黄冈市中考数学命中对照卷

合集下载

2021年湖北省黄冈市中考数学考前冲刺卷及答案解析

2021年湖北省黄冈市中考数学考前冲刺卷及答案解析

2021年湖北省黄冈市中考数学考前冲刺卷一.选择题(共8小题,满分24分,每小题3分)1.(3分)16的相反数是( ) A .16 B .﹣6 C .6 D .−16 2.(3分)下列运算正确的是( )A .m +2m =3m 2B .2m 3•3m 2=6m 6C .(2m )3=8m 3D .m 6÷m 2=m 33.(3分)一个多边形每一个外角都等于18°,则这个多边形的边数为( )A .10B .12C .16D .204.(3分)已知样本数据2,3,5,3,7,下列说法不正确的是( )A .平均数是4B .众数是3C .中位数是5D .方差是3.25.(3分)物体的形状如图所示,则从上面看此物体得到的平面图形是( )A .B .C .D .6.(3分)在平面直角坐标系中,若点A (a ,﹣b )在第三象限,则点B (﹣ab ,b )所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限7.(3分)如图,菱形ABCD 的边长为2,∠B =45°,AE ⊥BC ,则这个菱形的面积是( )A .4B .8C .2√2D .√28.(3分)2020年初以来,红星消毒液公司生产的消毒液在库存量为m 吨的情况下,日销售量与产量持平.自1月底抗击“新冠病毒”以来,消毒液需求量猛增,该厂在生产能力不变的情况下,消毒液一度脱销,下面表示2020年初至脱销期间,该厂库存量y (吨)与时间t (天)之间函数关系的大致图象是( )A .B .C .D .二.填空题(共8小题,满分24分,每小题3分)9.(3分)若√25.363=2.938,√253.63=6.329,则√253600003= .10.(3分)已知m ,n 是方程x 2+2x ﹣1=0的两个实数根,则式子3m 2+6m ﹣mn 的值为 .11.(3分)若|x ﹣2|+√x +y =0,则−12xy = .12.(3分)已知:如图,在△ABC 中,点D 在边BC 上,AB =AD =DC ,∠C =35°,则∠BAD = 度.13.(3分)计算:yx 2−y 2÷(1−x x+y )的结果是 . 14.(3分)如图,a ∥b ,直角三角板直角顶点在直线b 上.已知∠1=50°,则∠2的度数为 度.15.(3分)我国古代数学著作《九章算术》中有这样一个问题:”今有池方一丈,葭(ji ā)生其中央,出水一尺.引葭赴岸,适与岸齐.问水深几何?”(注:丈,尺是长度单位,1丈=10尺)这段话翻译成现代汉语,即为:如图,有一个水池,水面是一个边长为1丈的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,则水池里水的深度是 尺.16.(3分)如图,AB 为⊙O 的直径,且AB =8,点C 在半圆上,OC ⊥AB ,垂足为点O ,P是BĈ上任意一点,过P 点作PE ⊥OC 于点E ,M 是△OPE 的内心,连接OM 、PM ,当点P 在弧BC 上从点B 运动到点C 时,求内心M 所经过的路径长 .三.解答题(共9小题,满分72分)17.(5分)解不等式并把它的解集在数轴上表示出来.(1)3x ﹣1≥2(x ﹣1)(2)x−52+1>x ﹣3 (3)x 6−1>x−23 (4)2x−13−5x+12≤118.(6分)已知:如图,在▱ABCD 中,点O 是CD 的中点,连接AO 并延长,交BC 的延长线于点E ,求证:AD =CE .19.(6分)深圳市某小区为了以崭新的面貌迎接“创文”工作,决定请甲、乙两个装饰公司对小区外墙进行装饰维护.若由甲、乙两个公司合作,需8天完成,小区需支付费用12.8万元;若由甲公司单独做4天后,剩下的由乙公司来做,还需10天才能完成,小区需支付费用12.4万元.问:甲、乙两个装饰公司平均每天收取的费用分别是多少万元?20.(7分)“活力新衢州,美丽大花园”.衢州市某中学九年级开展了“我最喜爱的旅游景区”的抽样调查(每人只能选一项):A﹣“世界文化新遗产”开化根博园;B﹣“首个自然遗产”江郎山;C﹣“乌溪江上的明珠”九龙湖;D﹣“世界最大的象形石动物园”三衢石林;E﹣“世界第九大奇迹”龙游石窟.根据收集的数据绘制了两幅不完整的统计图,其中B对应的圆心角为90°.请根据图中信息解答下列问题:(1)此次抽取的九年级学生共人,并补全条形统计图;(2)扇形统计图中m=,表示E的扇形的圆心角是度;(3)九年级准备在最喜爱A景区的4名优秀学生中任意选择两人去实地考察,这4名学生中有2名男生和2名女生,用树状图或列表法求选出的两名学生都是男生的概率.21.(7分)如图,已知AB是⊙O的直径,C是⊙O上的一点,D是AB上的一点,DE⊥AB 于D,DE交BC于F,且EF=EC.(1)求证:EC是⊙O的切线;(2)若BD=4,BC=8,圆的半径OB=5,求切线EC的长.22.(8分)某公园中有条东西走向的小河,河宽固定,小河南岸边上有一块石墩A,北岸边上有一棵大树P,小杨利用它们测量小河的宽度,于是,他去了河边,如图.他从河的南岸石墩A处测得大树P在其北偏东30°方向,然后他沿正东方向步行80米到达点B 处,此时测得大树P在其北偏西60°方向.请根据以上所测得的数据,计算小河的宽度.(结果保留根号)23.(8分)已知:如图,一次函数的图象与反比例函数的图象交于A,B两点,与y轴正半轴交于点C,与x轴负半轴交于点D,OB=√5,tan∠DOB=1 2.(1)求反比例函数的解析式;(2)当S△ACO=12S△OCD时,求点C的坐标.24.(11分)某农场拟用总长为60m的建筑材料建三间矩形牛饲养室,饲养室的一面靠现有墙(墙长为40m),其中间用建筑材料做的墙隔开(如图).设三间饲养室平行于墙的一边合计用建筑材料xm,总占地面积为ym2.(1)求y关于x的函数解析式和自变量的取值范围;(2)当x为何值时,三间饲养室占地总面积最大?最大面积为多少?25.(14分)抛物线y=ax2+bx﹣5的图象与x轴交于A、B两点,与y轴交于点C,其中点A坐标为(﹣1,0),一次函数y=x+k的图象经过点B、C.(1)试求二次函数及一次函数的解析式;(2)如图1,点D(2,0)为x轴上一点,P为抛物线上的动点,过点P、D作直线PD 交线段CB于点Q,连接PC、DC,若S△CPD=3S△CQD,求点P的坐标;(3)如图2,点E为抛物线位于直线BC下方图象上的一个动点,过点E作直线EG⊥x轴于点G,交直线BC于点F,当EF+√22CF的值最大时,求点E的坐标.2021年湖北省黄冈市中考数学考前冲刺卷参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.(3分)16的相反数是( ) A .16B .﹣6C .6D .−16 【解答】解:16的相反数是−16,故选:D .2.(3分)下列运算正确的是( )A .m +2m =3m 2B .2m 3•3m 2=6m 6C .(2m )3=8m 3D .m 6÷m 2=m 3【解答】解:m +2m =3m ,因此选项A 不符合题意;2m 3•3m 2=6m 5,因此选项B 不符合题意;(2m )3=23•m 3=8m 3,因此选项C 符合题意;m 6÷m 2=m 6﹣2=m 4,因此选项D 不符合题意; 故选:C .3.(3分)一个多边形每一个外角都等于18°,则这个多边形的边数为( )A .10B .12C .16D .20【解答】解:∵一个多边形的每一个外角都等于18°,且多边形的外角和等于360°, ∴这个多边形的边数是:360°÷18°=20,故选:D .4.(3分)已知样本数据2,3,5,3,7,下列说法不正确的是( )A .平均数是4B .众数是3C .中位数是5D .方差是3.2【解答】解:样本数据2,3,5,3,7中平均数是4,中位数是3,众数是3,方差是S 2=15[(2﹣4)2+(3﹣4)2+(5﹣4)2+(3﹣4)2+(7﹣4)2]=3.2. 故选:C .5.(3分)物体的形状如图所示,则从上面看此物体得到的平面图形是( )A.B.C.D.【解答】解:该几何体从上面看到的平面图有两层,第一层一个正方形,第二层有3个正方形.故选:C.6.(3分)在平面直角坐标系中,若点A(a,﹣b)在第三象限,则点B(﹣ab,b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵点A(a,﹣b)在第三象限,∴a<0,﹣b<0,∴b>0,∴﹣ab>0,∴点B(﹣ab,b)所在的象限是第一象限.故选:A.7.(3分)如图,菱形ABCD的边长为2,∠B=45°,AE⊥BC,则这个菱形的面积是()A.4B.8C.2√2D.√2【解答】解:∵菱形ABCD的边长为2,∴AB=BC=2,∵∠B =45°,AE ⊥BC ,∴AE =BE =√2,∴菱形ABCD 的面积=BC •AE =2×√2=2√2;故选:C .8.(3分)2020年初以来,红星消毒液公司生产的消毒液在库存量为m 吨的情况下,日销售量与产量持平.自1月底抗击“新冠病毒”以来,消毒液需求量猛增,该厂在生产能力不变的情况下,消毒液一度脱销,下面表示2020年初至脱销期间,该厂库存量y (吨)与时间t (天)之间函数关系的大致图象是( )A .B .C .D .【解答】解:根据题意:库存量y (吨)与时间t (天)之间函数关系的图象为先平,再逐渐减小,最后为0.故选:D .二.填空题(共8小题,满分24分,每小题3分)9.(3分)若√25.363=2.938,√253.63=6.329,则√253600003= 293.8 .【解答】解:√253600003=√25.36×10000003=√25.363×100=2.938×100=293.8.故答案为:293.8.10.(3分)已知m ,n 是方程x 2+2x ﹣1=0的两个实数根,则式子3m 2+6m ﹣mn 的值为 4 .【解答】解:∵m 是方程x 2+2x ﹣1=0的根,∴m 2+2m ﹣1=0,∴m2+2m=1,∴3m2+6m﹣mn=2(m2+2m)﹣mn=2×1﹣mn=2﹣mn,∵m,n是方程x2+2x﹣1=0的两个实数根,∴mn=﹣1,∴3m2+6m﹣mn=2﹣2×(﹣1)=4.故答案为4.11.(3分)若|x﹣2|+√x+y=0,则−12xy=2.【解答】解:∵|x﹣2|+√x+y=0,∴x﹣2=0,x+y=0,∴x=2,y=﹣2,∴−12xy=−12×2×(−2)=2,故答案为2.12.(3分)已知:如图,在△ABC中,点D在边BC上,AB=AD=DC,∠C=35°,则∠BAD=40度.【解答】解:∵AD=DC,∴∠DAC=∠C=35°,∴∠ADB=∠DAC+∠C=70°.∵AB=AD,∴∠B=∠ADB=70°,∴∠BAD=180°﹣∠B﹣∠ADB=180°﹣70°﹣70°=40°.故答案为:40.13.(3分)计算:yx2−y2÷(1−x x+y)的结果是1x−y.【解答】解:原式=y(x+y)(x−y)÷(x+yx+y−xx+y)=y(x+y)(x−y)÷y x+y=y(x+y)(x−y)•x+y y=1x−y,故答案为:1x−y.14.(3分)如图,a∥b,直角三角板直角顶点在直线b上.已知∠1=50°,则∠2的度数为40度.【解答】解:如图,∵∠1+∠3=90°,∴∠3=90°﹣∠1=90°﹣50°=40°,∵a∥b,∴∠2=∠3=40°,故答案为:40.15.(3分)我国古代数学著作《九章算术》中有这样一个问题:”今有池方一丈,葭(jiā)生其中央,出水一尺.引葭赴岸,适与岸齐.问水深几何?”(注:丈,尺是长度单位,1丈=10尺)这段话翻译成现代汉语,即为:如图,有一个水池,水面是一个边长为1丈的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,则水池里水的深度是12尺.【解答】解:设水池里水的深度是x尺,由题意得,x2+52=(x+1)2,解得:x=12,答:水池里水的深度是12尺.故答案为:12.16.(3分)如图,AB为⊙O的直径,且AB=8,点C在半圆上,OC⊥AB,垂足为点O,P 是BĈ上任意一点,过P点作PE⊥OC于点E,M是△OPE的内心,连接OM、PM,当点P在弧BC上从点B运动到点C时,求内心M所经过的路径长√2π.【解答】解:∵△OPE的内心为M,∴∠MOP=∠MOC,∠MPO=∠MPE,∴∠PMO=180°﹣∠MPO﹣∠MOP=180°−12(∠EOP+∠OPE),∵PE⊥OC,即∠PEO=90°,∴∠PMO=180°−12(∠EOP+∠OPE)=180°−12(180°﹣90°)=135°,∵OP=OC,OM=OM,而∠MOP=∠MOC,∴△OPM≌△OCM,∴∠CMO=∠PMO=135°,所以当点P 在弧BC 上从点B 运动到点C 时,点M 在以OC 为弦,并且所对的圆周角为135°的劣弧上(OMC ̂),点M 在扇形BOC 内时,过C 、M 、O 三点作⊙O ′,连O ′C ,O ′O ,在优弧CO 取点D ,连DC ,DO ,∵∠CMO =135°,∴∠CDO =180°﹣135°=45°,∴∠CO ′O =90°,而OA =OC =12AB =4,∴O ′O =√22OC =2√2,∴弧OMC 的长=90π×2√2180=√2π, 故答案为:√2π.三.解答题(共9小题,满分72分)17.(5分)解不等式并把它的解集在数轴上表示出来.(1)3x ﹣1≥2(x ﹣1)(2)x−52+1>x ﹣3 (3)x 6−1>x−23 (4)2x−13−5x+12≤1【解答】解:(1)3x ﹣1≥2(x ﹣1)去括号得:3x ﹣1≥2x ﹣2,移项合并得:x ≥﹣1,(2)x−52+1>x ﹣3去分母得:x ﹣5+2>2x ﹣6,移项合并得:﹣x >﹣3,解得:x <3.(3)x 6−1>x−23去分母得:x ﹣6>2x ﹣4,移项合并得:﹣x >2,解得:x <﹣2.(4)2x−13−5x+12≤1去分母得:4x ﹣2﹣15x ﹣3≤6,移项合并得:﹣11x ≤11,解得:x ≥﹣1..18.(6分)已知:如图,在▱ABCD 中,点O 是CD 的中点,连接AO 并延长,交BC 的延长线于点E ,求证:AD =CE .【解答】证明:∵O 是CD 的中点,∴OD =CO ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠D =∠OCE ,在△ADO 和△ECO 中,{∠D =∠OCE OD =OC ∠AOD =∠EOC,∴△AOD ≌△EOC (ASA ),∴AD =CE .19.(6分)深圳市某小区为了以崭新的面貌迎接“创文”工作,决定请甲、乙两个装饰公司对小区外墙进行装饰维护.若由甲、乙两个公司合作,需8天完成,小区需支付费用12.8万元;若由甲公司单独做4天后,剩下的由乙公司来做,还需10天才能完成,小区需支付费用12.4万元.问:甲、乙两个装饰公司平均每天收取的费用分别是多少万元?【解答】解:设甲装饰公司平均每天收取的费用为x 万元,乙装饰公司平均每天收取的费用为y 万元,依题意,得:{8x +8y =12.84x +10y =12.4, 解得:{x =0.6y =1. 答:甲装饰公司平均每天收取的费用为0.6万元,乙装饰公司平均每天收取的费用为1万元.20.(7分)“活力新衢州,美丽大花园”.衢州市某中学九年级开展了“我最喜爱的旅游景区”的抽样调查(每人只能选一项):A ﹣“世界文化新遗产”开化根博园;B ﹣“首个自然遗产”江郎山;C ﹣“乌溪江上的明珠”九龙湖;D ﹣“世界最大的象形石动物园”三衢石林;E ﹣“世界第九大奇迹”龙游石窟.根据收集的数据绘制了两幅不完整的统计图,其中B 对应的圆心角为90°.请根据图中信息解答下列问题:(1)此次抽取的九年级学生共 200 人,并补全条形统计图;(2)扇形统计图中m = 10 ,表示E 的扇形的圆心角是 72 度;(3)九年级准备在最喜爱A 景区的4名优秀学生中任意选择两人去实地考察,这4名学生中有2名男生和2名女生,用树状图或列表法求选出的两名学生都是男生的概率.【解答】解:(1)∵B对应的圆心角为90°,B的人数是50,∴此次抽取的九年级学生共50÷90360=200(人),故答案为:200;C对应的人数是:200﹣60﹣50﹣20﹣40=30,补全条形统计图如图1所示:(2)D所占的百分比为20200×100%=10%,∴m=10,表示E的扇形的圆心角是360°×40200=72°;故答案为:10,72°;(3)画树状图如图3所示:∵共有12种情况,选出的两名学生都是男生的情况有2种,∴选出的两名学生都是男生的概率是212=1 6.21.(7分)如图,已知AB是⊙O的直径,C是⊙O上的一点,D是AB上的一点,DE⊥AB 于D,DE交BC于F,且EF=EC.(1)求证:EC是⊙O的切线;(2)若BD=4,BC=8,圆的半径OB=5,求切线EC的长.【解答】解:(1)连接OC,∵OC=OB,∴∠OBC=∠OCB,∵DE⊥AB,∴∠OBC+∠DFB=90°,∵EF=EC,∴∠ECF=∠EFC=∠DFB,∴∠OCB+∠ECF=90°,即∠ECO=90°,∴OC⊥CE,∴EC是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ACB=90°,∵OB=5,∴AB=10,∴AC=√AB2−BC2=√100−64=6,∵cos∠ABC=BDBF=BCAB,∴810=4BF,∴BF=5,∴CF=BC﹣BF=3,∵∠ABC+∠A=90°,∠ABC+∠BFD=90°,∴∠BFD=∠A,∴∠A=∠BFD=∠ECF=∠EFC,∵OA=OC,∴∠OCA=∠A=∠BFD=∠ECF=∠EFC,∴△OAC∽△ECF,∴ECOA =CFAC,∴EC=OA⋅CFAC=5×36=52.22.(8分)某公园中有条东西走向的小河,河宽固定,小河南岸边上有一块石墩A,北岸边上有一棵大树P,小杨利用它们测量小河的宽度,于是,他去了河边,如图.他从河的南岸石墩A处测得大树P在其北偏东30°方向,然后他沿正东方向步行80米到达点B 处,此时测得大树P在其北偏西60°方向.请根据以上所测得的数据,计算小河的宽度.(结果保留根号)【解答】解:如图,作PD ⊥AB 交CA 于点D ,∵∠APD =30°,∴AD =PD ×tan30°=√33PD ,∵∠BPD =60°,∴BD =PD ×tan60°=√3PD ,∵AD +BD =80,∴√33PD +√3PD =80, 解得PD =20√3.答:这段河的宽为20√3米.23.(8分)已知:如图,一次函数的图象与反比例函数的图象交于A ,B 两点,与y 轴正半轴交于点C ,与x 轴负半轴交于点D ,OB =√5,tan ∠DOB =12.(1)求反比例函数的解析式;(2)当S △ACO =12S △OCD 时,求点C 的坐标.【解答】解:过点B 、A 作BM ⊥x 轴,AN ⊥x 轴,垂足为点M ,N ,(1)在Rt △BOM 中,OB =√5,tan ∠DOB =12.∵BM =1,OM =2,∴点B (﹣2,﹣1),∴k =(﹣2)×(﹣1)=2,∴反比例函数的关系式为y =2x ;(2)∵S △ACO =12S △OCD ,∴OD =2AN ,又∵△ANC ∽△DOC ,∴AN DO =NC OC =CA CD =12, 设AN =a ,CN =b ,则OD =2a ,OC =2b ,∵S △OAN =12|k |=1=12ON •AN =12×3b ×a , ∴ab =23①,由△BMD ∽△CNA 得,∴MD AN =BM CN ,即2−2a a =1b,也就是a =2b 2b+1②, 由①②可求得b =1,b =−13(舍去),∴OC =2b =2,∴点C (0,2).24.(11分)某农场拟用总长为60m 的建筑材料建三间矩形牛饲养室,饲养室的一面靠现有墙(墙长为40m ),其中间用建筑材料做的墙隔开(如图).设三间饲养室平行于墙的一边合计用建筑材料xm ,总占地面积为ym 2.(1)求y 关于x 的函数解析式和自变量的取值范围;(2)当x 为何值时,三间饲养室占地总面积最大?最大面积为多少?【解答】解:(1)根据题意得,y =x •14(60﹣x )=−14x 2+15x , 自变量的取值范围为:0<x ≤40;(2)∵y=−14x2+15x=−14(x﹣30)2+225,∴当x=30时,三间饲养室占地总面积最大,最大为225(m2).25.(14分)抛物线y=ax2+bx﹣5的图象与x轴交于A、B两点,与y轴交于点C,其中点A坐标为(﹣1,0),一次函数y=x+k的图象经过点B、C.(1)试求二次函数及一次函数的解析式;(2)如图1,点D(2,0)为x轴上一点,P为抛物线上的动点,过点P、D作直线PD 交线段CB于点Q,连接PC、DC,若S△CPD=3S△CQD,求点P的坐标;(3)如图2,点E为抛物线位于直线BC下方图象上的一个动点,过点E作直线EG⊥x轴于点G,交直线BC于点F,当EF+√22CF的值最大时,求点E的坐标.【解答】解:(1)∵抛物线y=ax2+bx﹣5的图象与y轴交于点C,∴C(0,﹣5),∵一次函数y=x+k的图象经过点B、C,∴k=﹣5,∴B(5,0),设抛物线的解析式为y=a(x+1)(x﹣5)=ax2﹣4ax﹣5a,∴﹣5a=﹣5,∴a=1,∴二次函数的解析式为y=x2﹣4x﹣5,一次函数的解析式为y=x﹣5.(2)①当点P在直线BC的上方时,如图2﹣1中,作DH∥BC交y轴于H,过点D作直线DT 交y 轴于T ,交BC 于K ,作PT ∥BC 交抛物线于P ,直线PD 交抛物线于Q .∵S △CPD =3S △CQD ,∴PD =3DQ ,∵PT ∥DH ∥BC ,∴PD DQ =DT DK =TH HC =3,∵D (2,0),B (5,0),C (﹣5,0),∴OC =OB =5,OD =OH =2,∴HC =3,∴TH =9,OT =7,∴直线PT 的解析式为y =x +7,由{y =x +7y =x 2−4x −5,解得{x =5+√732y =19+√732或{x =5−√732y =19−√732, ∴P (5+√732,19+√732)或(5−√732,19−√732), ②当点P 在直线BC 的下方时,如图2﹣2中,当点P 与抛物线的顶点(2,﹣9)重合时,PD =9.DQ =3, ∴PQ =3DQ ,∴S △CPD =3S △CQD ,过点P 作PP ′∥BC ,此时点P ′也满足条件,∵直线PP ′的解析式为y =x ﹣11,由{y =x −11y =x 2−4x −5,解得{x =2y =−9或{x =3y =−8, ∴P ′(3,﹣8),综上所述,满足条件的点P 的坐标为(5+√732,19+√732)或(5−√732,19−√732)或(2,﹣9)或(3,﹣8).(3)设E (m ,m 2﹣4m ﹣5),则F (m ,m ﹣5),∴EF =(m ﹣5)﹣(m 2﹣4m ﹣5)=5m ﹣m 2,CF =√2m , ∴EF +√22CF =﹣m 2+6m =﹣(m ﹣3)2+9,∵﹣1<0,∴m =3时,EF +√22CF 的值最大,此时E (3,﹣8).。

