matlab做数值分析Romberg积分预测近似值

合集下载

数值分析复习资料

数值分析复习资料

数值分析复习资料一、重点公式第一章 非线性方程和方程组的数值解法 1)二分法的基本原理,误差:~12k b ax α+--<2)迭代法收敛阶:1lim0i pi ic εε+→∞=≠,若1p =则要求01c <<3)单点迭代收敛定理:定理一:若当[],x a b ∈时,[](),x a b ϕ∈且'()1x l ϕ≤<,[],x a b ∀∈,则迭代格式收敛于唯一的根;定理二:设()x ϕ满足:①[],x a b ∈时,[](),x a b ϕ∈, ②[]121212,,, ()(),01x x a b x x l x x l ϕϕ∀∈-≤-<<有 则对任意初值[]0,x a b ∈迭代收敛,且:110111i i iii x x x llx x x lαα+-≤---≤-- 定理三:设()x ϕ在α的邻域内具有连续的一阶导数,且'()1ϕα<,则迭代格式具有局部收敛性;定理四:假设()x ϕ在根α的邻域内充分可导,则迭代格式1()i i x x ϕ+=是P 阶收敛的 ()()()0,1,,1,()0j P j P ϕαϕα==-≠ (Taylor 展开证明)4)Newton 迭代法:1'()()i i i i f x x x f x +=-,平方收敛 5)Newton 迭代法收敛定理:设()f x 在有根区间[],a b 上有二阶导数,且满足: ①:()()0f a f b <; ②:[]'()0,,f x x a b ≠∈;③:[]'',,f x a b ∈不变号④:初值[]0,x a b ∈使得''()()0f x f x <;则Newton 迭代法收敛于根α。

6)多点迭代法:1111111()()()()()()()()()i i i i i i i i i i i i i i i f x f x f x x x x x f x f x f x f x f x f x x x -+-----=-=+----收敛阶:P =7)Newton 迭代法求重根(收敛仍为线性收敛),对Newton 法进行修改 ①:已知根的重数r ,1'()()i i i i f x x x rf x +=-(平方收敛) ②:未知根的重数:1''()(),()()()i i i i u x f x x x u x u x f x +=-=,α为()f x 的重根,则α为()u x 的单根。

数值分析习题

数值分析习题

1.1 求下列各数的具有四位有效数字的近似值, 并指出其绝对误差限和相对误差限)1.0ln(,121,1011,1014321====x x x x1.2 下列各数都是对准确值进行四舍五入得到的近似值, 指出它们的绝对误差限、相对误差限和有效数字的位数。

3*5*4*3*2*1100.5,5000,50.31,3015.0,0315.0⨯=====x x x x x1.3 为了使31的近似值的相对误差不超过0.1%, 问应取几位有效数字?1.4 怎样计算下列各题才能使得结果比较精确?(1) x x sin )sin(-+ε,其中ε充分小 (2) ⎰++121N Nx dx,其中N 是充分大的正数(3)xxsin cos 1-,其中x 充分小(4) o 1cos 1- (5) 1001.0-e(6) )11010ln(84--1.5 求方程01562=+-x x 的两个根, 使至少具有四位有效数字。

2.1 证明方程043=-+x x 在区间[1,2]内有且仅有一个根。

如果用二分法求它具有五位有效数字的根,试问需对分多少次?(不必求根)2.2 用二分法求方程0134=+-x x 在[0.3, 0.4]内的一个根, 精度要求21021-⨯=ε。

2.3 找出下列方程的有根区间,选择适当的初始点用二分法求方程的根,精度要求210-=ε。

(1) 02=--x x ;(2) 06cos 2=-++-x e x x ; (3) 01tan =--x x ; (4) 0sin 2=--x e x 。

2.4 考虑方程032=-x e x ,将其改写为3xex ±=,取00=x ,用两种迭代公式迭代,分别收敛到1.0和-0.5附近的两个根(取精度要求310-=ε)。

