考研数一满分经验

合集下载

考研数学一分数线

考研数学一分数线

考研数学一分数线2017年考研数学一分数线2017年的考研数学研究生入学考试已结束,但是后面还有很多事情需要我们去做,比如大家会关注一下国家线是多少,能不能过线。

店铺为大家精心准备了考研数学一分数线给大家参考,欢迎大家前来阅读。

2017考研数学国家线预测为60-70分一、分析17年考研数学难易度,预测国家线数学一高等数学知识点相比与去年,整体难度不大,计算量一般。

线性代数知识点相比与去年,整体难度不大,计算量一般。

概率论与数理统计知识点相比与去年,整体难度不大,计算量一般。

数学二高等数学知识点相比与去年,整体难度不大,计算量一般。

线性代数知识点相比与去年,整体难度不大,计算量一般。

综合以上分析,与往年相比,整体难度不大,计算量一般,预测国家线大约在60至70之间,经济类的大约在58-65之间,工科类的大约在65-70左右。

二、考研复试应该知道的事儿1.考:通常会是笔试+笔试考查的是方面的写作听力,另外就是你的课了,面试的时候会考察到你的英语口语,另外一个就是现场导师提问时间了。

(不校,略有不同,详细还要建自己所考院校复试要求)2.多关注下院校的一些信息,或者询问已经考到该校的学长、学姐或者认识的人,最好在初试结束的时候开始着手复试,不要到了时间在准备那样就太赶了。

3.怎么准备:首先你要对于自己的初试分数进行估分,确认下自己是否要准备复试,估分数看分数线,历年的分数线不会有太大的波动,学校的网站以及网上都可以查询到信息。

4.其次就是要准备复试中的专业课考查。

主要分为两部分专业课+英语,专业课看具体学校的要求,大家在这方面最好多问问,切忌闭门造车,多查询一些历年信息和经验。

5.再就是英语方面的考察。

口语和听力是大家需要关注的重点对象,很多童鞋在复试中由于口语而吃了很大的亏,希望大家多加练习,多听多说出来,到复试现场才会从容不迫。

6.再者,也要很重要的就是给导师的印象问题。

复试过程中要保持礼节行为,应该没有导师想和不礼貌的学员待在一起,再就是形象,整洁干净给人舒适清爽的感觉,不要太夸张太随便。

1990考研数一真题解析

1990考研数一真题解析

1990考研数⼀真题解析1990年全国硕⼠研究⽣⼊学统⼀考试数学⼀试题⼀、填空题(本题共5个⼩题,每⼩题3分,满分15分.)(1) 过点(1,2,1)M -且与直线2341x t y t z t =-+??=-??=-?垂直的平⾯⽅程是___x -3y -z +4=0__________.(2) 设a 为⾮零常数,则lim()xx x a x a→∞+-=____2e a _________. (3) 设函数1, ||1,()0, ||1,x f x x ≤?=?>?则[()]f f x =________1_____.(4) 积分222y xdx edy -?的值等于____41e 2--_________.(5) 已知向量组1234(1,2,3,4),(2,3,4,5),(3,4,5,6),(4,5,6,7)αααα====,则该向量的秩是_____2________.⼆、选择题(本题共5个⼩题,每⼩题3分,满分15分.) (1) 设()f x 是连续函数,且()()x e xF x f t dt -=,则()F x '等于 ( A )(A) ()()xx e f e f x ---- (B) ()()x x e f e f x ---+(C) ()()xx e()[()]f x f x '=,则当n 为⼤于2的正整数时,()f x的n 阶导数()()n f x 是 ( A )(A) 1![()]n n f x + (B) 1[()]n n f x + (C) 2[()]n f x (D) 2![()]nn f x(3) 设α为常数,则级数21sin (n n n α∞=-∑ ( C ) (A) 绝对收敛 (B) 条件收敛(C) 发散 (D) 收敛性与α的取值有关 (4) 已知()f x 在0x =的某个领域内连续,且(0)0f =,0() lim21cos x f x x→=-,则在点0x =处()f x ( D )(A) 不可导 (B) 可导,且(0)0f '≠(C) 取得极⼤值 (D) 取得极⼩值(5) 已知1β、2β是⾮齐次线性⽅程组Ax b =的两个不同的解,1α、2α是对应齐次线性⽅程组0Ax =的基础解系,12,k k 为任意常数,则⽅程组Ax b =的通解(⼀般解)必是( B ) (A) 12 11212()2k k ββααα-+++(B) 1211212()2k k ββααα++-+(C) 1211212()2k k ββαββ-+++ (D) 1211212()2k k ββαββ++-+三、(本题满分15分,每⼩题5分.) (1) 求(2)x dx x +-?.解:()()()()()()1111200ln 1111d ln 1d ln 1d 22122x x x x x x xx x x +=+=+---+--蝌?101111ln 2d ln 23213x x x 骣÷?=-+=÷?÷?桫-+ò (2) 设(2,sin )z f x y y x =-,其中(,)f u v 具有连续的⼆阶偏导数,求2zx y.解:2cos .z f f y x x u v 抖?=+抖? ()22222222sin cos sin cos cos .z f f f fx y x y x x x x y u u v v v抖抖?=-+-++抖抖抖?(3) 求微分⽅程244xy y y e-'''++=的通解(⼀般解).解:特征⽅程为2440r r ++=的跟为1,22r =-.对应齐次⽅程的通解为()212e x Y C C x -=+,其12C C ,中为任意常数.设原⽅程的特解为()22e x y x Ax *-=,代⼊原⽅程得12A =. 因此,原⽅程的通解为()()22212ee .2xx x y x Y y C C x *--=+=++四、(本题满分6分.)求幂级数=+∑的收敛域,并求其和函数.解:因为123=limlim 121n nn n a n ρa n ++==+,所以11.R ρ==显然幂级数()021n n n x ¥=+?在1x =?时发散,故此幂级数的收敛域为()11-,⼜()()0000121221nnnn n n n n S x n x nx x x x x ゥゥ====¢骣÷?=+=+=??÷?÷-桫邋邋 ()()222111 1.111xxx x x x +=+=-<<---,五、(本题满分8分)求曲⾯积分2,SI yzdzdx dxdy =+??其中S 是球⾯2224x y z ++=外侧在0z ≥的部分.解:令22140x y S z ì?+??=í?=??,,其法向量与z 轴的负向相同.设S 和S 1所围成的区域为Ω,则由奥--⾼公式有1Ωd d 2d d d d d .S I yz z x x y z x y z ++=蝌蝌?d d 02d d 2d d 8.S S x y yz z x x y x y π+?==-=-蝌蝌蝌,2222Ωd d d =d d cos sin d 4.ππz x y z θφr φr φr π?蝌蝌蝌所以12.I π=六、(本题满分7分)设不恒为常数的函数()f x 在闭区间[,]a b 上连续,在开区间(,)a b 内可导,且 ()()f a f b =.证明在(,)a b 内⾄少存在⼀点ξ,使得()0f ξ'>.证:因()()f a f b =且()f x 不恒为常数,故⾄少存在⼀点()c a b ?,,使得()()().f c f a f b ?于是()()f c f a >或()().f c f a <现设()()f c f a >,则在[]a c ,上因()f x 满⾜拉格朗⽇定理的条件,故⾄少存在⼀点()()ξa c a b 翁,,,使得()()()10.f ξf c f a c a 轾¢=->臌-对于()()f c f a <情形,类似地可证得此结果.七、(本题满分6分)设四阶矩阵1 1 0 00 1 1 00 0 1 10 0 0 1B -?? ?-= -, 2 1 3 40 2 1 30 0 2 10 0 0 2C ?? ? ?= ?, 且矩阵A 满⾜关系式1()TTA E CBC E --=,其中E 为四阶单位矩阵,1C -表⽰C 的逆矩阵,TT T TA E CBC A C E C B A C B --??-=--??,故()=TA CB E -,因此1000100021002100()3210121043210121T A C B ???? ?- =- ---1-1==,⼋、(本题满分8分)求⼀个正交变换,化⼆次型22212312132344448f x x x x x x x x x =++-+-为标准形.解:⼆次型的矩阵A =122244244骣-÷?÷?÷?÷--?÷?÷?÷÷?-桫,由()2122A E 2449244λλλλλλ---=---=----, A 的特征值为12309.λλλ===,对于121221220A-E=244000244000λλλ骣骣--鼢珑鼢珑鼢珑鼢==--?珑鼢珑鼢珑鼢鼢珑-桫桫,,从⽽可取特征向量1011P 骣÷?÷?÷?÷=?÷?÷?÷÷?桫及与P 1正交的另⼀特征向量241.1P 骣÷?÷?÷?÷=?÷?÷?÷÷?-桫对于38222459A-E=254099245000λλ骣骣----鼢珑鼢珑鼢珑鼢=---?-珑鼢珑鼢珑鼢鼢珑--桫桫,,取特征向量312.2P 骣÷?÷?÷?÷=-?÷?÷?÷÷?桫将上述相互正交的特征向量单位化,得1231032===323ξξξ骣骣骣鼢珑÷鼢珑÷鼢珑÷鼢?÷珑鼢?÷珑鼢?÷珑鼢?÷鼢珑÷÷-÷÷÷÷÷÷,,,故在正交变换112233132323x yx yx y骣÷÷÷÷÷骣骣÷鼢珑?÷鼢÷珑?鼢÷珑?鼢÷珑?鼢÷鼢珑?÷桫桫÷÷÷÷÷下,⼆次型239f y=.九、(本题满分8分)质点P沿着以AB为直径的半圆周,从点(1,2)A运动到点(3,4)B的过程中受变⼒F作⽤(见图).F的⼤⼩等于点P与原点O之间的距离,其⽅向垂直于线段OP且与y轴正向的夹⾓⼩于2,求变⼒F对质点P所作的功.解:由题意,变⼒F=-y i+x j.圆弧AB的参数⽅程是3xθππθyθì?=+-#í?=+,变⼒F所作的功))()434d d3sin2cos d21.πABπW y x x yθθθθθπ-=-+=+++=-蝌⼗、填空题(本题满分6分,每⼩题2分.) (1) 已知随机变量X 的概率密度函数|| 1(),2x f x e x -=-∞<<∞,则X 的概率分布函数 ()F X =__1e ,0,211e ,0,2x x x x -ì??⽴事件,那么积事件AB 的概率()P AB =_0.3______.(3) 已知离散型随机变量X 服从参数为2的泊松(Poisson)分布,即{}22,!k e P X k k -== 0,1,2k =L ,,则随机变量32Z X =-的数学期望()E Z =___4____.⼗⼀、(本题满分6分.)设⼆维随机变量(,)X Y 在区域:01,||D x y x <<<内服从均匀分布,求关于X 的边缘概率密度函数及随机变量21Z X =+的⽅差()D Z .解:()X Y ,的联合概率密度函数是()1010x f x y ì<,,,,其他,因此X 的边缘概率密度函数是()()201d 0X x x f x f x y y +?-?ì<==íò,,,,其他, ()()()()()()()22222144d d X X D Z D X E X E X x f x x xf x x +??-??轾骣轾犏÷?=+=-=-÷犏?犏桫臌臌蝌211320014242d 2d 4.299x x x x 轾骣骣÷?犏÷?=-=-=÷÷??÷?犏桫桫臌蝌P。