2018年湖北省黄冈市中考数学试卷(答案+解析)

2018年湖北省黄冈市中考数学试卷(答案+解析)

2018年湖北省黄冈市中考数学试卷一、选择题(本题共6小题,每小题3分,共18分.每小题给出的4个选项中,有且只有一个案是正确的) 1.(3分)﹣23的相反数是( ) A .﹣32B .﹣23C .23D .322.(3分)下列运算结果正确的是( ) A .3a 3•2a 2=6a 6 B .(﹣2a )2=﹣4a 2 C .tan 45°=22 D .cos 30°= 323.(3分)函数y =x +1x−1中自变量x 的取值范围是( ) A .x ≥﹣1且x ≠1 B .x ≥﹣1 C .x ≠1 D .﹣1≤x <14.(3分)如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为( )A .50°B .70°C .75°D .80°5.(3分)如图,在Rt △ABC 中,∠ACB =90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD =2,CE =5,则CD =( )A .2B .3C .4D .2 36.(3分)当a ≤x ≤a +1时,函数y =x 2﹣2x +1的最小值为1,则a 的值为( ) A .﹣1 B .2 C .0或2 D .﹣1或2二、填空题(本题共8小题,每题小3分,共24分 7.(3分)实数16800000用科学记数法表示为 . 8.(3分)因式分解:x 3﹣9x = .9.(3分)化简( 2﹣1)0+(12)﹣2﹣ 9+ −273= .10.(3分)若a ﹣1a= 6,则a 2+1a2值为 .11.(3分)如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠CAB =60°,弦AD 平分∠CAB ,若AD =6,则AC = .12.(3分)一个三角形的两边长分别为3和6,第三边长是方程x 2﹣10x +21=0的根,则三角形的周长为 .13.(3分)如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为 cm (杯壁厚度不计).14.(3分)在﹣4、﹣2,1、2四个数中、随机取两个数分别作为函数y =ax 2+bx +1中a ,b 的值,则该二次函数图象恰好经过第一、二、四象限的概率为 .三、解答题(本题共10题,满分78分(x -2)≤815.(5分)求满足不等式组 x −3(x −2)≤812x −1<3−32x 的所有整数解.16.(6分)在端午节来临之际,某商店订购了A 型和B 型两种粽子,A 型粽子28元/千克,B 型粽子24元/千克,若B 型粽子的数量比A 型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.17.(8分)央视“经典咏流传”开播以来受到社会广泛关注我市某校就“中华文化我传承﹣﹣地方戏曲进校园”的喜爱情况进行了随机调查.对收集的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图所提供的信息解答下列问题:图中A 表示“很喜欢”,B 表示“喜欢”、C 表示“一般”,D 表示“不喜欢”.(1)被调查的总人数是 人,扇形统计图中C 部分所对应的扇形圆心角的度数为 ; (2)补全条形统计图;(3)若该校共有学生1800人,请根据上述调查结果,估计该校学生中A 类有 人;(4)在抽取的A 类5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树形图或列表法求出被抽到的两个学生性别相同的概率.18.(7分)如图,AD 是⊙O 的直径,AB 为⊙O 的弦,OP ⊥AD ,OP 与AB 的延长线交于点P ,过B 点的切线交OP 于点C . (1)求证:∠CBP =∠ADB .(2)若OA =2,AB =1,求线段BP 的长.19.(6分)如图,反比例函数y =kx(x >0)过点A (3,4),直线AC 与x 轴交于点C (6,0),过点C 作x 轴的垂线BC 交反比例函数图象于点B .(1)求k的值与B点的坐标;(2)在平面内有点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,试写出符合条件的所有D点的坐标.20.(8分)如图,在▱ABCD中,分别以边BC,CD作等腰△BCF,△CDE,使BC=BF,CD=DE,∠CBF=∠CDE,连接AF,AE.(1)求证△ABF≌△EDA;(2)延长AB与CF相交于G.若AF⊥AE,求证BF⊥BC.21.(7分)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.(1)求坡底C点到大楼距离AC的值;(2)求斜坡CD的长度.22.(8分)已知直线l:y=kx+1与抛物线y=x2﹣4x.(1)求证:直线l与该抛物线总有两个交点;(2)设直线l与该抛物线两交点为A,B,O为原点,当k=﹣2时,求△OAB的面积.23.(9分)我市某乡镇在“精准扶贫”活动中销售一农产品,经分析发现月销售量y(万件)与月份x(月)的关系为:y=x+4(1≤x≤8,x为整数),每件产品的利润z(元)与月份x(月)的关系如下表:(1)请你根据表格求出每件产品利润z(元)与月份x(月)的关系式;(2)若月利润w(万元)=当月销售量y(万件)×当月每件产品的利润z(元),求月利润w(万元)与月份x(月)的关系式;(3)当x为何值时,月利润w有最大值,最大值为多少?24.(14分)如图,在直角坐标系xOy中,菱形OABC的边OA在x轴正半轴上,点B,C在第一象限,∠C=120°,边长OA=8.点M从原点O出发沿x轴正半轴以每秒1个单位长的速度作匀速运动,点N从A出发沿边AB﹣BC﹣CO以每秒2个单位长的速度作匀速运动,过点M作直线MP垂直于x轴并交折线OCB于P,交对角线OB于Q,点M和点N同时出发,分别沿各自路线运动,点N运动到原点O时,M和N两点同时停止运动.(1)当t=2时,求线段PQ的长;(2)求t为何值时,点P与N重合;(3)设△APN的面积为S,求S与t的函数关系式及t的取值范围.2018年湖北省黄冈市中考数学试卷参考答案与试题解析一、选择题(本题共6小题,每小题3分,共18分.每小题给出的4个选项中,有且只有一个案是正确的) 1.(3分)﹣23的相反数是( ) A .﹣32B .﹣23C .23D .32【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数. 【解答】解:﹣23的相反数是23. 故选:C .2.(3分)下列运算结果正确的是( ) A .3a 3•2a 2=6a 6 B .(﹣2a )2=﹣4a 2C .tan 45°=22 D .cos 30°= 32【分析】根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算. 【解答】解:A 、原式=6a 5,故本选项错误; B 、原式=4a 2,故本选项错误; C 、原式=1,故本选项错误; D 、原式=32,故本选项正确. 故选:D .3.(3分)函数y =x +1x−1中自变量x 的取值范围是( ) A .x ≥﹣1且x ≠1 B .x ≥﹣1 C .x ≠1 D .﹣1≤x <1【分析】根据分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时,应该是取让两个条件都满足的公共部分.【解答】解:根据题意得到: x +1≥0x −1≠0,解得x ≥﹣1且x ≠1,故选:A .4.(3分)如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为( )A .50°B .70°C .75°D .80°【分析】根据线段垂直平分线的性质得到DA =DC ,根据等腰三角形的性质得到∠DAC =∠C ,根据三角形内角和定理求出∠BAC ,计算即可.【解答】解:∵DE 是AC 的垂直平分线, ∴DA =DC ,∴∠DAC =∠C =25°, ∵∠B =60°,∠C =25°, ∴∠BAC =95°,∴∠BAD =∠BAC ﹣∠DAC =70°,故选:B .5.(3分)如图,在Rt △ABC 中,∠ACB =90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD =2,CE =5,则CD =( )A .2B .3C .4D .2 3【分析】根据直角三角形的性质得出AE =CE =5,进而得出DE =3,利用勾股定理解答即可. 【解答】解:∵在Rt △ABC 中,∠ACB =90°,CE 为AB 边上的中线,CE =5, ∴AE =CE =5, ∵AD =2, ∴DE =3,∵CD 为AB 边上的高,∴在Rt △CDE 中,CD = CE 2−DE 2= 52−32=4,故选:C .6.(3分)当a ≤x ≤a +1时,函数y =x 2﹣2x +1的最小值为1,则a 的值为( ) A .﹣1B .2C .0或2D .﹣1或2【分析】利用二次函数图象上点的坐标特征找出当y =1时x 的值,结合当a ≤x ≤a +1时函数有最小值1,即可得出关于a 的一元一次方程,解之即可得出结论. 【解答】解:当y =1时,有x 2﹣2x +1=1, 解得:x 1=0,x 2=2.∵当a ≤x ≤a +1时,函数有最小值1, ∴a =2或a +1=0, ∴a =2或a =﹣1,故选:D .二、填空题(本题共8小题,每题小3分,共24分7.(3分)实数16800000用科学记数法表示为 1.68×107 .【分析】用科学记数法表示较大的数时,一般形式为a ×10n ,其中1≤|a |<10,n 为整数,据此判断即可. 【解答】解:16800000=1.68×107.故答案为:1.68×107.8.(3分)因式分解:x 3﹣9x = x (x +3)(x ﹣3) .【分析】先提取公因式x ,再利用平方差公式进行分解. 【解答】解:x 3﹣9x , =x (x 2﹣9), =x (x +3)(x ﹣3).9.(3分)化简( 2﹣1)0+(12)﹣2﹣ 9+ −273= ﹣1 .【分析】直接利用负指数幂的性质以及零指数幂的性质、算术平方根的性质分别化简得出答案. 【解答】解:原式=1+4﹣3﹣3 =﹣1.故答案为:﹣1.10.(3分)若a ﹣1a= 6,则a 2+1a值为 8 .【分析】根据分式的运算法则即可求出答案.【解答】解:∵a ﹣1a= 6 ∴(a ﹣1a )2=6∴a 2﹣2+1a=6∴a 2+1a2=8故答案为:811.(3分)如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠CAB =60°,弦AD 平分∠CAB ,若AD =6,则AC = 2 3 .【分析】连接BD .在Rt △ADB 中,求出AB ,再在Rt △ACB 中求出AC 即可解决问题; 【解答】解:连接BD .∵AB 是直径, ∴∠C =∠D =90°,∵∠CAB =60°,AD 平分∠CAB , ∴∠DAB =30°,∴AB =AD ÷cos 30°=4 3, ∴AC =AB •cos 60°=2 3,故答案为2 3.12.(3分)一个三角形的两边长分别为3和6,第三边长是方程x 2﹣10x +21=0的根,则三角形的周长为 16 . 【分析】首先求出方程的根,再根据三角形三边关系定理,确定第三边的长,进而求其周长. 【解答】解:解方程x 2﹣10x +21=0得x 1=3、x 2=7, ∵3<第三边的边长<9, ∴第三边的边长为7.∴这个三角形的周长是3+6+7=16.故答案为:16.13.(3分)如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为 20 cm (杯壁厚度不计).【分析】将杯子侧面展开,建立A 关于EF 的对称点A ′,根据两点之间线段最短可知A ′B 的长度即为所求.【解答】解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B=A′D2+BD2=162+122=20(cm).故答案为20.14.(3分)在﹣4、﹣2,1、2四个数中、随机取两个数分别作为函数y=ax2+bx+1中a,b的值,则该二次函数图象恰好经过第一、二、四象限的概率为16.【分析】画树状图展示所有12种等可能的结果数,根据二次函数的性质,找出满足a>0,b<0的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有12种等可能的结果数,满足a>0,b<0的结果数为4,但a=1,b=﹣2和a=2,b=﹣2时,抛物线不过第四象限,所以满足该二次函数图象恰好经过第一、二、四象限的结果数为2,所以该二次函数图象恰好经过第一、二、四象限的概率=212=16.故答案为16.三、解答题(本题共10题,满分78分(x-2)≤815.(5分)求满足不等式组x−3(x−2)≤812x−1<3−32x的所有整数解.【分析】先求出不等式组的解集,然后在解集中找出所有的整数即可.【解答】解:解不等式x﹣3(x﹣2)≤8,得:x≥﹣1,解不等式12x﹣1<3﹣32x,得:x<2,则不等式组的解集为﹣1≤x<2,所以不等式组的整数解为﹣1、0、1.16.(6分)在端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/千克,B型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.【分析】订购了A型粽子x千克,B型粽子y千克.根据B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元列出方程组,求解即可.【解答】解:设订购了A型粽子x千克,B型粽子y千克,根据题意,得y=2x−2028x+24y=2560,解得x=40y=60.答:订购了A型粽子40千克,B型粽子60千克.17.(8分)央视“经典咏流传”开播以来受到社会广泛关注我市某校就“中华文化我传承﹣﹣地方戏曲进校园”的喜爱情况进行了随机调查.对收集的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图所提供的信息解答下列问题:图中A表示“很喜欢”,B表示“喜欢”、C表示“一般”,D表示“不喜欢”.(1)被调查的总人数是50人,扇形统计图中C部分所对应的扇形圆心角的度数为216°;(2)补全条形统计图;(3)若该校共有学生1800人,请根据上述调查结果,估计该校学生中A类有180人;(4)在抽取的A类5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树形图或列表法求出被抽到的两个学生性别相同的概率.【分析】(1)由A类别人数及其所占百分比可得总人数,用360°乘以C部分人数所占比例可得;(2)总人数减去其他类别人数求得B的人数,据此即可补全条形图;(3)用总人数乘以样本中A类别人数所占百分比可得;(4)用树状图或列表法即可求出抽到性别相同的两个学生的概率.【解答】解:(1)被调查的总人数为5÷10%=50人,扇形统计图中C部分所对应的扇形圆心角的度数为360°×30=216°,50故答案为:50、216°;(2)B类别人数为50﹣(5+30+5)=10人,补全图形如下:(3)估计该校学生中A类有1800×10%=180人,故答案为:180;所有等可能的结果为20种,其中被抽到的两个学生性别相同的结果数为8,∴被抽到的两个学生性别相同的概率为820=25.18.(7分)如图,AD 是⊙O 的直径,AB 为⊙O 的弦,OP ⊥AD ,OP 与AB 的延长线交于点P ,过B 点的切线交OP 于点C . (1)求证:∠CBP =∠ADB .(2)若OA =2,AB =1,求线段BP 的长.