八年级数学期中复习试卷一
八年级下学期期中考试数学试卷(含有答案)

八年级下学期期中考试数学试卷(含有答案)一.单选题。
(每小题4分,共40分)1.已知x >y ,则下列不等式中,不成立的是( )A.3x >3yB.x -9>y -9C.﹣x >﹣yD.﹣x2<﹣y2 2.下列各式从左到右的变形是因式分解的是( )A.(x -3)(x+1)=x 2-2x -3B.x 2-xy=x (x -y )C.ab+bc+d=b (a+c )+dD.6x 2y=3xy•2x 3.若分式x -1x的值为0,则x 的值是( )A.1B.﹣1C.0D.24.把多项式2a 2-4a 分解因式,应提取的公因式是( ) A.a B.2 C.a 2 D.2a5.已知两个不等式的解集在数轴上如图所示,那么组成的不等式组的解集是( ) A.x >1 B.x ≥﹣1 C.﹣3<x ≤﹣1 D.x >﹣3(第5题图) (第6题图) (第10题图) 6.如图,将△COD 绕点O 按顺时针方向旋转一定角度后得到△AOB ,旋转角为( ) A.∠AOB B.∠BOC C.∠AOC D.∠COD 7.在下列分式的变形中,从左到右一定正确的是( ) A.a b =a+1b+1 B.2a 2b =ab C.a b =a 2b 2 D.a b =acbc 8.下列各式中能用平方差公式因式分解是( )A.﹣4a 2+b 2B.x 2+4C.a 2+c 2-2acD.﹣a 2-b 2 9.如果把xyx+y 中x ,y 的值都扩大2倍,那么这个分式的值( ) A.不变 B.缩小到原来的12 C.扩大4倍 D.扩大2倍10.如图,一次函数y=kx+b 的图象经过点A (﹣1,﹣2)和B (﹣2,0),一次函数y=2x 的图象经过点A ,则不等式2x ≤kx+b 的解集为( )A.x ≤﹣1B.x ≤﹣2C.x ≥1D.﹣2≤x <﹣1 二.填空题。
(每小题4分,共24分) 11.因式分解:a 3-4a 2= 。
12.要使分式2x -5有意义,则x 的取值范围应满足的条件是 .13.已知x+y=5,xy=2,则x 2y+xy 2的值是 .14.如图,将周长为8的△DEF 沿EF 方向平移3个单位长度得到△ABC ,则四边形ABFD 的周长为 .(第14题图)15.若a+1a =4,则a 2+1a 2= . 16.若1a +1b =5,则分式2a -5ab+2b﹣a+3ab -b的值为 .(填序号)①第3分时,汽车的速度是40千米/时;②从第3分到第6分,汽车行驶了120千米;③第12分时,汽车的速度是0千米/时;④从第9分到12分,汽车的速度从60千米/时减少到0千米/时. 三、解答题。
人教版数学八年级下册《期中考试试卷》附答案

人教版数学八年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题1. 如下图是一次函数y=kx+b图象,当y<-2时,x的取值范围是( )A. x<3B. x>3C. x<-1D. x>-12. 正比例函数y=kx与一次函数y=x﹣k在同一坐标系中的图象大致应为( )A. B. C. D.3. 直线y=ax+b经过第一、二、四象限,则直线y=bx﹣a的图象只能是图中的()A. B. C. D.4. 若点(x1,y1),(x2,y2),(x3,y3)都是一次函数y=﹣x﹣1图象上的点,并且y1<y2<y3,则下列各式中正确的是( )A. x1<x2<x3B. x1<x3<x2C. x2<x1<x3D. x3<x2<x15. 某一次函数的图象经过点()1,2,且y随x的增大而减小,则这个函数的表达式可能是()A 24y x =+ B. 24y x =-+ C. 31y x D. 31y x -=-6. 一次函数y=(m ﹣2)x n ﹣1+3是关于x 的一次函数,则m,n 的值为( )A. m≠2,n=2B. m=2,n=2C. m≠2,n=1D. m=2,n=17. 一组数据:1,2,4,2,2,5,这组数据的众数是( )A. 1B. 2C. 4D. 58. 某校在中国学生核心素养知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出,他们的成绩如表:如果要选出一个成绩较好且状态稳定的同学去参加市级比赛,应选( )A. 丁B. 丙C. 乙D. 甲9. 一组数据:5,7,10,5,7,5,6,这组数据的众数和中位数分别是( )A. 10和7B. 5和7C. 6和7D. 5和610. 在创建平安校园活动中,九年级一班举行了一次“安全知识竞赛”活动,第一小组6名同学的成绩(单位:分)分别是:87,91,93,87,97,96,下列关于这组数据说正确的是( )A. 中位数是90B. 平均数是90C. 众数是87D. 极差是911. 某车间20名工人每天加工零件数如下表所示:这些工人每天加工零件数的众数、中位数分别是( ).A. 5,5B. 5,6C. 6,6D. 6,512. 下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是( )A. 甲队员成绩平均数比乙队员的大B. 乙队员成绩的平均数比甲队员的大C. 甲队员成绩的中位数比乙队员的大D. 甲队员成绩的方差比乙队员的大二.填空题13. 对于正比例函数23m y mx -=,y 的值随x 的值减小而减小,则m 的值为_______.14. 甲、乙二人沿相同的路线由A 到B 匀速行进,A B ,两地间的路程为20km.他们行进的路程()s km 与甲出发后的时间()t h 之间的函数图象如图所示根据图象信息,填空()1乙的速度是______ km /h()2从A 地到达B 地,甲比乙多用了______ h .15. 如图,直线510y x =+与x 轴、y 轴交于点A ,B ,则AOB 的面积为___.16. 若二元一次方程组41,2x y y x m -=⎧⎨=-⎩的解是2,7,x y =⎧⎨=⎩则一次函数2y x m =-的图象与一次函数41y x =-的图象的交点坐标为________.17. 一组数据1,2,a 的平均数为2,另一组数据﹣1,a ,1,2,b 的唯一众数为﹣l ,则数据﹣1,a ,1,2,b 的中位数为___________.18. 某校组织学生参加植树活动,活动结束后,统计了九年级甲班50名学生每人植树的情况,绘制了如下的统计表:植树棵数 3 4 5 6人数20 15 10 5那么这50名学生平均每人植树__________棵.19. 一组数据:﹣1,3,2,x,5,它有唯一的众数是3,则这组数据的中位数是__.20. 小明这学期第一次数学考试得了72分,第二次数学考试得了86分,为了达到三次考试的平均成绩不少于80分的目标,他第三次数学考试至少得____分.三.解答题21. 已知一次函数图象经过(-2,1)和(1,3)两点.(1)求这个一次函数的解析式;x 时,求y的值.(2)当322. 