过天平平衡或者不平衡判断出两个物体的质量是否相等,天平图创设情境,利用鲜明的直观形象写出表示相等的式子和表示不相等的式子,可以帮助学生理解式子的意思,也充分利用了教材的主题图。
2、通过不断比较,总结特点,让学生逐步建立数学模型在对比总结中认识方程的主要特征。
在教学过程中,学生通过观察和操作得到了很多不同的式子,在得到相关式子时,直接引导学生进行对比,分别总结出各自的特征,最后我把方程的式子全部圈了出来,告诉学生,在数学上把这样的关系式叫做方程,让后让学生自己总结方程的概念,学生们很自然就归纳出这一类式子的特征,总结出了方程的概念,在自己的脑海里建立起方程的数学模型。
3、数学要以学生的错误为资源,让学生在反思中加深认识在学生总结出方程的意义之后,自己列方程,并同桌互相检查,有解决不了的问题全班交流,在交流过程中,学生对方程的理解偏差和用字母表示数含糊的知识都暴露了出来,通过指名学生发言,学生在争论中逐步明白了相关知识,以前没问题的学生也在讨论中深化了认识。
4、数学应联系生活,强化概念在建立方程的意义以后,我设计了根据情境图写出相应的方程,并在最后引入生活实例,从中找出不同的方程等题型,体现了层层递进,由易到难、学生参与的很积极,也觉得很有趣。
这一过程学生在生活实际中寻找等量关系列方程,进一步体会方程的意义,加深了对方程概念的理解,同时也为以后运用方程知识解决实际问题打下基础。
方程的意义评课(精选10篇)

方程的意义评课(精选10篇)方程的意义评课篇1作为,课本就将方程这样一种重要的数学思想方法凸显出来,可见方程的地位之大,的确,方程对丰富学生解决问题的策略,提高解决问题的能力,发展数学素养有着非常重要的意义。
方程是一种特殊的等式,而等式的原型便是天平,可惜没找到实物,但不妨碍学生通过已有经验来自我构建。
首先出示5个式子,让学生根据自己的标准分成两类:等式与不等式,用“=”连接的便是等式,用其他如“﹥﹤≠≈”等不等号连接的式子是不等式。
然后指出不等式需要到初中学习,今天我们研究等式。
观察这几个等式,可以分为几类?指出,已经知道的数叫已知数,不知道的叫未知数,等式里有未知数,便是方程,方程包括在等式里,是一种特殊的等式。
这样,算是新课内容结束了。
接着根据关系式列方程。
从认知规律来看,本节课的设计完全符合标准,正本反馈,还是有些问题的。
一、学生生活经验不足,导致找不准数量关系。
妈妈买一台电话机,单价116元,付出x元,找回84元。
学生的答案让你意象不到,什么形式都有,他们会将这三个数通过一定的符号随意地组合起来,让我哭笑不得。
在此之前有一个文具盒与笔记本共20元的问题,还引导学生编成了应用题加以理解,不想还是有问题。
所以学校应该斥资建立一个超市,让学生在真实的生活情境中找到发展的可能,有些数学问题真的只是生活,根本就不是数学。
二、加强备课力度,任何小的问题都不能存在。
还是上面一道题,根据以往列算式的经验,很多学生列成116+84=x,这是可以理解的,正因为我只是在课堂上强调:根据经验,未知数不单独放一边,这样跟算式的区别不大,但效果不很好。
我想,将三种式子都板书出来,116+84=x,x-116=84,x-84=116,然后指出我们列方程习惯上不采用第一种,因为将x去掉,不影响答案,而选择二、三两种中的一种,方程的意义评课篇2小学五年级第四单元教材的设计打破了传统的教学方法。
在以前人教版教材中,学习解方程之前首先要求学生掌握加、减、乘、除法各部分之间的关系,然后利用:一个加数=和—另一个加数;被减数=减数+差等关系来求出方程中的未知数。
方程的意义教学设计5篇