2.5 为求方程0123=--x x 在5.1=x 附近的一个根,建立下列形式的迭代公式:(1) 2121111kk x x xx +=⇒+=+,;(2) 3212311k k x x x x +=⇒+=+,;(3) 111112-=⇒-=+k k x x x x ,。

数值分析课后习题和解答

数值分析课后习题和解答

课后习题解答第一章绪论习题一1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。

解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(1.2.4)有已知x*的相对误差满足,而,故即2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。

解:直接根据定义和式(1.2.2)(1.2.3)则得有5位有效数字,其误差限,相对误差限有2位有效数字,有5位有效数字,3.下列公式如何才比较准确?(1)(2)解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。

(1)(2)4.近似数x*=0.0310,是 3 位有数数字。

5.计算取,利用:式计算误差最小。

四个选项:第二、三章插值与函数逼近习题二、三1. 给定的数值表用线性插值与二次插值计算ln0.54的近似值并估计误差限. 解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计(5.8)。

线性插值时,用0.5及0.6两点,用Newton插值误差限,因,故二次插值时,用0.5,0.6,0.7三点,作二次Newton插值误差限,故2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h应取多少?解:用误差估计式(5.8),令因得3. 若,求和.解:由均差与导数关系于是4. 若互异,求的值,这里p≤n+1.解:,由均差对称性可知当有而当P=n+1时于是得5. 求证.解:解:只要按差分定义直接展开得6. 已知的函数表求出三次Newton均差插值多项式,计算f(0.23)的近似值并用均差的余项表达式估计误差.解:根据给定函数表构造均差表由式(5.14)当n=3时得Newton均差插值多项式N3(x)=1.0067x+0.08367x(x-0.2)+0.17400x(x-0.2)(x-0.3) 由此可得f(0.23) N3(0.23)=0.23203由余项表达式(5.15)可得由于7. 给定f(x)=cosx的函数表用Newton等距插值公式计算cos 0.048及cos 0.566的近似值并估计误差解:先构造差分表计算,用n=4得Newton前插公式误差估计由公式(5.17)得其中计算时用Newton后插公式(5.18)误差估计由公式(5.19)得这里仍为0.5658.求一个次数不高于四次的多项式p(x),使它满足解:这种题目可以有很多方法去做,但应以简单为宜。