如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.23. 一次函数y1=kx+b和y2=﹣4x+a的图象如图所示,且A(0,4),C(﹣2,0).(1)由图可知,不等式kx+b>0的解集是;(2)若不等式kx+b>﹣4x+a的解集是x>1.①求点B的坐标;②求a的值.24. 某市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第1次第2次第3次第4次第5次第6次甲10 9 8 8 10 9乙10 10 8 10 7 9根据表格中的数据,可计算出甲、乙两人的平均成绩都是9环.(1)分别计算甲、乙六次测试成绩的方差;(2)根据数据分析的知识,你认为选______名队员参赛.25. 朗读者自开播以来,以其厚重的文化底蕴和感人的人文情怀,感动了数以亿计的观众,岳池县某中学开展“朗读”比赛活动,九年级()1、()2班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.平均数中位数众数九()1班85 85九()2班80()1根据图示填写表格;()2结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;()3如果规定成绩较稳定班级胜出,你认为哪个班级能胜出?说明理由.26. 某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?答案与解析一.选择题1. 如下图是一次函数y=kx+b的图象,当y<-2时,x的取值范围是( )A. x<3B. x>3C. x<-1D. x>-1[答案]C[解析]分析:本题利用一次函数的图像和性质得出结论即可.解析:通过图像,可知函数经过( -1,-2 ),( 3,1),图像的性质可以看出y随x的增大而增大∴当y<-2时,x<-1. 故选C.点睛:本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.2. 正比例函数y=kx与一次函数y=x﹣k在同一坐标系中的图象大致应为( )A. B. C. D.[答案]B[解析][分析]根据图象分别确定的取值范围,若有公共部分,则有可能;否则不可能.[详解]根据图象知:A、k<0,﹣k<0.解集没有公共部分,所以不可能;B、k<0,﹣k>0.解集有公共部分,所以有可能;C、k>0,﹣k>0.解集没有公共部分,所以不可能;D、正比例函数的图象不对,所以不可能.故选:B.[点睛]本题考查了一次函数的图象和性质,熟练掌握一次函数y=kx+b的图象的四种情况是解题的关键.3. 直线y=ax+b经过第一、二、四象限,则直线y=bx﹣a的图象只能是图中的()A. B. C. D.[答案]B[解析]试题分析:已知直线y=ax+b经过第一、二、四象限,所以a<0,b>0,即可得直线y=bx﹣a的图象经过第一、二、三象限,故答案选B.考点:一次函数图象与系数的关系.4. 若点(x1,y1),(x2,y2),(x3,y3)都是一次函数y=﹣x﹣1图象上的点,并且y1<y2<y3,则下列各式中正确的是( )A. x1<x2<x3B. x1<x3<x2C. x2<x1<x3D. x3<x2<x1[答案]D[解析][分析]由k=-1<0,可得出y随x的增大而减小,再根据y1<y2<y3,即可得出x1>x2>x3.[详解]解:∵一次函数y=﹣x﹣1中k=﹣1<0,∴y随x的增大而减小,又∵y1<y2<y3,∴x1>x2>x3.故选:D .[点睛]本题考查了一次函数的性质,根据k <0找出y 随x 的增大而减小是解题的关键.5. 某一次函数的图象经过点()1,2,且y 随x 的增大而减小,则这个函数的表达式可能是( )A. 24y x =+B. 24y x =-+C. 31y xD. 31y x -=-[答案]B[解析][分析]设一次函数关系式为y kx b =+,把(1,2)代入可得k+b=2,根据y 随x 的增大而减小可得k <0,对各选项逐一判断即可得答案.[详解]设一次函数关系式为y kx b =+,∵图象经过点()1,2, 2k b ∴+=;∵y 随x 增大而减小,∴0k <,A.2>0,故该选项不符合题意,B.-2<0,-2+4=2,故该选项符合题意,C.3>0,故该选项不符合题意,D.∵31y x -=-,∴y=-3x+1,-3+1=-2,故该选项不符合题意,故选:B .[点睛]本题考查一次函数的性质及一次函数图象上的点的坐标特征,对于一次函数y=kx+b(k≠0),当k >0时,图象经过一、三、象限,y 随x 的增大而增大;当k <0时,图象经过二、四、象限,y 随x 的增大而减小;熟练掌握一次函数的性质是解题关键.6. 一次函数y=(m ﹣2)x n ﹣1+3是关于x 一次函数,则m,n 的值为( )A. m≠2,n=2B. m=2,n=2C. m≠2,n=1D. m=2,n=1[答案]A[解析][分析]直接利用一次函数的定义分析得出答案.[详解]解:∵一次函数y=(m-2)x n-1+3是关于x的一次函数,∴n-1=1,m-2≠0,解得:n=2,m≠2.故选A.[点睛]此题主要考查了一次函数的定义,正确把握系数和次数是解题关键.7. 一组数据:1,2,4,2,2,5,这组数据的众数是( )A. 1B. 2C. 4D. 5[答案]B[解析][分析]此题涉及的知识点是众数,根据众数的定义就可以判断得出结果[详解]一组数据中出现次数最多的那个数值,就是众数,根据题意,数据中出现最多的是2,所以众数是2,故选B[点睛]此题重点考察学生对于众数的理解和应用,掌握众数就是数据中出现次数最多的数是解题的最佳方法.8. 某校在中国学生核心素养知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出,他们的成绩如表:如果要选出一个成绩较好且状态稳定的同学去参加市级比赛,应选()A. 丁B. 丙C. 乙D. 甲[答案]B[解析][分析]先比较平均数得到甲和丙成绩较好,然后比较方差得到丙的状态稳定,即可决定选丙去参赛.[详解]∵甲、丙的平均数比乙、丁大,∴甲和丙成绩较好,∵丙的方差比甲的小,∴丙的成绩比较稳定,∴丙的成绩较好且状态稳定,应选的是丙,故选:B.[点睛]本题考查了方差:一组数据中各数据与它们平均数的差的平方的平均数,叫做这组数据的方差;方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.9. 一组数据:5,7,10,5,7,5,6,这组数据的众数和中位数分别是()A. 10和7B. 5和7C. 6和7D. 5和6[答案]D[解析]分析:将这组数据排序后处于中间位置的数就是这组数据的中位数,出现次数最多的数为这组数据的众数.详解:将这组数据按从小到大排列为:5,5,5,6, 7,7,10,∵数据5出现3次,次数最多,∴众数为:5;∵第四个数为6,∴中位数为6,故选D.