方程的意义教学设计篇5教学内容:人教版课标教材小学数学第九册第四单元第53页、第54页“方程的意义”。
教学目标:借助生活情境理解方程的意义,能从形式上判断一个式子是不是方程;经历从生活情境到方程模型的建构过程,感受方程思想;培养学生观察、描述、分类、抽象、概括、应用等能力。
教学重点:准确从生活情境中提炼方程模型,然后用含有未知数的等式来表达,理解方程的意义。
教学难点:理解方程的意义,即方程两边代数式所表达的两件事情是等价的。
教学过程呈现情境,建立方程1.师:(出示一台天平)请看,这是一台天平,在什么情况下天平会保持平衡呢?教师在天平的一边放上两袋100克的食物,另一边放一个200克的砝码,这台天平保持平衡了吗?提问:你能用一个式子表示这种平衡吗?(100+100=200或100×2=100)你怎么想到了用数学符号“=”来表示天平的平衡呢?(引导学生说出:这里的100+100表示的是天平左盘食物的质量,200表示的是天平右盘砝码的质量,正因为它们的质量相等,天平才会平衡,如果学生说成:食物的质量=砝码的质量,教师也给予肯定,然后问:现在已经知道这两袋食物的质量都是100克,砝码的质量是200克,那么上面的式子可以写成什么形式?)2.(出示两小袋食品)将左盘的食物换成两袋30克的食物,天平还是平衡的吗?为什么?你能用一个式子表示这种不平衡吗?(30+30200)咱们班谁喜欢喝牛奶?你喝吧!问:这盒牛奶被喝掉多少克了?再问:这盒牛奶现在的质量可以怎么表示?(275-x)克。
3.再将这盒喝过的牛奶放在天平的左盘,可能会出现什么情况?可以怎么表示?写一写!点名汇报,(切忌一问一答!当学生答出一种情况,老师随机问这种情况表示的是什么情况)当学生说出275-x>200、275-x=200、275-x200,275-x>200,275-X=200,275-x72,③y+24④5x+32=47,⑤2x+3)=34,⑥6(a+2)=42(对不是方程的式子,一定要学生从本质上解释为什么不是方程)学完方程后。
方程教学反思6篇

方程教学反思6篇教学反思是一种书面文体,主要用于记录我们教学期间的感受,撰写教学反思可以增强教师的教学科研意识,本店铺今天就为您带来了方程教学反思6篇,相信一定会对你有所帮助。
方程教学反思篇1?方程的意义》这是一块崭新的知识点,对于五年级的学生来说,理解起来也有一定的难度。
这是一节数学概念课,概念教学是一种理论教学,理论性、学术性较强,往往会显得枯燥无味,但同时它又是一种基础教学,是以后学习更深一层知识,解决更多实际问题的知识支撑。
因此,在教学中我通过创设贴近学生生活的情境来激发学生的学习兴趣,从而使他们愿学、乐学,为以后进一步学习方程打下基础。
在教学设计时,我把方程的意义作为教学的重点,方程意义的教学目标定位是,不仅仅是让学生了解方程的概念,能指出哪些是方程;更多思考的是学生对方程后继的学习和发展,注重知识的渗透.课堂上让学生借助于天平平衡与不平衡的现象列出表示等与不等关系的式子,为进一步认识等式、不等式提供了观察的感性材料,然后引导学生对式子分类,建立等式概念,并举出新的生活实例进行强化.最后引导学生分析、判断,明确方程与等式的联系与区别,深化方程的概念.本节课从课堂整体来看还可以,有大部分学生的思维还较清晰、会说;可还有部分学生不敢说,或者是不知如何表述,或者是表述的不准确,我想问题的关键是学生的课堂思维过程的训练有待加强,数学课堂也应该重视学生说的训练,在说的过程中激活学生的思维,让学生在新课程的指引下学会自主探索,学得主动,学得投入。
方程教学反思篇2解方程是是数学知识里面很关键很重要的一个知识点。