1992考研数一真题答案及详细解析

1992考研数一真题答案及详细解析

1992年全国硕士研究生入学统一考试数学一试题解析一、填空题(本题共5个小题,每小题3分,满分15分.)(1)【答案】sin()sin()x y x ye y xy e x xy ++---【解析】函数()y y x =是一个隐函数,即它是由一个方程确定,写不出具体的解析式.方程两边对x 求导,将y 看做x 的函数,得(1)sin()()0x yey xy xy y +''+++=.解出y ',即sin()sin()x y x ydy e y xy y dx e x xy ++-'==--.【相关知识点】1.复合函数求导法则:如果()u g x =在点x 可导,而()y f x =在点()u g x =可导,则复合函数[]()y f g x =在点x 可导,且其导数为()()dyf ug x dx''=⋅或dy dy du dx du dx=⋅.2.两函数乘积的求导公式:[]()()()()()()f x g x f x g x f x g x '''⋅=⋅+⋅.(2)【答案】{}21,2,29-【解析】对函数u 求各个分量的偏导数,有2222u x x x y z ∂=∂++;2222u y y x y z ∂=∂++;2222u zz x y z∂=∂++.由函数的梯度(向量)的定义,有{}2221,,2,2,2u u u gradu x y z x y z x y z ⎧⎫∂∂∂==⎨⎬∂∂∂++⎩⎭,所以{}{}222122,4,41,2,212(2)9Mgradu=-=-++-.【相关知识点】复合函数求导法则:如果()u g x =在点x 可导,而()y f x =在点()u g x =可导,则复合函数[]()y f g x =在点x 可导,且其导数为()()dyf ug x dx''=⋅或dy dy du dx du dx=⋅.(3)【答案】212π【解析】x π=是[,]ππ-区间的端点,由收敛性定理—狄利克雷充分条件知,该傅氏级数在x π=处收敛于22111[(0)(0)][11]222f f ππππ-++-=-++=.【相关知识点】收敛性定理—狄利克雷充分条件:函数()f x 在区间[,]l l -上满足:(i)连续,或只有有限个第一类间断点;(ⅱ)只有有限个极值点.则()f x 在[,]l l -上的傅里叶级数收敛,而且01(cossin )2n n n a n n a x b x l l ππ∞=++∑[][] (),(,)()1(0)(0),(,)()21(0)(0),.2f x x l l fx f x f x x l l f x f l f l xl ⎧⎪∈-⎪⎪=++-∈-⎨⎪⎪-++-=±⎪⎩若为的连续点,若为的第一类间断点,若(4)【答案】cos cos ,y x x C x C =+为任意常数【解析】这是标准形式的一阶线性非齐次方程,由于tan 1|cos |xdxe x ⎰=,方程两边同乘1cos x,得111cos cos y y x C xx '⎛⎫=⇒=+⎪⎝⎭积分.故通解为cos cos ,y x x C x C =+为任意常数.(5)【答案】1【解析】因为矩阵A 中任何两行都成比例(第i 行与第j 行的比为ija a ),所以A 中的二阶子式全为0,又因0,0i i ab ≠≠,知道110a b ≠,A 中有一阶子式非零.故()1r A =.【相关知识点】矩阵秩的定义:如果矩阵中存在r 阶子式不为零,而所有的1r +阶子式全为零时,则此矩阵的秩为r.二、选择题(本题共5个小题,每小题3分,满分15分.)(1)【答案】(D)【解析】对于函数在给定点0x 的极限是否存在需要判定左极限0x x -→和右极限0x x +→是否存在且相等,若相等,则函数在点0x 的极限是存在的.11211111lim lim(1)01x x x x x e x e x ----→→-=+=-,11211111lim lim(1)1x x x x x e x e x ++--→→-=+=∞-,0≠∞,故当1x →时函数没有极限,也不是∞.故应选(D).(2)【答案】(C)【解析】对原级数的通项取绝对值后,再利用等价无穷小2111cos()2n n n-→+∞ ,22(1)(1cos )1cos )2nn n n nααα --=-→+∞ ,又因为p 级数:11p n n ∞=∑当1p >时收敛;当1p ≤时发散.所以有22112n nα∞=∑收敛.1(1)(1cos )n n n α∞=⇒-- ∑收敛.所以原级数绝对收敛.应选(C).注:对于正项级数1n n a ∞=∑,确定无穷小n a 关于1n的阶(即与p 级数作比较)是判断它的敛散性的一个常用方法.该题用的就是这个方法.(3)【答案】B【解析】先求出切线的方向向量,再利用方向向量与平面的法向量的数量积为0得切点对应的t 值.求曲线上的点,使该点处的切向量τ与平面24x y z ++=的法向量{}1,2,1n =垂直,即可以让切线与平面平行.曲线在任意点处的切向量{}{}2(),(),()1,2,3x t y t z t t tτ'''==-,0n n ττ⊥ ⇔⋅=,即31430t t -+=,解得11,3t t ==.(对应于曲线上的点均不在给定的平面上)因此,只有两条这种切线,应选(B).(4)【答案】(C)【解析】因33x 处处任意阶可导,只需考查2||()x x x ϕ ,它是分段函数,0x =是连接点.所以,写成分段函数的形式,有33,0,(), 0,x x x x x ϕ⎧-<⎪=⎨≥⎪⎩对分段函数在对应区间上求微分,223,0,()3, 0,x x x x x ϕ⎧-<⎪'⇒=⎨>⎪⎩再考查()x ϕ在连接点0x =处的导数是否存在,需要根据左导数和右导数的定义进行讨论.30(0)()0x x ϕ++=''==,30(0)()0(0)0x x ϕϕ--='''=-=⇒=,即223,0,()3, 0.x x x x x ϕ⎧-≤⎪'=⎨>⎪⎩同理可得6,0,()6, 0,x x x x x ϕ-<⎧''=⎨>⎩(0)0ϕ''=,即6,0()6||6, 0x x x x x x ϕ-≤⎧''==⎨>⎩.对于y x =有(0)1,(0) 1.y y +-''==-所以y x =在0x =不可导,(0)ϕ'''⇒不存在,应选(C).(5)【答案】(A)【解析】1ξ,2ξ向量对应的分量不成比例,所以1ξ,2ξ是0Ax =两个线性无关的解,故()2n r A -≥.由3n =知()1r A ≤.再看(A)选项秩为1;(B)和(C)选项秩为2;而(D)选项秩为3.故本题选(A).【相关知识点】对齐次线性方程组0Ax =,有定理如下:对矩阵A 按列分块,有()12n A ,,,ααα= ,则0Ax =的向量形式为11220n n x x x .ααα+++= 那么,0Ax =有非零解12n ,,,ααα⇔ 线性相关()12n r ,,,nααα⇔< ()r A n.⇔<三、(本题共3小题,每小题5分,满分15分.)(1)【解析】由等价无穷小有0x →时,22111()22x x ---= ,原式=0021sin lim 12x x x x e xx →→--=,上式为“0”型的极限未定式,又分子分母在点0处导数都存在,所以连续应用两次洛必达法则,有原式00cos sin lim lim1x x x x e x e x x →→-+洛必达洛必达1011+==.(2)【解析】这是带抽象函数记号的复合函数的二阶混合偏导数,重要的是要分清函数是如何复合的.由于混合偏导数在连续条件下与求导次序无关,所以本题可以先求z x ∂∂,再求()z y x∂∂∂∂.由复合函数求导法则得221212(sin )()sin 2x x z f e y f x y f e y f x x x x ∂∂∂''''=++=⋅+⋅∂∂∂,212(sin 2)x z f e y f x x y y∂∂''=+∂∂∂111212122(cos 2)sin cos (cos 2)2x x x x f e y f y e y f e y f e y f y x '''''''''=++++21112221sin cos 2(sin cos )4cos x x x f e y y f e y y x y f xy f e y '''''''=⋅+⋅++⋅+⋅.【相关知识点】多元复合函数求导法则:如果函数(,),(,)u x y v x y ϕψ==都在点(,)x y 具有对x 及对y 的偏导数,函数(,)z f u v =在对应点(,)u v 具有连续偏导数,则复合函数((,),(,))z f x y x y ϕψ=在点(,)x y 的两个偏导数存在,且有12z z u z v u vf f x u x v x x x ∂∂∂∂∂∂∂''=+=+∂∂∂∂∂∂∂;12z z u z v u v f f y u y v y y y∂∂∂∂∂∂∂''=+=+∂∂∂∂∂∂∂.(3)【解析】分段函数的积分应根据积分可加性分段分别求积分.另外,被积函数的中间变量非积分变量,若先作变量代换,往往会简化计算.令2x t -=,则.dx dt =当1x =时,1t =-;当3x =时,1t =,于是()31121110(2)()1t f x dx f t dt t dt e dt ----=++⎰⎰⎰⎰分段01301171.33t t t e e --⎛⎫=+-=- ⎪⎝⎭四、(本题满分6分.)【解析】所给方程为常系数的二阶线性非齐次方程,所对应的齐次方程的特征方程223(1)(3)0r r r r +-=-+=有两个根为11,r =23r =-,而非齐次项2,3x e r αα=-=为单特征根,因而非齐次方程有如下形式的特解3xY x ae -=⋅,代入方程可得14a =-,故所求通解为33124xxx xy C e C ee --=+-,其中12,C C 为常数.【相关知识点】1.二阶线性非齐次方程解的结构:设*()y x 是二阶线性非齐次方程()()()y P x y Q x y f x '''++=的一个特解.()Y x 是与之对应的齐次方程()()0y P x y Q x y '''++=的通解,则*()()y Y x y x =+是非齐次方程的通解.2.二阶常系数线性齐次方程通解的求解方法:对于求解二阶常系数线性齐次方程的通解()Y x ,可用特征方程法求解:即()()0y P x y Q x y '''++=中的()P x 、()Q x 均是常数,方程变为0y py qy '''++=.其特征方程写为20r pr q ++=,在复数域内解出两个特征根12,r r ;分三种情况:(1)两个不相等的实数根12,r r ,则通解为1212;rx r x y C eC e =+(2)两个相等的实数根12r r =,则通解为()112;rxy C C x e =+(3)一对共轭复根1,2r i αβ=±,则通解为()12cos sin .xy e C x C x αββ=+其中12,C C 为常数.3.对于求解二阶线性非齐次方程()()()y P x y Q x y f x '''++=的一个特解*()y x ,可用待定系数法,有结论如下:如果()(),xm f x P x e λ=则二阶常系数线性非齐次方程具有形如*()()kxm y x x Q x eλ=的特解,其中()m Q x 是与()m P x 相同次数的多项式,而k 按λ不是特征方程的根、是特征方程的单根或是特征方程的重根依次取0、1或2.如果()[()cos ()sin ]xl n f x e P x x P x x λωω=+,则二阶常系数非齐次线性微分方程()()()y p x y q x y f x '''++=的特解可设为*(1)(2)[()cos ()sin ]k x mm y x e R x x R x x λωω=+,其中(1)()m R x 与(2)()m R x 是m 次多项式,{}max ,m l n =,而k 按i λω+(或i λω-)不是特征方程的根、或是特征方程的单根依次取为0或1.五、(本题满分8分)【解析】将原式表成I Pdydz Qdzdx Rdxdy ∑=++⎰⎰,则2223()P Q R x y z x y z∂∂∂++=++∂∂∂.以考虑用高斯公式来求解,但曲面∑不是封闭的,要添加辅助面.如果本题采用投影法计算是比较复杂的,故不采用.添加辅助面222:0()S z x y a =+≤,法向量朝下,S 与∑围成区域Ω,S 与∑取Ω的外法向量.