点睛:本题考查了中位数,众数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据,注意众数可以不止一个.10. 在创建平安校园活动中,九年级一班举行了一次“安全知识竞赛”活动,第一小组6名同学的成绩(单位:分)分别是:87,91,93,87,97,96,下列关于这组数据说正确的是( )A. 中位数是90B. 平均数是90C. 众数是87D. 极差是9 [答案]C[解析][分析]根据中位数、平均数、众数、极差的概念求解.[详解]解:这组数据按照从小到大的顺序排列为:87,87,91,93,96,97,则中位数是(91+93)÷2=92,平均数是(87+87+91+93+96+97)÷6=915 6 ,众数是87,极差是97﹣87=10.故选C.[点睛]本题考查了中位数、平均数、众数、极差的知识,掌握各知识点的概念是解答本题的关键.11. 某车间20名工人每天加工零件数如下表所示:这些工人每天加工零件数的众数、中位数分别是().A. 5,5B. 5,6C. 6,6D. 6,5[答案]B[解析][分析]根据众数、中位数的定义分别进行解答即可.[详解]解:由表知数据5出现次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为662=6,故选:B.[点睛]本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.12. 下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是( )A. 甲队员成绩的平均数比乙队员的大B. 乙队员成绩的平均数比甲队员的大C. 甲队员成绩的中位数比乙队员的大D. 甲队员成绩的方差比乙队员的大[答案]D[解析][分析]根据平均数、中位数和方差的计算公式分别对每一项进行分析,即可得出答案.[详解]甲队员10次射击的成绩分别为6,7,7,7,8,8,9,9,9,10,则中位数882=8,甲10次射击成绩的平均数=(6+3×7+2×8+3×9+10)÷10=8(环),乙队员10次射击的成绩分别为6,7,7,8,8,8,8,9,9,10,则中位数是8, 乙10次射击成绩的平均数=(6+2×7+4×8+2×9+10)÷9=8(环),甲队员成绩的方差=110×[(6-8)2+3×(7-8)2+2×(8-8)3+3×(9-8)2+(10-8)2]=1.4;乙队员成绩的方差=110×[(6-8)2+2×(7-8)2+4×(8-8)3+2×(9-8)2+(10-8)2]=1.2,综上可知甲、乙的中位数相同,平均数相同,甲的方差大于乙的方差,故选D.[点睛]本题考查了平均数、中位数和方差的定义和公式,熟练掌握平均数、中位数、方差的计算是解题的关键.二.填空题13. 对于正比例函数23my mx -=,y 的值随x 的值减小而减小,则m 的值为_______.[答案]-2[解析][分析] 根据正比例函数的意义,可得答案.[详解]解:∵y 的值随x 的值减小而减小,∴m <0,∵正比例函数23my mx -=,∴m 2-3=1,∴m=-2,故答案为:-2[点睛]本题考查正比例函数的定义.14. 甲、乙二人沿相同的路线由A 到B 匀速行进,A B ,两地间的路程为20km.他们行进的路程()s km 与甲出发后的时间()t h 之间的函数图象如图所示根据图象信息,填空 ()1乙的速度是______ km /h()2从A 地到达B 地,甲比乙多用了______ h .[答案] (1). 20 (2). 3[解析][分析](1)根据图象确定出A 、B 两地间的距离以乙两人所用的时间,然后根据速度=路程÷时间求出两人的速度; (2)根据图象即可判断甲比乙晚到B 地的时间.[详解](1)由图可知,A. B 两地间的距离为20km ,从A 地到B ,乙用的时间为2−1=1小时,乙的速度是40÷1=40km/h ,故B 选项错误; (2)由图可知,甲4小时到达B 地,乙1小时到达B 地,所以,甲比乙晚到3小时.故答案为20,3.[点睛]本题考查函数的图像,解题的关键是清楚速度路程时间关系.15. 如图,直线510y x =+与x 轴、y 轴交于点A ,B ,则AOB 的面积为___.[答案]10[解析][分析]分别令x=0,y=0,可得A 、B 坐标,即可求出OA 、OB 的长,利用三角形面积公式即可得答案.[详解]∵直线510y x =+交x 轴于点A ,交y 轴于点B ,∴令0y =,则2x =-;令0x =,则10y =;∴()2,0A -,()0,10B ,∴2OA =,10OB =,∴AOB 的面积1210102=⨯⨯=. 故答案为10[点睛]本题考查一次函数与坐标轴的交点问题,分别令x=0,y=0即可求出一次函数与坐标轴的交点坐标;也考查了三角形的面积.16. 若二元一次方程组41,2x y y x m -=⎧⎨=-⎩的解是2,7,x y =⎧⎨=⎩则一次函数2y x m =-的图象与一次函数41y x =-的图象的交点坐标为________.[答案](2,7).[解析][分析]根据一次函数图象交点坐标为两个一次函数解析式联立组成的方程组的解,确定一次函数2y x m =-与41y x =-的图象的交点坐标.[详解]解:若二元一次方程组412x y y x m -=⎧⎨=-⎩的解是27x y =⎧⎨=⎩,则一次函数2y x m =-的图象与一次函数41y x =-的图象的交点坐标为(2,7).故答案为:(2,7).[点睛]本题考查一次函数与二元一次方程组. 理解一次函数与二元一次方程(组)的关系是解决此类问题的关键.17. 一组数据1,2,a 的平均数为2,另一组数据﹣1,a ,1,2,b 的唯一众数为﹣l ,则数据﹣1,a ,1,2,b 的中位数为___________.[答案]1[解析][分析]根据平均数求得a 的值,然后根据众数求得b 的值后再确定新数据的中位数.[详解]试题分析:∵一组数据1,2,a 的平均数为2,∴1+2+a=3×2解得a=3∴数据﹣l ,a ,1,2,b 的唯一众数为﹣l ,∴b=﹣1,∴数据﹣1,3,1,2,b 的中位数为1.故答案为1.[点睛]本题考查了平均数、众数及中位数的定义,解题的关键是正确的利用其定义求得未知数的值. 18. 某校组织学生参加植树活动,活动结束后,统计了九年级甲班50名学生每人植树的情况,绘制了如下的统计表:那么这50名学生平均每人植树__________棵.[答案]4[解析][分析]利用加权平均数的计算公式进行计算即可.[详解]解:平均每人植树(3×20+4×15+5×10+6×5)÷50=4棵,故答案为4.[点睛]本题考查了加权平均数的计算,解题的关键是牢记加权平均数的计算公式,属于基础题.19. 一组数据:﹣1,3,2,x,5,它有唯一的众数是3,则这组数据的中位数是__.[答案]3[解析][分析]先根据数据的众数确定出x的值,即可得出结论.