2012年人教版七年级上第一章第三节有理数的加减法(1)练习卷

合集下载

人教版七年级数学上册 第一章 有理数 专题练习试题(含答案)

人教版七年级数学上册 第一章 有理数 专题练习试题(含答案)

人教版七年级数学第一章 有理数 专题练习试题小专题(一) 有理数的加减运算有理数加减运算的简便方法归纳方法1 相反数结合法【例1】 计算:(-2)+3+1+(-3)+2+(-4).解:原式=[(-2)+2]+[3+(-3)]+1+(-4)=0+0+1+(-4)=-3.方法2 同号结合法——把正数和负数分别结合相加【例2】 计算:(+9)-(+10)+(-2)-(-8)+3.解:原式=9-10-2+8+3=(9+8+3)+(-10-2)=20-12=8.方法3 同分母结合法【例3】 (1)-23-35+78-13-25+18; 解:原式=(-23-13)+(-35-25)+(78+18) =-1-1+1=1.(2)-479-(-315)-(+229)+(-615). 解:原式=[-479-(+229)]+[-(-315)+(-615)] =-7-3=-10.方法4 凑整法——分数相加,把相加得整数的数结合相加【例4】 计算:|-0.75|+(-3)-(-0.25)+|-18|+78. 解:原式=0.75-3+0.25+18+78=(0.75+0.25)+(18+78)-3 =1+1-3=-1.方法5 分解法——将一个数拆分成两个数的和或差【例5】 计算:-156+(-523)+2434+312. 解:原式=(-1-56)+(-5-23)+(24+34)+(3+12) =-1-56-5-23+24+34+3+12=(-1)+(-56)+(-5)+(-23)+24+34+3+12=[(-1)+(-5)+24+3]+[(-56)+(-23)+34+12] =21+(-14) =2034.方法6 裂项相消法【例6】 观察下列各式:12=11×2=1-12,16=12×3=12-13,112=13×4=13-14,…,根据规律完成下列各题.(1)19×10=19-110;(2)计算12+16+112+120+…+19 900的值为99100. 易错点 分解带分数时弄错符号【例7】 计算:634+313-514-312+123. 解:原式=(6+3-5-3+1)+(34+13-14-12+23) =2+1=3.强化训练计算(能用简便方法计算的尽量用简便方法):(1)(-7)-(+5)+(-4)-(-10);解:原式=-7-5-4+10=-6.(2)-9+6-(+11)-(-15);解:原式=-9+6-11+15=(-9-11)+(6+15)=-20+21=1.(3)3.5-4.6+3.5-2.4;解:原式=(3.5+3.5)+(-2.4-4.6)=7+(-7)=0.(4)|-12|-(-2.5)-(-1)-|0-212|; 解:原式=12+2.5+1-212=112.(5)34-72+(-16)-(-23)-1; 解:原式=34-72-16+23-1 =-134.(6)0.25+112+(-23)-14+(-512); 解:原式=14+112+(-23)-14+(-512) =14-14+[112+(-512)+(-23)](7)12+(-23)+45+(-12)+(-13); 解:原式=[12+(-12)]+[(-23)+(-13)]+45=0+(-1)+45=-15.(8)-212+(+56)+(-0.5)+(+116); 解:原式=[-212+(-0.5)]+[(+56)+(+116)] =-3+2=-1.(9)-478-(-512)+(-412)-318; 解:原式=-478+512-412-318=(-478-318)+(512-412) =-8+1(10)-12-16-112-120-130-142-156-172; 解:原式=-(12+16+112+120+130+142+156+172) =-(1-12+12-13+13-14+14-15+15-16+16-17+17-18+18-19) =-(1-19) =-89.(11)1-2-3+4+5-6-7+8+…+97-98-99+100.解:原式=(1-2)+(-3+4)+(5-6)+(-7+8)+…+(97-98)+(-99+100) =-1+1-1+1-…-1+1=0.小专题(二) 有理数的乘除运算有理数混合运算的简便方法归纳方法1 运用乘法的交换律和结合律【例1】 计算:531×(-29)×(-3115)×(-92).解:原式=-531×29×3115×92=-(531×3115)×(29×92) =-13×1 =-13.方法2 正用分配律【例2】 计算:(14-16+124)×(-48). 解:原式=14×(-48)-16×(-48)+124×(-48) =-12+8-2=-6.方法3 逆用分配律【例3】 计算:4×(-277)-3×(-277)-6×277. 解:原式=-277×(4-3+6) =-27.方法4 除法变乘法,再利用分配律【例4】 计算:(16-27+23)÷(-542). 解:原式=(16-27+23)×(-425) =-75+125-285=-235.强化训练计算:(1)54×(-95)+38×(-95)-8×95;解:原式=(-95)×(54+38+8)= -9 500.(2)(-13)×(-134)×113×⎝⎛⎭⎫-167; 解:原式=-13×134×113×167=-⎝⎛⎭⎫13×113×⎝⎛⎭⎫134×167 =-1×2=-2.(3)⎝⎛⎭⎫29-14+118×(-36);解:原式=29×(-36)-14×(-36)+118×(-36)=-8+9+(-2)=1+(-2)=-1.(4)⎝⎛⎭⎫13+16-25÷⎝⎛⎭⎫-130;解:原式=13×(-30)+16×(-30)-25×(-30) =-10+(-5)-(-12)=-10-5+12=-3.(5)⎝⎛⎭⎫79-56+318×18+3.95×6-1.45×6.解:原式=79×18-56×18+318×18+(3.95-1.45)×6 =14-15+3+2.5×6=2+15=17.小专题(三) 有理数的混合运算计算:(1)-(3-5)×32÷(-1)3;解:原式=-(-2)×9÷(-1)=2×9÷(-1)=-18.(2)-0.75×(-32)÷(-94); 解:原式=-34×(-32)×(-49) =-12.(3)-14+16÷(-2)3×(-3-1);解:原式=-1+16÷(-8)×(-4)=-1+8=7.(4)(12-58-14)×(-24); 解:原式=12×(-24)-58×(-24)-14×(-24) =-12+15+6=9.(5)24÷(32-43)-62122×22; 解:原式=24÷(96-86)-(6+2122)×22 =24÷16-132-21 =24×6-132-21=144-132-21=-9.(6)(-5)÷(-97)×45×(-94)÷7; 解:原式=-5×79×45×94×17=-5×45×(79×94)×17=-4×(74×17) =-4×14=-1.(7)0.7×1949+234×(-14)+0.7×59+14×(-14); 解:原式=0.7×(1949+59)-14×(234+14) =0.7×20-14×3=-28.(8)391314×(-14); 解:原式=(40-114)×(-14) =40×(-14)-114×(-14) =-560+1=-559.(9)1318÷(-7); 解:原式=1318×(-17) =(14-78)×(-17) =-2+18=-178. (10)(-5)-(-5)÷10×110×(-5); 解:原式=(-5)-(-5)×110×110×(-5) =-5-14=-514.(11)(-12)÷(-4)-27÷(-3)×(-13); 解:原式=3-9×13=3-3=0.(12)(-58)×(-4)2-0.25×(-5)×(-4)3; 解:原式=(-58)×16-0.25×(-5)×(-64) =-10-80=-90.(13)12.5×6.787 5×18+1.25×678.75×0.125+0.125×533.75×18; 解:原式=(12.5×6.787 5+1.25×678.75+0.125×533.75)×18=[125×(0.678 75+6.787 5+0.533 75)]×18=125×8×18=125.(14)(-42)÷(83)2+112×(-16)-(-0.5)2; 解:原式=(-16)÷649-1112-14=-94-1112-14=-4112.(15)(-2)3-16×(38-1)+2÷(12-14-16); 解:原式=-8-16×38+16+2÷(612-312-212) =-8-6+16+2÷112=2+24=26.(16)(-48)×(-16-116+34)-1.85×6+3.85×6. 解:原式=(-48)×(-16)+(-48)×(-116)+(-48)×34+6×(-1.85+3.85) =8+3-36+12=-13.小专题(四) 数列规律探索观察下面三行数:-2,4,-8,16,-32,64,…;①0,6,-6,18,-30,66,…;②-1,2,-4,8,-16,32,….③(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)取每行的第10个数,计算这三个数的和.解:(1)第①行数是-2,(-2)2,(-2)3,(-2)4,….(2)第②行每个数是第①行每个数加2得到的;第③行每个数是第①行每个数除以2得到的.(3)(-2)10+(-2)10+2+(-2)10÷2=(1+1+12)×(-2)10+2 =52×210+2 =2 562.1.观察下面三行数:-3,9,-27,81,…;①1,-3,9,-27,…;②-2,10,-26,82,….③(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)分别写出第①②③行的第100个数,并求出它们的和.解:(1)第①行数是-3,(-3)2,(-3)3,(-3)4,….(2)第②行每个数是第①行每个数除以-3得到的;第③行每个数是第①行每个数加1得到的.(3)第①②③行的第100个数分别是(-3)100,(-3)100÷(-3),(-3)100+1.(-3)100+(-3)100÷(-3)+(-3)100+1=[1+(-13)+1]×(-3)100+1 =53×3100+1 =5×399+1.2.观察下面三行数:2,-4,8,-16,32,-64,…;①4,-2,10,-14,34,-62,…;②1,-2,4,-8,16,-32,….③(1)第①行第8个数为-256,第②行第8个数为 -254,第③行第8个数-128;(2)设第一行第n 个数为x ,则第二行第n 个数为x +2,第三行第n 个数为x 2;取每行的第n 个数,这三个数的和等于1 282,求这三个数.解:根据题意,得x +x +2+x 2=1 282,解得x =512.所以x +2=514,x 2=256. 答:这三个数是512,514,256.3.观察有规律的整数-1,2,-3,4,-5,6,…按照如图所示的方式排成的数阵.-12 -3 4-5 6 -7 8 -910 -11 12 -13 14 -15 16…(1)按照该数阵呈现的规律排下去,那么第10行共有19个数,其中最左侧的一个是82,最右侧的一个是100;(2)按照该数阵呈现的规律排下去,那么第10行从左数第9个数是90.4.记P 1=-2,P 2=(-2)×(-2),P 3=(-2)×(-2)×(-2),…,P n =(-2)×(-2)×…×(-2).n 个(1)计算P 4+P 6的值;(2)计算2P 2 019+P 2 020的值;(3)猜想2P n 与P n +1的关系.解:(1)P 4+P 6=(-2)4+(-2)6=80.(2)2P 2 019+P 2 020=2×(-2)2 019+(-2)2 020=-22 020+22 020=0.(3)2P n +P n +1=0.小专题(五) 本章易错专练1.下列说法:①-213是负分数;②3.6不是正数;③非负有理数不包括零;④正整数、负整数统称为整数;⑤零是最小的有理数,其中正确的有(A )A .1个B .2个C .3个D .4个2.化简:(1)-(-2)=2;_ (2)-|-2|=-2;(3)|-(-2)|=2;_ (4)(-1)2=1;(5)-12=-1;_ (6)-(-1)2=-1.3.计算:(1)-143=-164; (2)-324=-94; (3)-(-23)2=-49; (4)-(-2)4=-16; (5)-(-2)3=8;_ (6)[-(-2)]3=8.4.|-12|的相反数是-12. 5.用四舍五入法将12.897 2精确到0.01的近似数是12.90.6.在数轴上,距离表示数1的点3个单位长度的点表示的数是-2或4.7.计算: (1)-38÷35×53;解:原式=-38×53×53=-2524.(2)-12-(-12)3÷4; 解:原式=-1-(-18)÷4 =-1+18×14=-1+132=-3132.(3)24÷(13-18-16). 解:原式=24÷124=24×24=576.8.已知|x|=1,|y|=2,且|x -y|=y -x ,求x +y 的值. 解:因为|x -y|=y -x ,所以x -y<0,即x<y.因为|x|=1,|y|=2,所以y=2,x=1或-1.当x=1时,x+y=1+2=3;当x=-1时,x+y=-1+2=1.9.已知|a|=1,|b|=2,|c|=3,且a>b>c,求ab+bc的值.解:因为a>b>c,|a|=1,|b|=2,|c|=3,所以b=-2,c=-3,a=1或-1.当a=1时,ab+bc=1×(-2)+(-2)×(-3)=4;当a=-1时,ab+bc=-1×(-2)+(-2)×(-3)=8.。

七年级数学上册《第一章有理数的加减法》同步练习题及答案(人教版)

七年级数学上册《第一章有理数的加减法》同步练习题及答案(人教版)