在Ω上用高斯公式得323232222()()()3()SI x az dydz y ax dzdx z ay dxdy x y z dV Ω++++++=++⎰⎰⎰⎰⎰.用球坐标变换求右端的三重积分得222222203()3sin ax y z dV d d d ππθϕϕρρρΩ++=⋅⎰⎰⎰⎰⎰⎰4552001632sin 32155a d d a a ππϕϕρρππ=⨯=⨯⨯⨯=⎰⎰.注意S 垂直于平面yOz 与平面xOz ,将积分投影到xOy 平面上,所以左端S 上的曲面积分为SPdydzdx Qdzdx Rdxdy++⎰⎰2200(,,0)xySSD R x y dxdy ay dxdy a y dxdy=++==-⎰⎰⎰⎰⎰⎰2220sin aa d r rdrπθθ=-⋅⎰⎰(极坐标变换)422350sin 44aa a d r dr a ππθθπ=-=-⨯⨯=-⎰⎰.因此5556295420I a a a ππ=+=.【相关知识点】1.高斯公式:设空间闭区域Ω是由分片光滑的闭曲面∑所围成,函数(,,)P x y z 、(,,)Q x y z 、(,,)R x y z 在Ω上具有一阶连续偏导数,则有,P Q R dv Pdydz Qdzdx Rdxdy x y z Ω∑⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰或()cos cos cos ,P Q R dv P Q R dS x y z αβγΩ∑⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰ 这里∑是Ω的整个边界曲面的外侧,cos α、cos β、cos γ是∑在点(,,)x y z 处的法向量的方向余弦.上述两个公式叫做高斯公式.2.对于球面坐标与直角坐标的关系为:sin cos ,sin sin ,cos ,x r y r z r ϕθϕθϕ=⎧⎪=⎨⎪=⎩其中ϕ为向量与z 轴正向的夹角,0ϕπ≤≤;θ为从正z 轴来看自x 轴按逆时针方向转到向量在xOy 平面上投影线段的角,02θπ≤≤;r 为向量的模长,0r ≤<+∞.球面坐标系中的体积元素为2sin ,dv r drd d ϕϕθ=则三重积分的变量从直角坐标变换为球面坐标的公式是:2(,,)(sin cos ,sin sin ,cos )sin .f x y z dxdydz f r r r r drd d ϕθϕθϕϕϕθΩΩ=⎰⎰⎰⎰⎰⎰六、(本题满分7分)【解析】证法一:用拉格朗日中值定理来证明.不妨设210x x >>,要证的不等式是1221()()()(0)f x x f x f x f +-<-.在1[0,]x 上用中值定理,有111()(0)(),0f x f f x x ξξ'-=<<;在212[,]x x x +上用中值定理,又有1221212()()(),f x x f x f x x x x ηη'+-=<<+由()0,f x ''<所以()f x '单调减,而12x x ξη<<<,有()()f f ξη''>,所以12211()()()(0)()f x x f x f x f f x +-<-=,即1212()()()f x x f x f x +<+.证法二:用函数不等式来证明.要证11()()(),0f x x f x f x x +<+>,构造辅助函数11()()()()x f x f x f x x ϕ=+-+,则1()()()x f x f x x ϕ'''=-+.由()0,()f x f x '''<单调减,1()(),()0f x f x x x ϕ'''>+>.由此,11()(0)()(0)()0(0)x f x f f x x ϕϕ>=+-=>.改x 为2x 即得证.【相关知识点】拉格朗日中值定理:如果函数()f x 满足在闭区间[,]a b 上连续,在开区间(),a b 内可导,那么在(),a b 内至少有一点()a b ξξ<<,使等式()()()()f b f a f b a ξ'-=-成立.七、(本题满分8分)【解析】(1)先求出在变力F 的作用下质点由原点沿直线运动到点(,,)M ξηζ时所作的功W 的表达式.点O 到点M 的线段记为L ,则LLW F ds yzdx zxdy xydz =⋅=++⎰⎰.(2)计算曲线积分:L 的参数方程是,,,x t y t z t ξηζ===t 从0到1,1122220()3W t t t dt t dt ηζξξζηξηζξηζξηζ⇒=⋅+⋅+⋅==⎰⎰.化为最值问题并求解:问题变成求W ξηζ=在条件2222221(0,0,0)a b cξηζξηζ++=≥≥≥下的最大值与最大值点.用拉格朗日乘子法求解.拉格朗日函数为222222(,,,)1F a b c ξηζξηζλξηζλ⎛⎫=+++- ⎪⎝⎭,则有22222222220,20,20,10.Fa Fb F cF a b cξηζλξηξζληζξηλγξηζλ∂⎧=+=⎪∂⎪∂⎪=+=⎪∂⎪⎨∂⎪=+=⎪∂⎪∂⎪=++-=⎪∂⎩解此方程组:对前三个方程,分别乘以,,ξηζ得222222,a b cξηζ==(0λ≠时)代入第四个方程得,,ξηζ===.相应的39W abc ==.当0λ=时相应的,,ξηζ得0W =.因为实际问题存在最大值,所以当(,,),ξηγ=时W 取最大值39abc .【相关知识点】拉格朗日乘子法:要找函数(,)z f x y =在附加条件(,)0x y ϕ=下的可能极值点,可以先作拉格朗日函数(,)(,)(,),L x y f x y x y λϕ=+其中λ为参数.求其对x 与y 的一阶偏导数,并使之为零,然后与附加条件联立起来:(,)(,)0,(,)(,)0,(,)0.x x y y f x y x y f x y x y x y λϕλϕϕ⎧+=⎪+=⎨⎪=⎩由这方程组解出,x y 及λ,这样得到的(,)x y 就是函数(,)f x y 在附加条件(,)0x y ϕ=下的可能极值点.八、(本题满分7分)【解析】(1)1α能由23αα、线性表出.因为已知向量组234ααα、、线性无关,所以23αα、线性无关,又因为123ααα、、线性相关,故1α能由23αα、线性表出.(2)4α不能由123ααα、、线性表出,反证法:若4α能由123ααα、、线性表出,设4112233k k k αααα=++.由(1)知,1α能由23αα、线性表出,可设11223l l ααα=+,那么代入上式整理得411221233()()k l k k l k ααα=+++.即4α能由23αα、线性表出,从而234ααα、、线性相关,这与已知矛盾.因此,4α不能由123ααα、、线性表出.【相关知识点】向量组线性相关和线性无关的定义:存在一组不全为零的数12m k ,k ,,k ,使11220m m k k k ααα+++= ,则称12m ,,,ααα 线性相关;否则,称12m ,,,ααα 线性无关.九、(本题满分7分)【解析】(1)设112233x x x βξξξ=++,即是求此方程组的解.对增广矩阵123(,,,)ξξξβ作初等行变换,第一行乘以()1-分别加到第二行和第三行上,再第二行乘以()3-加到第三行上,第三行自乘12,有111111111111123101200120149303820011 ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,第三行乘以()2-、()1-分别加到第二行和第一行上,再第二行乘以()1-加到第一行上,有增广矩阵10020102001 1 ⎛⎫ ⎪→- ⎪ ⎪⎝⎭.解出31x =,22x =-,12x =,故12322βξξξ=-+.(2)由λ为A 的特征值可知,存在非零向量α使A αλα=,两端左乘A ,得22()()A A A A A ααλαλαλα====,再一直这样操作下去,有n n A αλα=.因为0α≠,故0λ≠.按特征值定义知nλ是nA 的特征值,且α为相应的特征向量.所以有,(1,2,3)nni i i i i i A A i ξλξξλξ===,据(1)结论12322βξξξ=-+,有123123(22)22A A A A A βξξξξξξ=-+=-+,于是123123112233(22)2222n n n n n n n n A A A A A βξξξξξξλξλξλξ=-+=-+=-+121322231112122233223149223n n n n n n n n +++++⎡⎤-+⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=-⋅+=-+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-+⎣⎦⎣⎦⎣⎦⎣⎦.【相关知识点】矩阵特征值与特征向量的定义:设A 是n 阶矩阵,若存在数λ及非零的n 维列向量X 使得AX X λ=成立,则称λ是矩阵A 的特征值,称非零向量X 是矩阵A 的特征向量.十、填空题(本题满分6分,每小题3分.)【解析】由条件概率和乘法公式:从()0P AB =,可知()()(|)P ABC P AB P AB C =0=,由加法公式:()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC =++---+ 1111150044416168=++---+=,故3()()1()8P ABC P A B C P A B C ==-=.(2)【解析】依题意,随机变量X 服从参数为1λ=的指数分布,故X 的概率密度为,0,()0,0,x e x f x x -⎧ >=⎨≤⎩根据连续型随机变量函数的数学期望的求法,得出2220()()()()X x x x E X e x e f x dx x e e dx+∞+∞-----∞+=+=+⎰⎰3014133xx xe dx e dx +∞+∞--=+=+=⎰⎰.十一、(本题满分6分)【解析】方法一:利用分布函数求密度函数:首先,因2(,)X N μσ ,所以X 的密度函数为22()()x X f x μσ--=,因Y 服从[,]ππ-上的均匀分布,故Y 的密度函数为11()()2Y f y πππ==--.因为随机变量X 与Y 相互独立,所以二维随机变量(,)X Y 的联合概率密度为(,)()()X Y f x y f x f y =.要求Z 的密度函数,先求Z 的分布函数()()()Z F z P Z z P X Y z =≤=+≤(,)x y zf x y dxdy+≤=⎰⎰()()X Y x y zf x f y dxdy+≤=⎰⎰22()12x x y zμσπ--+≤=⋅⎰⎰.2222()()1122x x z yz ydy dx dy dxμμππσσππππ--------∞--∞=⋅=⎰⎰⎰⎰12z y dy ππμπσ---⎛⎫=Φ ⎪⎝⎭⎰(由标准正态分布来表示一般正态分布)求出Z 的分布函数,因此,对分布函数求导得密度函数,Z 的密度函数为11()()2Z Z z y f z F z dy ππμϕπσσ---⎛⎫'==⎪⎝⎭⎰其中()x ϕ 是标准正态分布的概率分布密度.由于()x ϕ 是偶函数,故有z y y z μμϕϕσσ--+-⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭于是111()22Z y z z z f z dy ππμπμπμϕπσσπσσ-+-⎡+--+-⎤⎛⎫⎛⎫⎛⎫==Φ-Φ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎰.最终用标准正态分布函数()x Φ表示出来Z X Y =+的概率分布密度.方法二:用卷积公式直接计算:直接应用相互独立随机变量之和密度的卷积公式,求()Z f z 更为简单.因为随机变量X 与Y 相互独立,由卷积公式1()()()2Z X Y f z f z y f y dyπ+∞-∞=-⎰2222()()1122z y z y dy dyμμππσσππππ--------==⎰⎰22()12y z μπσππ+---=⎰12y z dy ππμπσ-+-⎛⎫=Φ ⎪⎝⎭⎰112y z dy ππμϕπσσ-+-⎛⎫= ⎪⎝⎭⎰12z z πμπμπσσ⎡+--+-⎤⎛⎫⎛⎫=Φ-Φ ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦.最终用标准正态分布函数()x Φ表示出来Z X Y =+的概率分布密度.。