【分析】(1)连接OB ,如图,根据圆周角定理得到∠ABD =90°,再根据切线的性质得到∠OBC =90°,然后利用等量代换进行证明;(2)证明△AOP ∽△ABD ,然后利用相似比求BP 的长. 【解答】(1)证明:连接OB ,如图, ∵AD 是⊙O 的直径, ∴∠ABD =90°, ∴∠A +∠ADB =90°, ∵BC 为切线, ∴OB ⊥BC , ∴∠OBC =90°,∴∠OBA +∠CBP =90°, 而OA =OB , ∴∠A =∠OBA , ∴∠CBP =∠ADB ; (2)解:∵OP ⊥AD , ∴∠POA =90°, ∴∠P +∠A =90°, ∴∠P =∠D , ∴△AOP ∽△ABD , ∴AP AD =AO AB,即1+BP 4=21,∴BP =7.19.(6分)如图,反比例函数y =k x(x >0)过点A (3,4),直线AC 与x 轴交于点C (6,0),过点C 作x 轴的垂线BC 交反比例函数图象于点B .(1)求k 的值与B 点的坐标;(2)在平面内有点D ,使得以A ,B ,C ,D 四点为顶点的四边形为平行四边形,试写出符合条件的所有D 点的坐标.【分析】(1)将A 点的坐标代入反比例函数y =kx求得k 的值,然后将x =6代入反比例函数解析式求得相应的y 的值,即得点B的坐标;(2)使得以A 、B 、C 、D 为顶点的四边形为平行四边形,如图所示,找出满足题意D 的坐标即可. 【解答】解:(1)把点A (3,4)代入y =kx (x >0),得k =xy =3×4=12,故该反比例函数解析式为:y =12x .∵点C (6,0),BC ⊥x 轴,∴把x =6代入反比例函数y =12x ,得 y =122=6.则B (6,2).综上所述,k 的值是12,B 点的坐标是(6,2).(2)①如图,当四边形ABCD 为平行四边形时,AD ∥BC 且AD =BC . ∵A (3,4)、B (6,2)、C (6,0),∴点D 的横坐标为3,y A ﹣y D =y B ﹣y C 即4﹣y D =2﹣0,故y D =2. 所以D (3,2).②如图,当四边形ACBD ′为平行四边形时,AD ′∥CB 且AD ′=CB . ∵A (3,4)、B (6,2)、C (6,0),∴点D 的横坐标为3,y D ′﹣y A =y B ﹣y C 即y D ﹣4=2﹣0,故y D ′=6. 所以D ′(3,6).③如图,当四边形ACD ″B 为平行四边形时,AC =BD ″且AC ∥BD ″. ∵A (3,4)、B (6,2)、C (6,0),∴x D ″﹣x B =x C ﹣x A 即x D ″﹣6=6﹣3,故x D ″=9. y D ″﹣y B =y C ﹣y A 即y D ″﹣2=0﹣4,故y D ″=﹣2. 所以D ″(9,﹣2).综上所述,符合条件的点D 的坐标是:(3,2)或(3,6)或(9,﹣2).20.(8分)如图,在▱ABCD 中,分别以边BC ,CD 作等腰△BCF ,△CDE ,使BC =BF ,CD =DE ,∠CBF =∠CDE ,连接AF ,AE .(1)求证△ABF ≌△EDA ;(2)延长AB与CF相交于G.若AF⊥AE,求证BF⊥BC.【分析】(1)想办法证明:AB=DE,FB=AD,∠ABF=∠ADE即可解决问题;(2)只要证明FB⊥AD即可解决问题;【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠ABC=∠ADC,∵BC=BF,CD=DE,∴BF=AD,AB=DE,∵∠ADE+∠ADC+∠EDC=360°,∠ABF+∠ABC+∠CBF=360°,∠EDC=∠CBF,∴∠ADE=∠ABF,∴△ABF≌△EDA.(2)证明:延长FB交AD于H.∵AE⊥AF,∴∠EAF=90°,∵△ABF≌△EDA,∴∠EAD=∠AFB,∵∠EAD+∠F AH=90°,∴∠F AH+∠AFB=90°,∴∠AHF=90°,即FB⊥AD,∵AD∥BC,∴FB⊥BC.21.(7分)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.(1)求坡底C点到大楼距离AC的值;(2)求斜坡CD的长度.【分析】(1)在直角三角形ABC 中,利用锐角三角函数定义求出AC 的长即可; (2)设CD =2x ,则DE =x ,CE = 3x ,构建方程即可解决问题;【解答】解:(1)在直角△ABC 中,∠BAC =90°,∠BCA =60°,AB =60米,则AC =AB tan 60°=3=20 3(米)答:坡底C 点到大楼距离AC 的值是20 3米.(2)设CD =2x ,则DE =x ,CE = 3x , 在Rt △BDF 中,∵∠BDF =45°, ∴BF =DF ,∴60﹣x =20 3+ 3x , ∴x =40 3﹣60, ∴CD =2x =80 3﹣120, ∴CD 的长为(80 3﹣120)米.22.(8分)已知直线l :y =kx +1与抛物线y =x 2﹣4x . (1)求证:直线l 与该抛物线总有两个交点;(2)设直线l 与该抛物线两交点为A ,B ,O 为原点,当k =﹣2时,求△OAB 的面积. 【分析】(1)联立两解析式,根据判别式即可求证;(2)画出图象,求出A 、B 的坐标,再求出直线y =﹣2x +1与x 轴的交点C ,然后利用三角形的面积公式即可求出答案.【解答】解:(1)联立 y =kx +1y =x 2−4x化简可得:x 2﹣(4+k )x ﹣1=0, ∴△=(4+k )2+4>0,故直线l 与该抛物线总有两个交点; (2)当k =﹣2时, ∴y =﹣2x +1过点A 作AF ⊥x 轴于F ,过点B 作BE ⊥x 轴于E ,∴联立 y =x 2−4x y =−2x +1解得: x =1+ 2y =−1−2 2或x =1− 2y =2 2−1∴A (1﹣ 2,2 2﹣1),B (1+ 2,﹣1﹣2 2) ∴AF =2 2﹣1,BE =1+2 2易求得:直线y =﹣2x +1与x 轴的交点C 为(12,0)∴OC =12∴S △AOB =S △AOC +S △BOC =12OC •AF +12OC •BE =12OC (AF +BE )=12×12×(2 2﹣1+1+2 2)= 223.(9分)我市某乡镇在“精准扶贫”活动中销售一农产品,经分析发现月销售量y (万件)与月份x (月)的关系为:y =x +4(1≤x ≤8,x 为整数),每件产品的利润z (元)与月份x (月)的关系如下表:(1)请你根据表格求出每件产品利润z (元)与月份x (月)的关系式;(2)若月利润w (万元)=当月销售量y (万件)×当月每件产品的利润z (元),求月利润w (万元)与月份x (月)的关系式; (3)当x 为何值时,月利润w 有最大值,最大值为多少?【分析】(1)根据表格中的数据可以求得各段对应的函数解析式,本题得以解决; (2)根据题目中的解析式和(1)中的解析式可以解答本题;(3)根据(2)中的解析式可以求得各段的最大值,从而可以解答本题.【解答】解;(1)当1≤x ≤9时,设每件产品利润z (元)与月份x (月)的关系式为z =kx +b ,k +b =192k +b =18,得 k =−1b =20,即当1≤x ≤9时,每件产品利润z (元)与月份x (月)的关系式为z =﹣x +20, 当10≤x ≤12时,z =10, 由上可得,z ={−x +20(1≤x ≤9,x 取整数)10(10≤x ≤12,x 取整数);(2)当1≤x ≤8时,w =(x +4)(﹣x +20)=﹣x 2+16x +80, 当x =9时,w =(﹣9+20)×(﹣9+20)=121, 当10≤x ≤12时,w =(﹣x +20)×10=﹣10x +200, 由上可得,w ={−x 2+16x +80(1≤x ≤8,x 取整数)121(x =9)−10x +200(10≤x ≤12,x 取整数); (3)当1≤x ≤8时,w =﹣x 2+16x +80=﹣(x ﹣8)2+144, ∴当x =8时,w 取得最大值,此时w =144;当x =9时,w =121,当10≤x ≤12时,w =﹣10x +200,则当x =10时,w 取得最大值,此时w =100,由上可得,当x 为8时,月利润w 有最大值,最大值144万元. 24.(14分)如图,在直角坐标系xOy 中,菱形OABC 的边OA 在x 轴正半轴上,点B ,C 在第一象限,∠C =120°,边长OA =8.点M 从原点O 出发沿x 轴正半轴以每秒1个单位长的速度作匀速运动,点N 从A 出发沿边AB ﹣BC ﹣CO 以每秒2个单位长的速度作匀速运动,过点M 作直线MP 垂直于x 轴并交折线OCB 于P ,交对角线OB 于Q ,点M 和点N 同时出发,分别沿各自路线运动,点N 运动到原点O 时,M 和N 两点同时停止运动. (1)当t =2时,求线段PQ 的长; (2)求t 为何值时,点P 与N 重合;(3)设△APN 的面积为S ,求S 与t 的函数关系式及t 的取值范围.【分析】(1)解直角三角形求出PM ,QM 即可解决问题; (2)根据点P 、N 的路程之和=24,构建方程即可解决问题,; (3)分四种情形考虑问题即可解决问题; 【解答】解:(1)当t =2时,OM =2, 在Rt △OPM 中,∠POM =60°, ∴PM =OM •tan 60°=2 3, 在Rt △OMQ 中,∠QOM =30°, ∴QM =OM •tan 30°=2 33,∴PQ =CN ﹣QM =2 3﹣2 33=4 33.(2)由题意:8+(t ﹣4)+2t =24, 解得t =203.(3)①当0<t <4时,S =12•2t •4 3=4 3t .②当4≤t <203时,S =12×[8﹣(t ﹣4)﹣(2t ﹣8)]×4 3=40 3﹣6 3t . ③当203<t <8时.S =12×[(t ﹣4)+(2t ﹣8)﹣8]×4 3=6 3t ﹣40 3.④当8≤t ≤12时,S =S菱形ABCO ﹣S △AON ﹣S △ABP ﹣S △PNC =32 3﹣12•(24﹣2t )•4 3﹣12•[8﹣(t ﹣4)]•4 3﹣12•(t ﹣4)•32•(2t ﹣16)=﹣ 32t 2+12 3t ﹣56 3.。

湖北省黄冈市2021年中考数学试卷(含解析)

湖北省黄冈市2021年中考数学试卷(含解析)

黄冈市2021年初中毕业生学业水平和高中阶段学校招生考试数 学 试 题(考试时间120分钟 满分120分)第Ⅰ卷(选择题 共18分)一、选择题(本题共6小题,每小题3分,共18分。

每小题给出4个选项中,有且只有一个答案是正确的)1. -32的相反数是A. -23B. -32C. 32D. 232. 下列运算结果正确的是A. 3a 3·2a 2=6a 6B. (-2a )2= -4a 2C. tan 45°=22D. cos 30°=233.函数y = 11-+x x 中自变量x 的取值范围是A .x ≥-1且x ≠1 B.x ≥-1 C. x ≠1 D. -1≤x <14.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为A.50°B.70°C.75°D.80°(第4题图)5.如图,在Rt △ABC 中,∠ACB =90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD =2,CE =5,则CD =A.2B.3C.4D.23(第5题图)6.当a ≤x ≤a +1时,函数y =x 2-2x +1的最小值为1,则a 的值为A.-1B.2C.0或2D.-1或2第Ⅱ卷(非选择题 共102分)二、填空题(本题共8小题,每小题3分,共24分)7.实数16 800 000用科学计数法表示为______________________. 8.因式分解:x 3-9x =___________________________. 9.化简(2-1)0+(21)-2-9+327 =________________________. 10.若a -a1=6,则a 2+a21值为_______________________. 11.如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠CAB =60°,弦AD 平分∠CAB ,若AD =6,则AC =___________.(第11题图)12.一个三角形的两边长分别为3和6,第三边长是方程x 2-10x +21=0的根,则三角形的周长为______________.13.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_________________cm (杯壁厚度不计).(第13题图)14. 在-4,-2,1,2四个数中,随机取两个数分别作为函数y =ax 2+bx +1中a ,b 的值,则该二次函数图像恰好经过第一、二、四象限的概率为___________.三、解答题 (本题共10题,满分78分)15.(本题满分5分)求满足不等式组: x -3(x -2)≤8 的所有整数解. 21x -1<3 -23x16.(本题满分6分)在端午节来临之际,某商店订购了A 型和B 型两种粽子。

黄冈市中考数学试题解析版

黄冈市中考数学试题解析版

黄冈市2021年初中毕业生学业水平考试数学试题〔考试时间120分钟〕总分值120分第一卷〔选择题共18分〕一、选择题〔本题共6小题,每题3分,共18分。

每题给出4个选项,有且只有一个答案是正确的〕1.-2的相反数是A.2B.-21D.21 C.-2【考点】相反数.【剖析】只有符号不一样的两个数,我们就说此中一个是另一个的相反数;0的相反数是0。

一般地,随意的一个有理数a,它的相反数是-a。

a自己既能够是正数,也能够是负数,还能够是零。

本题依据相反数的定义,可得答案.【解答】解:由于2与-2是符号不一样的两个数所以-2的相反数是2.2.应选B.3.4.以下运算结果正确的选项是A.a2+a2=a2B.a2·a3=a6C.a3÷a2=aD.(a2)3=a5【考点】归并同类项、同底数幂的乘法与除法、幂的乘方。

【剖析】依据同类项归并、同底数幂的乘法与除法、幂的乘方的运算法那么计算即可.222B.依据同底数幂的乘法,a2·a3=a5,故本选项错误;C.依据同底数幂的除法,a3÷a2=a,故本选项正确;D.依据幂的乘方,(a2)3=a6,故本选项错误.应选C.3.如图,直线a∥b,∠1=55°,那么∠2=1A.35°B.45°C.55°D.65°2〔第3题〕【考点】平行线的性质、对顶角、邻补角.∠1=∠3【剖析】依据平行线的性质:两直线平行同位角相等,得出;再依据对顶角相等,得出∠2=∠3;进而得出∠1=∠2=55°.【解答】解:如图,∵a∥b,∴∠1=∠3,∵∠1=55°,∴∠3=55°,∴∠2=55°.应选:C.4.假定方程3x2-4x-4=0的两个实数根分别为x1,x2,那么x1+x2=A.-4B.334 D.34【考点】一元二次方程根与系数的关系.假定x1,x2是一元二次方程ax 2+bx+c=0〔a≠0〕的两根时,x1+x2=-a b,x1x2=a c,反过来也建立.【剖析】依据一元二次方程根与系数的关系:两根之和等于一次项系数除以二次项系数的商的相反数,可得出x1+x2的值.【解答】解:依据题意,得x1+x2=-a b=34.应选:D.以下左图,是由四个大小同样的小正方体拼成的几何体,那么这个几何体的左视图是从正面看A B C D〔第5题〕【考点】简单组合体的三视图.【剖析】依据“俯视图打地基,主视图疯狂盖,左视图拆违章〞剖析,找到从左面看所获得的图形即可;注意全部的看到的棱都应表此刻左视图中.【解答】解:从物体的左面看易得第一列有2层,第二列有1层.应选B.在函数y=x x4中,自变量x的取值范围是>0B.x≥-4 C.x≥-4且x≠0 D.x>0且≠-4【考点】函数自变量的取值范围.【剖析】求函数自变量的取值范围,就是求函数分析式存心义的条件。

2009年湖北省黄冈市中考数学试卷真题(附答案解析)