七年级数学上册《第一章有理数的加减法》同步练习题及答案(人教版) 班级姓名学号一、选择题(共8题)1.计算1+(−2)的正确结果是( )A.−2B.−1C.1D.32.如果某天北京的最低气温为a∘C,中午12点的气温比最低气温高了10∘C,那么中午12点的气温为( )A.(10−a)∘C B.(a−10)∘CC.(a+10)∘C D.(a+12)∘C3.有理数a,b在数轴上的对应的位置如图所示,则( )A.a+b<0B.a+b>0C.a−b=0D.a−b>04.比−3大1的数是( )A.2B.−2C.4D.−45.若x的相反数是3,∣y∣=5,则x+y的值为( )A.−8B.2C.8或−2D.−8或26.下列说法正确的是( )A.一个数,如果不是正数,必定是负数B.有理数的绝对值一定是正数C.两个有理数相加,和一定大于每个加数D.相反数等于本身的数是07.把算式:(−5)−(−4)+(−7)−(+2)写成省略括号的形式,结果正确的是( )A.−5−4+7−2B.5+4−7−2C.−5+4−7−2D.−5+4+7−28.若∣x∣=3,∣y∣=4则x+y值为( )A.±7或±1B.7或−7C.7D.−7二、填空题(共5题)9.计算:−(−4)+∣−5∣−7=.10.比−312大而比213小的所有整数的和为.11.我们知道,在三阶幻方中每行、每列、毎条对角线上的三个数之和都是相等的,在如图的三阶幻方中已经填入了两个数9和15,则图中最右上角的数n应该是.12.某天最高气温为8∘C,最低气温为−1∘C,则这天的最高气温比最低气温高∘C.13.某书店举行图书促销,每位促销人员以销售50本为基准,超过记为正,不足记为负,其中5名促销人员的销售结果如下(单位:本):5,2,3,−6,−3,这5名销售人员共销售图书本.三、解答题(共6题)14.计算:(1) (+11)−(−2).(2) (+26)+(−18)+5+(−26).15.某景区一电瓶小客车接到任务从景区大门出发,向东走3千米到达A景点,继续向东走 1.5千米到达B景点,然后又回头向西走8.5千米到达C景点,最后回到景区大门,任务完成.以景区大门为原点,向东为正方向,以1个单位长表示1千米,建立如图所示的数轴.(1) 请在数轴上分别用点A,B,C表示出上述三个景点的位置,并写出各点表示的数.(2) A,C两景点之间的距离是多少?请列式计算.(3) 若电瓶车出发前剩余电量足够行驶20千米,在途中不充电的情况下,该电瓶车能否完成此次任务?请计算说明.16.粮库6天内发生粮食进、出库的吨数如下(“+”表示进库,“−”表示出库): +26,−32,−15,+ 34,−38,−20.(1) 经过这6天,库里的粮食是增多还是减少了?增加(减少)了多少?(2) 经过这6天,管理员结算时发现库里还存480吨粮,那么6天前库里存粮多少吨?(3) 如果进出的装卸费都是每吨5元,那么这6天要付多少装卸费?17.为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师,如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+15,−4,+13,−10,−12,+3,−13,−17,3.5.(1) 最后一名老师送到目的地时,小王在出车地点的什么方向?距出车地点的距离是多少?(2) 若汽车耗油量为0.4升/千米,每升汽油需7.2元,小王这天上午需汽油费多少元?18.对男生进行引体向上的测试,规定能做10个及以上为达到标准.测试结果记法如下:超过10个的部分用正数表示,不足10个的部分用负数表示.已知8名男生引体向上的测试结果如下:+2,−5,0,−2,+4,−1,−1,+3.(1) 这8名男生有百分之几达到标准?(2) 这8名男生共做了多少个引体向上?19.检修队乘汽车沿着东西走向的公路往返行驶检修线路,某天早上从A地出发到收工时所走的路程为(若约定向东为正方向),当天行驶的记录如下:(单位:km)+18,−9.5,+7,−14,−6.2,+13,−6.8,+10.5.(1) 收工时距A地多远?(2) 若汽车行驶每千米耗油0.3升,那么这一天共耗油多少升?参考答案1. 【答案】 B2.【答案】 C3.【答案】 A4.【答案】 B5.【答案】 D6.【答案】 D7.【答案】 C8.【答案】 A9.【答案】910.【答案】25111.【答案】1212.【答案】213. 【答案】−314.【答案】(1) 原式=11+2=13.(2) 原式=(26+5)+(−18−26)=31−44=−13.15. 【答案】(1) 点 A ,B ,C 分别表示 3,4.5,−4.(2) 3−(−4)=3+4=7.(3) ∣4.5∣×2+∣−4∣×2=9+8=17,因为 17<20所以在途中不充电的情况下,该电瓶车能完成此次任务.16. 【答案】(1) 26+(−32)+(−15)+34+(−38)+(−20)=−45 吨答:库里的粮食减少了,减少了 45 吨.(2) 480+45=525(吨)答:6 天前库里存粮 525 吨.(3) (26+∣−32∣+∣−15∣+34+∣−38∣−20)×5=165×5=825(元),答:这 6 天要付 825 元装卸费.17. 【答案】(1) 由题意得:+15−4+13−10−12+3−13−17+3.5=−21.5小王距出车地点的西方,距离是 21.5 千米.(2) 由题意得:(+15+∣−4∣+13+∣−10∣+∣−12∣+3+∣−13∣+∣−17∣+∣3.5∣)×0.4×7.2=90.5×0.4×7.2=260.64元.小王这天上午需汽油费 260.64 元18.【答案】(1) 这 8 名男生中有 4 人达标;48×100%=50% 所以这 8 名男生有百分之五十达到标准.(2)10×8+(2−5+0−2+4−1−1+3) =80+0=80(个).所以这8名男生共做了80个引体向上.19.【答案】(1) (+18)+(−9.5)+(+7)+(−14)+(−6.2)+(+13)+(−6.8)+(+10.5)=12所以收工时距A地12km.(2) ∣+18∣+∣−9.5∣+∣+7∣+∣−14∣+∣−6.2∣+∣+13∣+∣−6.8∣+∣+∣10.5∣=85所以85×0.3=25.5升.。

七年级数学上册《第一章 有理数的加减法》同步训练题及答案(人教版)

七年级数学上册《第一章 有理数的加减法》同步训练题及答案(人教版)

七年级数学上册《第一章有理数的加减法》同步训练题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.a-b=a+()A.b B.-b C.a D.-a2.在0,-2 ,4,−4.5这四个数中,绝对值最小的数是()A.0 B.−2C.4 D.−4.53.下列说法正确的是()A.若两数差为0,则这两个数一定相等B.两个有理数的差一定小于被减数C.互为相反数的两个数之差为0D.如果两数之差为负数,那么这两个数都是负数4.1−(−2)=()A.−3B.3C.1D.−15.在CCTV“开心辞典”栏目中,主持人问这样一道题目:“a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,请问:a,b,c三数之和是”()A.﹣1 B.0 C.1 D.26.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是().A.B.C.D.7.下列各组数中,大小关系正确的是()A.-7<-5<-2 B.-7>-5>2 C.-7<-2<-5 D.-2>-7>-58.如图,数轴上A,B两点对应的数分别是a和b .对于以下四个式子:①2a−b;②a+b;③|b|−|a|;,其中值为负数的是()④baA.①②B.③④C.①③D.②④二、填空题9.请写出一个比-3大而比 −13 小的有理数: .10.比较大小: −57 −3411.如果x <0,y >0,且|x |=2,|y |=3,那么x +y = .12.若a <0,b <0,|a|<|b|,则a ﹣b 0.13.某一天早晨气温是﹣13℃,到了中午上升了12℃,到午夜又下降了10℃,则午夜的气温是 ℃.三、解答题14.计算:(1)﹣6+6+9(2)0+(﹣3.71)+(+1.71)﹣(﹣5)(3)﹣3 13 +(﹣ 12 )﹣(﹣ 13 )+1 12(4)3﹣(+1 34 )﹣5+(﹣1.25)15.在数轴上表示下列各数及它们的相反数,并用“<”把这些数连接起来.-(+2),0,-|-1.2|,+|−13|.16.某面粉厂购进标有50千克的面粉10袋,复称时发现误差如下(超过记为正,不足记为负):+0.6 , +1.8 , ―2.2 , +0.4 , ―1.4 , ―0.9 , +0.3 , +1.5 ,+0.9 , ―0.8问:该面粉厂实际收到面粉多少千克?17.李老师在学校西面的南北走向的公路边从点A 出发沿公路来回给学生植树提供帮助,若设定向南的路程记为正数,向北的路程记为负数,则李老师所走的路程依次记录如下(单位:千米):+1.2,-1,+1,-0.8,-0.6,-0.5,-0.3(1)求李老师能否回到出发点A ?(2)李老师一共走了多少千米?18.小李靠勤工俭学的收入支付上大学的费用,下面是小李某周的收支情况表,记收入为正,支出为负(单位:元). 星期一 二 三 四 五 六 七 收入+65 +68 +50 +66 +50 +75 +74 支出 -60 -64 -63 -58 -60 -64 -65 (1)到这个周末,小李有多少节余?(2)按以上的支出水平,估计小李一个月(按30天计算)至少有多少收入才能维持正常开支?参考答案1.B2.A3.A4.B5.B6.D7.A8.D9.-110.>11.112.>13.-1114.(1)解:-6+6+9=0+9=9;(2)解:0+(-3.71)+(+1.71)-(-5) =(0+5)+(-3.71+1.71)=5-2=3(3)解:−313+(−12)−(−13)+112=(−313+13)+(112- 12);=-3+1=-2.(4)解:3-(+1 34)-5+(-1.25).=(3-5)+(-1 34-1.25)=-2-3=-5.15.解:-(+2)的相反数是2;0的相反数是0;-|-1.2|的相反数是1.2;+|−13|的相反数是−13画数轴如下图:则-(+2)<-|-1.2|<−13<0<+|−13|<1.2<2.16.解:由题意得:面粉的总质量=50×10+(0.6+1.8-2.2 +0.4-1.4-0.9+0.3+1.5+0.9-0.8)=500+0.2=500.2(千克).答:该面粉厂实际收到面粉500.2千克.17.(1)解:+1.2−1+1−0.8−0.6−0.5−0.3=−1所以李老师不能回到出发点A.(2)解:|+1.2|+|−1|+|+1|+|−0.8|+|−0.6|+|−0.5|+|−0.3|=5.4即李老师共走了5.4千米.18.(1)解:(+65+68+50+66+50+75+74)+(-60-64-63-58-60-64-65)=14(元)答:到这个周末,小李有14元的节余。

人教版七年级上册第一章有理数加减乘除乘方混合运算练习(1)

人教版七年级上册第一章有理数加减乘除乘方混合运算练习(1)