2007年考研数一真题及解析

2007年考研数一真题及解析

2007年考研数学一真题及参考答案一、选择题(本题共10小题,每小题4分,满分40分,在每小题给的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后括号内)(1) 当0x +→时,与x 等价的无穷小量是 (B) A. 1xe- B.1ln1xx+- C. 11x +- D.1cos x -(2) 曲线y=1ln(1x e x++), 渐近线的条数为 (D) A.0 B.1 C.2 D.3(3)如图,连续函数y=f(x)在区间[-3,-2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[-2,0],[0,2]的图形分别是直径为2的上、下半圆周,设F(x)=0()xf t dt ⎰.则下列结论正确的是 (C) A. F(3)=3(2)4F -- B. F(3)=5(2)4F C. F(3)=3(2)4F + D. F(3)= 5(2)4F --(4)设函数f (x )在x=0处连续,下列命题错误的是 (C)A. 若0()limx f x x →存在,则f (0)=0 B. 若0()()lim x f x f x x→+- 存在,则f (0)=0C. 若0()lim x f x x → 存在,则'(0)f =0D. 若0()()lim x f x f x x→-- 存在,则'(0)f =0(5)设函数f (x )在(0, +∞)上具有二阶导数,且"()f x o >, 令n u =f(n)=1,2,…..n, 则下列结论正确的是(D)A.若12u u >,则{n u }必收敛B. 若12u u >,则{n u }必发散C. 若12u u <,则{n u }必收敛D. 若12u u <,则{n u }必发散(6)设曲线L :f(x, y) = 1 (f(x, y)具有一阶连续偏导数),过第Ⅱ象限内的点M 和第Ⅳ象限内的点N,T 为L 上从点M 到N 的一段弧,则下列小于零的是 (B) A.(,)rx y dx ⎰ B. (,)rf x y dy ⎰C.(,)rf x y ds ⎰D.'(,)'(,)x y rf x y dx f x y dy +⎰(7)设向量组1α,2α,3α线形无关,则下列向量组线形相关的是: (A) (A ) ,,122331αααααα--- (B ) ,,122331αααααα+++(C )1223312,2,2αααααα--- (D )1223312,2,2αααααα+++(8)设矩阵A=211121112--⎛⎫ ⎪-- ⎪ ⎪--⎝⎭,B=100010000⎛⎫ ⎪⎪ ⎪⎝⎭,则A 于B , (B)(A) 合同,且相似(B) 合同,但不相似 (C) 不合同,但相似(D)既不合同,也不相似(9)某人向同一目标独立重复射击,每次射击命中目标的概率为p ()01p <<,则此人第4次射击恰好第2次命中目标的概率为: (C) (A )23(1)p p - (B)26(1)p p - (C) 223(1)p p -(D) 226(1)p p -(10) 设随即变量(X ,Y )服从二维正态分布,且X 与Y 不相关,()X f x ,()Y f y 分别表示X ,Y 的概率密度,则在Y =y 的条件下,X 的条件概率密度|(|)XYf x y 为 (A)(A )()X f x(B) ()Y f y(C) ()X f x ()Y f y(D)()()X Y f x f y 二.填空题:11-16小题,每小题4分,共24分,请将答案写在答题纸指定位置上。

1999年考研数学一真题及解析(公式及答案修正版)

1999年考研数学一真题及解析(公式及答案修正版)
(2)【答案】1 【详解】 y ( x) 是有方程 ln x 2 + y = x 3 y + sin x 所确定,所以当 x = 0 时, y = 1 . 对方程 ln x 2 + y = x 3 y + sin x 两边非别对 x 求导,得
(
)
(
)
2 x + y′ = 3 x 2 y + x3 y′ + cos x , 2 x +y
(B) 2.
为 f ( x ) ,则方程 f ( x ) = 0 的根的个数为(
)
(A) 1. 三、(本题满分5分) 求
(C) 3.
(D) 4.
lim
x →0
1 + tan x − 1 + sin x . x ln (1 + x ) − x 2
+∞
四、(本题满分6分) 计算

1
五、(本题满分7分) 求初值问题
( x − 1)
x3
2
,求
(1)函数的增减区间及极值; (2)函数图形的凹凸区间及拐点 (3)函数图形的渐近线. 八、(本题满分 8 分)
0 , f (1) = 1 , 设 函 数 f ( x ) 在 闭 区 间 [ −1,1] 上 具 有 三 阶 连 续 导 数 , 且 f ( −1) =
f ′ ( 0 ) = 0 ,证明:在开区间 ( −1,1) 内至少存在一点 ξ ,使 f ′′′ (ξ ) = 3 .
总存在正整数 N , 当 n ≥ N 时, 恒有 xn − a ≤ 2ε ”是数列 { xn } (4) “对任意给定的 ε ∈ ( 0,1) ,
收敛于 a 的 ( ) (A)充分条件但非必要条件. (C)充分必要条件.

1998考研数一真题答案及详细解析

1998考研数一真题答案及详细解析

A ,
( 0) .
由 A 0 ,知 0 (如果0是 A 的特征值 A 0 ),将上式两端左乘 A ,得
A A A A A ,
从而有
A*
A
,
(即
A
的特征值为
A
).
将此式两端左乘 A ,得
A*
2
A
A*
A
2 .
又 E ,所以
A*
2 E
A
2
1
的条件下与求导次序无关,先求 z 或 z 均可,但不同的选择可能影响计算的繁简. x y
z
方法1:先求 .
x
z x
1 x x
f (xy)
y(x
y)
1 x2
f (xy)
y x
f
(xy)
y (x
y)
,
2z xy
y
1 x2
f (xy)
y x
f (xy)
y(x
y )
1 x2
f (xy)x 1 x
(2)【答案】(B) 【解析】当函数中出现绝对值号时,就有可能出现不可导的“尖点”,因为这时的函数是
分段函数. f (x) (x2 x 2) x x2 1 ,当 x 0, 1 时 f (x) 可导,因而只需在 x 0, 1 处
考察 f (x) 是否可导.在这些点我们分别考察其左、右导数.

o2
x2
,
从而
原式
lim
1
1 2
x
1 8
x
2
o1
x0
x2
1
1 2
x
1 8
x2
o2
x2

(完整版)2020考研数一考纲

(完整版)2020考研数一考纲

2020年考研数学一考试大纲考试科目:高等数学、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等数学约56%线性代数约22%概率论与数理统计约22%四、试卷题型结构单选题 8小题,每小题4分,共32分填空题 6小题,每小题4分,共24分解答题(包括证明题) 9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两12个重要极限:0sin lim 1x x x →= 1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L ’Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 弧微分 曲率的概念 曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和3法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange )中值定理和泰勒(Taylor )定理,了解并会用柯西(Cauchy )中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(,)a b 内,设函数()f x 具有二阶导数.当()0f x ''>时,()f x 的图形是凹的;当()0f x ''<时,()f x 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton —Leibniz )公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 反常(广义)积分 定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿—莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、向量代数和空间解析几何考试内容向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.五、多元函数微分学考试内容4多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用考试要求1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4.理解方向导数与梯度的概念,并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理,会求多元隐函数的偏导数.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.六、多元函数积分学考试内容二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及计算曲线积分和曲面积分的应用考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).563.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等).七、无穷级数考试内容常数项级数的收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与p 级数及其收敛性 正项级数收敛性的判别法 交错级数与莱布尼茨定理 任意项级数的绝对收敛与条件收敛 函数项级数的收敛域与和函数的概念 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 初等函数的幂级数展开式 函数的傅里叶(Fourier )系数与傅里叶级数 狄利克雷(Dirichlet )定理 函数在[,]l l 上的傅里叶级数 函数在[0,]l 上的正弦级数和余弦级数考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与p 级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.6.了解函数项级数的收敛域及和函数的概念.7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法.78.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握x e ,sin x ,cos x ,ln(1)x +及(1)x α+的麦克劳林(Maclaurin )展开式,会用它们将一些简单函数间接展开为幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在[,]l l -上的函数展开为傅里叶级数,会将定义在[0,]l 上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.八、常微分方程考试内容常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 伯努利(Bernoulli )方程 全微分方程 可用简单的变量代换求解的某些微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 欧拉(Euler )方程 微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会用降阶法解下列形式的微分方程:()(),(,)n y f x y f x y '''==和(,)y f y y '''=.5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价8分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间及其相关概念n维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质考试要求1.理解n维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解n维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.9四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求l.会用克拉默法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.10六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求11121.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes )公式.3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量 随机变量分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数(){}()F x P X x x =≤-∞<<+∞的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布(,)B n p 、几何分布、超几何分布、泊松(Poisson )分布()P λ及其应用.3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布(,)U a b 、正态分布2(,)N μσ 、指数分布及其应用,其中参数为(0)λλ>的指数分布()E λ的概率密度为,0,()0,0.x e x f x x λλ-⎧>⎪=⎨≤⎪⎩若若5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容13多维随机变量及其分布 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常用二维随机变量的分布 两个及两个以上随机变量简单函数的分布考试要求1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.3.掌握二维均匀分布,了解二维正态分布221212(),,N μμσσρ;;的概率密度,理解其中参数的概率意义. 4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.五、大数定律和中心极限定理考试内容切比雪夫(Chebyshev )不等式 切比雪夫大数定律 伯努利(Bernoulli )大数定律 辛钦(Khinchine )大数定律 棣莫弗—拉普拉斯(De Moivre —Laplace )定理 列维—林德伯格(Levy-Lindberg )定理考试要求1.了解切比雪夫不等式.142.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理).六、数理统计的基本概念考试内容总体 个体 简单随机样本 统计量 样本均值 样本方差和样本矩 2χ分布 t 分布 F 分布 分位数 正态总体的常用抽样分布考试要求1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2211()1ni i S X X n ==--∑ 2.了解2χ分布、t 分布和F 分布的概念及性质,了解上侧α分位数的概念并会查表计算.3.了解正态总体的常用抽样分布.七、参数估计考试内容点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选标准 区间估计的概念 单个正态总体的均值和方差的区间估计 两个正态总体的均值差和方差比的区间估计考试要求1.理解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.4、理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.八、假设检验考试内容显著性检验假设检验的两类错误单个及两个正态总体的均值和方差的假设检验考试要求1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.2.掌握单个及两个正态总体的均值和方差的假设检验.15。