2009年湖北省黄冈市中考数学试卷真题(附答案解析)

翻滚至类似开始的位置 A1B1C1D1 时(如图所示),
则顶点 A 所经过的路线长是_________. 三、解答题(共 8 道大题,满分 66 分)
13.(满分
5
分)解不等式组
3(x 2)<x
x 2

x
1 3
.
8,
14.(满分 6 分)如图,在△ABC 中,∠ACB=90°,点 E 为 AB 中点,连结 CE, 过点 E 作 ED⊥BC 于点 D,在 DE 的延长线上取一点 F,使 AF=CE.求证: 四边形 ACEF 是平行四边形.
18.(满分 10 分)如图,在海面上生产了一股强台 风,台风中心(记为点 M)位于海滨城市(记作点 A) 的南偏西 15°距,离为 61 2 千米,且位于临海市(记作
点 B)正西方向 60 3 千米处.台风中心正以 72 千米/ 时的速度沿北偏东 60°的方向移动(假设台风在移 动过程中的风力保持不变),距离台风中心 60 千米 的圆形区域内均会受到此次强台风的侵袭. (1)滨海市、临海市是否会受到此次台风的侵 袭?请说明理由. (2)若受到此次台风侵袭,该城市受到台风侵袭的 持续时间有多少小时?
一、选择题(A,B,C,D 四个答案中,有且只有一个是正确的,每小题 3 分,
满分 18 分)
1.8 的立方根为( )
A.2
B.±2
C.4
D.±4
2.下列运算正确的是(

A. a3 a3 a6 B. 2(a b) 2a b C. (ab)2 ab2 D. a6 a2 a4
3.如图,△ABC 与△A`B`C`关于直线 l 对称,且∠A=78°,∠C`=48°,则 ∠B 的度数为( ) A.48° B.54° C.74° D.78°

2021年湖北省黄冈市数学中考试题(word版,含答案)

2021年湖北省黄冈市数学中考试题(word版,含答案)

湖北省黄冈市2021年中考数学试题一、选择题(下列各题A 、B 、C 、D 四个选项中,有且只有一个是正确的,每小题3分,共24分)1.-(-3)2=( )A .-3 B.3 C .-9 D.92.随着人民生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是( )3.如图,AB ∥CD ∥EF,AC ∥DF,若∠BAC=120°,则∠CDF=( )A.60°B.120°C.150°D.180°4.下列计算正确的是( )A . B.C. D.5.已知一个正棱柱的俯视图和左视图如图,则其主视图为( )6.已知一元二次方程有一个根为2,则另一根为( )A.2 B.3 C.4 D.87.已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为( )A. B. 4 C. 或4 D.2或41644x x x=⋅()9423a a a =⋅()()4232ab ab ab -=-÷()()13426=÷a a 062=+-c x x ππππππA B C D3题图5题图7题图8.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离(千米)与快车行驶时间t (小时)之间的函数图象是( )二、填空题(每小题3分,共21分)9.计算: . 10.分解因式: .11.已知⊿ABC 为等边三角形,BD 为中线,延长BC 至E,使CE=CD=1,连接DE,则DE= .12.已知反比例函数在第一象限的图象如图所示,点A 在其图象上,点B 为轴正半轴上一点,连接AO 、AB,且AO=AB,则S ⊿AOB = .13.如图,M 是CD 的中点,EM ⊥CD,若CD=4,EM=8,则CED 所在圆的半径为 .14.钓鱼岛自古就是中国领土,中国政府已对钓鱼岛开展常态化巡逻.某天,为按计划准点到达指定海域,某巡逻艇凌晨1:00出发,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该艇加快速度仍匀速前进,结果恰好准点到达.如图是该艇行驶的路程(海里)与所用时间t (小时)的函数图象,则该巡逻艇原计划准点到达的时刻是 .15.如图,矩形ABCD 中,AB=4,BC=3,边CD 在直线L 上,将矩形ABCD 沿直线L 作无滑动翻滚,当点A 第一次翻滚到点A 1位置时,则点A 经过的路线长为 .y ()()=---221313x x x =-a ab 42x y 6=x y 11题图12题图13题图14题图15题图三、解答题(共75分)16.(6分)解方程组:17.(6分)如图,四边形ABCD 是菱形,对角线AC 、BD 相交于点O,DH ⊥AB 于H,连接OH,求证:∠DHO=∠DCO.18(7分)为了倡导“节约用水,从我做起”,黄岗市政府决定对市直机关500户家庭的用水情况作一次调查,市政府调查小组随机抽查了其中的100户家庭一年的月平均用水量(单位:吨),并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整。

2020年湖北省黄冈中考数学试卷(附答案与解析)

绝密★启用前2020年湖北省黄冈市初中学业水平考试数 学(考试时间:120分钟 满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

答在试题卷上无效。

3.非选择题的作答:用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区城内。

答在试题卷上无效。

4.考生必须保持答题卡的整洁。

考试结来后,请将本试题卷和答题卡一并上交。

第Ⅰ卷(选择题 共24分)一、选择题(本题共8小题,每小题3分,共24分.每小题给出的4个选项中,有且只有一个答案是正确的)1.16的相反数是( ) A .6B .6-C .16D .16- 2.下列运算正确的是( )A .223m m m +=B .326236m m m ⋅=C .33(2)8m m =D .623m m m ÷= 3.如果一个多边形的每一个外角都是36︒,那么这个多边形的边数是( ) A .7B .8C .9D .10 4.甲、乙、丙、丁四位同学五次数学测验成绩统计如右表所示,如果从这四位同学中,) A .甲B .乙C .丙D .丁5.下列几何体是由4个相同的小正方体搭成的,其中,主视图、左视图、俯视图都相同的是( )ABCD6.在平面直角坐标系中,若点(,)A a b -在第三象限,则点(,)B ab b -所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限7.若菱形的周长为16,高为2,则菱形两邻角的度数之比为( )A .4: 1B .5: 1C .6: 1D.7: 18.2020年初以来,红星消毒液公司生产的消毒液在库存量为m 吨的情况下,日销售量与产量持平,自1月底抗击“新冠病毒”以来,消毒液霱求量猛增,该厂在生产能力不变的情况下,消毒液一度脱销.下面表示2020年初至脱销期间,该厂库存量y (吨)与时间(天)之间函数关系的大致图象是( )AB C D第Ⅱ卷(非选择题 共96分)二、填空题(本题共8小题,每小题3分,共24分)9.________.10.已知12,x x 是一元二次方程2210x x --=的两根,则121x x =________. 11.若|2|0x -=,则12xy -=________.12.已知:如图,在ABC △中,点D 在边BC 上,AB AD DC ==,35C ︒∠=则BAD ∠=________度.-------------在------------------此------------------卷------------------上-------------------答-------------------题-------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________________________ _____________13.计算:221y x x y x y ⎛⎫÷- ⎪+-⎝⎭的结果是________. 14.已知:如图,AB EF ∥,75ABC ︒∠=,135CDF ︒∠=则=BCD ∠________度.15.我国古代数学著作《九章算术》中有这样一个问题:“今有池方一丈,葭(ji ā)生其中央,出水一尺,引葭赴岸,适与岸齐.问水深几何?”(注:丈、尺是长度单位,1丈10=尺)这段话翻译成现代汉语,即为:如图,有一个水池,水面是一个边长为1丈的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.则水池里水的深度是________尺.16.如图所示,将一个半径10 cm OA =,圆心角90AOB ∠=︒的扇形纸板放置在水平面的一条射线OM 上.在没有滑动的情况下,将扇形AOB 沿射线OM 翻滚至OB 再次回到OM 上时,则半径OA 的中点P 运动的路线长为________cm .(计算结果不取近似....值.)三、解答题(本题共9题,满分72分)17.(5分)解不等式211322x x +≥,并在数轴上表示其解集. 18.(6分)已知:如图,在ABCD 中,点O 是CD 的中点,连接AO 并延长,交BC 的延长线于点E ,求证:AD CE =.19.(6分)为推广黄冈各县市名优农产品,市政府组织创办了“黄冈地标馆”.一顾客在“黄冈地标馆”发现,如果购买6盒羊角春牌绿茶和4盒九孔牌藕粉,共需960元.如果购买1盒羊角春牌绿茶和3盒九孔牌藕粉共需300元.请问每盒羊角春牌绿茶和每盒九孔牌藕粉分别需要多少元?20.(7分)为了解疫情期间学生网络学习的学习效果,东坡中学随机抽取了部分学生进行调查.要求每位学生从“优秀”、“良好”、“一般”、“不合格”四个等次中,选择一项作为自我评价网络学习的效果现将调查结果绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共抽查了________人.(2)将条形统计图补充完整,并计算出扇形统计图中,学习效果“一般”的学生人数所在扇形的圆心角度数.(3)张老师在班上随机抽取了4名学生,其中学习效果“优秀”的1人,“良好”的2人,“一般”的1人,若再从这4人中随机抽取2人,请用画树状图法,求出抽取的2人学习效果全是“良好”的概率.21.(7分)已知:如图,AB 是O 的直径,点E 为O 上一点,点D 是AE 上一点,连接AE 并延长至点C ,使CBE BDE ∠=∠,BD 与AE 交于点F . (1)求证:BC 是O切线;(2)若BD 平分ABE ∠,求证:2AD DF DB =⋅.22.(8分)因东坡文化远近闻名的遗爱湖公园,“国庆黄金周”期间,游人络绎不绝,现有一艘游船载着游客在遗爱湖中游览.当船在A 处时,船上游客发现岸上1P 处的临皋亭和2P 处的遗爱亭都在东北方向;当游船向正东方向行驶600 m 到达B 处时,游客发现遗爱亭在北偏西15︒方向;当游船继续向正东方向行驶400 m 到达C 处时,游客发现临皋亭在北偏西60︒方向.(1)求A 处到临皋亭P 处的距离.(2)求临皋亭1P 处与遗爱亭2P 处之间的距离(计算结果保留根号) 23.(8分)已知:如图,一次函数的图象与反比例函数的图象交于,A B 两点,与y 轴正半轴交于点C ,与x 轴负半轴交于点D,OB =,1tan 2DOB ∠=.(1)求反比例函数解析式;(2)当12ACO OCD S S =△△时,求点C 的坐标.24.(11分)网络销售已经成为一种热门的销售方式为了减少农产品的库存,我市市长亲自在某网络平台上进行直播销售大别山牌板栗.为提高大家购买的积极性,直播时,板栗公司每天拿出2 000元现金,作为红包发给购买者.已知该板栗的成本价格为6元/kg ,每日销售量(kg)y 与销售单价x (元/kg )满足关系式:1005000y x =-+.经销售发现,销售单价不低于成本价格且不高于30元/kg .当每日销售量不低于4000 kg 时,每千克成本将降低1元.设板栗公司销售该板栗的日获利为W (元).(1)请求出日获利W 与销售单价x 之间的函数关系式(2)当销售单价定为多少时,销售这种板栗日获利最大?最大利润为多少元? (3)当40000W ≥元时,网络平台将向板栗公可收取a 元/kg(4)a <的相关费用,若此时日获利的最大值为42100元,求a 的值. 25.(14分)已知抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点()0,3C ,顶点为点D . (1)求抛物线的解析式;(2)若过点C 的直线交线段AB 于点E ,且:3:5ACE CEB S S =△△,求直线CE 的解析式;(3)若点P 在抛物线上,点Q 在x 轴上,当以点D C P Q 、、、为顶点的四边形是平行四边形时,求点P 的坐标;(4)已知点450,8H ⎛⎫⎪⎝⎭,(2,0)G 在抛物线对称轴上找一点F ,使HF AF+值最小此时,在抛物线上是否存在一点K ,使KF KG +的值最小,若存在,求出点K的坐标;若不存在,请说明理由.的的-------------在------------------此------------------卷------------------上-------------------答-------------------题-------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________2020年湖北省黄冈市初中学业水平考试数学答案解析第Ⅰ卷一、1.【答案】D【解析】根据相反数的定义有:16的相反数是16-.故选D . 2.【答案】C【解析】解:A .23m m m +=,该项不符合题意;B .353222366m m m m +⋅==,该项不符合题意;C .33(2)8m m =,该项符合题意;D .62624m m m m -÷==,该项不符合题意;故选:C . 3.【答案】D 【解析】:一个多边形的每个外角都是36︒,3603610n ︒︒∴=÷=.故选D . 4.【答案】B【解析】通过四位同学平均分的比较,乙、丙同学平均数均为90,高于甲、丁同学,故排除甲、丁;乙、丙同学平均数相同,但乙同学方差更小,说明其发挥更为稳定,故选择乙同学.故选:B . 5.【答案】A【解析】各选项主视图、左视图、俯视图如下:A .,满足题意;B .,不满足题意;C .,不满足题意;D . ,不满足题意;故选:A .6.【答案】A【解析】解:点(,)A a b -在第三象限,0a ∴<,0b -<,0b ∴>,0ab ∴->,∴点B 在第一象限,故选:A . 7.【答案】B【解析】解:如图,AH 为菱形ABCD 的高,2AH =,菱形的周长为16,4AB ∴=,在Rt ABH △中,21sin 42AH B AB ===,30B ∴∠=︒,AB CD ∥,C 150︒∴∠=,C:B 5:1∴∠∠=.故选:B .【考点】三角形外心的性质8.【答案】D【解析】根据题意:一开始销售量与生产量持平,此时图象为平行于x 轴的线段,当下列猛增是库存随着时间的增加而减小,时间t 与库存量y 之间函数关系的图象为先平,再逐渐减小,最后为0.故选:D .第Ⅱ卷二、9.【答案】2-【解析】根据立方根的定义,求数a 的立方根,也就是求一个数x ,使得3x a =,则x 就是a 的一个立方根:3(2)8-=-,2=-. 10.【答案】1-【解析】解:一元二次方程2210x x --=的两根为12x x ,,121x x ∴=-,1211x x ∴=-.故答案为:1-.11.