[详解]∵一组数据:﹣1,3,2,x,5,它有唯一的众数是3,∴x=3,∴此组数据为﹣1,2,3,3,5,∴这组数据的中位数为3.故答案为3.[点睛]本题考查了数据的中位数,众数的确定,掌握中位数和众数的确定方法是解答本题的关键.20. 小明这学期第一次数学考试得了72分,第二次数学考试得了86分,为了达到三次考试平均成绩不少于80分的目标,他第三次数学考试至少得____分.[答案]82[解析][分析]设第三次考试成绩为x,根据三次考试的平均成绩不少于80分列不等式,求出x的取值范围即可得答案.[详解]设第三次考试成绩为x,∵三次考试的平均成绩不少于80分, ∴7286803x ++≥, 解得:82x ≥,∴他第三次数学考试至少得82分,故答案为:82[点睛]本题考查了一元一次不等式的应用.熟练掌握求平均数的方法,根据不等关系正确列出不等式是解题关键.三.解答题21. 已知一次函数图象经过(-2,1)和(1,3)两点.(1)求这个一次函数的解析式;(2)当3x =时,求y 的值.[答案](1)2733y x =+;(2)y 的值是133. [解析][分析](1)设该直线解析式为()0y kx b k =+≠,把(-2,1)和(1,3)代入可得关于k 、b 的二元一次方程组,解方程组求出k 、b 的值即可得答案;(2)把x=3代入(1)中所求的解析式,求出y 值即可得答案.[详解](1)设该直线解析式为()0y kx b k =+≠,∵一次函数图象经过(-2,1)和(1,3)两点,∴213k b k b -+=⎧⎨+=⎩, 解得2373k b ⎧=⎪⎪⎨⎪=⎪⎩. 故该一次函数解析式为:2733y x =+;(2)把3x =代入(1)中的函数解析2733y x =+得:27133333y =⨯+=, ∴3x =时,y 的值是133. [点睛]本题主要考查了待定系数法求一次函数解析式,根据一次函数图象上的点的坐标特征列出方程组求解是解题关键.22. 如图,直线AB 与x 轴交于点A(1,0),与y 轴交于点B(0,﹣2).(1)求直线AB 的解析式;(2)若直线AB 上的点C 在第一象限,且S △BOC =2,求点C 的坐标.[答案](1)直线AB 的解析式为y=2x ﹣2,(2)点C 的坐标是(2,2).[解析][分析]待定系数法,直线上点的坐标与方程的.(1)设直线AB 的解析式为y=kx+b ,将点A (1,0)、点B (0,﹣2)分别代入解析式即可组成方程组,从而得到AB 的解析式.(2)设点C 的坐标为(x ,y ),根据三角形面积公式以及S △BOC =2求出C 的横坐标,再代入直线即可求出y 的值,从而得到其坐标.[详解]解:(1)设直线AB 的解析式为y=kx+b ,∵直线AB 过点A (1,0)、点B (0,﹣2),∴k b 0{ b=2+=-,解得k 2{ b=2=-. ∴直线AB 的解析式为y=2x ﹣2.(2)设点C 的坐标为(x ,y ),∵S △BOC =2,∴12•2•x=2,解得x=2. ∴y=2×2﹣2=2.∴点C的坐标是(2,2).23. 一次函数y1=kx+b和y2=﹣4x+a的图象如图所示,且A(0,4),C(﹣2,0).(1)由图可知,不等式kx+b>0的解集是;(2)若不等式kx+b>﹣4x+a的解集是x>1.①求点B的坐标;②求a的值.[答案](1)x>﹣2;(2)①(1,6);②10.[解析][分析](1)求不等式kx+b>0的解集,找到x轴上方的范围就可以了,比C点横坐标大就行了(2)①我们可以先根据B,C两点求出k值,因为不等式kx+b>﹣4x+a的解集是x>1所以B点横坐标为1,利用x=1代入y1=kx+b,即求出B点的坐标;②将B点代入y2=﹣4x+a中即可求出a值.[详解]解:(1)∵A(0,4),C(﹣2,0)在一次函数y1=kx+b上,∴不等式kx+b>0的解集是x>﹣2,故答案为x>﹣2;(2)①∵A(0,4),C(﹣2,0)在一次函数y1=kx+b上,∴b=4-2k+b=0⎧⎨⎩,得b=4k=2⎧⎨⎩,∴一次函数y1=2x+4,∵不等式kx+b>﹣4x+a的解集是x>1, ∴点B的横坐标是x=1,当x=1时,y1=2×1+4=6,∴点B 坐标为(1,6);②∵点B (1,6),∴6=﹣4×1+a ,得a =10, 即a 的值是10.[点睛]本题主要考查学生对于一次函数图像性质的掌握程度24. 某市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):根据表格中的数据,可计算出甲、乙两人的平均成绩都是9环.(1)分别计算甲、乙六次测试成绩的方差;(2)根据数据分析的知识,你认为选______名队员参赛.[答案](1)甲、乙六次测试成绩的方差分别是223S =甲,243S =乙;(2)甲 [解析][分析](1)根据方差的定义,利用方差公式分别求出甲、乙的方差即可;(2)根据平均数相同,利用(1)所求方差比较,方差小的成绩稳定,即可得答案.[详解](1)甲、乙六次测试成绩的方差分别是: (222222212[(109)(99)(89)(89)(109)99)63S ⎤=⨯-+-+-+-+-+-=⎦甲, (222222214[(109)(109)(89)(109)(79)99)63S ⎤=⨯-+-+-+-+-+-=⎦乙, (2)推荐甲参加全国比赛更合适,理由如下:∵两人的平均成绩相等,∴两人实力相当;∵甲的六次测试成绩的方差比乙小,∴甲发挥较为稳定,∴推荐甲参加比赛更合适.故答案为:甲[点睛]本题考查方差的求法及利用方差做决策,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立;熟练掌握方差公式是解题关键.25. 朗读者自开播以来,以其厚重的文化底蕴和感人的人文情怀,感动了数以亿计的观众,岳池县某中学开展“朗读”比赛活动,九年级()1、()2班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.平均数中位数众数九()1班85 85九()2班80()1根据图示填写表格;()2结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;()3如果规定成绩较稳定班级胜出,你认为哪个班级能胜出?说明理由.[答案](1)详见解析;(2)九()1班成绩好些;(3)九()1班的成绩更稳定,能胜出.[解析][分析]()1由条形图得出两班的成绩,根据中位数、平均数及众数分别求解可得;()2由平均数相等得前提下,中位数高的成绩好解答可得;()3分别计算两班成绩的方差,由方差小的成绩稳定解答.[详解]解:()1九()1班5位同学的成绩为:75、80、85、85、100,其中位数为85分;九()2班5位同学的成绩为:70、100、100、75、80,九()2班平均数为70100100758085(5++++=分),其众数为100分, 补全表格如下:()2九()1班成绩好些,两个班的平均数都相同,而九()1班的中位数高,在平均数相同的情况下,中位数高的九()1班成绩好些.