2006年考研数学一试题与答案解析

2006年考研数学一试题与答案解析

2006年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)0ln(1)lim 1cos x x x x→+=-. (2)微分方程(1)y x y x-'=の通解是 .(3)设∑是锥面z =(01z ≤≤)の下侧,则23(1)xdydz ydzdx z dxdy ∑++-=⎰⎰ .(4)点(2,1,0)到平面3450x y z ++=の距离z = . (5)设矩阵2112⎛⎫=⎪-⎝⎭A ,E 为2阶单位矩阵,矩阵B 满足2=+BA B E ,则B = .(6)设随机变量X 与Y 相互独立,且均服从区间[0,3]上の均匀分布,则{}max{,}1P X Y ≤= .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出の四个选项中,只有一项符合题目要求,把所选项前の字母填在题后の括号内)(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处の增量,y ∆与dy 分别为()f x 在点0x 处对应の增量与微分,若0x ∆>,则(A)0dx y <<∆ (B)0y dy <∆< (C)0y dy ∆<<(D)0dy y <∆<(8)设(,)f x y 为连续函数,则140(cos ,sin )d f r r rdr πθθθ⎰⎰等于(A)(,)xf x y dy ⎰⎰(B)(,)f x y dy ⎰⎰(C)(,)yf x y dx ⎰⎰(C)(,)f x y dx ⎰⎰(9)若级数1nn a∞=∑收敛,则级数(A)1nn a∞=∑收敛 (B)1(1)nn n a ∞=-∑收敛(C)11n n n a a∞+=∑收敛(D)112n n n a a ∞+=+∑收敛 (10)设(,)f x y 与(,)x y ϕ均为可微函数,且1(,)0y x y ϕ≠.已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下の一个极值点,下列选项正确の是(A)若00(,)0x f x y '=,则00(,)0y f x y '=(B)若00(,)0x f x y '=,则00(,)0y f x y '≠(C)若00(,)0x f x y '≠,则00(,)0y f x y '=(D)若00(,)0x f x y '≠,则00(,)0y f x y '≠(11)设12,,,,s ααα均为n 维列向量,A 是m n ⨯矩阵,下列选项正确の是 (A)若12,,,,s ααα线性相关,则12,,,,s A αA αA α线性相关 (B)若12,,,,s ααα线性相关,则12,,,,s A αA αA α线性无关(C)若12,,,,s ααα线性无关,则12,,,,s A αA αA α线性相关 (D)若12,,,,s ααα线性无关,则12,,,,s A αA αA α线性无关.(12)设A 为3阶矩阵,将A の第2行加到第1行得B ,再将B の第1列の-1倍加到第2列得C ,记110010001⎛⎫ ⎪= ⎪ ⎪⎝⎭P ,则(A)1-=C P AP (B)1-=C PAP(C)T =C P AP(D)T =C PAP(13)设,A B 为随机事件,且()0,(|)1P B P A B >=,则必有(A)()()P AB P A > (B)()()P A B P B >(C)()()P A B P A = (D)()()P A B P B =(14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ, 且12{||1}{||1},P X P Y μμ-<>-<则(A)12σσ< (B)12σσ>(C)12μμ<(D)12μμ>三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤) (15)(本题满分10分) 设区域D=(){}22,1,0x y x y x +≤≥,计算二重积分2211DxyI dxdy x y +=++⎰⎰.(16)(本题满分12分)设数列{}n x 满足()110,sin 1,2,...n x x x n ππ+<<==. 求:(1)证明lim n x x →∞存在,并求之.(2)计算211lim n x n x n x x +→∞⎛⎫ ⎪⎝⎭. (17)(本题满分12分) 将函数()22xf x x x =+-展开成x の幂级数.(18)(本题满分12分) 设函数()()0,,f u +∞在内具有二阶导数且z f=满足等式22220z zx y ∂∂+=∂∂. (1)验证()()0f u f u u'''+=. (2)若()()10,11,f f '==求函数()f u の表达式. (19)(本题满分12分) 设在上半平面(){},0D x y y =>内,数(),f x y 是有连续偏导数,且对任意の0t >都有()()2,,f tx ty t f x y =.证明: 对L 内の任意分段光滑の有向简单闭曲线L ,都有(,)(,)0Lyf x y dx xf x y dy -=⎰.(20)(本题满分9分) 已知非齐次线性方程组1234123412341435131x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪++-=⎩ 有3个线性无关の解,(1)证明方程组系数矩阵A の秩()2r =A . (2)求,a b の值及方程组の通解. (21)(本题满分9分)设3阶实对称矩阵A の各行元素之和均为3,向量()()121,2,1,0,1,1TT=--=-αα是线性方程组0x =A の两个解.(1)求A の特征值与特征向量.(2)求正交矩阵Q 和对角矩阵A ,使得T=Q AQ A . (22)(本题满分9分)随机变量x の概率密度为()()21,1021,02,,40,令其它x x f x x y x F x y ⎧-<<⎪⎪⎪=≤<=⎨⎪⎪⎪⎩为二维随机变量(,)X Y の分布函数.(1)求Y の概率密度()Y f y . (2)1,42F ⎛⎫-⎪⎝⎭. (23)(本题满分9分)设总体X の概率密度为(,0)F X = 10θθ- 0112x x <<≤<其它,其中θ是未知参数(01)θ<<,12n ,...,X X X 为来自总体X の简单随机样本,记N 为样本值12,...,n x x x 中小于1の个数,求θの最大似然估计.2006年全国硕士研究生入学考试数学一真题解析一、填空题(1)0ln(1)lim1cos x x x x→+-= 2 .221cos 1,)1ln(x x x x -+ (0x →当时)(2)微分方程(1)y x y x-'=の通解是(0)xy cxe x -=≠,这是变量可分离方程.(3)设∑是锥面1)Z ≤≤の下侧,则23(1)2xdydz ydzdx z dxdy π∑++-=⎰⎰补一个曲面221:1x y z ⎧+≤∑⎨=⎩1上侧,2,3(1)P x Q y R z ===-1236P Q Rx y z∂∂∂++=++=∂∂∂ ∴16dxdydz ∑∑Ω+=⎰⎰⎰⎰⎰⎰⎰(Ω为锥面∑和平面1∑所围区域)6V =(V 为上述圆锥体体积)623ππ=⨯=而123(1)0dydz ydzdx z dxdy ∑⨯++-=⎰⎰(∵在1∑上:1,0z dz ==)(4),1,0,450x y z d ++==点(2)到平面3的距离d ====(5)设A = 2 1 ,2阶矩阵B 满足BA =B +2E ,则|B |= .-1 2解:由BA =B +2E 化得B (A -E )=2E ,两边取行列式,得|B ||A -E |=|2E |=4,计算出|A -E |=2,因此|B |=2. (6)91 二、选择题(7)设函数()y f x =具有二阶导数,且()0f x '>,()0f x ''>,x ∆为自变量x 在0x 处の增量,y ∆与dy 分别为()f x 在点0x 处对应の增量与微分.若0>∆x ,则[A]0)(0)(0)(0)(<∆<<<∆<∆<∆<<y dy D dy y C dy y B y dy A()0,()f x f x '>因为则严格单调增加 ()0,()f x f x ''>则是凹的 y dy x ∆<<>∆0,0故又1000(8)(,)(cos ,sin )[C](A)(,)(B)(,)xf x y d f r r rdr f x y dy f x y dy πθθθ⎰⎰⎰⎰⎰⎰40设为连续函数,则等于(C)(,)(D)(,)yf x y dxf x y dx ⎰⎰⎰111111111(9)[D]()()(1)()()()2n n n n n n n n n n n n n n n a A a B a a a C a a D a∞=∞∞==∞∞∞+++===-+∑∑∑∑∑∑若级数收敛,则级数收敛收敛收敛收敛也收敛00000000000000000(10)(,)(,)(,)0,(,)(,)0y x y x y x y x y f x y x y x y x y f x y x y f x y f x y f x y f x y f x y f x y f x y f x ϕϕϕ'≠=''''≠''''≠≠设与均为可微函数,且已知(,)是在约束条件下的一个极值点,下列选项正确的是[D](A)若(,)=0,则(,)=0(B)若(,)=0,则(,)0(C)若(,)0,则(,)=0(D)若(,)0,则(,00000000000000000(,)(,)(,)(,)0(1)(,)(,)0(2)(,)0(,)(,)(,)(,)0,(,)(,)(,)(,)0x x x y y y y y xy x y y x y f x y x y f x y x y f x y x y x y f x y f x y x y x y f x y x y x y f x y λλϕλϕλϕϕϕϕλϕϕ≠+'''⎧+=⎪'''+=⎨⎪'=⎩'''''≠∴=-='''≠)0构造格朗日乘子法函数F=F =F =F =今代入(1)得今00,(,)0[]y f x y D '≠则故选(11)设α1,α2,…,αs 都是n 维向量,A 是m ⨯n 矩阵,则( )成立.