matlab数值仿真介绍

matlab数值仿真介绍

matlab数值仿真介绍Matlab是一种强大的数值仿真工具,被广泛应用于科学研究、工程设计和数据分析等领域。

本文将介绍Matlab数值仿真的基本原理和应用场景。

我们需要了解什么是数值仿真。

数值仿真是通过数学模型和计算机算法来模拟和分析实际问题的一种方法。

在传统的数学建模中,往往需要解析解,而数值仿真则通过数值计算的方法来获得问题的近似解。

Matlab提供了丰富的数值计算函数和工具箱,使得数值仿真更加简单高效。

Matlab的数值仿真功能主要包括以下几个方面:1. 数值计算:Matlab提供了基本的数值运算功能,包括加减乘除、求幂、取余等。

通过简单的代码,可以实现复杂的数值计算。

例如,可以用Matlab计算圆的面积和周长,或者求解方程组等。

2. 数值优化:Matlab提供了一系列优化算法,可以在给定约束条件下求解最优化问题。

例如,可以用Matlab求解线性规划、非线性规划和整数规划等问题。

这对于工程设计和决策分析非常有用。

3. 数值积分:Matlab提供了多种数值积分方法,可以对函数进行积分。

通过数值积分,可以求解曲线下面积、计算概率密度函数等。

Matlab还提供了符号计算功能,可以进行符号积分和符号求导等操作。

4. 数值微分:Matlab提供了数值微分函数,可以计算函数的导数和高阶导数。

通过数值微分,可以分析函数的变化趋势和极值点等。

这对于优化算法和动力系统建模非常重要。

5. 常微分方程求解:Matlab提供了多种求解常微分方程的函数,可以模拟动力系统、电路系统和生态系统等。

通过数值仿真,可以得到系统的动态响应和稳定性分析。

这对于工程控制和科学研究非常有用。

6. 偏微分方程求解:Matlab提供了偏微分方程求解工具箱,可以模拟传热、流体力学和结构力学等问题。

通过数值仿真,可以得到系统的温度分布、流速分布和应力分布等。

这对于工程设计和科学研究非常重要。

除了上述功能,Matlab还支持数据可视化和图形绘制。

matlab计算一元高次方程的近似解

matlab计算一元高次方程的近似解

matlab计算一元高次方程的近似解
在MATLAB中,可以使用fzero函数来计算一元高次方程的近似解。

fzero函数可以使用以下语法:
x = fzero(fun,x0)
其中,fun是一个函数句柄,表示要求解的方程;x0是一个初始猜测值,表示求解开始的位置。

函数fun必须接受一个输入参数x,并返回一个标量值f(x),表示方程在x处的函数值。

fzero函数会在x0附近寻找一个根,并返回一个近似解x。

例如,假设要求解方程x^3 - 2*x^2 + 3*x - 1 = 0的根,可以使用以下代码:
fun = @(x) x^3 - 2*x^2 + 3*x - 1;
x0 = 1; % 初始猜测值
x = fzero(fun,x0) % 计算近似解
运行结果为:
x =
0.38197
这个近似解可以通过代入方程验证:f(0.38197) ≈ 0。

需要注意的是,fzero函数只能计算一个根,如果方程有多个根,则需要在不同的初始猜测值下分别调用fzero函数。

- 1 -。

计算方法

计算方法

实验报告课程名称:计算方法院系:数学科学系专业班级:数学与应用数学1101学号:11311101学生姓名:74指导教师:开课时间:2013 至2014 学年第二学期一、学生撰写要求按照实验课程培养方案的要求,每门实验课程中的每一个实验项目完成后,每位参加实验的学生均须在实验教师规定的时间内独立完成一份实验报告,不得抄袭,不得缺交。

学生撰写实验报告时应严格按照本实验报告规定的内容和要求填写。

字迹工整,文字简练,数据齐全,图表规范,计算正确,分析充分、具体、定量。

二、教师评阅与装订要求1.实验报告批改要深入细致,批改过程中要发现和纠正学生实验报告中的问题,给出评语和实验报告成绩,签名并注明批改日期。

实验报告批改完成后,应采用适当的形式将学生实验报告中存在的问题及时反馈给学生。

2.实验报告成绩用百分制评定,并给出成绩评定的依据或评分标准(附于实验报告成绩登记表后)。

对迟交实验报告的学生要酌情扣分,对缺交和抄袭实验报告的学生应及时批评教育,并对该次实验报告的分数以零分处理。

对单独设课的实验课程,如学生抄袭或缺交实验报告达该课程全学期实验报告总次数三分之一以上,不得同意其参加本课程的考核。

3.各实验项目的实验报告成绩登记在实验报告成绩登记表中。

本学期实验项目全部完成后,给定实验报告综合成绩。

4.实验报告综合成绩应按课程教学大纲规定比例(一般为10-15%)计入实验课总评成绩;实验总评成绩原则上应包括考勤、实验报告、考核(操作、理论)等多方面成绩;5.实验教师每学期负责对拟存档的学生实验报告按课程、学生收齐并装订,按如下顺序装订成册:实验报告封面、实验报告成绩登记表、实验报告成绩评定依据、实验报告(按教学进度表规定的实验项目顺序排序)。