【答案】2【解析】解:|2|0x -=,20x ∴-=,0x y +=,2x ∴=,2y =-,112(2)222xy ∴-=-⨯⨯-=,故答案为:2.12.【答案】40【解析】解:AD DC =,35C ︒∠=,35CAD C ︒∴∠=∠=,70BDA C CAD ︒∴∠=∠+∠=,AB AD =,70B BDA ︒∴∠=∠=,18040BAD B BDA ︒︒∴∠=-∠-∠=,故答案为:40.13.【答案】1x y-【解析】解:221y x x y x y ⎛⎫÷- ⎪-+⎝⎭()()yx y x x y x y x y x y ⎛⎫+=÷- ⎪+-++⎝⎭()()y yx y x y x y =÷+-+ ()()yx yx y x y y+=⋅+- 1x y=-. 故答案为:1x y-. 14.【答案】30【解析】令BC 与EF 相交于G 点,如下图所示:AB EF ∥,75ABC ︒∠=,135CDF ︒∠=,EGC ABC 75︒∴∠=∠=,180CDF 18013545EDC ︒︒︒︒=-∠=-=△,又EGC BCD EDC ∠=∠+∠,754530BCD ︒︒︒∴∠=-=.故答案:30.15.【答案】12【解析】设这个水池深x 尺,由题意得,2225(1)x x +=+,解得:12x =.答:这个水池深12尺.故答案为:12.16.【答案】10π+【解析】连接BP ,如图,AB 为AO 的中点,10 cm AO =, 5 cm PO ∴=,由勾股定理得,BP =,中点P 经过的路线可以分为四段,当弧AB 切射线OM 于点B 时,有OB ⊥射线OM ,此时P 点绕不动点B 转过了90︒,此时点P 经过的路径长为: cm ;第二段:OB ⊥射线OM 到OA ⊥射线OM ,P 点绕动点转动,而这一过程中弧AB 始终是切于射线OM 的,所以P 与转动点的连线始终⊥射线OM ,所以P 点过的路线长的弧长,即90105cm 1802ππ⋅⨯=;第三段:OB ⊥射线到P 点落在射线OM 上,P 点绕不动点A 转过了90︒,此时点P 经过的路径长为:9055cm 1802ππ⋅⨯=;第四段:OA ⊥射线OM 到OB 与射线OM 重合,P 点绕不动点O 转过了90︒,此时点P 经过的路径长为:9055cm 1802ππ⋅⨯=;所以,P点经过的路线总长55 c 512m 0222S ππππ=+++=+.故答案为:102π+ 三、 17.【答案】211322x x +≥,去分母得,433x x +≥,移项得,433x x --≥,合并同类项得,3x -≥.∴原不等式的解集为:3x -≥.解集在数轴上表示为:【解析】先去分母、移项、合并同类项解不等式,得出解集后在数轴上表示即可.18.【答案】证明:点O 是CD 的中点,DO CO ∴=.在ABCD 中,AD BC ∥,D DCE ∴∠=∠,DAO E ∠=∠.在ADO △和ECO △中,DAO ED DCE DO CO ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADO ECO AAS ∴△≌△ AD CE ∴=. 【解析】通过证明ADO ECO △≌△即可得证.19.【答案】解:设每盒羊角春牌绿茶x 元,每盒九孔牌藕粉y 元,依题意可列方程组: 649603300x y x y +=⎧⎨+=⎩ 解得:12060x y =⎧⎨=⎩.答:每盒羊角春牌绿茶120元,每盒九孔牌藕粉60元.【解析】根据题意列出二元一次方程组解出即可. 20.【答案】(1)200(2)“不合格”的人数为:20040806020---=人,故条形统计图补全如下所示:学习效果“一般”的学生人数所占的百分比为:6020030%÷=,故学习效果“一般”所在扇形的圆心角度数为30%360108︒︒⨯=,故答案为:108︒. (3)依题意可画树状图:共有12种可能的情况,其中同时选中“良好”的情况由2种,P∴(同时选中“良好”)21126==.故答案为:16. 【解析】(1)用“良好”所占的人数80除以它所占的百分比40%即可得到调查的总人数;结合扇形统计图和条形统计图可知:本次活动共调查了:8040%200÷=(人),故答案为:200.(2)用总分数减去“优秀”、“良好”、“一般”所占的人数即可计算出“不合格”的人数,然后补全条形统计图,用“一般”的人数除以总人数得到其所占的百分比,再乘以360°即可得到“一般”的学生人数所在扇形的圆心角度数. (3)画图树状图,然后再用概率公式求解即可. 21.【答案】(1)证明:AB 为直径,90BEA ∴∠=︒,在Rt BEA △中,90EBA BAE ∠+∠=︒,又BDE BAE ∠=∠,CBE BDE ∠=∠,BAE CBE ∴∠=∠,90EBA CBE ∴∠+∠=︒,即90ABC ∠=︒,BC AB ∴⊥,又AB 为O 的直径,BC ∴是O 的切线. (2)BD 平分ABE ∠,EBD DBA ∴∠=∠,又EBD EAD ∠=∠,DBA EAD ∴∠=∠,又FDA ADB ∠=∠,FDA ADB ∴△∽△,AD FDBD AD∴=,2AD DF DB ∴=⋅. 【解析】(1)利用AB 为直径,得出90BEA ∠=︒,利用,BDE BAE CBE BDE ∠=∠∠=∠得出BAE CBE ∠=∠,从而得出90EBA EBC ∠+∠=︒,进而得出结论. (2)证出FDA ADB △∽△即可得出结论.22.【答案】(1)解:依题意有245P AB ∠=︒,275P BA ∠=︒,130PCA ∠=︒.过点1P 作1PM AC ⊥于点M .设1 m PM x =,则在中,1m AM PM x ==,1 m AP =.在1Rt PMC △中,1122 m PC PM x ==,mMC =.又AC AB BC AM MC =+=+,600400x ∴+=+,1)x ∴=,11)AP ∴=,∴点A 处与点1P 处临皋亭之间的距离为.(2)过点B 作2BN AP ⊥于点N .在Rt ABN △中,45ABN ∠=︒.AN BN ∴====.在2Rt NP B△中,2230NBP P BA ABN ∠=∠-∠=︒.2NP ∴===.22AP AN NP ∴=+=.1221PP AP AP ∴=-==.∴点1P 处临亭与点2P处遗爱亭之间的距离为.【解析】(1)过点1P 作1PM AC ⊥于点M .设1 m PM x =,在1Rt APM △中,得到1 mAP =,在1Rt PMC △中,得到 m MC =,根据AC AB BC AM MC =+=+得到关于x 的一元一次方程,求解即可得到x 的值,进而A 处到临皋亭的距离即可求解; (2)过点B 作2BN AP ⊥于点N ,在Rt ABN △中,得到AN =,在2Rt NP B△中,得到2NP =,根据122121PP AP AP AN NP AP =-=+-求解即可. 23.【答案】(1)过点B 作BM x ⊥轴于点M ,则在Rt MOB △中1tan 2BM DOB MO ∠==.设(0)BM x x =>,则2MO x =.又5OB =,222OM BM OB +=.222(2)x x ∴+=.又0x >,1x ∴=,点B 的坐标是(2,1)--,∴反比例的解析式为2y x=.(2)设点C 的坐标为(0, )m ,则0m >.设直线AB 的解析式为:y kx m =+.又点(2,1)B --在直线AB 上将点B 的坐标代入直线解析式中,21k m ∴-+=-.12m k +∴=.∴直线AB 的解析式为:12m y x m +=+. 令0y =,则21m x m =-+.21m OD m ∴=+.令212m x m x +=+,解得1222,1x x m =-=+.经检验12,x x 都是原方程的解.又12ACO OCD S S =△△,111222A CO x CO OD ∴⋅=⨯⋅,2A OD x ∴=,2411m m m ∴=++,2m ∴=.经检验,2m =是原方程的解.∴点C 的坐标为(0,2).【解析】(1)过点B 作BM x ⊥轴于点M ,由1tan 2DOB ∠=设BM x =,2MO x =由勾股定理求出x 的值,得到点B 的坐标,代入即可求解.(2)设点C 的坐标为(0, )m ,则0m >.设直线AB 的解析式为:y kx m =+,将B 点坐标代入AB 的函数关系式,可得12m y x m +=+,令0y =得到21mOD m =+,令212m x m x +=+,解得两个x 的值,A 点的横坐标为21m +,由12ACO OCD S S =△△列出方程求解即可.24.【答案】解:(1)当4000y ≥,即10050004000x -+≥,10x ∴≤.∴当610x ≤≤时,2(61)(1005000)2000100550027000w x x x x =-+-+-=-+-.当1030x <≤时,2(6)(1005000)2000100560032000w x x x x =--+-=-+-,22100550027000(610)100560032000(1030)x x x w x x x ⎧-+-∴=⎨-+-⎩≤≤<≤ (2)当610x ≤≤时,2100550027000w x x =-+-.对称轴为5500551022(100)2b x a =-=-=⨯->,∴当10x =时,max 54000200018000w =⨯-=元. 当1030x <≤时,2100560032000w x x =-+-.对称轴为56002822(100)b x a =-=-=⨯-,∴当28x =时,max 222200200046400w =⨯-=元.4640018000>,∴综合得,当销售单价定为28元时,日获利最大,且最大为46400元.(3)4000018000>,1030x ∴<≤,则2100560032000w x x =-+-.令40000w =,则210056003200040000x x -+-=.解得:120x =,236x =.在平面直角坐标系中画出w 与x 的数示意图.观察示意图可知:40000,2036w x ≥≤≤.又1030x <≤,2030x ∴≤≤.21(6)(1005000)2000100(5600100)320005000w x a x x a x a∴=---+-=-++--.对称轴为560010012822(100)2b a x a a +=-=-=+⨯-,4a <,∴对称轴128302x a =+<,∴当1282x a =+时,max 42100w =元.1128610028500020004210022a a a ⎡⎤⎛⎫⎛⎫∴+---++-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,2881720a a ∴-+=,12a ∴=,286a =.又4a <,2a ∴=. 【解析】(1)首先根据题意求出自变量x 的取值范围,然后再分别列出函数关系式即可.(2)对于(1)得到的两个函数关系式在其自变量取值范围内求出最大值,然后进行比较,即可得到结果.(3)先求出当40000w =,即210056003200040000x x -+-=时的销售单价,得当40000w ≥,2036x ≤≤,从而2030x ≤≤,得1(6)(1005000)2000w x a x =---+-,可知,当1282x a =+时,max 42100w =元,从而有1128610028500020004210022a a a ⎡⎤⎛⎫⎛⎫+---++-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,解方程即可得到a 的值. 25.【答案】解:(1)方法1:设抛物线的解析式为(3)(1)y a x x ,将点(0,3)C 代入解析式中,则有1(03)3a ⨯-=,1a ∴=-.∴抛物线的解析式为()222323y x x x x =---=-++.方法二:经过,,A B C 三点抛物线的解析式为2y ax bx c =++,将(1,0)A -,(3,0)B ,(0,3)C 代入解析式中,则有30930c a b c a b c =⎧⎪-+=⎨⎪++=⎩,解得:123a b c =-⎧⎪=⎨⎪=⎩,∴抛物线的解析式为2y x 2x 3=-++.(2):3:5ACE CEB S S =△△,132152AE COEB CO ⋅∴=⋅.:3:5AE EB ∴=.3334882AE AB ∴==⨯=.31122E x ∴=-+=.E ∴的坐标为1,02⎛⎫⎪⎝⎭.又C 点坐标为(0,3),∴直线CE 的解析式为63y x =-+.(3)2223(1)4y x x x =-++=--+,∴顶点D 的坐标为(1,4). ①当四边形DCPQ 为平行四边形时,由DQ CP ∥,DQ CP =得:D Q C P y y y y -=-,即403P y -=-.1p y ∴=-.令1y =-,则2231x x -++=-.1x ∴=±∴点P的坐标为(11)-.②当四边形DCQP 为平行四边形时,由CQ DP ∥,CQ DP =得:c Q D p y y y y -=-,即304P y -=-.1p y ∴=.令1y =,则2231x x -++=.1x ∴=±∴点P 的坐标为(1±.∴综合得:点P的坐标为(11)±-,(1±(4)点A 或点B 关于对称轴1x =对称,∴连接BH 与直线1x =交点即为F 点.点H 的坐标为450,8⎛⎫⎪⎝⎭,点B 的坐标为(3,0),∴直线BH 的解析式为:154588y x =-+.令1x =,则154y =.当点F 的坐标为151,4⎛⎫⎪⎝⎭时,HF AF +的值最小.设抛物线上存在一点()00,K x y ,使得FK FG +的值最小.则由勾股定理可得:()222001514KF x y ⎛⎫=-+- ⎪⎝⎭.又点K 在抛物线上,()20014y x ∴=--+()20014x y ∴-=-代入上式中,()2220001517444KF y y y ⎛⎫⎛⎫∴=-+-=- ⎪ ⎪⎝⎭⎝⎭,0174KF y ∴=-.如图,过点K 作直线SK ,使SK y ∥轴,且点S 的纵坐标为174.∴点S 的坐标为017,4x ⎛⎫⎪⎝⎭.则0174SK y =-. 0174y <,00171744y y ∴-=-(两处绝对值化简或者不化简者正确.)KF SK ∴=,KF KG SK KG ∴+=+.当且仅当,,S K G 三点在一条直线上,且该直线干行于y 轴,FK FG +的值最小.又点G 的坐标为(2,0),02x ∴=,将其代入抛物线解析式中可得:03y =.∴当点K的坐标为(2,3)时,KF KG +最小.【解析】(1)由于点A B 、为抛物线与x 轴的交点,可设两点式求解;也可将A B C、、的坐标直接代入解析式中利用待定系数法求解即可.(2)根据两个三角形的高相等,则由面积比得出:3:5AE EB =,求出AE ,根据点A 坐标可解得点E 坐标,进而求得直线CE 的解析式.(3)分两种情况讨论①当四边形DCPQ 为平行四边形时;②当四边形DCQP 为平行四边形时,根据平行四边形的性质和点的坐标位置关系得出纵坐标的关系式,分别代入坐标数值,解方程即可解答. (4)根据抛物线的对称性,AF BF =,则HF AF HF BF +=+,当H F B 、、共线时,HF AF +值最小,求出此时点F 的坐标,设()00,K x y ,由勾股定理和抛物线方程得0174KF y =-,过点K 作直线SK ,使//SK y 轴,且点S 的纵坐标为174,则点S 的坐标为017,4x ⎛⎫⎪⎝⎭,此时,0174KS y =-,KF KG KS KG ∴+=+,当S K G 、、共线且平行y 轴时,KF KG +值最小,由点G 坐标解得0x ,代入抛物线方程中解得0y ,即为所求K 的坐标.。