在实际中,拥有方程的解法之后,很多人不会算式解题,但是能用方程解题,足以见得方程可以做到一些算式无法超越的能力。
而如今五年级的学生开始学习解方程,作为教师的我更应该让学生吃透这方程,突破这重难点。
在教这单元之前,我一直困惑解方程要采用初中的移项解题,还是运用书本的等式性质解题,面对困惑,向老教师请教,原来还有第三种老教材的四则运算之间的关系解题,方法多了,学生该吸收那种方法呢?困惑,学生该如何下手,运用移项解题,学生对于这个概念或许不会系统清晰,但是等式性质解题时,在碰到a-X=b和a÷X=b 此类的方程,学生能如何下手,四则运算之间的关系老教材的方式改变,必有他的理由,能用吗?困惑!我先了解改革的原因(摘自教学参考书):新教材编写者如此说明:长期以来,小学教学简易方程时,方程变形的依据总是加减运算的关系或乘除运算之间的关系,这实际上是用算术的思路求未知数。
求解一元一次方程数学教案(优秀7篇)

求解一元一次方程数学教案(优秀7篇)解一元一次方程的教案篇一教学目标知识技能:1.用一元一次方程解决“数字型”问题;2.能熟练的通过合并,移项解一元一次方程;3.进一步学习、体会用一元一次方程解决实际问题。
过程方法通过学生自主探究,师生共同研讨,体验将实际问题转化成数学问题,学会探索数列中的规律,建立等量关系并加以解决,同时进一步渗透化归思想。
情感态度经历运用方程解决实际问题的过程,发展抽象、概括、分析和解决问题的能力,体会数学对实践的指导意义。
重点建立一元一次方程解决实际问题的模型。
难点探索并发现实际问题中的等量关系,并列出方程。
环节教学问题设计教学活动设计情境引入牵线搭桥,解下列方程:(1)-5x+5=-6x;(2);(3)0.5x+0.7=1.9x;总结解“ax+b=cx+d”类型的一元一次方程的步骤方法。
引出问题即课本例3问:你能利用所学知识解决有关数列的问题吗?教师:出示题目,提出要求。
学生:独立完成,根据讲评核对、自我评价,了解掌握情况。
探究一:数字问题例3有一列数,按一定规律排列成1,-3,9,-27,81,-243……其中某三个相邻数的和是-1701,这三个数各是多少?1.引导学生观察这列数有什么规律?①数值变化规律?②符号变化规律?结论:后面一个数是前一个数的-3倍。
2.怎样求出这三个数?①设三个相邻数中的第一个数为x,那么其它两个数怎么表示?②列出方程:根据三个数的和是-1701列出方程。
③解略变式:你能设其它的数列方程解出吗?试一试。
比比较哪种设法简单。
探究二:百分比问题(习题3.2第8题)某乡改种玉米为种优质杂粮后,今年农民人均收入比去年提高20%.今年人均收入比去年的1.5倍少1200元。
这个乡去年农民人均收入是多少元?①若设这个乡去年农民人均收入是x元,今年人均收入比去年提高20%,那么今年的收入是_________元;②因为今年的人均收入比去年的1.5倍少1200元,所以今年的收入又可以表示为_________元。
简易方程教学设计(优秀7篇)

简易方程教学设计(优秀7篇)每个人都曾试图在平淡的学习、工作和生活中写一篇文章。
写作是培养人的观察、联想、想象、思维和记忆的重要手段。
大家想知道怎么样才能写一篇比较优质的范文吗?下面作者为大家整理了7篇简易方程教学设计,希望可以帮助您更好的写作简易方程教案。
简易方程教学设计篇一1、会根据具体问题中的数量关系列一元二次方程并求解。
2、能根据问题的实际意义,检验所得结果是否合理。
3、进一步掌握列方程解应用题的步骤和关键。