(A) 若α1,α2,…,αs 线性相关,则A α1,A α2,…,A αs 线性相关. (B) 若α1,α2,…,αs 线性相关,则A α1,A α2,…,A αs 线性无关. (C) 若α1,α2,…,αs 线性无关,则A α1,A α2,…,A αs 线性相关. (D) 若α1,α2,…,αs 线性无关,则A α1,A α2,…,A αs 线性无关. 解: (A)本题考の是线性相关性の判断问题,可以用定义解.若α1,α2,…,αs 线性相关,则存在不全为0の数c 1,c 2,…,c s 使得c 1α1+c 2α2+…+c s αs =0,用A 左乘等式两边,得c 1A α1+c 2A α2+…+c s A αs =0,于是A α1,A α2,…,A αs 线性相关.如果用秩来解,则更加简单明了.只要熟悉两个基本性质,它们是: 1. α1,α2,…,αs 线性无关⇔ r(α1,α2,…,αs )=s. 2. r(AB )≤ r(B ).矩阵(A α1,A α2,…,A αs )=A ( α1, α2,…,αs ),因此r(A α1,A α2,…,A αs )≤ r(α1, α2,…,αs ).由此马上可判断答案应该为(A).(12)设A 是3阶矩阵,将A の第2列加到第1列上得B ,将B の第1列の-1倍加到第2列上得C .记 1 1 0P = 0 1 0 ,则 0 0 1(A) C =P -1AP . (B) C =PAP -1.(C) C =P T AP . (D) C =PAP T.解: (B)用初等矩阵在乘法中の作用得出B =PA ,1 -1 0C =B 0 1 0 =BP -1= PAP -1. 0 0 1(13)根据乘法公式与加法公式有: P(AB)=P(B)P(A/B)=P(B)P(A ⋃B)=P(A)+P(B)-P(AB)=P(A) 应选C (14)依题:).1,0(~),10(~2211N Y N x σμσμ--,,1}1{1111⎭⎬⎫<⎩⎨⎧-=<-σσμμX P X P .1}1{2222⎭⎬⎫⎩⎨⎧<-=<-σσμμY P Y P 因 },1{}1{21<-><-μμY P X P 即 .11222111⎭⎬⎫⎩⎨⎧<->⎭⎬⎫⎩⎨⎧<-σσμσσμY P X p 所以.,112121σσσσ<>应选A三、解答题{}22222212120222021(15)(,)1,0,1:011ln(1)ln 21122DD DxyD x y x y x I dxdy x yxydxdy x y r I dxdy d dr r x yr ππππθ-+=+≤≥=++=++===+=+++⎰⎰⎰⎰⎰⎰⎰⎰设区域计算二重积分解{}{}{}211112121(16)0,sin (1,2,)(1)lim (2)lim():(1)sin ,01,2sin ,0,lim ,n n n n n n x n n nn n n n n n n n x x x x n x x x x x x n x x x x x x x A π+→∞+→∞+→∞<<===∴<≤≥=≤≥∴=设数列满足求证明存在,并求之计算解因此当时单调减少又有下界,根据准则1,存在递推公式两边取极限得sin ,0A A A =∴=21sin (2)lim(),n x n n nx x ∞→∞原式=为"1"型离散型不能直接用洛必达法则22011sin lim ln()0sin lim()t ttt tt t e t→→=先考虑2323203311(cos sin )1110()0()lim26cos sin sin 1262limlim2262t t t t t t t t t t t t t t tt t t ttteeeee →→→⎡⎤⎡⎤--+--+⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦-=====2(17)()2xf x x x x =+-将函数展开成的幂极数 ()(2)(1)21x A Bf x x x x x ==+-+-+解:2(1)(2)2,32,3A xB x x x A A ++-====令 11,31,3x B B =-=-=-令)](1[131)21(131)1(131)2(132)(x x x x x f --⨯--⨯=+⨯--⨯= 10001111()(1)(1),132332n n n n n n n n n x x x x ∞∞∞+===⎡⎤=--=+-<⎢⎥⎣⎦∑∑∑(18)设函数()(0,)f u +∞在内具有二阶导数,且Z f=满足等式22220z zx y∂∂+=∂∂ (I )验证()()0f u f u u'''+= (II )若(1)0,(1)1f f '== 求函数()f u 的表达式 证:(I)zzf f xy∂∂''==∂∂()22222zxf f xx y xy∂'''=+∂++()()22322222x y f f x y x y '''=+++()()2223222222zy x f f yx y x y ∂'''=+∂++同理22220()()0z z f x y f u f u u∂∂''+==∂∂'''∴+=代入得成立(II )令(),;dp p dp du f u p c du u p u'==-=-+⎰⎰则ln ln ,()cp u c f u p u'=-+∴==22(1)1,1,()ln ||,(1)0,0()ln ||f c f u u c f c f u u '===+===由得于是(19)设在上半平面{}(,)|0D x y y =>内,函数(,)f x y 具有连续偏导数,且对任意0t >都有2(,)(,)f tx ty tf x y -=证明:对D 内任意分段光滑の有向简单闭曲线L ,都有0),(),(=-⎰dy y x xf dx y x yf L.证:把2(,)(,)f tx ty t f x y t -=两边对求导得:(,)(,)2(,)x y xf tx ty yf tx ty tf x y ''+=- 令 1t =,则(,)(,)2(,)x y xf x y yf x y f x y ''+=- 再令 (,),(,)P yf x y Q xf x y ==-所给曲线积分等于0の充分必要条件为Q Px y∂∂=∂∂ 今(,)(,)x Qf x y xf x y x∂'=--∂(,)(,)y Pf x y yf x y y∂'=+∂ 要求Q Px y∂∂=∂∂成立,只要(,)(,)2(,)x y xf x y yf x y f x y ''+=- 我们已经证明,Q Px y∂∂∴=∂∂,于是结论成立. (20)已知非齐次线性方程组 x 1+x 2+x 3+x 4=-1, 4x 1+3x 2+5x 3-x 4=-1,a x 1+x 2+3x 3+bx 4=1 有3个线性无关の解.① 证明此方程组の系数矩阵A の秩为2. ② 求a,b の值和方程组の通解.解:① 设α1,α2,α3是方程组の3个线性无关の解,则α2-α1,α3-α1是AX =0の两个线性无关の解.于是AX =0の基础解系中解の个数不少于2,即4-r(A )≥2,从而r(A )≤2.又因为A の行向量是两两线性无关の,所以r(A )≥2. 两个不等式说明r(A )=2.② 对方程组の增广矩阵作初等行变换:1 1 1 1 -1 1 1 1 1 -1(A |β)= 4 3 5 -1 -1 → 0 –1 1 –5 3 ,a 1 3b 1 0 0 4-2a 4a+b-5 4-2a 由r(A )=2,得出a=2,b=-3.代入后继续作初等行变换:1 02 -4 2 → 0 1 -1 5 -3 . 0 0 0 0 0 得同解方程组 x 1=2-2x 3+4x 4, x 2=-3+x 3-5x 4,求出一个特解(2,-3,0,0)T和AX =0の基础解系(-2,1,1,0)T,(4,-5,0,1) T.得到方程组の通解:(2,-3,0,0)T+c 1(-2,1,1,0)T+c 2(4,-5,0,1)T, c 1,c 2任意.(21) 设3阶实对称矩阵A の各行元素之和都为3,向量α1=(-1,2,-1)T, α2=(0,-1,1)T都是齐次线性方程组AX =0の解. ① 求A の特征值和特征向量. ② 求作正交矩阵Q 和对角矩阵Λ,使得 Q TAQ =Λ.解:① 条件说明A (1,1,1)T=(3,3,3)T,即 α0=(1,1,1)T是A の特征向量,特征值为3.又α1,α2都是AX =0の解说明它们也都是A の特征向量,特征值为0.由于α1,α2线性无关, 特征值0の重数大于1.于是A の特征值为3,0,0.属于3の特征向量:c α0, c ≠0.属于0の特征向量:c 1α1+c 2α2, c 1,c 2不都为0. ② 将α0单位化,得η0=(33,33,33)T. 