()3九()1班的成绩更稳定,能胜出.()(22222211[(7585)(8085)(8585)(8585)10085)70(5S ⎤=⨯-+-+-+-+-=⎦九分2), ()(22222221[(7085)(10085)(10085)(7585)8085)160(5S 九⎤=⨯-+-+-+-+-=⎦分2), ()()2212S S 九九∴<,九()1班的成绩更稳定,能胜出.[点睛]本题考查了平均数、中位数、众数和方差的意义即运用方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.26. 某学校为改善办学条件,计划采购A 、B 两种型号的空调,已知采购3台A 型空调和2台B 型空调,需费用39000元;4台A 型空调比5台B 型空调的费用多6000元.(1)求A 型空调和B 型空调每台各需多少元;(2)若学校计划采购A 、B 两种型号空调共30台,且A 型空调的台数不少于B 型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?[答案](1)A 型空调和B 型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A 型空调10台,B 型空调20台,方案二:采购A 型空调11台,B 型空调19台,案三:采购A 型空调12台,B 型空调18台;(3)采购A 型空调10台,B 型空调20台可使总费用最低,最低费用是210000元.[解析]分析:(1)根据题意可以列出相应的方程组,从而可以解答本题;(2)根据题意可以列出相应的不等式组,从而可以求得有几种采购方案;(3)根据题意和(2)中的结果,可以解答本题.详解:(1)设A 型空调和B 型空调每台各需x 元、y 元,3239000456000x y x y +⎧⎨-⎩==,解得,90006000x y ⎧⎨⎩==, 答:A 型空调和B 型空调每台各需9000元、6000元;(2)设购买A 型空调a 台,则购买B 型空调(30-a )台,()()13029000600030217000a a a a ⎧≥-⎪⎨⎪+-≤⎩, 解得,10≤a≤1213, ∴a=10、11、12,共有三种采购方案,方案一:采购A 型空调10台,B 型空调20台,方案二:采购A 型空调11台,B 型空调19台,方案三:采购A 型空调12台,B 型空调18台;(3)设总费用为w 元,w=9000a+6000(30-a)=3000a+180000,∴当a=10时,w 取得最小值,此时w=210000,即采购A 型空调10台,B 型空调20台可使总费用最低,最低费用是210000元.点睛:本题考查一次函数的应用、一元一次不等式组的应用、二元一次方程组的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和不等式的思想解答.。
初二年级数学下期中考试试卷

初⼆年级数学下期中考试试卷 数学被应⽤在很多不同的领域上,包括科学、⼯程、医学和经济学等,今天⼩编就给⼤家分享⼀下⼋年级数学,喜欢的来参考吧 ⼋年级数学下期中联考试卷 ⼀、选择题(本⼤题共10⼩题,每⼩题4分,共40分。
每⼩题都有四个选项,其中有且只有⼀个选项正确) 1.若⼆次根式a―2有意义,则a的取值范围是A.a≥0B.a≥2C.a>2D.a≠2 2.下列⼆次根式中,属于最简⼆次根式的是 A. B. C. D. 3.下列计算正确的是 A. B. C. D. 4. 正⽅形具有⽽菱形不⼀定具有的性质是A.四个⾓为直⾓B.对⾓线互相垂直C.对⾓线互相平分D.对边平⾏且相等 5.如图所⽰,在数轴上点A所表⽰的数为a,则a的值为A.﹣B.1﹣C.﹣1﹣D.﹣1+ 6. 以下各组数据为三⾓形的三边长,能构成直⾓三⾓形的是A.2,2,4B.2,3,4C.2,2,1D.4,5,6 7.化简(3―2)2002•(3+2)2003的结果为A.―1B.3+2C.3―2D.―3―2 8. 如图1,在△ABC中,∠C=90°,AC=2,点D在BC边上, ∠ADC=2∠B,AD= ,则BC的长为A. ﹣1B. +1C. ﹣1D. +1 9.如图2,在正⽅形ABCD的外侧作等边三⾓形DCE,若∠AED=15°, 则∠EAC=( )A.15°B.28°C.30°D.45° 10.若a=2016×2018-2016×2017, b=2015×2016-2013×2017,, 则a,b,c的⼤⼩关系是 A.a ⼆、填空题(本⼤题共6⼩题,每⼩题4分,共24分) 11.计算: = ; = . 12.在△ABC中,D,E分别是边AB,AC的中点,若BC=4,则DE=_______. 13.如图3,在□ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC,交BC边于点E,则BE= cm. 14.在中,,分别以AB、AC为边向外作正⽅形,⾯积分别记为 . 若,则BC=______. 15.如图4,已知正⽅形ABCD的边长为4,对⾓线AC与BD相交于点O,点E在DC 边的延长线上.若∠CAE=15°,则CE= . 16.公元3世纪,我国古代数学家刘徽就能利⽤近似公式a 2+r≈a+r2a得到2的近似值.他 的算法是:先将2看成12+1,由近似公式得2≈1+12×1=32;再将2看成 (32)2+(-14),由近似公式得2≈32+-142×32=1712;......依此算法,所得2的近似 值会越来越精确.当2取得近似值577408时,近似公式中的a是__________,r是__________. 三、解答题(本⼤题共9⼩题,共86分) 17.(本题满分12分,每⼩题6分)计算: (1)4 + ﹣ ; (2) (2 )(2 ) 18.(本题满分6分)计算: 19.(本题满分8分) 如图,在 ABCD中,E,F分别在边AD,BC上,且AE=CF,连接EF. 请你只⽤⽆刻度的直尺画出线段EF的中点O,并说明这样画的理由. 20.(本题满分8分) ,,求代数式的值 21. (本题满分8分) 古希腊的⼏何学家海伦(约公元50年)在研究中发现:如果⼀个三⾓形的三边长分别为,,,那么三⾓形的⾯积S与,,之间的关系式是 ① 请你举出⼀个例⼦,说明关系式①是正确的. 22.(本题满分8分)如图,在□ABCD中,点E,F分别是边AB,CD的中点, (1)求证:△CFB≌△AED; (2)若∠ADB=90°,判断四边形BFDE的形状,并说明理由; 23.(本题满分10分) 如图5,E,F分别是矩形ABCD的边AB,AD上的点, . (1)求证: AF=CD. (2)若AD=2,△EFC的⾯积为,求线段BE的长. 24.(本题满分12分) 如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上⼀点,过点D作DE⊥BC,交直线MN于点E,垂⾜为F,连接CD,BE (1)求证:CE=AD (2)若D为AB的中点,则∠A的度数满⾜什么条件时,四边形BECD是正⽅形?