一、复习回顾:1、解一元二次方程都有哪些方法?(学生口答)2、列一元一次方程解应用题有哪些步骤?(学生口答)①审题;②设未知数;③找相等关系;④列方程;⑤解方程;⑥答二、问题探究:(一)思考课本探究1回答下列问题:(1)设每轮传染中平均一个人传染x个人,那么患流感的这个人在一轮传染中传染了人;一轮传染后,共有人患了流感。
(2)在第二轮传染中,传染源是人,这些人中每一个人又传染了人,那么第二轮传染了人,第二轮传染后,共有人患流感。
(3)根据等量关系列方程并求解。
为什么要舍去一解?(4)通过对这个问题的探究,你对类似的传播问题中的数量关系有新的认识吗?(5)完成教材思考:如果按照这样的传播速度,三轮传染后,有多少人患流感?(学生在交流中解决问题,教师深入小组讨论,对疑惑较多的问题要点拨;前两个问是解题的关键,可作适当点拨。
较后思考题,可让学生试试独立完成。
教给学生如何审题,分析题。
)三、例题学习:例1:青山村种的水稻20xx年平均每公顷产7200kg,20xx年平均每公顷产8450kg,求水稻每公顷产量的年平均增长率。
(学生独立思考、练习。
一学生板书,教师巡视后讲解)例2:(教材探究2)两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(给学生分组求解,然后比较哪个小组做的有快又准。
一元二次方程教学设计(精选6篇)

一元二次方程教学设计(精选6篇)一元二次方程教学设计1一、教学内容分析华师版九年级(上)23章《一元二次方程的根的判别式》一节,教材中作为阅读材料。
从推导到应用都比较简单。
但是它在整个中学数学中占有重要的地位。
从知识的发展来看,学生通过对一元二次方程的根的判别式的学习,可以巩固已学过实数、整式、二次根式、一元一次不等式、一元二次方程的相关概念、一元二次方程的解法等知识,既可以根据它来判断一元二次方程的根的情况,又可以为今后研究二次函数的图像与x轴交点情况,二次三项式以及二次曲线等奠定基础,并且用它可以解决许多其它综合性问题。
通过这一节的学习,使学生会用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等,培养学生的探索精神和观察、分析、归纳的能力,以及逻辑思维能力、推理论证能力,并向学生渗透分类的数学思想,感受数学的简洁美。
教学重点:根的判别式的正确理解和运用教学难点:含字母系数的一元二次方程根的判别式的运用。
二、学情分析学生已经学过一元二次方程的四种解法,并对的作用已经有所了解,在此基础上来进一步研究作用,它是前面知识的深化与总结。
九年级学生的认识水平渐渐由具体直觉占优势过渡到抽象思维占优势。
教师的指导方法应适应他们的认知特点和相应规律。
从数学思想方法上来说,学生对分类讨论、归纳总结的数学思想已经有所接触。
所以可以通过让学生动手、动脑来培养学生探索精神和观察、分析、归纳的能力,以及逻辑思维能力、推理论证能力。
三、教学目标知识和技能目标:1、能运用根的判别式,判别方程根的情况和进行有关的推理论证;2、会运用根的判别式求一元二次方程中字母系数的取值范围;过程和方法目标:1、经历一元二次方程的根的判别式的产生的过程;2、向学生渗透分类的数学思想;3、培养学生的逻辑思维能力以及推理论证能力。
情感态度价值观目标:1、体验数学的简洁美;2、培养学生的探索、创新精神和协作精神。