装订时统一靠左侧按“两钉三等分”原则装订。

4、实验方法、步骤1、拉格朗日插值及其误差估计的MATLAB主程序function [y,R]=lagranzi(X,Y,x,M)n=length(X); m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0; q1=1.0; c1=1.0;for j=1:nif j~=kp=p*(z-X(j))/(X(k)-X(j));endq1=abs(q1*(z-X(j)));c1=c1*j;ends=p*Y(k)+s;endy(i)=s;endR=M*q1/c1;在MATLAB工作窗口输入程序>> x=2*pi/9; M=1; X=[pi/6 ,pi/4, pi/3];Y=[0.5,0.7071,0.8660]; [y,R]=lagranzi(X,Y,x,M)2、clear;x=-8:0.5:8;y=x';X=ones(size(y))*x;Y=y*ones(size(x));R=sqrt(X.^2+Y.^2)+eps;Z=cos(R)./R;surf(X,Y,Z);colormap(cool)xlabel('x'),ylabel('y'),zlabel('z')3、输入程序>> X=[0,1]; Y =exp(-X) ,l01= poly(X(2))/( X(1)- X(2)),l11= poly(X(1))/( X(2)- X(1)), l0=poly2sym (l01),l1=poly2sym (l11), P = l01* Y(1)+ l11* Y(2), L=poly2sym (P), 输入程序>> M=1;x=0:0.001:1; R1=M*max(abs((x-X(1)).*(x-X(2))))./24、输入程序>> X=[1,3];Y=[1,2]; l01= poly(X(2))/( X(1)- X(2)), l11= poly(X(1))/( X(2)- X(1)), l0=poly2sym (l01),l1=poly2sym (l11), P = l01* Y(1)+ l11* Y(2),L=poly2sym (P),x=1.5; Y = polyval(P,x)输入程序>> M=5;R1=M*abs((x-X(1))* (x-X(2)))/25、输入程序>> X=[0,pi/2]; Y =cos(X) ,l01= poly(X(2))/( X(1)- X(2)),l11= poly(X(1))/( X(2)- X(1)), l0=poly2sym (l01),l1=poly2sym (l11),P = l01* Y(1)+ l11* Y(2), L=poly2sym (P),x=pi/6;Y = polyval(P,x)运行后输出基函数l0和l1及其插值多项式的系数向量P、插值多项式和插值为l0 =-5734161139222659/9007199254740992*x+1l1 =5734161139222659/9007199254740992*xP =-0.6366 1.0000L =-5734161139222659/9007199254740992*x+1Y =0.6667输入程序>> M=1;x=pi/6; R1=M*abs((x-X(1))*(x-X(2)))/2运行后输出误差限为R1 =0.2742.6、简单矩阵263475389A⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦的输入步骤。

matlab中方程根的近似计算

matlab中方程根的近似计算实验一方程根的近似计算一、问题求非线性方程的根二、实验目的1、学会使用matlab中内部函数roots、solve、fsolve、fzero求解方程,并用之解决实际问题。