对α1,α2作施密特正交化,のη1=(0,-22,22)T , η2=(-36,66,66)T. 作Q =(η0,η1,η2),则Q 是正交矩阵,并且3 0 0Q T AQ =Q -1AQ = 0 0 0 . 0 0 0(22)随机变量X の概率密度为⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<-=其他,020,4101,21)(x x x f X ,令2X Y =,),(y x F 为二维随机变量)(Y X ,の分布函数. (Ⅰ)求Y の概率密度;(Ⅱ))4,21(-F 解:(Ⅰ)⎪⎪⎩⎪⎪⎨⎧≤<≤<≤<=≤=≤=y y y y y X P y Y P y F Y 4,141,)2(10,)1(0,0)()()(2式式⎰⎰=+=≤≤-=-yyy dx dx y X y P 0434121)()1(式; ⎰⎰+=+=≤≤-=-yy dx dx y X y P 0141214121)()2(式. 所以:⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<==其他,041,8110,83)()('y yy y y F y f Y Y这个解法是从分布函数の最基本の概率定义入手,对y 进行适当の讨论即可,在新东方の辅导班里我也经常讲到,是基本题型. (Ⅱ))4,21(-F )212()22,21()4,21()4,21(2-≤≤-=≤≤--≤=≤-≤=≤-≤=X P X X P X X P Y X P 4121211==⎰--dx . (23)设总体X の概率密度为⎪⎩⎪⎨⎧≤≤-<<=其他,021,110,),(x x x f θθθ,其中θ是未知参数(0<θ<1).n X X X ,,21为来自总体の简单随机样本,记N 为样本值n x x x ,,21中小于1の个数.求θの最大似然估计.解:对样本n x x x ,,21按照<1或者≥1进行分类:pN p p x x x ,,21<1,pn pN pN x x x ,,21++≥1.似然函数⎩⎨⎧≥<-=++-其他,,01,,,1,,)1()(2121pn pN pN pN p p N n N x x x x x x L θθθ,在pN p p x x x ,,21<1,pn pN pN x x x ,,21++≥1时,)1ln()(ln )(ln θθθ--+=N n N L ,01)(ln =---=θθθθN n N d L d ,所以nN=最大θ.2005年考研数学一真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线122+=x x y の斜渐近线方程为 _____________.(2)微分方程x x y y x ln 2=+'满足91)1(-=y の解为. ____________.(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(nu∂∂=.________.(4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成の空间区域,∑是Ωの整个边界の外侧,则⎰⎰∑=++zdxdy ydzdx xdydz ____________.(5)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B ..(6)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y , 则}2{=Y P =____________.二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出の四个选项中,只有一项符合题目要求,把所选项前の字母填在题后の括号内)(7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ ](8)设F(x)是连续函数f(x)の一个原函数,""N M ⇔表示“M の充分必要条件是N ”,则必有(A) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ ](9)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222y u x u ∂∂-=∂∂. (B ) 2222yu x u ∂∂=∂∂. (C) 222yuy x u ∂∂=∂∂∂. (D) 222x u y x u ∂∂=∂∂∂. [ ] (10)设有三元方程1ln =+-xzey z xy ,根据隐函数存在定理,存在点(0,1,1)の一个邻域,在此邻域内该方程(A) 只能确定一个具有连续偏导数の隐函数z=z(x,y).(B) 可确定两个具有连续偏导数の隐函数x=x(y,z)和z=z(x,y). (C) 可确定两个具有连续偏导数の隐函数y=y(x,z)和z=z(x,y).(D) 可确定两个具有连续偏导数の隐函数x=x(y,z)和y=y(x,z). [ ](11)设21,λλ是矩阵A の两个不同の特征值,对应の特征向量分别为21,αα,则1α,)(21αα+A 线性无关の充分必要条件是(A) 01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [ ] (12)设A 为n (2≥n )阶可逆矩阵,交换A の第1行与第2行得矩阵B, **,B A 分别为A,B の伴随矩阵,则(A) 交换*A の第1列与第2列得*B . (B) 交换*A の第1行与第2行得*B . (C) 交换*A の第1列与第2列得*B -. (D) 交换*A の第1行与第2行得*B -.[ ](13)设二维随机变量(X,Y) の概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则(A) a=0.2, b=0.3 (B) a=0.4, b=0.1(C) a=0.3, b=0.2 (D) a=0.1, b=0.4 [ ] (14)设)2(,,,21≥n X X X n 为来自总体N(0,1)の简单随机样本,X 为样本均值,2S 为样本方差,则(A) )1,0(~N X n (B) ).(~22n nS χ(C) )1(~)1(--n t S X n (D) ).1,1(~)1(2221--∑=n F X X n n i i[ ]三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分11分) 设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++の最大整数. 计算二重积分⎰⎰++Ddxdy y xxy .]1[22(16)(本题满分12分) 求幂级数∑∞=--+-121))12(11()1(n n n x n n の收敛区间与和函数f(x).(17)(本题满分11分)如图,曲线C の方程为y=f(x),点(3,2)是它の一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处の切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明:(I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同の点)1,0(,∈ζη,使得.1)()(=''ζηf f (19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点の任意分段光滑简单闭曲线L 上,曲线积分⎰++Lyx xydydx y 4222)(ϕの值恒为同一常数.(I )证明:对右半平面x>0内の任意分段光滑简单闭曲线C ,有022)(42=++⎰Cy x xydydx y ϕ;(II )求函数)(y ϕの表达式. (20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=の秩为2.(I ) 求a の值;(II ) 求正交变换Qy x =,把),,(321x x x f 化成标准形; (III ) 求方程),,(321x x x f =0の解. (21)(本题满分9分)已知3阶矩阵A の第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0の通解..(22)(本题满分9分)设二维随机变量(X,Y)の概率密度为.,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧=求:(I ) (X,Y)の边缘概率密度)(),(y f x f Y X ; (II )Y X Z -=2の概率密度).(z f Z (23)(本题满分9分)设)2(,,,21>n X X X n 为来自总体N(0,1)の简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(I ) i Y の方差n i DY i ,,2,1, =; (II )1Y 与n Y の协方差).,(1n Y Y Cov。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考研数一满分经验
前言
考研数学一是所有理科研究生必修的课程之一,成绩对整个考研成绩的综合评
价影响很大。