四、教法、学法:教法:1、探索发现:本着“以学生发展为本”的教育理念,教师启发、诱导,学生探索发现新知识;2、观察演示:通过典型例题的分析、研究,引发学生的思考、质疑、解疑;3、归纳总结:通过课堂小结,完善认知结构,提高认识能力;4、讲练结合:通过变式训练、拓展训练,让学生学会分类、类比、转化等数学思想,培养学生分析问题和解决问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方程的认识优秀6篇做一份好的教案,可以让老师在教学中游刃有余,显现出足够强大的自信。
牛牛范文的小编精心为您带来了6篇方程的认识,如果能帮助到亲,我们的一切努力都是值得的。
解方程篇一教学目标:1、初步学会如何利用方程来解应用题2、能比较熟练地解方程。
3、进一步提高学生分析数量关系的能力。
教学重难点:找出题中的等量关系,并根据等量关系列出方程。
教学过程:一创设情景,提出目标1:出示洪泽湖的图片——洪泽湖是我国五大淡水湖之一,位于江苏西部淮河下游,风景优美,物产丰富。
但每当上游的洪水来临时,湖水猛涨,给湖泊周围的人民的生命财产带来了危险。
因此,密切注视水位的变化情况,保证大坝的安全十分重要,如果湖水到了警戒水位的高度,就要引起高度警惕,超出警戒水位越多,大坝的危险就越大。
下面,我们来就来看一则有关大坝水位的新闻。
谁来当主持人,为大家播报一下。
“今天上午8时,洪泽湖蒋坝水位达14.14m,超过警戒水位0.64m.”2、我们结合这幅图片来了解警戒水位、今日水位,及其关系。
3、提出学习目标:同学们能解决这个问题吗?你还想知道什么?(1)根据已知条件,找出题目中的数量关系。
(2)根据具体找出的数量关系列出方程,并正确解方程。
【设计意图:从生活实例激发学生的学习兴趣。
简洁提出目标让学生明白知识点。
】二展示成果,激发冲突1、学生独立解决例3、例4,小组内个人展示。
小组内展示内容主要有例3、例4:(1)根据刚才所了解的信息,这个问题中有哪几个关键的数量呢?(警戒水位、今日水位、超出部分)(2)它们之间有哪些数量关系呢?2、全班展示(1)第一种,学生根据的是“警戒水位+超出部分=今日水位”这一数量关系(由于左右相等,也称等量关系)所得到的:x+0.64=14.14引导质疑:还有不同的方法列方程解吗?(以此引出第二、第三种方法:14.14﹣x= 0.64与14.14﹣0.64=x)学生:第二种,可以肯定学生所列的方程是正确的,但方程不容易解,为什么呢?因为x 是被减去的。
学生:第三种,可让学生让算术解法与之作比较,让其发现,大同小异,因此,在列方程的过程中,通常不会让方程的一边只有一个x。
师:在解决问题中,我们是怎样来列方程的?(将未知数设为x,再根据题中的等量关系列出方程。
)(2)展示例4,其他学生自由提出疑问,教师辅导解释。
【设计意图:教师始终把学生放在主体地位,为学生提供了一个自己去想去说,去回味知识掌握过程的舞台,这样将更有助于学生掌握正确的学习方法,总结失败原因,发扬成功经验,培养良好的学习习惯。
】三拓展延伸1:p61页“做一做”的题目2:独立完成练习十一中的第6、8、9题。
【设计意图:通过联系,加强学生对知识的系统化,及时有效地巩固知识】。
解方程篇二活动内容:关于方程教学中的一些问题。
1.方程如何进行验算,本组教师之间相互达成一致。
2.对未知数在方程中的减数的位置和除数的位置中出现的情况,是否要进行一定的教学辅导。
因为教材中的解方程是用等式的性质来完成的而不是应用三者关系来解的,因此教材中不出现未知数在减数的位置和除数的位置上的方程。
但是在实际问题解决的时候,学生根据等量关系就会出现这样的方程,那就不会解了。
我们认为虽然教材中对这种情况是避免的,但是我们在教学时还是适当进行补充教学。
利用三者关系解这一类的方程,或者仍然运用等式的性质,化系数为1,进行教学。