请说明理由. 25.(本题满分14分)如图6,我们把对⾓线互相垂直的四边形叫做垂美四边形 (1)概念理解:如图7,在四边形ABCD中,AB=AD,CB=CD,四边形ABCD是垂美四边形吗?请说明理由. (2)性质探究:试探索垂美四边形ABCD的两组对边AB,CD与BC,AD之间的数量关系. 猜想结论: (要求⽤⽂字语⾔叙述).写出证明过程(先画出图形, 写出已知、求证,再证明) (3)问题解决:如图8,分别以Rt△ACB的直⾓边AC和斜边AB为边向外作正⽅形ACFG和正⽅形形ABDE,连接CE,BG,GE,若AC=4,AB=5,求GE的长. 2017-2018学年(下)六校期中联考⼋年级 数学科评分标准 ⼀、选择题(本⼤题有10⼩题,每⼩题4分,共40分.) 题号 1 2 3 4 5 6 7 8 9 10 选项 B D C A C A B D C B ⼆、填空题(本⼤题共6⼩题,每题4分,共24分) 11. ; . 12. . 13. . 14. . 15. . 16. , . 三、解答题(本⼤题共11⼩题,共86分) 17.(本题满分12分,每⼩题6分) (1)解:原式= …………… 3分 = …………… 4分 = …………… 6分 (2)解:原式= …………… 3分 = …………… 5分 = …………… 6分 注: 1.写出正确答案,⾄少有⼀步过程,不扣分. 2.只有正确答案,没有过程,只扣1分. 3.没有写出正确答案的,若过程不完整,按步给分. (以下题⽬类似) 18.(本题满分6分) 解:原式= …………… 3分 = …………… 5分 = …………… 6分 19. 20.(本题满分8分) 解:连接与相交于点,点为的中点。
人教版八年级第一学期期中数学试卷及答案八

人教版八年级第一学期期中数学试卷及答案一、选择题:(每小题3分,共计30分)1.点P(3,2)关于x轴的对称点的坐标是()A.(3,2)B.(﹣3,2)C.(﹣3,﹣2)D.(3,﹣2)2.一个多边形的外角和比内角和大180°,则这个多边形的边数是()A.4B.5C.6D.33.下列疫情防控宣传图片中,是轴对称图形的是()A.勤洗手,勤通风B.打喷嚏,捂口鼻C.有症状,早就医D.防控疫情,我们在一起4.如图,在Rt△ABC和Rt△DBE中,∠ABD=∠EBD=90°,∠ACB=∠E,AB=BD=5,BE=3,则CD的长为()A.1.5B.2C.3D.55.如图,在△ABC中,AB=AC,∠A=120°,D为BC的中点,DE⊥AB于点E,若BC=4,则DE的长为()A.1.5B.2C.1D.6.到三角形三个顶点距离相等的点是()A.三边高线的交点B.三边垂直平分线的交点C.三条中线的交点D.三条内角平分线的交点7.如图,△ABC和△A′B′C′关于直线l对称,若∠A=50°,∠C′=30°,则∠B的度数为()A.30°B.50°C.90°D.100°8.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3B.4C.5D.69.如图,△ABC中,AB+AC=6,直线MN为BC的垂直平分线交AC于点D,连接BD,则△ABD的周长为()A.3B.6C.4D.510.如图,在△ABC中,AB的垂直平分线EF分别交AB、AC边于点E、F,点K为EF上一动点,则BK+CK的最小值是以下哪条线段的长度()A.EF B.AB C.AC D.BC二、填空题:(每小题3分,共计30分11.已知三角形两边长为2和7,则第三边a的取值范围为.12.正方形的对称轴有条.13.如图,在△ABC中,AB=AC,且∠A=100°,∠B=度.14.如图,在△ABC中,∠A=73°,∠C=47°,点D是AC上一点,连接BD.DE⊥AB于E,DF⊥BC于F,若DE=DF,则∠DBF的度数是.15.如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿BC所在直线向右平移得到△A′B′C′,连接A′C,若BB′=2,则线段A′C的长为.16.如图是由一副三角板拼凑得到的,图中的∠ABC的度数为.17.如图,D是AB延长线上一点,DF交AC于点E,AE=CE,FC∥AB,若AB=3,CF=5,则BD的长是.18.如图三角形纸片中,AB=8cm,BC=6cm,AC=5cm,沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,则△AED的周长为cm.19.等腰三角形的周长为13,其中一边长为5,则该等腰三角形的底边长为.20.如图,在△ABC中,过点B作△ABC的角平分线AD的垂线,垂足为F,FG∥AB交AC于点G,若AB=4,则线段FG的长为.三、解答题(21、22题各7分,23、24题各8分,25、26、27题各10分,共60分)21.如图,在Rt△ABC中,∠ACB=90°,∠A=36°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E,F为AC延长线上的一点,连接DF.(1)求∠CBE的度数.(2)若∠F=27°,求证:BE∥DF.22.如图,在平面直角坐标系中,A(﹣2,1),B(﹣3,﹣2),C(1,﹣2).(1)在图中作出△A1B1C1,使△A1B1C1与△ABC关于y轴对称(点A、B、C的对称点分别为A1、B1、C1).(2)写出点A1、B1、C1的坐标.23.某市旧城改造项目计划在一块如图所示的三角形空地上种植某种草皮美化环境,经过测量得AB=AC=40m,△ABC的外角∠ACD=105°.已知这种草皮每平方米a元,则购买这种草皮一共需要多少钱?24.如图1,AB=AC,CD⊥AB于D,BE⊥AC于E,CD、BE交于点F.(1)求证:BD=CE;(2)如图2,连接AF,请直接写出图中所有的全等三角形.25.如图,在△ABC中,∠BAC=∠ACB,点D是BC边上一点,且AD=BD,CE平分∠ACB交AD于点E.(1)若∠ADC=80°,求∠2的度数;(2)过点E作EF∥AB,交BD于点F,求证:∠FEC=3∠3.26.如图1,在△ABC中,AB=AC,点E在AB边上,AD⊥CE交CE的延长线于点D.(1)若∠BAC=2∠DAE,求证:CE=CB;(2)如图2,连接BD,点F为CD的中点,延长BF交AC于点G,连接DG,若AG=DG,求证:BD=BC;(3)如图3,在(2)的条件下,若∠DBC=120°,CD=10,点H为AB的中点,求线段DH的长.27.如图1,在平面直角坐标系中,点O为坐标原点,△ABC的顶点B、C在x轴上(C左B右),点A在y轴正半轴上,∠BAC=120°,点O为BC的中点,AB=8.