黄冈市中考数学全真模拟试卷(二)含答案解析

湖北省黄冈市中考数学全真模拟试卷(二)一.选择题(共6小题,满分15分)1.已知x的取值能使|x﹣3|+|x+2|取得最小值,则所有中整数有()A.1个 B.2个 C.3个 D.4个2.(3分)下列运算正确的是()A.m6÷m2=m3B.(x+1)2=x2+1 C.(3m2)3=9m6D.2a3•a4=2a73.(3分)如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④4.(3分)一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积是()A.6πB.4πC.8πD.45.(3分)小华五次跳远的成绩如下(单位:m):3.9,4.1,3.9,3.8,4.2.关于这组数据,下列说法错误的是()A.极差是0.4 B.众数是3.9 C.中位数是3.98 D.平均数是3.986.(3分)已知:圆内接四边形ABCD中,对角线AC⊥BD,AB>CD.若CD=4,则AB的弦心距为()A.B.2 C.D.二.填空题(共8小题,满分24分,每小题3分)7.(3分)计算:=.8.(3分)分解因式:3x2﹣6x2y+3xy2=.9.(3分)=.10.(3分)现在网购越来越多地成为人们的一种消费方式,刚刚过去的的“双11”网上促销活动中,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为.11.(3分)有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次运算的结果y n=(用含字母x和n的代数式表示).12.(3分)如图,E是正方形ABCD内一点,如果△ABE为等边三角形,那么∠DCE=度.13.(3分)已知圆锥的底面半径为2cm,母线长是4cm,则圆锥的侧面积是cm2(结果保留π).14.(3分)两个直角三角板如图放置,其中AC=5,BC=12,点D为斜边AB的中点.在三角板DEF绕着点D的旋转过程中,边DE与边AC始终相交于点M,边DF与边BC始终相交于点N,则线段MN的最小值为.三.解答题(共10小题,满分64分)15.(5分)解关于x的不等式组:,其中a为参数.16.(6分)如图1,在锐角△ABC中,∠ABC=45°,高线A D、BE相交于点F.(1)判断BF与AC的数量关系并说明理由;(2)如图2,将△ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DE∥AM时,判断NE与AC的数量关系并说明理由.17.(6分)已知x1,x2是方程2x2﹣2nx+n(n+4)=0的两根,且(x1﹣1)(x2﹣1)﹣1=,求n的值.18.(6分)甲、乙两公司各为“希望工程”捐款2000元.已知乙公司比甲公司人均多捐20元,且乙公司的人数是甲公司人数的,问甲、乙两公司人均捐款各多少元?19.(7分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.20.(7分)如图,在平面直角坐标系xOy中,直线AB与x轴交于点A,与y轴交于点B,且OA=3,AB=5.点P从点O出发沿OA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AO返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB﹣BO﹣OP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t >0).(1)求直线AB的解析式;(2)在点P从O向A运动的过程中,求△APQ的面积S与t之间的函数关系式(不必写出t的取值范围);(3)在点E从B向O运动的过程中,完成下面问题:①四边形QBED能否成为直角梯形?若能,请求出t的值;若不能,请说明理由;②当DE经过点O时,请你直接写出t的值.21.(7分)如图,反比例函数y=(m≠0)与一次函数y=kx+b(k≠0)的图象相交于A、B两点,点A的坐标为(﹣6,2),点B的坐标为(3,n).求反比例函数和一次函数的解析式.22.(8分)如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m米,此时自B处测得建筑物顶部的仰角是β.已知测角仪的高度是n米,请你计算出该建筑物的高度.23.(12分)如图,实验数据显示,一般成年人喝半斤低度白酒后,1.5时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可以近似的用二次函数y=﹣200x2+400x刻画,1.5小时后(包括1.5小时)y与x可近似的用反比例函数y=(k>0)刻画.(1)根据上述数学模型计算;①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?②当x=5时,y=45,求k的值.(2)按照国家规定,车辆驾驶人员血液中酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早晨7:00能否驾车去上班?请说明理由.24.综合与探究:如图,抛物线y=x2﹣x﹣4与x轴交与A,B两点(点B在点A的右侧),与y 轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x 轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.(1)求点A,B,C的坐标.(2)当点P在线段OB上运动时,直线l分别交BD,BC于点M,N.试探究m 为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由.(3)当点P在线段EB上运动时,是否存在点Q,使△BDQ为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.湖北省黄冈市中考数学全真模拟试卷(二)参考答案与试题解析一.选择题(共6小题,满分15分)1.【解答】解:∵已知x的取值能使|x﹣3|+|x+2|取得最小值,∴当x≥3时,有|x﹣3|+|x+2|=x﹣3+x+2=2x﹣1,∴当x=3时有最小值:2×3﹣1=5;∴当﹣2<x<3时,有|x﹣3|+|x+2|=3﹣x+x+2=5,∴其有最小值5;当x≤﹣2时,有|x﹣3|+|x+2|=3﹣x﹣x﹣2=1﹣2x,∴当x=﹣2时有最小值5,∴﹣2≤x≤3可以使|x﹣3|+|x+2|取得最小值,∴﹣1≤≤,∴所有中整数有﹣1,0,1,共3个,故选:C.2.【解答】解:A、原式=m4,不符合题意;B、原式=x2+2x+1,不符合题意;C、原式=27m6,不符合题意;D、原式=2a7,符合题意,故选:D.3.【解答】解:点E有4种可能位置.(1)如图,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.∴∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β.故选:D.4.【解答】解:根据题目的描述,可以判断出这个几何体应该是个圆柱,且它的底面圆的半径为1,高为2,那么它的表面积=2π×2+π×1×1×2=6π,故选A.5.【解答】解:A、极差是4.2﹣3.8=0.4;B、3.9有2个,众数是3.9;C、从高到低排列后,为4.2,4.1,3.9,3.9,3.8.中位数是3.9;D、平均数为(3.9+4.1+3.9+3.8+4.2)÷5=3.98.故选:C.6.【解答】解:如图,设AC与BD的交点为O,过点O作GH⊥CD于G,交AB于H;作MN⊥AB于M,交CD于点N.在Rt△COD中,∠COD=90°,OG⊥CD;∴∠DOG=∠DCO;∵∠GOD=∠BOH,∠DCO=∠ABO,∴∠ABO=∠BOH,即BH=OH,同理可证,AH=OH;即H是Rt△AOB斜边AB上的中点.同理可证得,M是Rt△COD斜边CD上的中点.设圆心为O′,连接O′M,O′H;则O′M⊥CD,O′H⊥AB;∵MN⊥AB,GH⊥CD;∴O′H∥MN,OM∥GH;即四边形O′HOM是平行四边形;因此OM=O′H.由于OM是Rt△OCD斜边CD上的中线,所以OM=O′H=CD=2.故选:B.二.填空题(共8小题,满分24分,每小题3分)7.【解答】解:原式==,故答案为:8.【解答】解:原式=3x(x﹣2xy+y2),故答案为:3x(x﹣2xy+y2)9.【解答】解:∵=﹣,∴原式=(﹣)+(﹣)+…+(﹣),=1﹣,=.故答案为.10.【解答】解:67 000 000 000=6.7×1010,故答案为:6.7×1010.11.【解答】解:将y1=代入得:y2==;将y2=代入得:y3==,依此类推,第n次运算的结果y n=.故答案为:.12.【解答】解:∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BCD=90°,∵△ABE为等边三角形,∴AE=AB=BE,∠ABE=60°,∴∠EBC=90°﹣60°=30°,BC=BE,∴∠ECB=∠BEC=(180°﹣30°)=75°,∴∠DCE=90°﹣75°=15°.故答案为15.13.【解答】解:底面圆的半径为2,则底面周长=4π,侧面面积=×4π×4=8πcm2.14.【解答】解:当M、N分别为AC、BC的中点时,MN最小.在△ABC中,∵∠C=90°,AC=5,BC=12,∴AB==13.∵M、N分别为AC、BC的中点,∴MN=AB=.故答案为.三.解答题(共10小题,满分64分)15.【解答】解:,解不等式①得:﹣3a<5x≤1﹣3a,﹣a<x≤,解不等式②得:3a<5x≤1+3a,a<x≤,∵当﹣a=a时,a=0,当=时,a=0,当﹣a=时,a=﹣,当a=时,a=,∴当或时,原不等式组无解;当时,原不等式组的解集为:;当时,原不等式组的解集为:.16.【解答】解:(1)BF=AC,理由是:如图1,∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEF=90°,∵∠ABC=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵∠AFE=∠BFD,∴∠DAC=∠EBC,在△ADC和△BDF中,∵,∴△ADC≌△BDF(AAS),∴BF=AC;(2)NE=AC,理由是:如图2,由折叠得:MD=DC,∵D E∥AM,∴AE=EC,∵BE⊥AC,∴AB=BC,∴∠ABE=∠CBE,由(1)得:△ADC≌△BDF,∵△ADC≌△ADM,∴△BDF≌△ADM,∴∠DBF=∠MAD,∵∠DBA=∠BAD=45°,∴∠DBA﹣∠DBF=∠BAD﹣∠MAD,即∠ABE=∠BAN,∵∠ANE=∠ABE+∠BAN=2∠ABE,∠NAE=2∠NAD=2∠CBE,∴∠ANE=∠NAE=45°,∴AE=EN,∴EN=AC.17.【解答】解:∵x1、x2是方程2x2﹣2nx+n(n+4)=0的两根,∴x1+x2=﹣=n ①,x1x2==n(n+4)②,又∵(x1﹣1)(x2﹣1)﹣1=,∴x1x2﹣(x1+x2)=,把①②代入上式得n(n+4)﹣n=,化简得n2=,即n=±.又∵△=b2﹣4ac=4n2﹣4×2×n(n+4)=﹣16n,而原方程有根,∴﹣16n≥0,∴n≤0,∴n=﹣.18.【解答】解:设甲公司人均捐款x元,则乙公司人均捐款x+20元,×=解得:x=80,经检验,x=80为原方程的根,80+20=100(元)答:甲、乙两公司人均捐款分别为80元、100元.19.【解答】解:(1)10÷20%=50,所以本次抽样调查共抽取了50名学生;(2)测试结果为C等级的学生数为50﹣10﹣20﹣4=16(人);补全条形图如图所示:(3)700×=56,所以估计该中学八年级学生中体能测试结果为D等级的学生有56名;(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,所以抽取的两人恰好都是男生的概率==.20.【解答】解:(1)在Rt△AOB中,OA=3,AB=5,由勾股定理得OB==4.∴A(3,0),B(0,4).设直线AB的解析式为y=kx+b.∴解得∴直线AB的解析式为;(2)如图1,过点Q作QF⊥AO于点F.∵AQ=OP=t,∴AP=3﹣t.由△AQF∽△ABO,得.∴=.∴QF=t,∴S=(3﹣t)•t,∴S=﹣t2+t;(3)四边形QBED能成为直角梯形.①如图2,当DE∥QB时,∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形.此时∠AQP=90°.由△APQ∽△ABO,得.∴=.解得t=;如图3,当PQ∥BO时,∵DE⊥PQ,∴DE⊥BO,四边形QBED是直角梯形.此时∠APQ=90°.由△AQP∽△ABO,得.即=.3t=5(3﹣t),3t=15﹣5t,8t=15,解得t=;(当P从A向0运动的过程中还有两个,但不合题意舍去)②当DE经过点O时,∵DE垂直平分PQ,∴EP=EQ=t,由于P与Q相同的时间和速度,∴AQ=EQ=EP=t,∴∠AEQ=∠EAQ,∵∠AEQ+∠BEQ=90°,∠EAQ+∠EBQ=90°,∴∠BEQ=∠EBQ,∴BQ=EQ,∴EQ=AQ=BQ=AB所以t=,当P从A向O运动时,过点Q作QF⊥OB于F,EP=6﹣t,即EQ=EP=6﹣t,AQ=t,BQ=5﹣t,∴FQ=(5﹣t)=3﹣t,BF=(5﹣t)=4﹣t,∴EF=4﹣BF=t,∵EF2+FQ2=EQ2,即(3﹣t)2+(t)2=(6﹣t)2,解得:t=.∴当DE经过点O时,t=或.21.【解答】解:把点A(﹣6,2)代入中,得m=﹣12.∴反比例函数的解析式为.把点B(3,n)代入中,得n=﹣4.∴B点的坐标为(3,﹣4).把点A(﹣6,2),点B(3,﹣4)分别代入y=kx+b中,得,解得.∴一次函数的解析式为y=﹣x﹣2.22.【解答】解:由题意得:BE=,AE=,∵AE﹣BE=AB=m米,∴﹣=m(米),∴CE=(米),∵DE=n米,∴CD=+n(米).∴该建筑物的高度为:(+n)米.23.【解答】解:(1)∵y=﹣200x2+400x=﹣200(x﹣1)2+200,①∴当x=1时,y取得最大值,此时y=200,答:喝酒后1时血液中的酒精含量达到最大值,最大值为200毫克/百毫升;②∵当x=5时,y=45,∴45=,得k=225,即k的值是225;(2)该驾驶员第二天早晨7:00不能驾车去上班,理由:由(1)知k=225,∴y=,∵晚上20:00到第二天早晨7:00是11个小时,∴将x=11代入y=,得y=,∵,∴该驾驶员第二天早晨7:00不能驾车去上班.24.【解答】解:(1)当y=0时,x2﹣x﹣4=0,解得x1=﹣2,x2=8,∵点B在点A的右侧,∴点A的坐标为(﹣2,0),点B的坐标为(8,0).当x=0时,y=﹣4,∴点C的坐标为(0,﹣4).(2)由菱形的对称性可知,点D的坐标为(0,4).设直线BD的解析式为y=kx+b,则,解得k=﹣,b=4.∴直线BD的解析式为y=﹣x+4.∵l⊥x轴,∴点M的坐标为(m,﹣m+4),点Q的坐标为(m,m2﹣m﹣4).如图,当MQ=DC时,四边形CQMD是平行四边形,∴(﹣m+4)﹣(m2﹣m﹣4)=4﹣(﹣4).化简得:m2﹣4m=0,解得m1=0(不合题意舍去),m2=4.∴当m=4时,四边形CQMD是平行四边形.此时,四边形CQBM是平行四边形.解法一:∵m=4,∴点P是OB的中点.∵l⊥x轴,∴l∥y轴,∴△BPM∽△BOD,∴==,∴BM=DM,∵四边形CQMD是平行四边形,∴DM CQ,∴BM CQ,∴四边形CQBM是平行四边形.解法二:设直线BC的解析式为y=k1x+b1,则,解得k1=,b1=﹣4.故直线BC的解析式为y=x﹣4.又∵l⊥x轴交BC于点N,∴x=4时,y=﹣2,∴点N的坐标为(4,﹣2),由上面可知,点M的坐标为(4,2),点Q的坐标为(4,﹣6).∴MN=2﹣(﹣2)=4,NQ=﹣2﹣(﹣6)=4,∴MN=QN,又∵四边形CQMD是平行四边形,∴DB∥CQ,∴∠3=∠4,∵在△BMN与△CQN中,,∴△BMN≌△CQN(ASA)∴BN=CN,∴四边形CQBM是平行四边形.(3)抛物线上存在两个这样的点Q,分别是Q1(﹣2,0),Q2(6,﹣4).若△BDQ为直角三角形,可能有三种情形,如答图2所示:①以点Q为直角顶点.此时以BD为直径作圆,圆与抛物线的交点,即为所求之Q点.∵P在线段EB上运动,∴﹣8≤x Q≤8,而由图形可见,在此范围内,圆与抛物线并无交点,故此种情形不存在.②以点D为直角顶点.连接AD,∵OA=2,OD=4,OB=8,AB=10,由勾股定理得:AD=,BD=,∵AD2+BD2=AB2,∴△ABD为直角三角形,即点A为所求的点Q.∴Q1(﹣2,0);③以点B为直角顶点.如图,设Q2点坐标为(x,y),过点Q2作Q2K⊥x轴于点K,则Q2K=﹣y,OK=x,BK=8﹣x.易证△Q2KB∽△BOD,∴,即,整理得:y=2x﹣16.∵点Q在抛物线上,∴y=x2﹣x﹣4.∴x2﹣x﹣4=2x﹣16,解得x=6或x=8,当x=8时,点Q2与点B重合,故舍去;当x=6时,y=﹣4,∴Q2(6,﹣4).综上所述,符合题意的点Q的坐标为(﹣2,0)或(6,﹣4).。

2020年湖北省黄冈市中考数学试卷(含答案)