3.在列方程解决实际问题的教学中,重视对实际问题中等量关系的寻找,这是列方程解的关键。
学生找的等量关系要与所列的方程相一致。
4.相关习题的设计:找等量关系练习。
1.黑兔的只数是白兔只数的5倍。
2.电视塔的高度比居民楼的30倍多5米。
3.松树的棵数比柏树的棵数的4倍少8棵。
4.科技书的本数比故事书的3倍少24本。
5.买苹果花了6.7元,找回3.3元。
6.60元买了15个皮球。
处理的时候还可以分一些层次。
先是根据叙述找到等量关系再给出已知量和问题,要学生说说根据这个等量关系,用什么方法解比较方便。
以“科技书的本数比故事书的3倍少24本。
”为例;等量关系为:故事书的本数×3-24=科技书的本数如果已知故事书的本数,那就直接可以利用等量关系式求出科技书的本数。
如果已知的是科技书的本数,那么等量关系式中故事书的本数就是未知数,就要设这个未知数为x进行列方程解比较简便。
通过这样的练习能够让一部分学生体验到列方程解的好处。
从五年级解方程谈“瞻前顾后”记得我们上学的时候,解最简单的方程的方式是这样的:比如1+x=3就是x=3-1,x=2。
很好懂吧!但是现在五年级课本上是这样的:1+x=3,1+x-1=3-1,x=2。
看起来很啰嗦吧!那么为什么教材这样来改呢?如果单单从简单的加减乘除的方程来看,第一种方法无疑是简单易懂而且步骤少,而第二种方法就相对复杂了。
那教材这样来改的目的是什么呢?我曾经跟博山教研室的李效宏科长探讨过这个问题,他谈到了教学要“瞻前顾后”的问题,使我深受启发。
大家都知道,知识是有层次性的,新知识必然以旧知识为基础,正所谓“温故而知新”,旧知识学好了,必然有利于新知识的学习,打好基础是很重要的。
老师们都懂得在学习新知识前要了解学生以前学习了哪些相关的基础知识,这样才能根据学生的知识基础进行新知识的教学。
但是你有没有想到,你现在教给学生的新知识,也将成为学生以后学习的知识基础,那我们做到“瞻前”了,是不是也需要“顾后”呢!还是以上面的五年级的方程为例,很多老师觉得孩子对第一种方法容易理解,解起方程来正确率也高,再加上老师们在教学中也习惯了第一种解方程的方法,所以有些老师以为不必拘泥于教材,就仍然用第一种方法来教学生解方程,而且学生出错很少,考试成绩也不错。
那学生考试成绩高了是否就可以认为教学是成功的呢?答案显然是否定的!小学五年级不是教学的终点,而是学生漫长学习生涯中的一个阶段,这就像马拉松,你在某一段路上的加速并不说明你的最后成绩,反而也许是你耗尽体力打乱生理规律的罪魁祸首。
五年级的方程是孩子学习方程的起点,打好基础对孩子以后用方程解决数学问题至关重要,而学生现在学习的解方程的方法,不能仅仅以求出方程的解为唯一目的,重要的是让学生一开始接触就了解方程的基本性质,利用方程的基本性质来解方程,这样的方法才是普遍的规律性的东西,即使学生到了中学,这也是正确有效的方法,因为它是本质性的东西。
而前面说的第一种方法显然具有很大的局限性,能够解决小学阶段的大多数问题,却与以后学生要学习的东西没有多少内在联系,而且到了中学这种方法在很多时候已经不能继续使用,这势必使学生要么对新的方法有所抵触,要么对以前的方法产生怀疑,不利于知识的衔接。
虽说教师不能拘泥于教材,但是首先你要了解教材编写的意图,教材设计如果不尽合理,教师可以灵活变通,但在对教材不熟悉的情况下随意改变教学内容和方法,是不恰当的。
解方程的问题就是一个例子。
只有瞻前顾后,既了解所教知识的起点,又要清楚所教知识的发展,承上启下,有机联系,使学生对知识的掌握具有连贯性和可持续性,才是成功的教学,才是真正为学生将来负责的教学。