如何在考研数学一中取得高分呢?本文将分享几点考研数学一满分经验,希望对大家有所帮助。

坚定信念,制定目标
备考考研的第一步就是确定考研目标,具体内容包括学校、专业和报考的科目等,数学一的目标是取得满分。

然而,想要取得高分就必须保持坚定的信念和能够克服挫折的毅力。

所以,首先需要具备坚定的信念,而后制定良好的计划,不断提高学习效率,提升数学水平。

熟悉考试信息,掌握考试方法
考研数学一的考试形式是选择题和填空题,共计150分。

选择题和填空题各有75分。

选择题得分每题3分,共计25题,选择题答案仅供考生填涂;填空题共
15道,分值不等,5个1分,5个2分,5个3分。

填空题答案需填写在答题纸上。

考生答案错误,扣除相应分数。

既然要取得高分,必须掌握好考试的方法和技巧。

在备考的过程中,需要密切
关注考试的信息和各种复习资料、习题解析和真题试卷,逐步掌握考试难度、出题方向,为制定快速正确的解题方法和技巧打好基础。

做好时间安排
考研数学一的考试时间为3小时,同样需要在考试中做好时间规划和安排。


于单选题,优先做熟悉易做的题目;对于多选题,建议先把题目的上下文理解清楚再作答。

充分掌握基础知识
数学一满分的前置条件是必须掌握数学基础知识,尤其在高中数学知识方面。

高中数学是考研数学一的基础,回归到基础,从基础做起。

高中阶段的数学视为考研数学一的底层基础,基础打得牢,考研数学一也就有了很好的基础。

精打细算,找到自己的解题思路
在备考数学一的过程中,需要掌握好各种解题方法,注重掌握方法运用和变换,这样就能快速准确地解决问题。

对于某些题型,需要根据题目的特点找到自己的解
题思路。

切勿盲目套用公式,盲目相信习题讲解的例题。

要审判、反思、总结,切实找到自己的解题方式。

多做题目,尤其是历年真题
做题是很好的提高数学能力的方法,轻松开脑洞,培养题感,帮助快速提高数学成绩。

在去年复习期间,建议多做一些历年真题,无疑是锻炼自身能力的一种有效途径。

历年真题是锻炼能力、体验考试、提高心理承受力的良好素材,建议在复习中尽量多做此类题目,形成自身的解题思路和方法。

练习英语
由于很多数学文献都是英文撰写的,因此需要掌握一定的英语能力。

如果我们无法掌握这些英文文献,很容易让自己陷入被动。

因此,在考研数学一备考期间,也需要适当地练习英语,包括听、说、读、写等各个方面。

小结
考研数学一是有先决条件的,必须掌握好高中数学知识,然后才能针对考研数学一的特点进行相应的复习。

同时,还需要加强对考试的认识,制定一个详细的复习计划,并坚定信念、执行计划。

希望大家能够在考研数学一考试中取得好成绩!。

相关文档
最新文档