2020年湖北省黄冈市中考数学试卷参考答案与试题解析题序一二三四五六七八总分得分一、选择题(下列个题四个选项中,有且仅有一个是正确的.每小题3分,共24分)1.(3分)(2020•黄冈)﹣8的立方根是()A .﹣2 B.±2 C.2 D.﹣考点:立方根.分析:如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.解答:解:∵﹣2的立方等于﹣8,∴﹣8的立方根等于﹣2.故选A.点评:此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.2.(3分)(2020•黄冈)如果α与β互为余角,则()A.α+β=180°B.α﹣β=180°C.α﹣β=90°D.α+β=90°考点:余角和补角.分析:根据互为余角的定义,可以得到答案.解答:解:如果α与β互为余角,则α+β=900.故选:D.点评:此题主要考查了互为余角的性质,正确记忆互为余角的定义是解决问题的关键.3.(3分)(2020•黄冈)下列运算正确的是()A.x2•x3=x6B.x6÷x5=x C.(﹣x2)4=x6D.x2+x3=x5考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的乘法和除法法则可以解答本题.解答:解:A.x2•x3=x5,答案错误;B.x6÷x5=x,答案正确;C.(﹣x2)4=x8,答案错误;D.x2+x3不能合并,答案错误.故选:B.点评:主要考查同底数幂相除底数不变指数相减,同底数幂相乘底数不变指数相加,熟记定义是解题的关键.4.(3分)(2020•黄冈)如图所示的几何体的主视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从正面看得到的图形是主视图,可得答案.解答:解:从正面看,象一个大梯形减去一个小梯形,故选:D.点评:本题考查了简单组合体的三视图,从正面看得到的图形是主视图.5.(3分)(2020•黄冈)函数y=中,自变量x的取值范围是()A.x≠0 B.x≥2 C.x>2且x≠0 D.x≥2且x≠0考点:函数自变量的取值范围.分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解答:解:由题意得,x﹣2≥0且x≠0,∴x≥2.故选B.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.(3分)(2020•黄冈)若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2=()A.﹣8 B.32 C.16 D.40考点:根与系数的关系.专题:计算题.分析:根据根与系数的关系得到α+β=﹣2,αβ=﹣6,再利用完全平方公式得到α2+β2=(α+β)2﹣2αβ,然后利用整体代入的方法计算.解答:解:根据题意得α+β=﹣2,αβ=﹣6,所以α2+β2=(α+β)2﹣2αβ=(﹣2)2﹣2×(﹣6)=16.故选C.点评:本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.7.(3分)(2020•黄冈)如图,圆锥体的高h=2cm,底面半径r=2cm,则圆锥体的全面积为()cm2.A.4πB.8πC.12πD.(4+4)π考点:圆锥的计算.分析:表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.解答:解:底面圆的半径为2,则底面周长=4π,∵底面半径为2cm、高为2m,∴圆锥的母线长为4cm,∴侧面面积=×4π×4=8π;底面积为=4π,全面积为:8π+4π=12πcm2.故选C.点评:本题利用了圆的周长公式和扇形面积公式求解,牢记公式是解答本题的关键.8.(3分)(2020•黄冈)已知:在△ABC中,BC=10,BC边上的高h=5,点E在边AB上,过点E作EF∥BC,交AC边于点F.点D为BC上一点,连接DE、DF.设点E到BC的距离为x ,则△DEF 的面积S 关于x的函数图象大致为()A.B.C.D.考点:动点问题的函数图象.分析:判断出△AEF和△ABC相似,根据相似三角形对应边成比例列式求出EF,再根据三角形的面积列式表示出S与x的关系式,然后得到大致图象选择即可.解答:解:∵EF∥BC,∴△AEF∽△ABC,∴=,∴EF=•10=10﹣2x,∴S=(10﹣2x)•x=﹣x2+5x=﹣(x﹣)2+,∴S与x的关系式为S=﹣(x﹣)2+(0<x<10),纵观各选项,只有D选项图象符合.故选D.点评:本题考查了动点问题函数图象,主要利用了相似三角形的性质,求出S与x的函数关系式是解题的关键,也是本题的难点.二、填空题(共7小题,每小题3分,共21分)9.(3分)(2020•黄冈)计算:|﹣|=.考点:绝对值.分析:根据负数的绝对值等于它的相反数,可得答案案.解答:解:|﹣|=,故答案为:.点评:本题考查了绝对值,负数的绝对值是它的相反数.10.(3分)(2020•黄冈)分解因式:(2a+1)2﹣a2=(3a+1)(a+1).考点:因式分解-运用公式法.分析:直接利用平方差公式进行分解即可.解答:解:原式=(2a+1+a)(2a+1﹣a)=(3a+1)(a+1),故答案为:(3a+1)(a+1).点评:此题主要考查了公式法分解因式,关键是掌握平方差公式:a2﹣b2=(a+b)(a﹣b).11.(3分)(2020•黄冈)计算:﹣=.考点:二次根式的加减法.分析:先进行二次根式的化简,然后合并同类二次根式求解.解答:解:原式=2﹣=.故答案为:.点评:本题考查了二次根式的加减法,关键是掌握二次根式的化简以及同类二次根式的合并.12.(3分)(2020•黄冈)如图,若AD∥BE,且∠ACB=90°,∠CBE=30°,则∠CAD=60度.考点:平行线的性质.分析:延长AC交BE于F,根据直角三角形两锐角互余求出∠1,再根据两直线平行,内错角相等可得∠CAD=∠1.解答:解:如图,延长AC交BE于F,∵∠ACB=90°,∠CBE=30°,∴∠1=90°﹣30°=60°,∵AD∥BE,∴∠CAD=∠1=60°.故答案为:60.点评:本题考查了平行线的性质,直角三角形两锐角互余的性质,熟记性质是解题的关键.13.(3分)(2020•黄冈)当x=﹣1时,代数式÷+x的值是3﹣2.考点:分式的化简求值.分析:将除法转化为乘法,因式分解后约分,然后通分相加即可.解答:解:原式=•+x=x(x﹣1)+x=x2﹣x+x=x2,当x=﹣1时,原式=(﹣1)2=2+1﹣2=3﹣2.故答案为3﹣2.点评:本题考查了分式的化简求值,熟悉除法法则和因式分解是解题的关键.14.(3分)(2020•黄冈)如图,在⊙O中,弦CD垂直于直径AB于点E,若∠BAD=30°,且BE=2,则CD=4.考点:垂径定理;解直角三角形.专题:计算题.分析:连结OD,设⊙O的半径为R,先根据圆周角定理得到∠BOD=2∠BAD=60°,再根据垂径定理由CD⊥AB得到DE=CE,在Rt△ODE中,OE=OB﹣BE=R﹣2,利用余弦的定义得cos∠EOD=cos60°=,即=,解得R=4,则OE=2,DE=OE=2,所以CD=2DE=4.解答:解:连结OD,如图,设⊙O的半径为R,∵∠BAD=30°,∴∠BOD=2∠BAD=60°,∵CD⊥AB,∴DE=CE,在Rt△ODE中,OE=OB﹣BE=R﹣2,OD=R,∵cos∠EOD=cos60°=,∴=,解得R=4,∴OE=4﹣2=2,∴DE=OE=2,∴CD=2DE=4.故答案为4.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理和解直角三角形.15.(3分)(2020•黄冈)如图,在一张长为8cm,宽为6cm的矩形纸片上,现要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为,5,10cm2.考点:作图—应用与设计作图.分析:因为等腰三角形腰的位置不明确,所以分(1)腰长在矩形相邻的两边上,(2)一腰在矩形的宽上,(3)一腰在矩形的长上,三种情况讨论.(1)△AEF为等腰直角三角形,直接利用面积公式求解即可;(2)先利用勾股定理求出AE边上的高BF,再代入面积公式求解;(3)先求出AE边上的高DF,再代入面积公式求解.解答:解:分三种情况计算:(1)当AE=AF=5厘米时,∴S△AEF AE•AF=×5×5=厘米2,(2)当AE=EF=5厘米时,如图BF===2厘米,∴S△AEF=•AE•BF=×5×2=5厘米2,(3)当AE=EF=5厘米时,如图DF===4厘米,∴S△AEF=AE•DF=×5×4=10厘米2.故答案为:,5,10.点评:本题主要考查矩形的角是直角的性质和勾股定理的运用,要根据三角形的腰长的不确定分情况讨论.三、解答题(本大题共10小题,满分共75分)16.(5分)(2020•黄冈)解不等式组:,并在数轴上表示出不等式组的解集.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.解答:解:解①得:x>3,解②得:x≥1.,则不等式组的解集是:x>3.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.17.(6分)(2020•黄冈)浠州县为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机.已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元.问购买一块电子白板和一台投影机各需要多少元?考点:二元一次方程组的应用.分析:设购买1块电子白板需要x元,一台投影机需要y元,根据①买2块电子白板的钱﹣买3台投影机的钱=4000元,②购买4块电子白板的费用+3台投影机的费用=44000元,列出方程组,求解即可.解答:解:设购买1块电子白板需要x元,一台投影机需要y元,由题意得:,解得:.答:购买一块电子白板需要8000元,一台投影机需要4000元.点评:此题主要考查了二元一次方程组的应用,解题关键是弄清题意,找出合适的等量关系,列出方程组.18.(6分)(2020•黄冈)已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.考点:全等三角形的判定与性质;角平分线的性质.专题:证明题.分析:连接AD,利用SSS得到三角形ABD与三角形ACD全等,利用全等三角形对应角相等得到∠EAD=∠FAD,即AD为角平分线,再由DE⊥AB,DF⊥AC,利用角平分线定理即可得证.解答:证明:连接AD,在△ACD和△ABD中,,∴△ACD≌△ABD(SSS),∴∠EAD=∠FAD,即AD平分∠EAF,∵DE⊥AE,DF⊥AF,∴DE=DF.点评:此题考查了全等三角形的判定与性质,以及角平分线定理,熟练掌握全等三角形的判定与性质是解本题的关键.19.(6分)(2020•黄冈)红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.考点:列表法与树状图法.分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得恰好选派一男一女两位同学参赛的有8种情况,然后利用概率公式求解即可求得答案.解答:解:(1)画树状图得:则共有12种等可能的结果;(2)∵恰好选派一男一女两位同学参赛的有8种情况,∴恰好选派一男一女两位同学参赛的概率为:=.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.(7分)(2020•黄冈)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D的切线,交BC于点E.(1)求证:EB=EC;(2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.考点:切线的性质;正方形的性质.分析:(1)连接BD,根据直径所对的圆周角是直角,得到直角三角形ABD和BCD,根据切线的判定定理知BC是圆的切线,结合切线长定理得到BE=DE,再根据等边对等角以及等角的余角相等证明DE=CE;(2)当以点O、D、E、C为顶点的四边形是正方形时,则△DEB是等腰直角三角形,据此即可判断.解答:(1)证明:连接CD,∵AC是直径,∠ACD=90°,∴BC是⊙O的切线,∠BDA=90°.∵DE是⊙O的切线,∴DE=BE(切线长定理).∴∠EBD=∠EDB.又∵∠DCE+∠EBD=∠CDE+∠EDB=90°,∴∠DCE=∠CDE,∴DE=CE,又∵DE=BE,∴DE=BE.(2)解:当以点O、D、E、C为顶点的四边形是正方形时,则∠DEB=90°,又∵DE=BE,∴△DEB是等腰直角三角形,则∠B=45°,∴△ABC是等腰直角三角形.点评:本题考查了切线的性质以及切线长定理、圆周角定理,解题的关键是连接CD构造直角三角形.21.(7分)(2020•黄冈)某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有200名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?考点:条形统计图;扇形统计图.分析:(1)喜好“核桃味”牛奶的学生人数除以它所占的百分比即可得本次被调查的学生人数;(2)用本次被调查的学生的总人数减去喜好原味、草莓味、菠萝味、核桃味的人数得出喜好香橙味的人数,补全条形统计图即可,用喜好“菠萝味”牛奶的学生人数除以总人数再乘以360°,即可得喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数;(3)用喜好草莓味的人数占的百分比减去喜好原味的人数占的百分比,再乘以该校的总人数即可.解答:解:(1)10÷5%=200(名)答:本次被调查的学生有200名,故答案为:200;(2)200﹣38﹣62﹣50﹣10=40(名),条形统计图如下:=90°,答:喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数为90°;(3)1200×()=144(盒),答:草莓味要比原味多送144盒.点评:本题考查的是条形统计图和扇形统计图的综合运用;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(9分)(2020•黄冈)如图,已知双曲线y=﹣与两直线y=﹣x,y=﹣kx(k>0,且k≠)分别相交于A、B、C、D四点.(1)当点C的坐标为(﹣1,1)时,A、B、D三点坐标分别是A(﹣2,),B(2,﹣),D(1,﹣1).(2)证明:以点A、D、B、C为顶点的四边形是平行四边形.(3)当k为何值时,▱ADBC是矩形.考点:反比例函数综合题.专题:综合题.分析:(1)由C坐标,利用反比例函数的中心对称性确定出D坐标,联立双曲线y=﹣与直线y=﹣x,求出A与B坐标即可;(2)由反比例函数为中心对称图形,利用中心对称性质得到OA=OB,OC=OD,利用对角线互相平分的四边形为平行四边形即可得证;(3)由A与B坐标,利用两点间的距离公式求出AB的长,联立双曲线y=﹣与直线y=﹣kx,表示出CD的长,根据对角线相等的平行四边形为矩形,得到AB=CD,即可求出此时k 的值.解答:解:(1)∵C(﹣1,1),C,D为双曲线y=﹣与直线y=﹣kx的两个交点,且双曲线y=﹣为中心对称图形,∴D(1,﹣1),联立得:,消去y得:﹣x=﹣,即x2=4,解得:x=2或x=﹣2,当x=2时,y=﹣;当x=﹣2时,y=,∴A(﹣2,),B(2,﹣);故答案为:﹣2,,2,﹣,1,﹣1;(2)∵双曲线y=﹣为中心对称图形,且双曲线y=﹣与两直线y=﹣x,y=﹣kx(k>0,且k≠)分别相交于A、B、C、D四点,∴OA=OB,OC=OD,则以点A、D、B、C为顶点的四边形是平行四边形;(3)若▱ADBC是矩形,可得AB=CD,联立得:,消去y得:﹣=﹣kx,即x2=,解得:x=或x=﹣,当x=时,y=﹣;当x=﹣时,y=,∴C(﹣,),D(,﹣),∴CD==AB==,整理得:(4k﹣1)(k﹣4)=0,解得:k=(不合题意,舍去)或k=4,则当k=4时,▱ADBC是矩形.点评:此题属于反比例函数综合题,涉及的知识有:坐标与图形性质,一次函数与反比例函数的交点,平行四边形,矩形的判定,两点间的距离公式,以及中心图形性质,熟练掌握性质是解本题的关键.23.(7分)(2020•黄冈)如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C的求救信号.已知A、B两船相距100(+1)海里,船C在船A的北偏东60°方向上,船C 在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.(1)分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号).(2)已知距观测点D处100海里范围内有暗礁.若巡逻船A沿直线AC去营救船C,在去营救的途中有无触暗礁危险?(参考数据:≈1.41,≈1.73)考点:解直角三角形的应用-方向角问题.分析:(1)作CE⊥AB,设AE=x海里,则BE=CE=x海里.根据AB=AE+BE=x+x=100(+1),求得x的值后即可求得AC的长;过点D作DF⊥AC于点F,同理求出AD的长;(2)作DF⊥AC于点F,根据AD的长和∠DAF的度数求线段DF的长后与100比较即可得到答案.解答:解:(1)如图,作CE⊥AB,由题意得:∠ABC=45°,∠BAC=60°,设AE=x海里,在Rt△AEC中,CE=AE•tan60°=x;在Rt△BCE中,BE=CE=x.∴AE+BE=x+x=100(+1),解得:x=100.AC=2x=200.在△ACD中,∠DAC=60°,∠ADC=75°,则∠ACD=45°.过点D作DF⊥AC于点F,设AF=y,则DF=CF=y,∴AC=y+y=200,解得:y=100(﹣1),∴AD=2y=200(﹣1).答:A与C之间的距离AC为200海里,A与D之间的距离AD为200(﹣1)海里.(2)由(1)可知,DF=AF=×100(﹣1)≈127∵127>100,所以巡逻船A沿直线AC航线,在去营救的途中没有触暗礁危险.点评:本题考查了解直角三角形的应用,解题的关键是从实际问题中整理出直角三角形并选择合适的边角关系解答.24.(9分)(2020•黄冈)某地实行医疗保险(以下简称“医保”)制度.医保机构规定:一:每位居民年初缴纳医保基金70元;二:居民每个人当年治病所花的医疗费(以定点医院的治疗发票为准),年底按下列方式(见表一)报销所治病的医疗费用:居民个人当年治病所花费的医疗费医疗费的报销方法不超过n元的部分全部由医保基金承担(即全部报销)超过n元但不超过6000元的部分个人承担k%,其余部分由医保基金承担超过6000元的部分个人承担20%,其余部分由医保基金承担如果设一位居民当年治病花费的医疗费为x元,他个人实际承担的医疗费用(包括医疗费中个人承担部分和年初缴纳的医保基金)记为y元.(1)当0≤x≤n时,y=70;当n<x≤6000时,y=(用含n、k、x的式子表示).(2)表二是该地A、B、C三位居民2013年治病所花费的医疗费和个人实际承担的医疗费用,根据表中的数据,求出n、k的值.表二:居民 A B C某次治病所花费的治疗费用x(元)400 800 1500个人实际承担的医疗费用y(元)70 190 470(3)该地居民周大爷2013年治病所花费的医疗费共32000元,那么这一年他个人实际承担的医疗费用是多少元?考点:一次函数的应用;列代数式;二元一次方程组的应用.分析:(1)根据医疗报销的比例,可得答案;(2)根据医疗费用的报销费用,可得方程组,再解方程组,可得答案;(3)根据个人承担部分的费用,可得代数式,可得答案.解答:解:(1)由题意得y=;(2)由A、B、C三人的花销得,解得;(3)由题意得70+(6000﹣500)×40%+(32000﹣6000)×20%=70+2200+5200=7470(元).答:这一年他个人实际承担的医疗费用是7470元.点评:本题考查了一次函数的应用,根据题意列函数解析式是解题关键.25.(13分)(2020•黄冈)已知:如图,在四边形OABC中,AB∥OC,BC⊥x轴于点C,A(1,﹣1),B(3,﹣1),动点P从点O出发,沿着x轴正方向以每秒2个单位长度的速度移动.过点P 作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0<t<2),△OPQ与四边形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P、点Q的坐标;(3)如果将△OPQ绕着点P按逆时针方向旋转90°,是否存在t,使得△OPQ的顶点O或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由;(4)求出S与t的函数关系式.考点:二次函数综合题.专题:压轴题.分析:(1)设抛物线解析式为y=ax2+bx(a≠0),然后把点A、B的坐标代入求出a、b的值,即可得解,再把函数解析式整理成顶点式形式,然后写出顶点M的坐标;(2)根据点P的速度求出OP,即可得到点P的坐标,再根据点A的坐标求出∠AOC=45°,然后判断出△POQ是等腰直角三角形,根据等腰直角三角形的性质求出点Q的坐标即可;(3)根据旋转的性质求出点O、Q的坐标,然后分别代入抛物线解析式,求解即可;(4)求出点Q与点A重合时的t=1,点P与点C重合时的t=1.5,t=2时PQ经过点B,然后分①0<t≤1时,重叠部分的面积等于△POQ的面积,②1<t≤1.5时,重叠部分的面积等于两个等腰直角三角形的面积的差,③1.5<t<2时,重叠部分的面积等于梯形的面积减去一个等腰直角三角形的面积分别列式整理即可得解.解答:解:(1)设抛物线解析式为y=ax2+bx(a≠0),把点A(1,﹣1),B(3,﹣1)代入得,,解得,∴抛物线解析式为y=x2﹣x,∵y=x2﹣x=(x﹣2)2﹣,∴顶点M的坐标为(2,﹣);(2)∵点P从点O出发速度是每秒2个单位长度,∴OP=2t,∴点P的坐标为(2t,0),∵A(1,﹣1),∴∠AOC=45°,∴点Q到x轴、y轴的距离都是OP=×2t=t,∴点Q的坐标为(t,﹣t);(3)∵△OPQ绕着点P按逆时针方向旋转90°,∴旋转后点O、Q的对应点的坐标分别为(2t,﹣2t),(3t,﹣t),若顶点O在抛物线上,则×(2t)2﹣×(2t)=﹣2t,解得t=,若顶点Q在抛物线上,则×(3t)2﹣×(3t)=﹣t,解得t=1,综上所述,存在t=或1,使得△OPQ的顶点O或顶点Q在抛物线上;(4)点Q与点A重合时,OP=1×2=2,t=2÷2=1,点P与点C重合时,OP=3,t=3÷2=1.5,t=2时,OP=2×2=4,PC=4﹣3=1,此时PQ经过点B,所以,分三种情况讨论:①0<t≤1时,S=×(2t)×=t2,②1<t≤1.5时,S=×(2t)×﹣×(t﹣)2=2t﹣1;③1.5<t<2时,S=×(2+3)×1﹣×[1﹣(2t﹣3)]2=﹣2(t﹣2)2+;所以,S与t的关系式为S=.点评:本题是二次函数综合题型,主要利用了待定系数法求二次函数解析式,等腰直角三角形的性质,二次函数图象上点的坐标特征,三角形的面积,难点在于(4)随着运动时间的变化,根据重叠部分的形状的不同分情况讨论,作出图形更形象直观.友情提示:一、认真对待每一次考试。

【精选试卷】黄冈市中考数学专项练习经典测试卷(含答案)(1)