第一章有理数加减乘除乘方混合运算练习(1)一、解答题1.计算:.2.计算:(-+)÷(-).3.231131123346⎛⎫⎛⎫⎛⎫-÷-⨯-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭4.计算:(1)5-(-2)+(-3)-(+4);(2)(-)×(-24);(3)(-3)÷××(-15);(4)-14+|(-2)3-10|-(-3)÷(-1)2017.5.计算:(﹣3)2﹣()2×+6÷|﹣|3.6.计算:24÷(﹣2)3﹣3.7.计算:(﹣1)3+|12-|﹣(32-)0×(23-).8.计算:(1)﹣15+(﹣8)﹣(﹣11)﹣12 (2)(3)(4)﹣23+[(﹣4)2﹣(1﹣32)×3].9.计算:﹣16÷(﹣2)3﹣|﹣116|×(﹣8)+[1﹣(﹣3)2].10.计算:(﹣32)2÷(﹣12)2÷(113)2﹣(﹣4)2﹣42.(1)()2718732-+--; (2)()2411236⎡⎤--⨯--⎣⎦.12.计算:(1)﹣5﹣16×(﹣12)3; (2)﹣22+|5﹣8|+24÷(﹣3)×13;13.(1)()()()()2316-+--+-- (2) ()()()233131682234⎡⎤⨯-+--⨯-⨯÷-⎢⎥⎣⎦14.计算:(1)-18×; (2)(-1)3-÷3×[2-(-3)2].15.计算:(1)﹣14﹣(﹣512)×411+(﹣2)3÷|﹣32+1|; (2)﹣10+8÷(﹣2)2﹣(﹣2)3×(﹣3) 16.计算:(1)(﹣16+34﹣512)×36; (2)﹣0.52+14﹣|﹣22﹣4|﹣(﹣112)3×1627.17.计算:(1)4+(﹣2)2×2﹣(﹣36)÷4 (2)﹣72+2×(﹣3)2+(﹣6)÷(﹣13)218.计算:(1)10﹣(﹣5)+(﹣9)+6 (2)(﹣2)3÷49+6×(1﹣13)+|﹣2| 19.计算: (1)(﹣16+34﹣512)×(﹣12);(2)﹣|﹣5|×(﹣12)﹣4÷(﹣12)2. 20.计算:(1)12+(﹣7)﹣(﹣15)(2)4+(﹣2)3×5﹣(﹣0.28)÷4.21.计算:(1)(﹣34+16﹣38)×(﹣24); (2)﹣14+2×(﹣3)2﹣5÷12×2(1)|﹣4|+23+3×(﹣5)(2)﹣12016﹣ ×[4﹣(﹣3)2].23.我们定义一种新运算:a *b =a 2﹣b +ab .例如:1*3=12﹣3+1×3=1. (1)求2*(﹣3)的值.(2)求(﹣2)*[2*(﹣3)]的值. 24.计算:(1)3﹣6×(2)﹣13﹣(1﹣)÷3×[3﹣(﹣3)2]. 25.计算: 135202463⎛⎫-++-+ ⎪⎝⎭. 26.计算:−23−17×[2−(−3)2] 27.计算:3-2×(-5)2 28.21131146824⎛⎫⎛⎫---+-÷- ⎪ ⎪⎝⎭⎝⎭ 29.计算: (1) (-58-16+712)×24+5; (2)-32-(1-12)÷3×|3-(-3)2|.30.计算:(1)(2119418--)×36(2)(﹣1)4﹣36÷(﹣6)+3×(﹣13) 31.-12 012-(1-0.5)×12+( -12+23-14)×24.32.-15-(-8)+(-11)-12. 33.|-5|-(-2)×12+(-6). 34.100÷(﹣2)2﹣(﹣2)÷(﹣12). 35.(1)计算1114125522-+---();(2)计算()()321123211⎛⎫-+⨯-⨯-÷-.36.12﹣(﹣18)+(﹣7)﹣15;37.100÷(﹣2)2﹣(﹣2)÷(﹣2) 38.﹣2﹣1+(﹣16)﹣(﹣13); 39.计算: 15218263⎛⎫-⨯-+⎪⎝⎭. 40.计算: ()15324368⎛⎫-+-⨯- ⎪⎝⎭. 41.计算:(1)()225339⎡⎤⎛⎫-⨯-+- ⎪⎢⎥⎝⎭⎣⎦;(2)()()2361110.5235⎡⎤---⨯⨯+-⎣⎦ 42.计算:-22÷(-14)×(34-58)-19×(-3)3; 43.计算:(-1)3-14×[2-(-3) 2] .44.计算:(−1)2013×| −3 |−(−2)3+4÷(−23)245.计算:(1) ()374--+-- (2) ()2116532⎛⎫⎛⎫-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭46.()8182188233÷+⎪⎭⎫⎝⎛⨯-⨯-47.计算:﹣(π﹣2016)02|+2sin60°.48.计算:()12013201746-⎛⎫--⨯-+ ⎪⎝⎭49.计算:(-3)4÷(1.5)2﹣6×(-)+|﹣32﹣9|50.﹣22÷(﹣1)2﹣×[4﹣(﹣5)2] 51.()()[]()[]628543-⨯--⨯--⨯- 52.()()2395.02921-⨯+⎪⎭⎫ ⎝⎛-÷- 53.计算题:(1)()()()4593-÷-⨯- ;(2)()43312424-⨯+-÷- . 54.计算①②55.计算(每小题5分,共10分)(1) -︱-2︱(2) —1×—(0.5—1) ×3÷(—32—1)56.计算:(1) ;(2)()×(-24)57.计算:(1)(-71)+(+64);(2)(-16)-(-7);(3);(4)58.计算:(1) 16÷(﹣2)3﹣()×(﹣4)(2)59.计算:(1)25×﹣(﹣25)×+25÷(﹣);(2)2﹣23÷[()2﹣(﹣3+0.75)]×5. 60.耐心算一算(1)(﹣3)+(﹣4)﹣(+11)﹣(﹣19)(2)﹣23﹣(1﹣0.5)×13×[2﹣(﹣3)2] (3)﹣3.5÷78×(﹣87)×|﹣364|(4)(23﹣112﹣415)×(﹣60)61.(1)﹣3+4﹣5;(3)16÷(﹣2)3﹣(﹣18)×(﹣4)62.计算:﹣32+2×(-2)3﹣(﹣+). 63.计算(1)()()()125884----++. (2)()512.54168⎛⎫-÷⨯-÷- ⎪⎝⎭. (3)()125366312⎛⎫-+⨯-⎪⎝⎭. (4)()()241110.543--+⨯÷-. 64.计算: (1)()()()77713176888⎛⎫⨯-+-⨯--⨯- ⎪⎝⎭. (2)()223321125⎡⎤⎛⎫--⨯---+⨯ ⎪⎢⎥⎝⎭⎣⎦.65.计算:(1)34177536411411⎛⎫⎛⎫+---+ ⎪ ⎪⎝⎭⎝⎭; (2)()3421415231211⎛⎫⎡⎤---⨯+-÷-+ ⎪⎣⎦⎝⎭; (3)()2461131311124842834⎛⎫⎛⎫⎛⎫-÷-⨯--+-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭66.计算(1)(﹣8)+10+2+(﹣1); (2)|152-|×(1132-)×0.6÷(﹣1.75); (3)(﹣10)3+[(﹣4)2﹣(1﹣32)×2]; (4)﹣32×(﹣13)2+(313468++)×(﹣24). 67.计算下列各题:(1)(+16)-(-34)+(-11); (2)()948149-÷⨯ ;(3)(1316412-+-)×(-48);(4)()245150.813⎛⎫-÷-⨯-+- ⎪⎝⎭.68.计算:69.计算题: (1)﹣5﹣65;(2)(﹣0.02)×(﹣20)×(﹣5)÷29; (3)4+(﹣2)2×2﹣(﹣36)÷4; (4)﹣2﹣|﹣3|+(﹣2)2. 70.计算: (1)11313252442⎛⎫⎛⎫⎛⎫⎛⎫---++-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. (2)()()94811649-÷⨯÷-. (3)()271112669126⎛⎫--+⨯-⎪⎝⎭. (4)()()()3200821223|23|----⨯-+--. 71.计算:(1)12﹣(﹣18)+(﹣12)﹣15;(2)(﹣38+712)×(﹣24) (3)(﹣34)×113÷(﹣112);(4)(﹣2)3×(﹣12)﹣(﹣3) 72.计算:(1)(﹣3)2﹣9÷(﹣3)×(﹣13) (2)﹣14+(0.5﹣1)×[﹣2﹣(﹣2)3]. 73.计算:(﹣2)4÷(﹣223)2+512×(﹣16)﹣0.25. 74.计算: (1) ()()2414 4.53⎛⎫-÷-⨯- ⎪⎝⎭; (2) 5191631442⎛⎫⎛⎫+-÷-⎪ ⎪⎝⎭⎝⎭;(3) ()32114321133⎛⎫⎛⎫-+⨯-⨯-÷- ⎪ ⎪⎝⎭⎝⎭; (4) ()2215130.34130.343737-⨯-⨯+⨯--⨯ (用简便方法计其) 75.计算:(23﹣16+34)×(﹣24)76.计算(1)(﹣3)+(﹣4)﹣(+11)﹣(﹣9);(2)﹣0.5﹣(﹣314)+2.75﹣712;(3)(1572612+-)×(﹣36);(4)﹣14﹣(512)×411+(﹣2)3+|32-1|77.计算: 10.53 2.757.54⎛⎫---+- ⎪⎝⎭.78.计算: ()121223--+-+-; 79.计算:(1)(+ 3.4)+(-549)-(-435)-(+259);(2)-4+(-335)×53-(- 24)÷4; (3)(-134+2712-159)÷(-136);(4)-12018-(1-0.5)×13×[2-(-3)3].80.计算下列各题(1)(-25)-9-(-6)+(-3);(2)-22-24×(-+);(3)(-3)3+[10-(-5)2×2]÷(-2)2. 81.计算题(1)(﹣49)﹣(+91)﹣(﹣5)+(﹣9) (2)3×(﹣4)+(﹣28)÷7. (3)﹣14﹣(﹣2)3×(﹣135)+|0.8﹣1|. (4)(﹣25)÷54×45÷(﹣16) 82.计算:(1)3﹣6﹣(﹣7)+(﹣14);(2)﹣(﹣1)﹣|0.5﹣1|×13. 231(2)﹣22+3×(﹣1)3﹣(﹣4)×5. 84.计算:(1)(-612)×413-8÷|-4+2|; (2)(-2)4÷(-223)2+512×(-16)-0.25.85.计算:(1)-28-(-19)+(-24); (2)()157122612⎛⎫-+-⨯- ⎪⎝⎭; (3)()()24112376⎡⎤--⨯--÷-⎣⎦.86.(95-)×2353113824⎡⎤⎛⎫⎛⎫⎛⎫-+-÷--⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦.87.计算:(1)3×(﹣4)+18÷(﹣6) (2)(﹣2)2×5+(﹣3)3÷4. 88.计算:①8+(-10)+(-2)-(-5) ②()1002-1-5-4-3-4⨯⨯89.计算:(本题10分)(1) ()1218-- (2) ()241110.5233⎡⎤⨯⨯--⎣⎦--(-)90.计算 (1)()317542⎛⎫---+- ⎪⎝⎭; (2)111369618⎛⎫-++⨯- ⎪⎝⎭() (3)1122311+--⨯-()() (4)0-23÷(-4)3-1891.计算:(1)()()12187--+- (2)31112424⎛⎫⎛⎫⎛⎫-⨯-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(4)213132123482834⎛⎫⎛⎫-÷--+-⨯ ⎪ ⎪⎝⎭⎝⎭92.计算 (1)()1731160312415⎛⎫-+-⨯-⎪⎝⎭ (2)()()432411221382⎛⎫⎛⎫⎡⎤-÷-+-÷---- ⎪ ⎪⎣⎦⎝⎭⎝⎭.93.计算题 (1) 8+(﹣14)﹣5﹣(﹣0.25) (2) ()12724834⎛⎫--+⨯- ⎪⎝⎭(3) ﹣14﹣16×[2﹣(﹣3)2] (4)、()22015211222721343⎛⎫⎛⎫-⨯--÷⨯--- ⎪ ⎪⎝⎭⎝⎭94.计算:(1)(+23)+(—17)+(+6)+(—22) (2)—12017—(1—0.5)×13(3)—3×(—13)2 (4)(—32)÷(—2)3×33495.计算:(1) (+12)+(-23)-(-32); (2)()()232524-⨯--÷ 96.计算: (1)()()33517.521.753488⎛⎫+-++--- ⎪⎝⎭(2)352178248208⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭(3)()()()2322183263⎛⎫-+-⨯-+-÷- ⎪⎝⎭97.331530.75524828⎛⎫⎛⎫-++-+-+-⎪ ⎪⎝⎭⎝⎭.98.计算题(1)12﹣(﹣16)+(﹣4)﹣5(2)(﹣10)+8×(﹣2)﹣(﹣4)×(﹣3)(3)-- [22﹣()]×12(4)()99.(1)计算:11112462⎛⎫+-⨯⎪⎝⎭(2)25×34-(-25)×12+25×(14-)(3)()32-+()3-×[()24-+2]-()23-÷()2-. 100.计算与化简:(1)-10-(-16)+(-24);(2)5÷(-35)×53(3)4×(-725)+(-2)2×5-4÷(-512);约214道小题参考答案1.【解析】分析:原式利用乘方的意义,绝对值的代数意义,零指数幂法则计算即可得到结果.详解:原式===.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.17【解析】分析:将除法变为乘法,再根据乘法分配律计算即可求解. 详解:原式点睛:考查有理数的混合运算,掌握运算法则是解题的关键.3.-4【解析】分析:根据有理数的混合运算的顺序进行运算即可. 详解:原式1131121292746⎛⎫=÷-⨯-⨯ ⎪⎝⎭ ()127929=⨯-- 37=-4.=-点睛:考查有理数的混合运算,掌握有理数的混合运算的顺序是解题的关键.4.(1)0;(2)15;(3)80;(4)14【解析】分析:(1)将减法转化为加法,再利用加法的交换律和结合律简便计算可得;(2)运用乘法的分配律计算可得;(3)将除法转化为乘法,再计算乘法即可得;(4)根据有理数的混合运算顺序和法则计算可得.详解:解:(1)原式=5+2﹣3﹣4=5﹣3+2﹣4=2﹣2=0;(2)原式=×24+×24﹣×24=18+15﹣18=15;(3)原式=(﹣3)×××(﹣15)=4×4×5=80;(4)原式=﹣1+|﹣8﹣10|﹣(﹣3)÷(﹣1)=﹣1+18﹣3=14.点睛:本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:−−得+,−+得−,++得+,+−得−,能利用运算定律的利用运算定律更加简便.5.28【解析】【分析】按运算顺序先分别进行平方运算、立方运算,然后再进行乘除法运算,最后进行加减法运算即可得.【详解】原式=9﹣===.【点睛】本题考查了有理数的混合运算,掌握运算法则,确定好运算顺序是解题的关键. 6.-6【解析】试题分析:根据有理数的混合运算,先算乘方,再算乘除,最后算加减,依次计算即可.试题解析:24÷(﹣2)3﹣3=24÷(﹣8)﹣3=﹣3﹣3=﹣67.1 6【解析】试题分析:原式利用乘方的意义,绝对值的代数意义,零指数幂法则计算即可得到结果.试题解析:解:原式=﹣1+12﹣1×(﹣23)=﹣1+12+23=16.点睛:本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.8.(1)-24(2)-(3)(4)32【解析】试题分析:按照有理数的混合运算顺序进行运算即可.试题解析:原式(2)原式(3)原式(4)原式=32.9.152- 【解析】试题分析:原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果. 试题解析:原式()()()1111688192851622=-÷--⨯-+-=+-=-. 点睛:先乘方,再乘除,最后加减.有括号先算括号里面的.10.-16【解析】试题分析:根据有理数的混合运算的运算顺序,求出算式的值即可. 试题解析:原式91161616,449=÷⨯-- 91641616,49=⨯⨯-- 161616,=--16.=-11.(1)-30;(2)16【解析】试题分析:(1)直接计算.(2)按照有理数混合运算法则计算.试题解析:(1)原式=27+(-18)+(-7)+(-32)= -30.(2)原式=()11296--⨯- =()1176--⨯- =716-+=16. 12.(1)﹣3;(2)﹣113; 【解析】试题分析:(1)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.试题解析:(1)原式=﹣5﹣16×(﹣18)=﹣5+2=﹣3; (2)原式=﹣4+3﹣83=﹣113; 13.(1)0;(2)-7【解析】试题分析:(1)根据有理数加减法法则计算即可;(2)根据有理数混合运算法则计算即可.