解方程篇三“自学互帮导学法”课堂教学设计课题解方程课时1课时课型新授课修改意见教学目标1、知道解方程的意义和基本思路。
2、会运用数量关系式或等式的基本性质对解方程的过程进行语言表述。
3、会对具体方程的解法提出自己解答的方案,并能与同学交流。
4、会独立地解答一、二步方程。
教学重点运用数量关系式或等式的基本性质对具体方程的解法提出自己解答的方案教学难点独立地解答一、二步方程学情分析解方程需要对数量关系式或等式的基本性质进行具体的分析,因此教学重点落在用数量关系式或等式的基本性质的理解上。
学法指导自学互帮,合作学习教学过程教学内容教师活动学生活动效果预测(可能出现的问题)补救措施修改意见一、看卡片写等式1.20加上x等于3082.a等于2b减去213.12的3倍等于36.4.y减去8等于13师:请同桌互相检查写好的等式,我请几个同学到展台上把他们的作业展示给大家看,大家评判一下。
二、走进新课1汇集问题,寻找出路2解决问题,形成方法3类比推广,深化探究。
三、练习巩固四、回顾总结师:请同桌互相检查写好的等式,我请几个同学到展台上把他们的作业展示给大家看,大家评判一下。
这些等式,哪几个是方程?师:谁能够很快猜出方程里未知数的答案?师:看到刚才同学们猜得那么有趣,澳大利亚特有的动物考拉也来凑热闹。
(课件出示例1)你看它们多可爱啊!师:请你仔细观察,你发现了哪些数学信息?师:大家能根据数学信息说出等量关系吗?师:我们根据题意,知道4只考拉重12kg,设每只考拉为xkg,可以得到方程4x=12。
(教师板书方程)师:大家想一想,方程4x=12的解是多少呢?师:大家的想法都很好,那你们把它写下来。
师:从大家的书写中看出,三位同学都求出了方程的解是3。
在数学上,求出方程的解的过程叫做解方程。
(老师板书:求出方程的解的过程叫做解方程)师:要把解方程写出来,还有一定的格式,否则,别人就可能看不懂。
先提行,写下一个“解”字;为了美观,尽量使等号对齐,两边写式子师:通过学习,和大家一起了解了一个新的知识:解方程。
(板书:解方程)要判断方程的结果写对没有,应该怎么做呢?生:验算。
师:好!下面,我出一个方程,你们马上写出求解的过程和验算的过程,不会的可以问问同学和老师。
出示:20+x=30。
师:前一段,我们写出了解一步方程的过程,那两步方程呢?四人小组一起试着写一写解方程“3y-8=13”的全过程。
一会儿要请同学上来讲给大家听,看哪一组的说得清楚,写得规范。
师:数学上的每一步都很重要。
我们必须写清楚,否则别人看不懂就会误事儿!刚才大家写的过程,归纳起来很简单:就是解方程的时候,用数量关系或者等式的性质思考,再加上验算,那肯定不会有错的。
师:你能解下面两个方程吗?并验算。
(出示:18+6x=30,4n-25×4=15)完成课堂活动今天,我们学习了解方程,大家一起来说说,从这节课中你学到了什么?大家的总结很全面,从大家的总结中看出你们这节课学得非常认真,我们学数学最重要的是学习思考方法,并运用这些方法来解决问题,明天,我们将学习用方程来解决生活中遇到的问题,希望大家继续努力。
20+x=308a=2b-2112×3=36y-8=13生:只是有些式子跟以前学的的不一样生:我会猜方程“20+x=30”的答案,x=10。
生:老师,我还知道方程“3y-8=13”的解,y是7。
三七二十一,减8是13。
生:我发现图上有4只考拉,每只重xkg,他们一共重12kg。
生:4x=12。
生1:我认为方程4x=12的解是3,因为三四十二,所以x=3。
生2:我也认为方程4x=12的解是3,因为x是12的因数,因数=积÷另一个因数,12÷4=3。