4、熟悉Matlab的编程思路,尤其是函数式M文件的编写方法。

三、预备知识方程求根是初等数学的重要内容之一,也是科学和工程中经常碰到的数值计算问题。

它的一般形式是求方程f(x)=0的根。

如果有x*使得f(x*)=0,则称x*为f(x)=0的根,或函数f(x)的零点。

并非所有的方程都能求出精确解或解析解。

理论上已经证明,用代数方法可以求出不超过3次的代数方程的解析解,但对于次数大于等于5的代数方程,没有代数求根方法,即它的根不能用方程系数的解析式表示。

至于超越方程,通常很难求出其解析解。

不存在解析解的方程就需要结合具体方程(函数)的性质,使用作图法或数值法求出近似解。

而计算机的发展和普及又为这些方法提供了广阔的发展前景,使之成为科学和工程中最实用的方法之一。

下面介绍几种常见的求近似根的方法。

1. 求方程近似解的简单方法1.1 图形方法—放大法求根图形的方法是分析方程根的性态最简洁的方法。

不过,不要总是想得到根的精确值。

这些值虽然粗糙但直观,多少个根,在何范围,一目了然。

并且还可以借助图形局部放大功能,将根定位得更加准确一些。

例1.1 求方程x5+2x2+4=0的所有根及其大致分布范围。

解(1)画出函数f(x)=x5+2x2+4的图形,确定方程的实数根的大致范围。

为此,在matlab命令窗中输入clfezplot x-x,grid onhold onezplot('x^5+2*x^2+4',[-2*pi,2*pi])1-1 函数f(x)=x5+2x2+4的图形clfx=-2*pi:0.1:2*pi;y1=zeros(size(x));y2= x.^5+2*x.^2+4;plot(x,y1,x,y2)grid onaxis tighttitle('x^5+2x^2+4')xlabel('x')从图1-1可见,它有一个实数根,大致分布在-2与2之间。

(完整版)数值计算方法教案

《计算方法》教案课程名称:计算方法适用专业:医学信息技术适用年级:二年级任课教师:***编写时间:2011年 8月新疆医科大学工程学院张利萍教案目录《计算方法》教学大纲 (4)一、课程的性质与任务 (4)二、课程的教学内容、基本要求及学时分配 (4)三、课程改革与特色 (5)四、推荐教材及参考书 (5)《计算方法》教学日历..................................... 错误!未定义书签。

第一章绪论 .. (6)第1讲绪论有效数字 (6)第2讲误差………………………………………………………………………………第二章线性方程组的直接法 (14)第3讲直接法、高斯消去法 (14)第4讲高斯列主元消去法 (22)第5讲平方根法、追赶法 (29)第三章插值法与最小二乘法 (31)第6讲机械求积、插值型求积公式 (32)第7讲牛顿柯特斯公式、复化求积公式 (37)第8讲高斯公式、数值微分 (42)第9讲第10讲第12讲第四章数值积分与数值微分 (48)第11讲欧拉公式、改进的欧拉公式 (48)第12讲龙格库塔方法、亚当姆斯方法 (52)第13讲收敛性与稳定性、方程组与高阶方程 (56)第14讲第15讲第五章微分常微分方程的差分方法 (59)第16讲迭代收敛性与迭代加速 (60)第17讲牛顿法、弦截法 (64)第18讲第19讲第20讲第六章线性方程组的迭代法 (67)第21讲迭代公式的建立 (68)第22讲第23讲第24讲向量范数、迭代收敛性 (71)第25讲《计算方法》教学大纲课程名称:计算方法/Computer Numerical Analysis B学时/学分:54/4先修课程:高等数学、线性代数、高级语言程序设计(如:Matlab语言)适用专业:计算机科学与技术、信息管理与信息系统开课学院(部)、系(教研室):医学工程技术学院、医学信息技术专业一、课程的性质与任务计算方法是一门专业必修课。

第三次实验

实验报告(二)
院(系)理学院课程名称:数值分析日期2014.10.23
班级
理A1221
学号
37
实验室
209
专业
信息与计算科学
姓名
樊美林
计算机号
实验
名称
数值积分
成绩评定
所用
软件
MatlabR2013a
教师签名







1.低阶Newton-Cotes公式求定积分,观察随区间个数n变化时复合公式误差的下降;
0.4268 0.4024 0 0 0
0.4070 0.4004 0.4003 0 0
0.4018 0.4001 0.4001 0.4000 0
0.4005 0.4000 0.4000 0.4000 0.4000
quad = 0.4000
err = 4.1033e-05
h = 0.0625
3、分别用trapz,quad,quadl函数求定积分 的值。
functions=compsimp(f,a,b,n)
h=(b-a)/(2*n);
s1=0;
s2=0;
fork=1:n
x=a+h*(2*k-1);
s1=s1+f(x);
end
fork=1:(n-1)
x=a+2*h*k;
s2=s2+f(x);
end
s=h*(f(a)+f(b)+4*s1+2*s2)/3;
运行结果s2 = 0.882081194911110
s3 = 0.882082140308872
备注:本实验报告用于各学科与计算机应用相关课程的实验,务必按时完成。不交此报告者,本次实验为“不合格”。