试题解析:解:(1)原式=-5-1+6=0;(2)原式=()1356416274⎡⎤⨯-++⨯÷-⎢⎥⎣⎦=[]()3564427⨯-++÷-=()36327⨯÷-=-714.(1)-6;(2) .【解析】分析:(1)运用乘法分配律计算可得;(2)根据有理数混合运算顺序和运算法则计算可得.详解:(1)原式=-9-12+15=-6.(2)原式=-1-××(-7)=-1+=.点睛:本题主要考查有理数的混合运算,熟练掌握有理数的混合运算的顺序和法则是解题的关键.15.(1)0;(2)-32【解析】试题分析:(1)根据有理数的运算法则和顺序计算.注意同级运算中的先后顺序;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.试题解析:(1)原式=﹣1+112×411﹣8÷|﹣9+1|=﹣1+2﹣8÷8=1﹣8÷8=0.(2)原式=﹣10+2﹣24=﹣34+2=﹣32.16.(1)6;(2)﹣6.【解析】试题分析:(1)原式利用乘法分配律计算即可求出值;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.试题解析:解:(1)原式=﹣6+27﹣15=6;(2)原式=﹣14+14﹣8+278×1627=-8+2=﹣6.17.(1)21;(2)﹣85.【解析】试题分析:(1)根据有理数混合运算顺序和运算法则计算可得;(2)根据有理数混合运算顺序和运算法则计算可得.试题解析:解:(1)原式=4+4×2+9=4+8+9=21;(2)原式=﹣49+2×9+(﹣6)×9=﹣49+18﹣54=﹣85.点睛:本题主要考查有理数的混合运算,熟练掌握有理数的混合运算的顺序和法则是解题的关键.18.(1)12 (2)-12【解析】试题分析:(1)原式利用减法法则变形,计算即可;(2)原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可.试题解析:解:(1)原式=10+5﹣9+6=12;(2)原式=9286243-⨯+⨯+=﹣18+4+2=﹣12.19.(1)﹣2;(2)﹣11.【解析】试题分析:(1)用乘法分配率计算即可;(2)根据有理数混合运算法则计算即可.试题解析:解:(1)原式=(﹣16)×(﹣12)+34×(﹣12)+(﹣512)×(﹣12)=2﹣9+5=﹣2;(2)原式=﹣5×(﹣1)﹣4×4=5﹣16=﹣11.20.(1)20;(2)﹣35.3.【解析】试题分析:根据有理数的混合运算的顺序进行运算即可.试题解析:(1)原式1271527720=-+=-=;(2)原式=4+(-40)-(-0.07) =-35.9321.(1)23 (2)-3【解析】试题分析:按照有理数的混合运算顺序进行运算即可.试题解析:(1)原式()()()313242424184923468=-⨯-+⨯--⨯-=-+=; (2)原式11820 3.=-+-=-22.(1)-3;(2)0;【解析】试题分析:按照有理数的运算顺序进行运算即可. 试题解析:点睛:有乘方先算乘方,再算乘除,最后算加减.23.(1)1;(2)1.【解析】试题分析:(1)根据新运算的定义式a *b =a 2-b +ab ,代入数据即可算出结论;(2)根据(1)可知2*(-3)=1,再根据新运算的定义式a *b =a 2-b +ab ,代入数据即可算出结论.试题解析:解:(1)2*(﹣3)=22﹣(﹣3)+2×(﹣3)=4+3﹣6=1;(2)(﹣2)*[2*(﹣3)]=(﹣2)*1=(﹣2)2﹣1+(﹣2)×1=4﹣1﹣2=1.点睛:本题考查了有理数的混合运算,读懂题意并理解新运算的定义式a *b =a 2-b +ab 是解题的关键.24.(1)2(2)0【解析】试题分析:(1)根据有理数的混合运算的顺序和法则,依次计算即可;(2)先算括号里面的,再根据顺序,先算乘方,再算乘除,最后算加减,注意解题时符号的变化.试题解析:(1)3﹣6×=3﹣3+2=2;(2)﹣13﹣(1﹣)÷3×[3﹣(﹣3)2]=﹣1﹣ [3﹣9] =﹣1﹣×(﹣6)=﹣1+1=0.25.112【解析】试题分析:去掉括号后,通分化为同分母分数,再相加减. 试题解析:原式6910812121212=-+-+ 610981617112121212121212=--++=-+=. 26.-7.【解析】试题分析:按照有理数的混合运算顺序进行运算即可. 试题解析:原式()()()118298781817.77=---=--⨯-=---=-+=- 27.-47【解析】试题分析:先计算乘方,然后计算乘法,最后进行减法计算即可. 试题解析:原式=3-2×25=3-50=-47.28.-12【解析】试题分析:按照有理数的运算顺序进行运算即可. 试题解析:原式()113124,468⎛⎫=---+-⨯- ⎪⎝⎭ ()()()1131242424,468⎡⎤=---⨯-+⨯--⨯-⎢⎥⎣⎦()1649,=---+111,=--12.=-29.(1)0;(2)-10【解析】试题分析:按照有理数的运算顺序进行运算即可.试题解析:(1) 5172458612⎛⎫--+⨯+ ⎪⎝⎭=()154145550--++=-+=, (2) ()221313332⎛⎫---÷⨯-- ⎪⎝⎭=1196911023=--⨯⨯=--=-. 30.(1)-3;(2)6【解析】试题分析:(1)根据乘法分配律可以解答本题;(2)根据幂的乘方、有理数的乘除法和加减法可以解答本题.试题解析:解:(1)原式=2113636369418⨯-⨯-⨯=8﹣9﹣2=﹣3; (2)原式=1+6+(﹣1)=6.31.-314【解析】试题分析:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;注意乘法分配律的运用.试题解析:原式=−1−12×12−12×24+23×24−14×24=−1−14−12+16−6=−1914+16=−314. 32.-30【解析】试题分析:先写成省略加号的形式,再根据有理数的加减运算法则进行计算即可得解.试题解析:原式=-15+8-11-12=-7-11-12=-18-12=-30.33.0【解析】试题分析:(1)先算绝对值,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.试题解析:原式=5-(-1)+(-6)=5+1-6=0.34.21【解析】试题分析:按有理数和混合运算的顺序,先乘方,后乘除,最后算加减即可. 试题解析:原式=100÷4﹣(﹣2)×(﹣2)=25﹣4=21.35.(1)-2;(2)-14.【解析】试题分析:(1)根据有理数的混合运算顺序,求出每个算式的值是多少即可.(2)根据有理数的混合运算顺序,先乘方后乘除最后加减即可.试题解析:(1)原式=−2+152−152=−2; (2)原式=−8+3×4×(−23)÷43=−8+12×(−23)÷43=−8−8÷43=−8−6=−14. 36.8【解析】试题分析:有理数的加减混合运算,一般应统一成加法运算,再运用运算律进行简化计算.试题解析:原式=12+18−7−15=30−22=8.37.21【解析】试题分析:原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果. 试题解析:原式=100÷4﹣(﹣2)÷(﹣2)=25﹣1=24.38.﹣6【解析】试题分析:有理数的加减混合运算,一般应统一成加法运算,再运用运算律进行简化计算.试题解析:原式=﹣2﹣1﹣16+13=﹣6.39.– 6.【解析】试题分析:本题我们利用乘法分配律来进行简便计算,从而得出答案.试题解析:原式=()()()152181818915126263-⨯--⨯+-⨯=-++-=-. 40.-3【解析】试题分析:利用分配律进行计算即可.试题解析:原式=()()()153242424368⎛⎫-⨯-+⨯--⨯- ⎪⎝⎭ = 8 – 20 + 9 = - 3 . 41.(1)-11(2)0.25.【解析】试题分析:按照有理数的混合运算顺序进行运算即可.试题解析: ()1原式()2525999=6+5=11.3939⎡⎤⎛⎫⎛⎫⎛⎫=⨯-+-=⨯-+⨯---- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ ()2原式()211511251.2544⎛⎫=--⨯⨯-=-+= ⎪⎝⎭ 42.5【解析】试题分析:利用有理数混合运算法则计算.试题解析:原式=﹣4×(﹣4)×18﹣19×(﹣27)=2+3 =5.43.3 4 .【解析】试题分析:先计算乘方,然后计算括号里的,再计算乘法,最后进行减法运算即可.试题解析:原式=-1-14×(2-9)=-1+74=34.44.14【解析】试题分析:原式利用有理数的乘方及绝对值的意义计算,即可得到结果.试题解析:原式=−1×3 −(−8)+4÷49=−3+8+4×94=−3+8+9=1445.(1)6;(2)22.【解析】试题分析:(1)先去括号,化简绝对值,然后再进行有理数的加减法计算,(2)先进行有理数的乘除法计算,再进行有理数的加法计算.试题解析:(1)原式=3+7-4=6,(2)原式=2+20=22.46.-147.3【解析】试题分析:直接利用绝对值的性质以及特殊角的三角函数值和零指数幂的性质分别化简求出答案.【解答】解:原式+2×2=3.48.13.【解析】试题分析:原式利用乘方的意义,绝对值的代数意义,算术平方根、零指数幂、负整数指数幂法则计算即可得到结果.试题解析:原式=2+9-1×4+6 =13视频49.55【解析】试题分析:先算乘方,再算乘除法和去绝对值称号,最后算加法.试题解析:原式=81÷2.25+1+18=36+1+18=55.50.3【解析】试题分析:先算乘方,再算括号里面的减法,再算乘除法,最后算加法.试题解析:原式==-4+7=3.51.2852.6.5【解析】试题分析:分别计算有理数的乘方、算术平方根和负整数指数幂,然后再进行加减运算即可.试题解析:原式=9-2+2=9.53.(1)-15;(2)2【解析】试题分析:(1)有理数的乘除运算.(2)有理数的混合运算.试题解析: (1)原式=-5×3=-15;(2)原式=-8×14+64÷16=-2+4=254.①; ②【解析】试题分析:(1)先算乘除,然后算加减;(2)先算乘方,再算乘除,最后算加减.试题解析:①原式=−×−8÷2=−2−4=−6,②原式=16÷−×−=−−=.55.(1)-4 (2)【解析】试题分析:(1)原式利用减法法则变形,相加即可得到结果;(2)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.试题解析:解:(1)原式=(2)原式56.(1);(2)4【解析】试题分析:根据有理数加减乘除的运算方法,求出每个算式的值各是多少即可.试题解析:(1)原式===;(2)原式==2+20+(-18)=4 57.(1)-7;(2)-9;(3)-42;(4)-10【解析】试题分析:根据有理数加减乘除的运算方法,求出每个算式的值各是多少即可.试题解析:(1)(-71)+(+64)=-(71-64)=-7(2)(-16)-(-7)=-16+7=-9(3)==-42(4)==-1058.(1)﹣2;(2).【解析】根据有理数的混合运算的法则分别进行运算,求出每个算式的值各是多少即可.解:(1)16÷(﹣2)3﹣()×(﹣4)=16÷(﹣8)﹣=﹣2﹣=﹣2(2)﹣12﹣(﹣)÷×[﹣2+(﹣3)2]=﹣1+÷×[﹣2+9]=﹣1+×7 =.59.(1);(2).【解析】分析:(1)、利用乘法分配律的逆运算进行简便计算;(2)、根据有理数的混合运算的法则进行计算即可得出答案.详解:解:(1)25×﹣(﹣25)×+25÷(﹣)=25×+25×+25×(﹣4)=25×()=25×(﹣)=﹣;(2)2﹣23÷[()2﹣(﹣3+0.75)]×5=====﹣13. 点睛:本题主要考查的是有理数的混合运算,属于基础题型.理解混合运算的计算法则和顺序是解题的关键.60.(1)1;(2)﹣416;(3)314;(4)﹣19. 【解析】试题分析:按照有理数的混合运算的顺序进行运算即可.试题解析:(1)原式34111918191=---+=-+=;(2)原式()11741878.2366=--⨯⨯-=-+=- (3)原式788332776414=⨯⨯⨯=; (4)原式4051619=-++=-.61.(1)﹣4(2)﹣8(3)-212【解析】试题分析:(1)根据有理数加减法法则按顺序进行计算即可;(2)先进行乘除法运算,再进行加法运算即可;(3)先进行乘方运算,再进行乘除法运算,最后进行减法运算即可.试题解析:(1)﹣3+4﹣5=﹣8+4=﹣4;(2)3×(﹣2)+(﹣14)÷|+7|=﹣6+(﹣2)=﹣8;(3)16÷(﹣2)3﹣(﹣18)×(﹣4)=16÷(﹣8)﹣(﹣18)×(﹣4)=﹣2﹣12=-212. 62.﹣24. 【解析】根据幂的乘方、有理数的乘法和加减法可以解答即可.解:﹣32+2×(﹣2)3﹣(﹣) =﹣9+2×(﹣8)﹣(﹣1)=﹣9+(﹣16)+1=﹣24.63.(1)-91(2)14-(3)3(4)3332- 【解析】试题分析:(1)根据有理数的加减混合运算顺序依次计算即可;(2)根据有理数的乘除运算法则依次计算即可;(2)利用分配律计算即可;(4)根据有理数的混合运算顺序依次计算即可.试题解析:(1)()()()125884----++125884=-+-+()()128854=--++1009=-+91=-.(2)()512.54168⎛⎫-÷⨯-÷- ⎪⎝⎭ 516112584⎛⎫⎛⎫=-⨯⨯-⨯- ⎪ ⎪⎝⎭⎝⎭ 14=-. (3)()125366312⎛⎫-+⨯- ⎪⎝⎭ ()()()12536 3.6366312=⨯--⨯-+⨯- 62415=-+-3=.(4)()()241110.543--+⨯÷- 31112316=--⨯⨯ 1132=-- 3332=-. 64.(1)354.(2)535- 【解析】试题分析:按照有理数的混合运算顺序进行运算即可.试题解析:()1 ()()()77713176,888⎛⎫⨯-+-⨯--⨯- ⎪⎝⎭ 77713176,888=-⨯+⨯+⨯ ()713176,8=-++ 710,8=⨯ 35.4= ()()223232112,5⎡⎤⎛⎫--⨯---+⨯ ⎪⎢⎥⎝⎭⎣⎦ 69211,5⎡⎤⎛⎫=--⨯--+⎪⎢⎥⎝⎭⎣⎦ 69211,5⎛⎫=--⨯+- ⎪⎝⎭ 492,5=--⨯ 89,5=-- 535=-. 65.(1)31211;(2)0;(3)3 【解析】试题分析:(1) 先运用加法交换律计算, 再依据加法法则即可;(2)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的;(3) 进行有理数加、减、乘、除、乘方的混合运算时,关键是确定正确的运算顺序,在运算中还要特别注意符号和括号,避免出错.试题解析:(1) 34177536411411⎛⎫⎛⎫+---+ ⎪ ⎪⎝⎭⎝⎭ =31477356441111⎛⎫⎛⎫++-+ ⎪ ⎪⎝⎭⎝⎭ =11+3111 =31211(2)-14-(-512)×411+(-2)3÷[-32+1] =-1+2+(-8)÷(-8)=-1+2+1=2;(3) ()2461131311124842834⎛⎫⎛⎫⎛⎫-÷-⨯--+-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ =116×16×1−(118×48+43×48−114×48) =1−(66+64−132)=1−(−2)=366.(1)3;(2)1135;(3)-968;(4)-32. 【解析】试题分析:(1)根据有理数加法法则计算即可;(2)先算绝对值与括号,再将除法转化为乘法,然后计算乘法即可;(3)先算乘方与括号,再算乘法,最后算加减;(4)先算乘方,再算乘法,最后算加减.试题解析:(1)(﹣8)+10+2+(﹣1)=3;(2)|﹣512|×(1132-)×0.6÷(﹣1.75)=112×(﹣16)×35×(﹣47) =1135; (3)(﹣10)3+[(﹣4)2﹣(1﹣32)×2]=﹣1000+[16﹣(1﹣9)×2]=﹣1000+[16+16]=﹣1000+32=﹣968;(4)﹣32×(﹣13)2+(313468++)×(﹣24) =﹣9×19+(﹣18﹣4﹣9) =﹣1﹣31=﹣32.67.(1)39 (2)-16 (3)-24 (4)415 【解析】试题分析:对于这组有理数的混合运算题,首先要确定好每个小题的运算顺序,再按顺序依照每种运算的法则进行计算,计算时,要特别注意每一步运算结果的符号,不要和前面的运算符号混淆了.试题解析:(1)原式=16+3411-=5011-=39.(2)原式=448199-⨯⨯ =16-.