一、选择题1.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( ) A .12 B .15 C .12或15 D .182.下列计算错误的是( )A .a 2÷a 0•a 2=a 4 B .a 2÷(a 0•a 2)=1 C .(﹣1.5)8÷(﹣1.5)7=﹣1.5 D .﹣1.58÷(﹣1.5)7=﹣1.53.现定义一种变换:对于一个由有限个数组成的序列S 0,将其中的每个数换成该数在S 0中出现的次数,可得到一个新序列S 1,例如序列S 0:(4,2,3,4,2),通过变换可生成新序列S 1:(2,2,1,2,2),若S 0可以为任意序列,则下面的序列可作为S 1的是( )A .(1,2,1,2,2)B .(2,2,2,3,3)C .(1,1,2,2,3)D .(1,2,1,1,2) 4.下列二次根式中的最简二次根式是( )A .30B .12C .8D .0.5 5.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)k y x x=<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36-6.根据以下程序,当输入x =2时,输出结果为( )A .﹣1B .﹣4C .1D .117.如图,菱形ABCD 的对角线相交于点O ,若AC =8,BD =6,则菱形的周长为( )A .40B .30C .28D .208.下列各曲线中表示y 是x 的函数的是( )A .B .C .D .9.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( )A .10°B .15°C .18°D .30°10.估计10+1的值应在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间11.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是( )A .40°B .50°C .60°D .70° 12.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是( ).A .B .C .D .13.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x 个队参赛,根据题意,可列方程为()A .()11362x x -=B .()11362x x += C .()136x x -= D .()136x x +=14.某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元.A.140B.120C.160D.10015.如图,在平面直角坐标系中,菱形ABCD的顶点A,B在反比例函数kyx=(0k>,x>)的图象上,横坐标分别为1,4,对角线BD x∥轴.若菱形ABCD的面积为452,则k的值为()A.54B.154C.4D.516.九年级某同学6次数学小测验的成绩分别为:90分,95分,96分,96分,95分,89分,则该同学这6次成绩的中位数是()A.94B.95分C.95.5分D.96分17.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁18.-2的相反数是()A.2B.12C.-12D.不存在19.如图,⊙O的半径为5,AB为弦,点C为AB的中点,若∠ABC=30°,则弦AB的长为()A .12B .5C .532D .5320.如图,在△ABC 中,AC =BC ,有一动点P 从点A 出发,沿A →C →B →A 匀速运动.则CP 的长度s 与时间t 之间的函数关系用图象描述大致是( )A .B .C .D .21.下列命题正确的是( )A .有一个角是直角的平行四边形是矩形B .四条边相等的四边形是矩形C .有一组邻边相等的平行四边形是矩形D .对角线相等的四边形是矩形22.已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x 表示时间,y 表示林茂离家的距离.依据图中的信息,下列说法错误的是( )A .体育场离林茂家2.5kmB .体育场离文具店1kmC .林茂从体育场出发到文具店的平均速度是50min mD .林茂从文具店回家的平均速度是60min m23.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =24.在下面的四个几何体中,左视图与主视图不相同的几何体是( )A.B.C.D.25.如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD的周长为()A.5cm B.10cm C.20cm D.40cm26.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB 和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()A.B.C.D.27.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ).A.7⨯﹣D.9710⨯﹣710710⨯﹣C.8⨯﹣B.80.71028.某商店有方形、圆形两种巧克力,小明如果购买3块方形和5块圆形巧克力,他带的钱会差8元,如果购买5块方形和3块圆形巧克力,他带的钱会剩下8元.若他只购买8块方形巧克力,则他会剩下()元A.8B.16C.24D.3229.如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则下列三个结论:①sin∠C>sin∠D;②cos∠C>cos∠D;③tan∠C>tan∠D中,正确的结论为()A.①②B.②③C.①②③D.①③30.cos45°的值等于( )A2B.1C 3D.22【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.B2.D3.D4.A5.C6.D7.D8.D9.B10.B11.D12.C13.A14.B15.D16.B17.D18.A19.D20.D21.A22.C23.C24.B25.D26.B27.D28.D29.D30.D2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试1.B解析:B【解析】试题分析:根据题意,要分情况讨论:①、3是腰;②、3是底.必须符合三角形三边的关系,任意两边之和大于第三边.解:①若3是腰,则另一腰也是3,底是6,但是3+3=6,∴不构成三角形,舍去.②若3是底,则腰是6,6.3+6>6,符合条件.成立.∴C=3+6+6=15.故选B.考点:等腰三角形的性质.2.D解析:D【解析】分析:根据同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,逐项判定即可.详解:∵a2÷a0•a2=a4,∴选项A不符合题意;∵a2÷(a0•a2)=1,∴选项B不符合题意;∵(-1.5)8÷(-1.5)7=-1.5,∴选项C不符合题意;∵-1.58÷(-1.5)7=1.5,∴选项D符合题意.故选D.点睛:此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.3.D解析:D【解析】【分析】根据已知中有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,可得S1中2的个数应为偶数个,由此可排除A,B答案,而3的个数应为3个,由此可排除C,进而得到答案.解:由已知中序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,A、2有三个,即序列S0:该位置的三个数相等,按照变换规则,应为三个3,故A不满足条件;B、2有三个,即序列S0:该位置的三个数相等,按照变换规则,应为三个3,故B不满足条件;C、3有一个,即序列S0:该位置的数出现了三次,按照变换规则,应为三个3,故C不满足条件;D、2有两个,即序列S0:该位置的两个数相等,1有三个,即这三个位置的数互不相等,满足条件,故选D.【点睛】本题考查规律型:数字的变化类.4.A解析:A【解析】【分析】根据最简二次根式的概念判断即可.【详解】ABC,不是最简二次根式;D故选:A.【点睛】此题考查最简二次根式的概念,解题关键在于掌握(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.5.C解析:C【解析】【分析】【详解】∵A(﹣3,4),∴,∵四边形OABC是菱形,∴AO=CB=OC=AB=5,则点B的横坐标为﹣3﹣5=﹣8,故B的坐标为:(﹣8,4),将点B的坐标代入kyx=得,4=8k-,解得:k=﹣32.故选C.考点:菱形的性质;反比例函数图象上点的坐标特征.6.D解析:D【解析】【分析】根据流程图所示顺序,逐框分析代入求值即可.【详解】当x=2时,x2﹣5=22﹣5=﹣1,结果不大于1,代入x2﹣5=(﹣1)2﹣5=﹣4,结果不大于1,代入x2﹣5=(﹣4)2﹣5=11,故选D.【点睛】本题考查了代数式求值,正确代入求值是解题的关键.7.D解析:D【解析】【分析】根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOB中,根据勾股定理可以求得AB的长,即可求出菱形ABCD的周长.【详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD,BO=OD=3,AO=OC=4,AC⊥BD,∴AB=√AO2+BO2=5,∴菱形的周长为4×5=20.故选D.【点睛】本题考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等和对角线互相垂直且平分的性质,本题中根据勾股定理计算AB的长是解题的关键.8.D解析:D【解析】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.9.B解析:B【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.【详解】由题意可得:∠EDF=45°,∠ABC=30°,∵AB ∥CF ,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选B.【点睛】本题考查的是平行线的性质,熟练掌握这一点是解题的关键.10.B解析:B【解析】 解:∵3104<<,∴41015<+<.故选B .点睛:此题主要考查了估算无理数的大小,正确得出10 的取值范围是解题关键.11.D解析:D【解析】【分析】根据折叠的知识和直线平行判定即可解答.【详解】解:如图可知折叠后的图案∠ABC=∠EBC ,又因为矩形对边平行,根据直线平行内错角相等可得∠2=∠DBC ,又因为∠2+∠ABC=180°,所以∠EBC+∠2=180°,即∠DBC+∠2=2∠2=180°-∠1=140°.可求出∠2=70°.【点睛】掌握折叠图形的过程中有些角度是对称相等的是解答本题的关键.12.C解析:C从上面看,看到两个圆形,故选C.13.A解析:A【解析】【分析】共有x个队参加比赛,则每队参加(x-1)场比赛,但2队之间只有1场比赛,根据共安排36场比赛,列方程即可.【详解】解:设有x个队参赛,根据题意,可列方程为:12x(x﹣1)=36,故选:A.【点睛】此题考查由实际问题抽象出一元二次方程,解题关键在于得到比赛总场数的等量关系. 14.B解析:B【解析】【分析】设商品进价为x元,则售价为每件0.8×200元,由利润=售价-进价建立方程求出其解即可.【详解】解:设商品的进价为x元,售价为每件0.8×200元,由题意得15.D解析:D【解析】【分析】设A(1,m),B(4,n),连接AC交BD于点M,BM=4-1=3,AM=m-n,由菱形的面积可推得m-n=154,再根据反比例函数系数的特性可知m=4n,从而可求出n的值,即可得到k的值.【详解】设A(1,m),B(4,n),连接AC交BD于点M,则有BM=4-1=3,AM=m-n,∴S菱形ABCD=4×12 BM•AM,∵S菱形ABCD=452,∴4×12×3(m-n)=452,∴m-n=154,又∵点A,B在反比例函数kyx ,∴k=m=4n,∴n=54,∴k=4n=5,故选D.【点睛】本题考查了反比例函数k的几何意义、菱形的性质、菱形的面积等,熟记菱形的对角线互相垂直平分是解题的关键.16.B解析:B【解析】【分析】根据中位数的定义直接求解即可.【详解】把这些数从小到大排列为:89分,90分,95分,95分,96分,96分,则该同学这6次成绩的中位数是:95+952=95分;故选:B.【点睛】此题考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.17.D解析:D【解析】【分析】根据分式的乘除运算步骤和运算法则逐一计算即可判断.【详解】∵22211x x x x x -÷--=2221·1x x x x x ---=() 2212·1xx xx x----=()()221·1x x xx x----=()2xx --=2xx-,∴出现错误是在乙和丁,故选D.【点睛】本题考查了分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键. 18.A解析:A【解析】试题分析:根据只有符号不同的两数互为相反数,可知-2的相反数为2.故选:A.点睛:此题考查了相反数的意义,解题关键是明确相反数的概念,只有符号不同的两数互为相反数,可直接求解.19.D解析:D【解析】【分析】连接OC、OA,利用圆周角定理得出∠AOC=60°,再利用垂径定理得出AB即可.【详解】连接OC、OA,∵∠ABC=30°,∴∠AOC=60°,∵AB为弦,点C为AB的中点,∴OC⊥AB,在Rt△OAE中,AE=532,∴AB=53,故选D.【点睛】此题考查圆周角定理,关键是利用圆周角定理得出∠AOC=60°.20.D解析:D【解析】试题分析:如图,过点C作CD⊥AB于点D.∵在△ABC中,AC=BC,∴AD=BD.①点P在边AC上时,s随t的增大而减小.故A、B错误;②当点P在边BC上时,s随t的增大而增大;③当点P在线段BD上时,s随t的增大而减小,点P与点D重合时,s最小,但是不等于零.故C错误;④当点P在线段AD上时,s随t的增大而增大.故D正确.故答案选D.考点:等腰三角形的性质,函数的图象;分段函数.21.A解析:A【解析】【分析】运用矩形的判定定理,即可快速确定答案.【详解】解:A.有一个角为直角的平行四边形是矩形满足判定条件;B四条边都相等的四边形是菱形,故B错误;C有一组邻边相等的平行四边形是菱形,故C错误;对角线相等且相互平分的四边形是矩形,则D错误;因此答案为A.【点睛】本题考查了矩形的判定,矩形的判定方法有:1.有三个角是直角的四边形是矩形;2.对角线互相平分且相等的四边形是矩形;3.有一个角为直角的平行四边形是矩形;4.对角线相等的平行四边形是矩形.22.C解析:C【解析】【分析】从图中可得信息:体育场离文具店1000m,所用时间是(45﹣30)分钟,可算出速度.解:从图中可知:体育场离文具店的距离是:2.5 1.511000km m -==,所用时间是()453015-=分钟, ∴体育场出发到文具店的平均速度1000200min 153m ==/ 故选:C .【点睛】本题运用函数图象解决问题,看懂图象是解决问题的关键. 23.C解析:C【解析】【分析】分别计算出各项的结果,再进行判断即可.【详解】A.2222a a a +=,故原选项错误;B. 322223x x y xy x y xy y ++---,故原选项错误;C. 3412()a a =,计算正确;D. 222()ab a b =,故原选项错误.故选C【点睛】本题主要考查了合并同类项,同底数幂的乘法,幂的乘方以及积的乘方,熟练掌握运算法则是解题的关键.24.B解析:B【解析】【分析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.【详解】A 、正方体的左视图与主视图都是正方形,故A 选项不合题意;B 、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B 选项与题意相符;C 、球的左视图与主视图都是圆,故C 选项不合题意;D 、圆锥左视图与主视图都是等腰三角形,故D 选项不合题意;故选B .【点睛】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.25.D解析:D【分析】根据菱形的性质得出AB=BC=CD=AD,AO=OC,根据三角形的中位线求出BC,即可得出答案.【详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD,AO=OC,∵AM=BM,∴BC=2MO=2×5cm=10cm,即AB=BC=CD=AD=10cm,即菱形ABCD的周长为40cm,故选D.【点睛】本题考查了菱形的性质和三角形的中位线定理,能根据菱形的性质得出AO=OC是解此题的关键.26.B解析:B【解析】【分析】①点P在AB上时,点D到AP的距离为AD的长度,②点P在BC上时,根据同角的余角相等求出∠APB=∠PAD,再利用相似三角形的列出比例式整理得到y与x的关系式,从而得解.【详解】①点P在AB上时,0≤x≤3,点D到AP的距离为AD的长度,是定值4;②点P在BC上时,3<x≤5,∵∠APB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠APB=∠PAD,又∵∠B=∠DEA=90°,∴△ABP∽△DEA,∴ABDE=APADAB APDE AD=,即34xy=,∴y=12x, 纵观各选项,只有B 选项图形符合,故选B .27.D解析:D【解析】【分析】由科学记数法知90.000000007710-=⨯;【详解】解:90.000000007710-=⨯;故选:D .【点睛】本题考查科学记数法;熟练掌握科学记数法10n a ⨯中a 与n 的意义是解题的关键.28.D解析:D【解析】【分析】设每块方形巧克力x 元,每块圆形巧克力y 元,根据小明身上的钱数不变得出方程3x +5y -8=5x +3y +8,化简整理得y -x =8.那么小明最后购买8块方形巧克力后他身上的钱会剩下(5x +3y +8)-8x ,化简得3(y -x )+8,将y -x =8代入计算即可.【详解】解:设每块方形巧克力x 元,每块圆形巧克力y 元,则小明身上的钱有(3x +5y -8)元或(5x +3y +8)元.由题意,可得3x +5y -8=5x +3y +8,,化简整理,得y -x =8.若小明最后购买8块方形巧克力,则他身上的钱会剩下:(5x +3y +8)-8x =3(y -x )+8=3×8+8=32(元).故选D .【点睛】本题考查了二元一次方程的应用,分析题意,找到关键描述语,得出每块方形巧克力与每圆方形巧克力的钱数之间的关系是解决问题的关键.29.D解析:D【解析】如图,连接BE ,根据圆周角定理,可得∠C=∠AEB,∵∠AEB=∠D+∠DBE,∴∠AEB>∠D,∴∠C>∠D,根据锐角三角形函数的增减性,可得,sin∠C>sin∠D,故①正确;cos∠C<cos∠D,故②错误;tan∠C>tan∠D,故③正确;故选D.30.D解析:D【解析】【分析】将特殊角的三角函数值代入求解.【详解】2解:cos45°故选D.【点睛】本题考查特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黄冈市2012年初中毕业生学业考试
(与九年级报纸相同题对照)
数 学
●1.下列实数中是无理数的是( ).
(A)4 (B)38 (C)
0
π
(D)2

相同题:中考课标版第27期2版随堂练习1-1第3题

●2.2012年5月25日有700多位来自全国各地的知名企业家聚首湖北共签约项目投资总额为
909 260 000 000元,将909 260 000 000用科学记数法表示(保留3个有效数字),正确的是( ).
(A)1090910 (B)119.0910 (C)109.0910 (D)119.092610
相同题:中考课标版第27期2版考点四例4(1)

●3.下列运算正确的是( ).
(A)4312xxx· (B)4381xx
(C)430xxxx (D)347xxx+
相同题:中考课标版第28期3版第3题

●4.如图,水平放置的圆柱体的三视图是( ).
相近题:人教版九年级第24期3版第18题
●6.如图,AB为O⊙的直径,弦CDAB于E,已知12CD,2BE,则O⊙的
直径为( ).
(A)8 (B)10 (C)16 (D)20

相同题:中考课标合订本第23页第5题

●9.-3的倒数是__________.
相同题:中考课标合订本第17页第1题

●10.分解因式39xx=__________.
相同题:中考课标合订本第17页第10题

●11.化简22112111xxxxxxx的结果是__________.
相同题:中考课标版第51期3版第21题
●12.如图,在ABC△中,36ABACA,°,AB的垂直平分线交AC于点E,垂足为点D,连接
BE
,则EBC的度数为________.

相同题:中考课标版第35期1版随堂练习4-4第8题第(1)问

●13.已知实数x满足13xx,则221xx的值为_________.
相同题:中考课标合订本第17页第17题

●14.如图,在梯形ABCD中,4560ADBCADABCDB∥,,,°,则下底BC的长为
________.
相同题:中考课标合订本第17页第19题

●15.在平面直角坐标系中,ABC△的三个顶点的坐标分别是A(-2,3),B(-4,-1),C(2,0),
将ABC△平移至△A1B1C1的位置,点A、B、C的对应点分别是111ABC,若点1A的坐标为(3,1).则
点1C的坐标为__________.
相同题:中考课标版第38期2版课时2典型例题分析例1

●16.某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸
完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60
千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,
现有以下4个结论:
①快递车从甲地到乙地的速度为100千米/时;
②甲、乙两地之间的距离为120千米;

③图中点B的坐标为33754,;
④快递车从乙地返回时的速度为90千米/时.
以上4 个结论中正确的是____________(填序号)

相同题:中考课标版第31期1版随堂练习3-1第2题

●17.(5分)解不等式组6152432113.322xxxx,≥
相近题:中考课标版第30期2版随堂练习2-4第5题

A
B

C

千米
●19.(6分)在一个口袋中有4个完全相同的小球,把它们分别标号l、2、3、4.小明先随机地摸出一个小
球,小强再随机地摸出一个小球.记小明摸出球的标号为x,小强摸出的球标号为y.小明和小强在此基础
上共同协商一个游戏规则:当xy时小明获胜,否则小强获胜.
①若小明摸出的球不放回,求小明获胜的概率.
②若小明摸出的球放回后小强再随机摸球,问他们制定的游戏规则公平吗?请说明理由.
相同题:人教版九年级第12期3版第19题

●20.(6分)为了全面了解学生的学习、生活及家庭的基本情况,加强学校、家庭的联系,梅灿中学积极
组织全体教师开展“课外访万家活动”,王老师对所在班级的全体学生进行实地家访,了解到每名学生家
庭的相关信息,现从中随机抽取15名学生家庭的年收入情况,数据如下表:
(1)求这15名学生家庭年收入的平均数、中位数、众数.
(2)你认为用(1)中的哪个数据来代表这15 名学生家庭年收入的一般水平较为合适?请简要说明理由.
年收入(单位:万元) 2 2.5 3 4 5 9 13
家庭个数 1 3 5 2 2 1 1

相近题:中考课标版第41期2版典型例题分析例3
●21.(6分)某服装厂设计了一款新式夏装,想尽快制作8 800件投入市场,服装厂有A、B两个制衣车间,
A车间每天加工的数量是B车间的1.2倍,A、B两车间共同完成一半后,A
车间出现故障停产,剩下全
部由B车间单独完成,结果前后共用20天完成,求A、B两车间每天分别能加工多少件.

相同题:中考课标版第29期3版随堂练习2-2第5题

●22.(8分)如图,在ABC△中,BABC,以AB为直径作半圆O⊙,交AC于点D.连结DB,过点
D作DEBC,垂足为点E
.
(1)求证:DE为O⊙的切线;
(2)求证:2DBABBE·.
相同题:人教版九年级合订本第44页第24题第(1)问
●24.(12分)某科技开发公司研制出一种新型产品,每件产品的成本为2 400元,销售单价定为3 000元.在
该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10
件时,每件按3 000元销售;若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售
单价均降低10元,但销售单价均不低于2 600元.
(1)商家一次购买这种产品多少件时,销售单价恰好为2 600元?
(2)设商家一次购买这种产品x件,开发公司所获的利润为y元,求y(元)与x(件)之间的函数关
系式,并写出自变量x的取值范围.
(3)该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量
的增多,公司所获的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获的利润越大,公司
应将最低销售单价调整为多少元?(其它销售条件不变)
相近题:与(2)、(3)问中考课标版第52期4版第27题
●25.(14分)如图,已知抛物线的方程1C:120yxxmmm与x轴相交于点B、C,与
y

轴相交于点E,且点B在点C的左侧.
(1)若抛物线1C过点M(2,2),求实数m的值.
(2)在(1)的条件下,求BCE△的面积.
(3)在(1)的条件下,在抛物线的对称轴上找一点H,使BHEH最小,并求出点H的坐标.
相同题:人教版九年级第17期1版思想方法例3第(2)问

(4)在第四象限内,抛物线1C上是否存在点F,使得以点B、C、F为顶点的三角形与BCE△相似?
若存在,求m的值;若不存在,请说明理由.
相同题:人教版九年级第26期4版思路点拨例题第(3)问

相关文档
最新文档