(1)求点A的坐标;(2)如图2,点D为AC上一点,点F为y轴上一点,AD=AF,连接DF,∠BDE=60°,DE交y轴于点E,设线段AD的长为t,线段OE的长为d,请用含t的式子表示d;(3)在(2)的条件下,当点D与点C重合时,在CA的延长线上取点G,作GH⊥CA交x轴于点K,若GK=AC,连接EH,过点A作AM⊥EH于点M,求点M的纵坐标.参考答案一、选择题:(每小题3分,共计30分)1.点P(3,2)关于x轴的对称点的坐标是()A.(3,2)B.(﹣3,2)C.(﹣3,﹣2)D.(3,﹣2)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.解:点P(3,2)关于x轴的对称点的坐标是(3,﹣2).故选:D.【点评】本题考查了关于x轴、y轴对称点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.2.一个多边形的外角和比内角和大180°,则这个多边形的边数是()A.4B.5C.6D.3【分析】由多边形内角和定理:(n﹣2)•180°(n≥3且n为整数),多边形的外角和是360°,列出关于边数的方程即可求解.解:设这个多边形的边数是n,由题意得:360°﹣(n﹣2)×180°=180°,∴n=3,故选:D.【点评】本题考查多边形的有关知识,关键是掌握多边形内角和定理:(n﹣2)•180°(n≥3且n为整数),多边形的外角和是360°.3.下列疫情防控宣传图片中,是轴对称图形的是()A.勤洗手,勤通风B.打喷嚏,捂口鼻C.有症状,早就医D.防控疫情,我们在一起【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念对各选项分析判断即可得解.解:A.不是轴对称图形,故本选项不合题意;B.不是轴对称图形,故本选项不合题意;C.不是轴对称图形,故本选项不合题意;D.是轴对称图形,故本选项符合题意.故选:D.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.轴对称图形的对称轴可以是一条,也可以是多条甚至无数条.4.如图,在Rt△ABC和Rt△DBE中,∠ABD=∠EBD=90°,∠ACB=∠E,AB=BD=5,BE=3,则CD的长为()A.1.5B.2C.3D.5【分析】在△ABC与△DBE中,由AAS证明两三角形全等得出BC=BE=3,即可求解.解:在△ABC与△DBE中,,∴△ABC≌△DBE(AAS),∴BC=BE=3,∴CD=BD﹣BC=5﹣3=2,故选:B.【点评】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.5.如图,在△ABC中,AB=AC,∠A=120°,D为BC的中点,DE⊥AB于点E,若BC=4,则DE的长为()A.1.5B.2C.1D.【分析】由AB=AC,∠A=120°推出∠B=30°,从而得到DE=DB,解:∵AB=AC,∠A=120°,∴∠B=∠C=30°,∵D是BC的中点,∴BD=BC=2,∵DE⊥AB,∴∠BED=90°,∴DE=BD=1,故选:C.【点评】本题考查直角三角形的性质,等腰三角形的性质,关键是掌握:在直角三角形中,30°角所对的直角边等于斜边的一半;等腰三角形的两个底角相等.6.到三角形三个顶点距离相等的点是()A.三边高线的交点B.三边垂直平分线的交点C.三条中线的交点D.三条内角平分线的交点【分析】根据线段垂直平分线的性质判断即可.解:到三角形三个顶点距离相等的点是三边垂直平分线的交点,故选:B.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.7.如图,△ABC和△A′B′C′关于直线l对称,若∠A=50°,∠C′=30°,则∠B的度数为()A.30°B.50°C.90°D.100°【分析】先根据△ABC和△A′B′C′关于直线l对称得出△ABC≌△A′B′C′,故可得出∠C=∠C′,再由三角形内角和定理即可得出结论.解:∵△ABC和△A′B′C′关于直线l对称,∠A=50°,∠C′=30°,∴△ABC≌△A′B′C′,∴∠C=∠C′=30°,∴∠B=180°﹣∠A﹣∠C=180°﹣50°﹣30°=100°.故选:D.【点评】本题考查的是轴对称的性质,熟知关于轴对称的两个图形全等是解答此题的关键.8.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3B.4C.5D.6【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后利用△ABD的面积列式计算即可得解.解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,∴S△ABD=AB•DE=×10•DE=15,解得:DE=3,∴CD=3.故选:A.【点评】本题考查了三角形的面积和角平分线的性质,能熟记角平分线上的点到角两边的距离相等是解此题的关键.9.如图,△ABC中,AB+AC=6,直线MN为BC的垂直平分线交AC于点D,连接BD,则△ABD的周长为()A.3B.6C.4D.5【分析】根据中垂线的性质,可得DC=DB,继而可确定△ABD的周长.解:∵直线MN是线段BC的垂直平分线,∴DB=DC,∴△ABD的周长=AB+AD+BD=AB+AD+DC=AB+AC=6.故选:B.【点评】本题考查了线段垂直平分线的性质,掌握线段垂直平分线上任意一点,到线段两端点的距离相等是解决问题的关键.10.如图,在△ABC中,AB的垂直平分线EF分别交AB、AC边于点E、F,点K为EF上一动点,则BK+CK的最小值是以下哪条线段的长度()A.EF B.AB C.AC D.BC【分析】连接AK,根据线段垂直平分线的性质得到AK=BK,求得BK+CK=AK+CK,得到AK+CK的最小值=BK+CK的最小值,于是得到当AK+CK=AC时,AK+CK的值最小,即BK+CK的值最小,即可得到结论.解:连接AK,∵EF是线段AB的垂直平分线,∴AK=BK,∴BK+CK=AK+CK,∴AK+CK的最小值=BK+CK的最小值,∵AK+CK≥AC,∴当AK+CK=AC时,AK+CK的值最小,即BK+CK的值最小,∴BK+CK的最小值是线段AC的长度,故选:C.【点评】本题考查的是轴对称﹣最短路线问题,线段垂直平分线的性质,三角形的三边关系,熟知线段垂直平分线的性质是解答此题的关键.二、填空题:(每小题3分,共计30分11.已知三角形两边长为2和7,则第三边a的取值范围为5<a<9.【分析】利用“三角形的两边差小于第三边,三角形两边之和大于第三边”,可求出a的取值范围.解:∵7﹣2=5,2+7=9,∴第三边a的取值范围为5<a<9.故答案为:5<a<9.【点评】本题考查了三角形三边关系,牢记“三角形的两边差小于第三边,三角形两边之和大于第三边”是解题的关键.12.正方形的对称轴有4条.【分析】根据正方形的轴对称性作出图形以及对称轴,即可得解.解:如图,正方形对称轴为经过对边中点的直线,两条对角线所在的直线,共4条.