(3)原式=()()()1314848486412-⨯-+⨯--⨯- =8364-+=24-.(4)原式=15112535⎛⎫-⨯⨯-+ ⎪⎝⎭=13+1515=415. 68.-2【解析】试题分析:根据有理数的运算法则依次运算即可.试题解析:原式=()71122932673⨯⨯⨯⨯÷- =-2. 69.(1)-70;(2)-9;(3)21;(4)-1.【解析】试题分析:(1)根据减法法则计算可得;(2)根据乘除混合运算顺序和运算法则计算可得;(3)先计算乘方,再计算乘除,最后计算加减可得;(4)先计算乘方和绝对值,再计算加减可得.试题解析:(1)原式=﹣(5+65)=﹣70;(2)原式=0.4×(﹣5)×92=﹣9; (3)原式=4+4×2﹣(﹣9)=4+8+9=21;(4)原式=﹣2﹣3+4=﹣1.70.(1)0.(2)1.(3)25.(4)38.【解析】试题分析:(1)根据加法交换律和结合律简便计算即可求解;(2)按照从左到右的顺序依次把除法转化为乘法运算,然后根据有理数的乘法运算法则进行计算即可得解;(3)先算乘方,再利用乘法分配律算乘法,最后算减法;(4)先算乘方、绝对值,再算乘法,最后算加减.试题解析:(1)原式11311116602442=-++-=-=; (2)原式4418119916⎛⎫=-⨯⨯⨯-= ⎪⎝⎭; (3)原式126362536=-⨯=; (4)原式=38. 71.(1)3;(2)﹣5;(3)23;(4)7【解析】试题分析:按照有理数的混合运算顺序进行运算即可.试题解析:(1)12﹣(﹣18)+(﹣12)﹣15=12+18﹣12﹣15=30﹣27=3.(2)()()()3737242424914 5.812812⎛⎫-+⨯-=-⨯-+⨯-=-=- ⎪⎝⎭(3)311342211.4324333⎛⎫⎛⎫⎛⎫⎛⎫-⨯÷-=-⨯⨯-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (4)()()3112383437.22⎛⎫⎛⎫-⨯---=-⨯-+=+= ⎪ ⎪⎝⎭⎝⎭72.(1)8;(2)-4.【解析】试题分析:按照有理数混合运算顺序进行运算即可.试题解析:(1)原式1199918.33⎛⎫⎛⎫=-⨯-⨯-=-= ⎪ ⎪⎝⎭⎝⎭(2)原式=-473.1312【解析】试题分析:根据有理数混合运算的法则:先乘方,后乘除,有括号的先计算括号进行计算即可.试题解析:(﹣2)4÷(﹣223)2+512×(﹣16)﹣0.25 =16×964+112×(﹣16)﹣14=94﹣14﹣1112=2﹣1112=1312. 74.⑴32-;(2)-22;(3)-28;(4)-13.34. 【解析】试题分析:(1)先把除法运算转化为乘法运算,再根据有理数的乘法法则计算即可;(2)利用分配律计算即可;(3)根据有理数的混合运算顺序依次计算即可;(4)逆用乘法的分配律计算即可.试题解析:⑴原式=14193142-⨯⨯=32-; (2)原式=()519426314⎛⎫+-⨯-⎪⎝⎭ =()()()5194242426314⨯-+⨯--⨯- =-35-14+27=-22;(3) 原式=23162434⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭= -16-12= -28; (4)原式=()2125130.343377⎛⎫⎛⎫-⨯+-⨯+⎪ ⎪⎝⎭⎝⎭= -13.34. 75.﹣30. 【解析】试题分析:直接通分计算或者利用乘法分配律计算.试题解析:解:法一:原式=(1624﹣424+1824)×(﹣24) =3024×(﹣24) =﹣30; 法二:原式=23×(﹣24)﹣16×(﹣24)+34×(﹣24) =﹣16+4﹣18=﹣30.76.(1)﹣9;(2)﹣2;(3)﹣27;(4)﹣3.【解析】试题分析:(1)利用加法结合律计算.(2)先化成分数,再利用加法结合律计算.(3)利用乘法分配律计算.(4)先算乘方,再算乘除,最后算加减.试题解析:解:(1)原式=(﹣3)+(﹣4)+(﹣11)+9=[(﹣3)+(﹣4)+(﹣11)]+9=﹣18+9=﹣9;(2)原式=﹣12+314+234+(﹣712)=[﹣12+(﹣712)]+(314+234)=﹣8+6=﹣2;(3)原式=12×(﹣36)+56×(﹣36)﹣712×(﹣36)=﹣18﹣30+21=﹣27;(4)原式=﹣1﹣112×411+(﹣8)+8=﹣1﹣2+[(﹣8)+8]=﹣3.77.-2【解析】试题分析:把分数化成小数,直接计算.试题解析:原式=-0.5+(3.25+2.75)-7.5=6-8=-2.点睛:熟练掌握常用分数和小数的互化: 10.52=, 10.254=, 10.25=,10.1258=, 10.110=,20.45=,30.65=,340.3750.885==,.78.176-【解析】试题分析:利用绝对值直接计算.试题解析:原式=-1+16+2 =176-.79.(1)原式=0;(2)原式=-4;(3)原式=26;(4)原式=-356.【解析】试题分析:(1)利用加法结合律即可求解;(2)先计算乘除运算,再计算加减即可得到结果.(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果;(6)原式先计算乘方运算,再计算乘法运算,最后计算减法即可得到结果.试题解析:(1)原式=(+ 3.4)+(-549)+(+435)+(-259)=[(+325)+(+435)]+[(-549)+(-259)]=(+8)+(-8)=0;(2)原式=-4+(-185)×53-(-6)=-4+(-6)+(+ 6)=-4;(3)原式=(-74+3112-149)×(-36)=(-74)×(-36)+3112×(-36)-149×(-36)=(+63)+(-93)-(-56)=63-93+56=26;(4)原式=-1-12×13×(2+27)=-1-16×29=-1-296=-356.80.(1)-31;(2)5;(3)-37【解析】(1)原式=-25-9+6-3=-25-9-3+6=-37+6=-31(2)原式=-4-24×+24×-24×=-4-2+20-9=-15+20=5(3)原式=-27+(10-50)÷4 =-27-10=-3781.(1)-144;(2)-16;(3)-12;(4)1.【解析】试题分析:(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(4)原式从左到右依次计算即可得到结果.试题解析:解:(1)原式=-49-91+5-9=-144;(2)原式=-12-4=-16;(3)原式=8180.25--⨯+=6410.25--+=-13.6;(4)原式=25×45×45×116=1.82.(1)-10;(2)56.【解析】试题分析:按照有理数的运算顺序进行运算即可.试题解析: ()1原式3671410.=-+-=-()2原式111511.2366=-⨯=-= 83.(1)-18.5;(2)13【解析】试题分析:根据有理数的运算顺序进行运算即可.可以结合运算律简化运算. 试题解析:(1)原式2132130.2522 3.518.5334=--+-=-+=-; (2)原式432013=--+=. 84. (1) -6; (2)1312. 【解析】试题分析:(1)先进行绝对值的运算,然后进行乘除法运算,最后进行减法运算即可;(2)先进行乘方运算,然后进行乘除法运算,再按运算顺序进行运算即可.试题解析:(1)原式=13482=24213-⨯-÷--=-6; (2)原式=641119*********==2=912441241212÷-----. 85.(1)-33;(2)3;(3) -76 【解析】试题分析:(1)原式利用减法法则变形,计算即可得出答案;(2)根据乘法分配律可以解答本题;(34)根据幂的乘方、有理数的乘除法和减法可以解答本题.试题解析:(1)原式=-28+19-24=-33;(2)原式=()()()1571212122612⎛⎫-⨯-+-⨯--⨯ ⎪⎝⎭=3; (3)原式=()11717676⎛⎫--⨯-⨯-=- ⎪⎝⎭. 86.-4. 【解析】试题分析:先进行乘方运算,再进行括号内的运算,然后按运算顺序进行计算即可. 试题解析:(-95)×(-53)2+(-38)÷[(-12)3-14]=-95×259-38÷(-18-14)=-5-38÷(-38)=-5+1=-4.87.(1)-15;(2)53 4.【解析】试题分析:(1)先分别计算乘法、除法,然后再进行加法计算即可;(2)先分别计算平方与立方运算,然后再进行乘除法运算,最后进行加减法运算即可.试题解析:(1)3×(-4)+18÷(-16)=-12+(-3)=-15;(2)(-2)2×5+(-3)3÷4=4×5+(-27)÷4=20+(-274)=534.88.①1;②−9【解析】试题解析:①.首先去括号,遵循去括号法则:括号前面是加号时,去掉括号,括号内的算式不变;括号前面是减号时,去掉括号,括号内加号变减号,减号变加号,然后再化简计算结果.②先计算−1100=-1,|−5|=5,4×(−3)=-12,42=16,然后再化简计算结果.试题解析:①8+(−10)+(−2)−(−5)=8−10−2+5=1.②−1100×|−5|−4×(−3)−42=−1×5−(−12)−16=−5+12−16=−9.点睛:本题考查有理数运算,去括号是易错点,要遵循去括号法则:括号前面是加号时,去掉括号,括号内的算式不变;括号前面是减号时,去掉括号,括号内加号变减号,减号变加号.89.(1)30;(2)4 3【解析】试题分析:(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.试题解析:(1)原式=12+18=30;(2)原式=−1−12×13×(−7)=−1+76=16.90.(1)74(2)-4(3)22(4)0【解析】试题分析:(1)把式子写成代数和的形式后,利用有理数的加法和和减法法则计算即可;(2)利用分配律计算即可;(3)先计算乘法,再算加减即可;(4)根据有理数的混合运算法则依次计算即可.试题解析:(1)原式=()31775424-++-=-; (2)原式=1113636364629618-⨯-+⨯-+⨯-=--=-4; (3)原式=112233112233+---=-+=22;(4)原式=0-8÷(-64)-18=18-18=0. 91.(1)23(2)12-(3)52-(4)10 【解析】试题分析:(1)把式子写成代数和的形式后,利用有理数的加法和和减法法则计算即可;(2)利用有理数的除法法则把除法转化为乘法,利用有理数的乘法法则计算即可;(3)根据有理数的混合运算法则依次计算即可;(4)根据有理数的混合运算法则依次计算即可. 试题解析:(1)原式=12+18-7=23;(2)原式=334429⎛⎫⎛⎫⎛⎫-⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ =12-; (3)原式=16÷(-8)-12 =-2-12=52-; (4)原式=()1171542484848834⎛⎫-⨯--⨯+⨯-⨯ ⎪⎝⎭=8-(66+112-180)=8-(-2)=10.92.(1)14;(2)8.【解析】试题分析:(1) 观察算式形式不难看出,在该算式中各分数的分母均是60的约数. 因此,可以利用乘法分配律对该算式进行变形,然后利用相应的运算法则进行运算.(2) 先完成算式中的乘方运算,再将算式中的除法运算转化为乘法运算,然后利用有理数的相关运算法则进行运算.试题解析: (1) ()1731160312415⎛⎫-+-⨯- ⎪⎝⎭=()()()()1731160606060312415⨯--⨯-+⨯--⨯- =()()()()20354544---+---=20354544-+-+=14(2) ()()432411221382⎛⎫⎛⎫⎡⎤-÷-+-÷---- ⎪ ⎪⎣⎦⎝⎭⎝⎭ =()()1116819816⎛⎫-÷-+-÷-- ⎪⎝⎭=()111616888⎛⎫⎛⎫-⨯-+-⨯-- ⎪ ⎪⎝⎭⎝⎭=2-2+8=893.(1)3;(2)-23 ;(3) 16;(4)-3. 【解析】试题分析:根据有理数混合运算法则计算即可.试题解:解:(1)原式=8-0.25-5+0.25=3;(2)原式=127242424834⨯+⨯-⨯=3+16-42=-23; (3)原式=()11296--⨯- =716-+=16; (4)原式=1444271399⨯-⨯⨯+ =416133-+=-3 94.(1)-10;(2)—76;(3)—13;(4)15. 【解析】试题分析:按照有理数的混合运算顺序进行运算即可.(1)原式()()()()()()2361722293910.⎡⎤⎡⎤=++++-+-=++-=-⎣⎦⎣⎦(2)原式111711.2366=--⨯=--=- (3)原式 211133.393⎛⎫=-⨯-=-⨯=- ⎪⎝⎭(4)原式()()()()3151515322328415.444=-÷-⨯=-÷-⨯=⨯= 95.(1)21(2)22【解析】试题分析:(1)利用减法法则变形,计算即可得到结果;(2)(2)先算乘方、再算乘除,最后算减法即可.试题解析:(1)原式=12-23+32=21;(2)原式=4×5+8÷4=20+2=22.96.(1)-1.5(2)455-(3)-46 【解析】试题分析:本题考查了有理数的混合运算,(1)运用加法的交换律和结合律,把相反数的结合,凑整的结合即可;()2把除法转化为乘法,再根据乘法的分配律求解;(3)先算乘方,后算乘除,最后算加减,算乘方时注意区分好底数.(1)原式=()()3351 1.757.523488⎡⎤⎛⎫+-+-++ ⎪⎢⎥⎣⎦⎝⎭…………………………2分 =0-7.5+6 …………………………………………………………4分=-1.5.………………………………………………………………5分(2)解:原式=3582182184787207-⨯+⨯+⨯……………………………………2分 =110315-++………………………………………………………4分 =455-.……………………………………………………………5分 (3)解:原式=()()()1649869-+-⨯-+-÷…………………………………2分 =647254-+-……………………………………………………4分=-46.97.12【解析】试题分析:按照有理数的运算顺序进行运算即可,可以结合加法结合律. 试题解析:原式33315352,48428⎛⎫=-+++--++ ⎪⎝⎭ 33351325,44882⎛⎫=-+++++-- ⎪⎝⎭ 11,2=- 1.2= 98.(1)19;(2)-38;(3)-41;(4)-18.【解析】试题分析:(1)先去括号,再把正数与负数分别相加,然后进行减法运算;(2)混合运算,先算乘法再算加减法;(3)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的;(4)由于除以一个数等于乘以这个数的倒数,所以本题利用乘法的分配律进行简便计算.试题解析:(1)原式=12+16-4-5 =28-9 =19;(2)原式=-10+(-16)-12=-10-16-12=-38;(3)原式=-4×-[4-(1-)]×12 =-3-(4-)×12=-3-4×12+×12=-3-48+10=-41;(4)原式=(-+-+)×60=-×60+×60-×60+×60=-45+50-35+12=-18.99.(1)-1;(2)25;(3)-57.5【解析】【试题分析】(1)利用分配律直接展开,即(14+16-12)×12=14×12+16×12-1 2×12=3+2-6=-1;(2)逆向运用分配律,即25×34―(―25)×12+25×(―14)=25×(34+12―14)=25×1=25;(3)先计算乘方,再计算中括号,(―2)3+(―3) ×[(―4)2+2]―(―3)2÷(―2)=―8+(―3) ×(16+2)―9÷(―2)=―8+(―54)+4.5=―57.5.【试题解析】⑴(14+16-12)×12=14×12+16×12-12×12=3+2-6=-1⑵ 25×34―(―25)×12+25×(―14)=25×(34+12―14)=25×1=25⑶(―2)3+(―3) ×[(―4)2+2]―(―3)2÷(―2)=―8+(―3) ×(16+2)―9÷(―2)=―8+(―54)+4.5=―57.5【方法点睛】本题目是一道有理数的计算题,涉及到分配律的灵活运用,乘方的计算,难度中等.100.(1)﹣18;(2)﹣1259(3)0【解析】试题分析:根据有理数的四则运算法则计算即可.试题解析:解:(1)原式=﹣10+16﹣24=﹣18;(2)原式=55533-⨯⨯=﹣1259.。