几种常用数值积分方法的比较讲解

学科分类号110.3420本科毕业论文题目几种常用数值积分方法的比较姓名潘晓祥学号1006020540200院(系)数学与计算机科学学院专业数学与应用数学年级2010 级指导教师雍进军职称讲师二〇一四年五月贵州师范学院本科毕业论文(设计)诚信声明本人郑重声明:所呈交的本科毕业论文(设计),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。

对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。

本人完全意识到本声明的法律结果由本人承担。

本科毕业论文作者签名:年月日贵州师范学院本科毕业论文(设计)任务书毕业设计题目几种常用数值积分方法的比较作者姓名潘晓祥学号1006020540200 年级2010级所属学院数学与计算机科专业数学与应用数学班级四班指导教师签名雍进军讲师职称讲师开题日期2013年7月10日主要目标1.了解什么数值积分基本思想和一些常用的数值积分方法;2.对各种数值积分方法的误差以及代数精度进行分析;3.对各积分方法进行比较总结出优缺点。

主要要求通过对几种常用的数值积分方法进行了的分析,并用这几种方法对被积函数是普通函数做了数值积分,并在计算机上进行实验。

数值积分是计算方法或数值分析理论中非常重要的内容,数值积分方法也是解决实际计算问题的重要方法,对几种常用数值积分方法的分析很必要。

主要内容本文通过对复化求积公式, Newton—Cotes求积公式, Romberg求积公式,高斯型求积公式进行分析讨论并在计算机上积分实验,从代数精度,求积公式误差等角度对这些方法进行分析比较,并总结出每种求积分法的优缺点以及实用性。