七年级数学上册《第一章 有理数的加减法》同步练习及答案(人教版)

七年级数学上册《第一章 有理数的加减法》同步练习及答案(人教版)

七年级数学上册《第一章有理数的加减法》同步练习及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.计算:2000﹣2015=()A.2000 B.﹣2015 C.15 D.-15 2.绝对值小于4的所有整数的和是()A.4 B.8 C.0 D.173.下列四个数中,最大的数是()A.-2 B.13C.0 D.64.下列表示a的数中,不能使|a|+a=0成立的是( )A.-0.1 B.1 C.0 D.-235.已知0<a<1,则a,﹣a,﹣1a ,1a的大小关系为()A.1a >﹣1a>﹣a>a B.﹣1a>a>﹣a>1aC.1a >a>﹣1a>﹣a D.1a>a>﹣a>﹣1a6.如图,数轴上的点A表示的实数为a,下列各数中大于0且小于1的是()A.|a|−1B.−a C.a+1D.|a|7.李老师的存储卡中有5 500元,取出1 800元,又存入1 500元,又取出2 200元,这时存储卡中的钱为()A.11000元B.0元C.3000元D.2500元8.2023年2月26日,杭州某区最高气温为12℃,最低气温为−1℃,那么这天的最高气温比最低气温高()A.11℃B.−11℃C.13℃D.−13℃二、填空题9.计算:﹣2﹣(﹣3)=10.大于−3又不大于4的整数的和为.11.已知|x|=2,|y|=5,且x>y,则x+y= .12.已知某一个整数与8的和是正数,与5的和是负数,那么这个整数可能是.(填所有可能的结果)13.已知数轴上有A、B两点,A点表示的数是-2,A、B两点的距离为3个单位长度,则满足条件的点B 表示的数是.三、解答题14.计算:(1)−2123+(+314)−(−23)−(+14)(2)313−(−214)+(−13)−0.25+(+16)15.在数轴上画出表示下列各数的点,并把它们用“>”连接起来. −112,0,2,|-3|,-(-3.5). 16.某茶叶加工厂计划平均每天生产茶叶26kg,由于各种原因实际每天生产量与计划每天生产量相比有出入,某同七天的生产情况记录如下(超产为正,减产为负,单位kg)+3,-2,-4,+1,-1,+6,-5.(1)求这一周茶叶的实际生产量(2)该工厂按每生产1kg茶叶工人工资为50元,每超产1kg奖10元,少生产1kg扣10元,求该工厂工人这一周的工资总额17.李强靠勤工俭学的收入维持上大学的费用.下面是他某一周的收支情况表(收入为正,支出为负,单位为元)周一周二三四五六日+15 +10 0 +20 +15 +10 +14-8 -12 -19 -10 -9 -11 -8(1)到这个周末,李强有多少节余?(2)照这样,李强一个月(按30天计算)能有多少节余?(3)按以上的支出水平,李强一个月(按30天计算)至少有多少收入才能维持正常开支?18.某外卖员驾驶一辆充满电的电动车在一条东西方向的商业街上取外卖,若规定向东为正,向西为负,从出发点开始所走的路程为:+4,-2,-3,+7,+1,-2(单位:千米).(1)当取得最后一份外卖时,该外卖员距离出发点多远?在出发点什么方向?(2)若该电动车充满电可行驶25千米,取完外卖后该电动自行车还可行驶多少千米?19.下表为同时刻几个城市与伦敦的时差(正数表示当地比伦敦时间早的小时数,负数表示当地比伦敦时间迟的小时数):城市北京多伦多纽约时差+8 -4 -5(1)伦敦时间中午12点时,多伦多的当地时间是几点?(2)当北京时间是22点时,纽约的当地时间是多少?参考答案1.D2.C3.D4.B5.D6.A7.C8.C9.110.711.﹣3或﹣7 12.﹣7,﹣6 13.-5或114.(1)解:原式= −2123+314+23−14=−21+3=−18(2)解:原式= 313+214−13−14+16=3+2+16=51615.解:如图所示−(−3.5)>|−3|>2>0>−11 216.(1)解:+3+(−2)+(−4)+(+1)+(−1)+(+6)+(−5) =3−2−4+1−1+6−5=−2(kg)则−2+26×7=180(kg)答:这一周茶叶的实际生产量为180kg;(2)解:由(1)可知,这一周茶叶的实际生产量比标准总产量少生产了2kg则180×50−2×10=9000−20=8980(元)答:该工厂工人这一周的工资总额8980元.17.(1)解:根据题意列得:(+15)+(-8)+(+10)+(-12)+0+(-19)+(+20)+(-10)+(+15)+(-9)+(+10)+(-11)+(+14)+(-8)=7则李强有7元的节余;(2)解:30×(7÷7)=30则李强一个月能有30元的节余;(3)解:根据题意列得:(-8)+(-12)+(-19)+(-10)+(-9)+(-11)+(-8)=-77∴至少支出77元,即每天至少支出11元则一个月至少有330元的收入才能维持正常开支.18.(1)解:+4+(−2)+(−3)+(+7)+(+1)+(−2)=5(千米)答:在出发点东边5千米处.(2)解:25−(|+4|+|−2|+|−3|+|+7|+|+1|+|−2|)=6(千米)答:还可以行驶6千米.19.(1)解:12−4=8(时)∴伦敦时间中午12点时,多伦多的当地时间是8点;(2)解:22−8−5=9(时)∴当北京时间是22点时,组约的当地时间是9点。

人教版七年级上册 第一章 有理数 1.3 有理数的加减法 同步练习

人教版七年级上册 第一章 有理数 1.3 有理数的加减法 同步练习

有理数的加减法同步练习一.选择题1.计算3-(-2)的结果是()A.-5B.-1C.1D.52.将式子(-20)+(+3)-(-5)-(+7)省略括号和加号后变形正确的是()A.20-3+5-7B.-20-3+5+7C.-20+3+5-7D.-20-3+5-73.下列计算正确的是()A.7+(-5)=12B.0-2019=2019C.10-(-10)=0D.-2.1+(-2.9)=-5 4.2019年11月21日,某位华师一附中高一年级的同学测得厚德广场处的气温为3℃,当时他所在教室的气温是6℃,比3℃低6℃的温度是()℃.A.3B.-3C.9D.-95.某大楼地上共有16层,地下共有3层,某人从地上9层下降到地下2层,电梯一共下降的层数为()A.10B.11C.12D.136.某市11月4日至7日天气预报的最高气温与最低气温如表:其中温差最大的一天是()A.11月4日B.11月5日C.11月6日D.11月7日7.已知a是最大的负整数,b是绝对值最小的整数,c是最小的正整数,则|a+b+c|等于()A.-1B.0C.1D.28.若|x|=7,|y|=9,x>y,则x-y为()A.±2B.2和16C.-2和-16D.±2和±169.已知a,b,c,d都是正整数,将它们两两相加,所得的和都是7,8,9,10中的一个,并且7,8,9,10这4个数都能取到,那么a,b,c,d这四个正整数()A.各不相等B.有且仅有2个数相等C.有且仅有3个数相等D.全部相等10.我国古代的“河图”是由3×3的方格构成的(每一行、每一列以及每一条对角线上的三个点图的点数之和均相等).如图给出了“河图”的部分点图,请你推算出P处所对应的点图是()A.B.C.D.11.如图,在一个由6个圆圈组成的三角形里,把-15到-20这6个连续整数分别填入图的圆圈中,要求三角形的每条边上的三个数的和S都相等,那么S的最小值是()A.-53B.-54C.-56D.-5712.计算的值()A.54B.27C.13.5D.0二.填空题13.计算:-(-3)+|-5|= .14.计算:-(-4)+|-5|-7= .15.我市某天上午的气温为-2℃,中午上升了7℃,下午下降了2℃,到了夜间又下降了8℃,则夜间的气温为.16.2018年元旦后,涡阳县有三天的最高气温分别是-10℃,2℃,-7℃,计算任意两天的最高温度之差,其中最大温差是.17.已知|x|=3,|y|=7,且x+y>0,则x-y的值等于.三.解答题18.已知|a|=8,|b|=2;(1)当a、b同号时,求a+b的值;(2)当a、b异号时,求a+b的值.19.小明在电脑中设置了一个有理数的运算程序:输入数a,加*键,在输入数b,就可以得到运算:a*b=(a-b)-|b-a|.(1)求(-3)*2的值;(2)求(3*4)*(-5)的值.20.随着我国经济的高速发展,有着“经济晴雨表”之称的股市也得到迅速的发展,下表是今年上证指数某一周星期一至星期五的变化情况.(注:上周五收盘时上证指数为2616点,每一天收盘时指数与前一天相比,涨记为“+”,跌记为“-”)(1)请求出这一周星期五收盘时的上证指数是多少点;(2)说出这一周每一天收盘时上证指数哪一天最高.哪一天最低.分别是多少点.21.有依次排列的3个数:3,9,8,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,-1,8,这称为第一次操作;第二次同样的操作后也可产生一个新数串:3,3,6,3,9,-10,-1,9,8;继续依次操作下去.问(1)第一次操作后,增加的所有新数之和是多少?(2)第二次操作后所得的新数串比第一次操作后所得的数串增加的所有新数之和是多少?(3)猜想:第一百次操作后得到的新数串比第九十九次操作后所得的数串增加的所有新数之和是多少?22.为了有效控制酒后驾车,吉安市城管的汽车在一条东西方向的公路上巡逻,如果规定向东为正,向西为负,从出发点开始所走的路程为:+2,-3,+2,+1,-2,-1,-2(单位:千米)(1)此时,这辆城管的汽车司机如何向队长描述他的位置?(2)如果队长命令他马上返回出发点,这次巡逻(含返回)共耗油多少升?(已知每千米耗油0.2升)23.武汉市质量技术监督局从某食品厂生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,把超过或不足的部分分别用正、负数来表示,记录如下表:(1)若标准质量为450克,则抽样检测的20袋食品的总质量为多少克?(2)若该种食品的合格标准为450±5g,求该食品的抽样检测的合格率.参考答案1-5:DCDBA 6-10:CBBBC 11-12:BC13、814、215、-5℃16、12℃17、-4或-1018、:(1)∵|a|=8,|b|=2,且a,b同号,∴a=8,b=2;a=-8,b=-2,则a+b=10或-10;(2)∵|a|=8,|b|=2,且a,b异号,∴a=8,b=-2;a=-8,b=2,则a+b=6或-619、:(1)(-3)*2=(-3-2)-|2-(-3)|=-5-5=-10;(2)∵3*4=(3-4)-|4-3|=-2,(-2)*(-5)=[(-2)-(-5)]-|-5-(-2)|=0,∴(3*4)*(-5)=0.20、:(1)这一周星期五收盘时的上证指数是2616+34-15+20-25+18=2648(点);(2)星期三收盘时最高,为2616+34-15+20=2655点;星期四收盘时最低,为2616+34-15+20-25=2630点.21、:(1)第一次操作后增加的新数是6,-1,则6+(-1)=5.(2)第二次操作后所得的新数串比第一次操作后所得的数串增加的所有新数之和为3+3+(-10)+9=5.(3)猜想:第一百次操作后得到的新数串比第九十九次操作后所得的数串增加的所有新数之和为5.22、:(1)∵(+2)+(-3)+(+2)+(+1)+(-2)+(-1)+(-2)=-3(千米),∴这辆城管的汽车司机向队长描述他的位置为出发点以西3千米;(2)|+2|+|-3|+|+2|+|+1|+|-2|+|-1|+|-2|+|-3|=16(千米),∴16×0.2=3.2(升),∴这次巡逻(含返回)共耗油3.2升.23、:(1)总质量为=450×20+(-6)+(-2)×4+1×4+3×5+4×3=9000-6-8+4+15+12=9017(克);(2)合格的有19袋,∴食品的合格率为=95%.。

七年级数学上册《第一章 有理数的加减法》同步练习题及答案(人教版)

七年级数学上册《第一章 有理数的加减法》同步练习题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.在:0,﹣2,1, 12这四个数中,最小的数是( ) A .0B .﹣2C .1D .122.我市某天早上气温是﹣6℃中午上升了9℃,到了夜间又下降了12℃,这天我市夜间的温度是( ) A .3℃ B .﹣3℃ C .9℃ D .﹣9℃ 3.下列比较大小正确的是( )A .12()109-->--|∣ B .7()23--> C .0.011-<-D .2334-<- 4.在下列执行异号两数相加的步骤中,错误的是( )①求两个有理数的绝对值;②比较两个有理数绝对值的大小;③将绝对值较大数的符号作为结果的符号;④将两个有理数绝对值的和作为结果的绝对值 A .① B .② C .③ D .④ 5.某袋装食品袋上标有质量为()500.5g ±的字样,下列4袋面粉中质量合格的是( ) A .49.3gB .50.8gC .50.6gD .50.4g6.如果|a|=15,|b|=13,且a >b ,则a+b 的值等于 ( ) A .28或2 B .28或-2 C .-28或-2 D .28或-27.一个点在数轴上移动时,它所对应的数,也会有相应的变化.若点A 先从原点开始,先向右移动3个单位长度,再向左移动5个单位长度,这时该点所对应的数的相反数是( ) A .2 B .-2 C .8 D .-88.某足球队在4场足球赛中战绩是:第一场3:2胜,第二场2:3负,第三场1:1平,第四场4:5负,则该队在这次比赛中总的净胜球数是( ) A .﹣2 B .-1 C .+1 D .+2 二、填空题9.计算 246++-=10.我市某日的气温是﹣4℃~5℃,则该日的温差是 ℃.11.小刚在计算21+n 的时候,误将“+”看成“﹣”结果得﹣10,则21+n 的值为 . 12.已知 2a = 3b = 4c = 且 0a > 0b > 0c < 则 a b c ++= . 13.数轴上表示−1.2的点与表示2.5的点之间有 个整数点.14.某种粮大户共有5块小麦试验地,每块试验地今年的收成与去年相比情况如下(增产为正,减产为负,单位:kg):49,-30,12,-15,28,请你计算一下,今年的小麦产量与去年相比增产 kg. 三、计算题15.计算: 342.4()(3.1)55--+-+ .16.计算:(1)()()()-5-4-3--4|-10|++(2)13351.75-63-122848⎛⎫⎛⎫++++ ⎪ ⎪⎝⎭⎝⎭17.兴业银行中山街储蓄所上午在一段时间内办理了5件储蓄业务:存入1020元;取出902元;存入990元;存入1000元;取出1100元,这时银行现款增加了多少元?18.武汉市质量技术监督局从某食品厂生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,把超过或不足的部分分别用正、负数来表示,记录如下表:((2)若该种食品的合格标准为450±5g ,求该食品的抽样检测的合格率.19.某支股票上周末的收盘价格是10.00元,本周一到周五的收盘情况如表:(“+”表示股票比前一天上涨,“﹣”表示股票比前一天下跌)(1)周一至周五这支股票每天的收盘价各是多少元?(2)本周末的收盘价比上周末收盘价是上涨了,还是下跌了? (3)这五天的收盘价中哪天的最高?哪天的最低?相差多少?参考答案:1.B 2.D 3.B 4.D 5.D 6.A 7.A 8.B 9.3010.911.5212.113.414.4415.解:34 2.4()( 3.1)55 --+-+342.43.155=+-+342.43.155=-++0.7 1.4=-+0.7=16.(1)解:(-5)-4+(-3)-(-4)+|-10| =-5-4-3+4+10=-8+10=2(2)解:1335 1.75-63-122848⎛⎫⎛⎫++++⎪ ⎪⎝⎭⎝⎭=331335 (1-1)-(32) 44288++=0136 2-+=1 2 -17.解:规定存入为正,取出为负.则1020﹣902+990+1000﹣1100=1008(元)答:这时银行现款增加了1008元18.(1)解:总质量为=450×20+(﹣6)+(﹣2)×4+1×4+3×5+4×3 =9000﹣6﹣8+4+15+12=9017(克)(2)解:合格的有19袋∴食品的合格率为1920=95%19.(1)解:周一10+0.28=10.28(元),周二10.28﹣0.26=10.02(元),周三10.02+1.80=11.82(元),周四11.82﹣0.35=11.47(元),周五11.47+0.08=11.55(元)(2)解:本周末的收盘价比上周末收盘价11.55﹣10=1.55(元)答:本周末的收盘价比上周末收盘价是上涨了(3)解:11.82>11.55>11.47>10.28>10.02,11.82﹣10.02=1.8(元)答:周三收盘价最高,周收盘价最低,相差1.8元。