贵州师范学院本科毕业论文(设计)开题报告书论文题目几种常用数值积分方法的比较作者姓名潘晓祥学号1006020540200 年级2010级数学与计算机所属学院专业数学与应用数学班级数本(4)班科学学院指导教师姓名雍进军职称讲师预计字数5000.00字题目性质应用研究日期2013年7月05 日选题的原由:研究意义:数值积分是数学上的重要课题之一,是数值分析中的重要内容之一,也是数学的研究重点.并在实际问题及应用中有着广泛的应用.常用于科学与工程的计算中,如涉及到积分方程,工程计算,计算机图形学,金融数学等应用科学领域都有着相当重要的应用,所以研究数值积分问题有很重要的意义.数值积分是研究如何求出一个积分的数值.这一课题的起源可追溯到古代,其中一个突出的例子是希腊人用内接与外接正多边形推算出圆面积的方法.也正是此法使阿基米德得以求出π值得上界与下界,若干世纪以来,尤其是十六世纪后,已提出了多种数值积分方法,其中有矩形求积法,内插求积法,牛顿科特斯公式,复化求积公式,龙贝格求积公式,高斯型求积公式.但各种方法都有特点,在不同的情况下试用程度不同,我们将着重从求积公式的代数精度和余项等角度对这些方法进行分析比较. 研究动态:这些年来,有关数值积分的研究已经成为一个很活跃的研究领域,历史上,阿基米德,牛顿,欧拉,高斯,切比雪夫等人都对此有过贡献.研究出各种各样的数值求积公式,但一个好的数值求积公式应该满足:计算简单,误差小,代数精度高.我们将对矩形求积法,内插求积法,牛顿科特斯公式,化求积公式,贝格求积公式,斯型求积公式进行比较.对数值求积公式能有进一步的了解和学习.主要内容:1 数值积分方法的基本思想2 几类常用数值积分方法的基本分析2.1 Newton—Cotes求积公式2.2 复化求积公式2.3 Romberg求积公式2.4 高斯型求积公式3 几类数值积分方法的简单比较评述4利用MATLAB编程应用对几类求积算法的分析比较研究方法:本论文主要通过对相关文献和书籍的参考,合自己的见解,复化求积公式,Newton—Cotes求积公式,Romberg求积公式,高斯型求积公式进行讨论并进行上机实验,从代数精度,求积公式误差等角度对这些方法进行分析比较.完成期限和采取的主要措施:本论文计划用6个月的时间完成,阶段的任务如下:(1)7月份查阅相关书籍和文献;(2)8月份完成开题报告并交老师批阅;(3)9月份完成论文初稿并交老师批阅;(4)10月份完成论文二搞并交老师批阅;(5)11月份完成论文三搞;(6)12月份定稿.主要措施:考相关书籍和文献,合自己的见解,老师的指导下和同学的帮助下完成主要参考文献及资料名称:[1] 关治. 陆金甫. 数学分析基础(第二版)[M]. 北京:等教育出版社.2010.7[2] 胡祖炽. 林源渠. 数值分析[M] 北京:等教育出版社.1986.3[3] 薛毅. 数学分析与实验[M] 北京:业大学出版社2005.3[4] 徐士良. 数值分析与算法[M]. 北京:械工业出版社2007.1[5] 王开荣. 杨大地. 应用数值分析[M] 北京:等教育出版社2010.7[6] 杨一都. 数值计算方法[M]. 北京:等教育出版社 . 2008.4[7] 韩明. 王家宝. 李林. 数学实验(MATLAB)版[M]. 上海:济大学出版社2012.1[8] 圣宝建. 关于数值积分若干问题的研究[J]. 南京信息工程大学. 2009.05.01. : 42[9] 刘绪军. 几种求积公式计算精确度的比较[J]. 南京职业技术学院. 2009.[10] 史万明.吴裕树.孙新.数值分析[M]. 北京理工大学出版社.2010.4.开题报告会纪要时间2013年8月26日地点宁静楼229教师办公室与会人员姓名职务(职称)姓名职务(职称)姓名职务(职称)雍进军导师(讲师)邓喜才副教授李晟副教授龙林林组长指导教师意见:签名:年月日会议记录摘要:指导小组针对课题《二次函数性质的应用》提问了以下问题以及报告人的回答:雍老师问:选择此题目的目的?潘晓祥答:随着计算机和计算方法的飞速发展,几乎所有学科都走向定量化和精确化,计算数学中的数值计算方法则是解决“计算”问题的桥梁和工具。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

clc
%%
%fprintf('使用Romberg积分,对于积分[048]上f(x)=sqrt(1+(cosx)^2)计算近似值\n')
%%
%确定R11R21R31R41R51,并用这些近似值预言积分值
%确定R22R33R44R55的值,并修改你的预言
%确定R61R62R63R64R65R66并修改你的预言
%确定R77R88R99R1010并作出最后的预言
%%
a=0;b=48;
h=zeros(101);
h(1)=b-a;
n=10;
R=zeros(1010);
R(11)=h(1)/2*(sqrt(1+(cos(a))^2)+sqrt(1+(cos(b))^2));
h(2)=h(1)/2;
for k=2:n
s=0;
h(k)=(b-a)/2^(k-1);
for i=1:2^(k-2)
x=a+(2*i-1)*h(k);
s=s+sqrt(1+(cos(x))^2);
end
R(k1)=(R(k-11)+h(k-1)*s)/2;
end
for j=2:n
for k=j:n
R(kj)=R(kj-1)+(R(kj-1)-R(k-1j-1))/(4^(j-1)-1);
end
end
sprintf('对于积分[048]上f(x)=sqrt(1+(cosx)^2)计算积分预测值分别为:
\n\ta\t\t\tb\t\t\tc\t\t\td\t\n%f\t%f\t%f\t%f'R(51)R(55)R(66)R(1010))

更多相关数值分析实用代码:不动点迭代,Newton插值,Nevilles插值,矩阵LDL'分解,
LL',Choleski分解,求解线性方程组,hermit插值,样条插值,scant迭代,false position法。
有意者私聊

相关文档
最新文档