人教版数学七年级上册第一章 有理数 1.3 有理数的加减 同步练习

有理数的加减同步练习一.选择题1.把7-(-3)+(-5)-(+2)写成省略加号和的形式为()A.7+3-5-2B.7-3-5-2C.7+3+5-2D.7+3-5+22.下列算式中:①2-(-2)=0;①(-3)-(+3)=0;①(-3)-|-3|=0;①0-(-1)=1.其中正确的有()A.1个B.2个C.3个D.4个3.下列说法正确的有()①所有的有理数都能用数轴上的点表示;①符号不同的两个数互为相反数;①有理数分为正数和负数;①两数相减,差一定小于被减数;①两数相加,和一定大于任何一个加数.A.4个B.2个C.1个D.3个4.一天早晨的气温为-3①,中午上升了7①,半夜又下降了8①,则半夜的气温为()A.-4①B.-5①C.-1①D.4①5.已知a是最小的正整数,b的绝对值是2,c和d互为相反数,则a+b+c+d=()A.3B.8-3C.-1D.3或-16.某天上午6时某河流水位为80.4米,到上午12时水位上涨了5.3米,到下午6时水位下跌了0.9米.到下午6时水位为()米.A.76B.84.8C.85.8D.86.67.如图所示,a、b是有理数,则式子|a|-|b|+|b-a|化简的结果为()A.-2a B.-2b C.0D.2a-2b8.已知|a|=4,|b|=7,且a-b>0,则a+b的值为()A.11B.3或11C.-3或-11D.3或-119.如图,显示的是新冠肺炎全国(含港澳台)截至4月27日20时30分,现存确诊人数数据统计结果,则昨日现存确诊人数是()A.990B.1090C.1246D.114610.将九个数分别填在3×3 (3行3列)的方格中,如果满足每个横行,每个竖列和每条对角线上的三个数之和都等于m,则将这样的图称为“和m幻方”.如图①为“和15幻方”,图①为“和0幻方”,图①为“和39幻方”,若图①为“和m幻方”,则m的值等于()A.6B.3C.-6D.-911.有依次排列的3个数:6,2,8,先将任意相邻的两个数,都用右边减去左边的数,所得之差写在这两个数之间,可产生一个新的数串:6,-4,2,6,8这称为第一次操作;做第二次同样操作后也可产生一个新数串:6,-10,-4,6,2,4,6,2,8,继续依次操作下去,问:从数串中6,2,8开始操作第2019次后所产生的那个新数串的所有数之和是()A.4054B.4056C.4058D.406012.如图是小明制作的一张数字卡片,在此卡片上可以用一个正方形圈出4×4个位置的16个数(如1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25).若用这样的正方形圈出这张数字卡片上的16个数,则圈出的16个数的和不可能为下列数中的()A.208B.480C.496D.592二.填空题13.把(+5)-(+3)-(-1)+(-5)写成省略括号的和的形式是.14.计算:-(-3)+|-5|= .15.已知|x|=3,|y|=7,且x+y>0,则x-y的值等于.16.如图是某市连续5天的天气情况,最大的日温差是①.17.a、b、c、d为互不相等的有理数,且c=2,|a-c|=|b-c|=|d-b|=1,则|2a-4|= .三.解答题18.计算:(1)(+9)-(+10)+(-2)-(-8)+3;(2)-5.13+4.62+(-8.47)-(-2.3);(3)(4)19.小红某星期微信收发红包记录如下:收到22.9元,发出9.9元,收到8.8元,发出35.5元,收到3.7元,发出6.6元,收到4.8元,这时她的微信钱包里的数量是增加了还是减少了?增加或减少了多少钱?20.某升降机第一次上升6m,第二次上升4m,第三次下降5m,第四次又下降7m(记升降机上升为正,下降为负).(1)这时升降机在初始位置的上方还是下方?相距多少米?(2)升降机共运行了多少米?21.有一只青蛙,坐在深井底,井深4m,青蛙第一次向上爬了1.2m,又下滑了0.4m;第二次向上爬了1.4m,又下滑了0.5m;第三次向上爬了1.1m,又下滑了0.3m;第四次向上爬了1.2m,又下滑了0.2m……(1)青蛙爬了四次后,距离爬出井口还有多远?(2)青蛙第四次之后,一共经过多少路程?(3)若青蛙第五次向上爬的路程与第一次相同,问能否爬出井?22.夜来南风起,小麦覆陇黄.今年夏天,小鹏家的麦田喜获丰收,某天收割的10袋小麦,称后纪录如下(单位:千克):91,91,91.5,89,91.2,91.3,88.7,88.8,91.8,91.1在没带计算器的情况下,小鹏想帮父亲快速算出这10袋小麦一共多少千克.(1)小鹏通过观察发现,如果以90千克为标准,把超出的千克数记为正,不足的千克数记为负,则可写出这10袋小麦的千克数与90的差值,请你依次写出小鹏得到的这10个差值.(2)请利用(1)中的差值,求这10袋小麦一共多少千克.23.如表为某校七年级50名学生参加某次跳绳比赛的情况,规定标准数量为每人每分钟100个.(1)50名同学中跳绳最多的同学一分钟跳的次数是多少个,跳绳最少的同学一分钟跳的次数是多少个;(2)跳绳比赛的计分方式如下:①若每分钟跳绳个数是规定标准数量,不计分;①若每分钟跳绳个数超过规定标准数量,每多跳1个绳加2分;①若每分钟跳绳个数没有达到规定标准数量,每少跳1个绳扣1分.如果这50名同学跳绳总积分超过200分,便可得到学校的奖励,请你通过计算说明这50名同学能否得到学校奖励?参考答案1-5:AACAD 6-10:BACCD 11-12:AC13、:+5-3+1-514、815、-4或-1016、1017、218、(1)8;(2)-6.6819、:22.9-9.9+8.8-35.5+3.7-6.6+4.8=-11.8,钱包里的钱减少了,减少11.8元.20、:(1)(+6)+(+4)+(-5)+(-7)=-2(m)∵-2<0,∴这时升降机在初始位置的下方,相距2m.(2)6+4+5+7=22(m)答:升降机共运行了22m.21、:(1)1.2-0.4+1.4-0.5+1.1-0.3+1.2-0.2=3.5(m)4-3.5=0.5(m)答:青蛙爬了四次后,离井口还有0.5m.(2)1.2+0.4+1.4+0.5+1.1+0.3+1.2+0.2=6.3(m)答:青蛙第四次之后,一共经过6.3m.(3)3.5+1.2=4.7(m)∵4.7>4,∴能爬出井.答:能爬出井.22、:(1)+1,+1,+1.5,-1,+1.2,+1.3,-1.3,-1.2,+1.8,+1.1;(2)+1+1+1.5-1+1.2+1.3-1.3-1.2+1.8+1.1,=5.4,90×10+5.4=905.4(千克),答:这10袋小麦一共905.4千克.23、:(1)50人中跳绳最多的同学一分钟跳的次数是:100+6=106(个)跳绳最少的同学一分钟跳的次数是:100-2=98(个).答:50人中跳绳最多的同学一分钟跳的次数是106个,跳绳最少的同学一分钟跳的次数是98个;(2)依题意得:(4×6+5×11+6×8)×2-(-2×6-1×12)×(-1)=230>200.所以50名同学能得到学校奖励.。

人教版七年级上册第一章《1.3有理数的加减法》测试题

有理数的加减法学习时间: 年 月 日一.相信你都能选对(每小题2分,共16分)1、下列计算结果等于2的是( )A 、│-7│+│+5│B 、│(-7)+(+5)│C 、│+7│+│-4│D 、│(+7)-(-4)│2、1减负4的结果为( )A 、-3,B 、3,C 、-5,D 、53、食品店一天周只各天的盈亏情况如下( 盈余为正,亏损为负,单位:元)132,-12,-100,127,-97,137,98则这一周的盈亏情况是( )A 、盈了B 、亏了C 、不盈不亏,D 、以上都不对。

4、下列式子成立的是( )A 、055=--+)()(,B 、550=-,C 、055=---)()(,D 、505=--)(。

6、一个数大于另一个数的绝对值,则这两个数的和是( )A.负数B.正数C.非负数D.非正数 7、如果两个数的和为正数,那么( )A.这两个加数都是正数B.一个数为正,另一个为0C.两个数一正一负,且正数绝对值大D.必属于上面三种之一 8、下列结论不正确的是( )A.若a>0,b>0,则a+b>0B.若a<0,b<0,则a+b<0C.若a>0,b<0,则|a|>|b|,则a+b>0D.若a<0,b>0,且|a|>|b|,则a+b>0 二、相信你填得又快又准(每小题2分,共16分)9、-4-_______=23,( )-(-10)=20。

10、比-6小-3的数是______。

11、冬季的某一天,甲地最低温度是-15℃,乙地最低温度是15℃,甲地比乙地低___℃.12、把(+5)+(+1)-(-7)+(-3)-(+8)写成省略括号的和的形式是 。

13、海拔-200m 比-300m 高 ;从海拔200m 下降到-50m ,下降了 。

14、已知甲数是9的相反数,乙数比甲数的相反数大5,则乙数比甲数大 。

15、存折中原有750元,取出360元,又存入278元,现在存折中还有 元。

七年级数学上册《第一章 有理数的加减法》同步练习题含答案(人教版)

七年级数学上册《第一章有理数的加减法》同步练习题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列各数中,比﹣2小的数是()A.﹣3 B.﹣1 C.0 D.12.如果家用电冰箱冷藏室的温度是4°C,冷冻室的温度比冷藏室的温度低22°C,那么冷冻室的温度是()A.−18°C B.−26°C C.−22°C D.18°C3.下列几种说法中正确的是()A.一个有理数的绝对值一定比0大B.两个数比较大小,绝对值大的反而小C.相反数等于它本身的数是0D.若a>0,b<0且|a|>|b|,则a+b<04.有理数a、b在数轴上表示的点如图所示,则a、−a、b、−b的大小关系是()A.−b>a>−a>b B.a>−a>b>−bC.b>a>−b>−a D.−b<a<−a<b5.我市某日的最高气温为4∘C,天气预报当晚有一股冷空气来袭,气温预计下降7∘C,那么预计第二天的最高气温为()A.−3∘C B.3∘C C.−11∘C D.11∘C6.某足球队在4场足球赛中战绩是:第一场3:2胜,第二场2:3负,第三场1:1平,第四场4:5负,则该队在这次比赛中总的净胜球数是()A.-2 B.-1 C.+1 D.+27.一个点在数上距原点3个单位长度开始,先向右移动4个单位长度,再向左移动1个单位长度,这时它表示的数是()A.6 B.0 C.﹣6 D.0或68.一个病人每天下午需要测量血压,该病人上周日的收缩压为120单位,下表是该病人这周一到周五与前一天相比较收缩压的变化情况:星期一二三四五增减+20 ﹣30 ﹣25 +15 +30本周星期二的收缩压是()A.110 B.120 C.125 D.130 二、填空题9.计算:1﹣2+3﹣4+…+97﹣98+99= .10.若0<x<1,则把x,x2,从小到大排列为:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算:
(1)23+(-17)+6+(-22)
(2)(-2)+3+1+(-3)+2+(-4)
计算:
(1)
(2)
(1)绝对值小于4的所有整数的和是________;
(2)绝对值大于2且小于5的所有负整数的和是________。
若,则________。
已知且a>b>c,求a+b+c的值。
若1<a<3,求的值。

相关文档
最新文档