故答案为:4.【点评】本题考查了轴对称的性质,熟记正方形的对称轴是解题的关键.13.如图,在△ABC中,AB=AC,且∠A=100°,∠B=40度.【分析】如图,依题意可知该三角形为等腰三角形∠A=100°,利用等腰三角形的性质得另外二角相等,结合三角形内角和易求∠B的值.解:∵AB=AC,∴∠B=∠C,∵∠A=100°,∴∠B==40°.故填40.【点评】本题考查了等腰三角形的性质:等边对等角和三角形内角和定理.借助三角形内角和求角的度数是一种很重要的方法,应熟练掌握.14.如图,在△ABC中,∠A=73°,∠C=47°,点D是AC上一点,连接BD.DE⊥AB于E,DF⊥BC于F,若DE=DF,则∠DBF的度数是30°.【分析】先利用三角形内角和定理可得∠ABC=60°,再利用角平分线的性质定理的逆定理可得BD平分∠ABC,然后利用角平分线的定义进行计算即可解答.解:∵∠A=73°,∠C=47°,∴∠ABC=180°﹣∠A﹣∠C=60°,∵DE⊥AB,DF⊥BC,DE=DF,∴BD平分∠ABC,∴∠DBF=∠ABC=30°,故答案为:30°.【点评】本题考查了角平分线的性质,熟练掌握角平分线的性质定理的逆定理是解题的关键.15.如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿BC所在直线向右平移得到△A′B′C′,连接A′C,若BB′=2,则线段A′C的长为4.【分析】利用平移可得A′B′=AB=4,∠A′B′C=∠B=60°,再判定△A′B′C是等边三角形,进而可得答案.解:由平移得:A′B′=AB=4,∠A′B′C=∠B=60°,∵BC=6,BB′=2,∴B′C=6﹣2=4,∴△A′B′C是等边三角形,∴A′C=A′B′=4,故答案为:4.【点评】此题主要考查了等边三角形的判定和性质,以及平移的性质,关键是掌握有一个角是60°的等腰三角形是等边三角形.16.如图是由一副三角板拼凑得到的,图中的∠ABC的度数为75°.【分析】由三角形的外角性质可求得∠ABF=15°,从而可求得∠ABC的度数.解:∵∠F=30°,∠BAC=45°,∠BAC是△ABF的外角,∴∠ABF=∠BAC﹣∠F=15°,∵∠CBF=90°,∴∠ABC=∠CBF﹣∠ABF=75°.故答案为:75°.【点评】本题主要考查三角形的外角性质,解答的关键是明确三角形的外角等于与其不相邻的两个内角之和.17.如图,D是AB延长线上一点,DF交AC于点E,AE=CE,FC∥AB,若AB=3,CF=5,则BD的长是2.【分析】由“AAS”可证△ADE≌△CFE,可得CF=AD=5,即可求解.解:∵FC∥AB,∴∠F=∠D,∠A=∠ACF,在△ADE和△CFE中,,∴△ADE≌△CFE(AAS),∴CF=AD=5,∴BD=AD﹣AB=2,故答案为:2.【点评】本题考查了全等三角形的判定和性质,证明三角形全等是解题的关键.18.如图三角形纸片中,AB=8cm,BC=6cm,AC=5cm,沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,则△AED的周长为7cm.【分析】先根据折叠的性质可得BE=BC,DE=CD,再求出AE的长,然后求出△ADE的周长=AC+AE,即可得出答案.解:由折叠的性质得:BE=BC=6cm,DE=DC,∴AE=AB﹣BE=AB﹣BC=8﹣6=2(cm),∴△AED的周长=AD+DE+AE=AD+CD+AE=AC+AE=5+2=7(cm),故答案为:7.【点评】本题考查了翻折变换的性质以及三角形周长;熟练掌握翻折变换的性质的解题的关键.19.等腰三角形的周长为13,其中一边长为5,则该等腰三角形的底边长为5或3.【分析】此题分为两种情况:5是等腰三角形的底边或5是等腰三角形的腰.然后进一步根据三角形的三边关系进行分析能否构成三角形.解:当5是等腰三角形的底边时,则其腰长是(13﹣5)÷2=4,能够组成三角形;当5是等腰三角形的腰时,则其底边是13﹣5×2=3,能够组成三角形.所以该等腰三角形的底边为5或3,故答案为:5或3.【点评】此题考查了等腰三角形的两腰相等的性质,同时注意三角形的三边关系.20.如图,在△ABC中,过点B作△ABC的角平分线AD的垂线,垂足为F,FG∥AB交AC于点G,若AB=4,则线段FG的长为2.【分析】延长BF交AC于E,根据角平分线的定义得到∠BAD=∠CAD,根据全等三角形的性质得到AE=AB =4,根据平行线的性质得到∠BAF=∠AFG,得到AG=FG,推出FG=AE=2.解:延长BF交AC于E,∵AD平分∠BAC,∴∠BAD=∠CAD,∵BF⊥AD,∴∠AFB=∠AFE=90°,∵AF=AF,∴△ABF≌△AEF(ASA),∴AE=AB=4,∵FG∥AB,∴∠BAF=∠AFG,∴∠GAF=∠FAG,∴AG=FG,∵∠FAG+∠AEF=∠AFG+∠EFG=90°,∴∠GFE=∠GEF,∴FG=GE,∴FG=AE=2,故答案为:2.【点评】本题考查了全等三角形的判定和性质,角平分线的定义,直角三角形的性质,平行线的性质,等腰三角形的判定和性质,正确地作出辅助线是解题的关键.三、解答题(21、22题各7分,23、24题各8分,25、26、27题各10分,共60分)21.如图,在Rt△ABC中,∠ACB=90°,∠A=36°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E,F为AC延长线上的一点,连接DF.(1)求∠CBE的度数.(2)若∠F=27°,求证:BE∥DF.【分析】(1)由三角形的外角性质可求得∠CBD=126°,再由角平分线的定义即可求∠CBE的度数;(2)结合(1)可求得∠CEB=27°,利用同位角相等,两直线平行即可判定BE∥DF.【解答】(1)解:∵∠ACB=90°,∠A=36°,∠CBD是△ABC的外角,∴∠CBD=∠ACB+∠A=126°,∵BE平分∠CBD,∴∠CBE=∠CBD=63°;(2)证明:∵∠ACB=90°,∠CBE=63°,∴∠CEB=∠ACB﹣∠CBE=27°,∵∠F=27°,∴∠CEB=∠F,∴BE∥DF.【点评】本题主要考查三角形的外角性质,平行线的判定,解答的关键是熟记三角形的外角等于与其不相邻的两个内角之和.22.如图,在平面直角坐标系中,A(﹣2,1),B(﹣3,﹣2),C(1,﹣2).(1)在图中作出△A1B1C1,使△A1B1C1与△ABC关于y轴对称(点A、B、C的对称点分别为A1、B1、C1).(2)写出点A1、B1、C1的坐标.【分析】(1)利用网格特点和轴对称的性质画出点A、B、C关于y轴的对称点即可;(2)利用(1)中所画图形求解.解:(1)如图,△A1B1C1为所作;(2)A1(2,1),B1(3,﹣2),C1(﹣1,﹣2).【点评】本题考查了作图﹣轴对称变换:作轴对称后的图形的依据是轴对称的性质,掌握其基本作法是解决问题的关键(先确定图形的关键点;利用轴对称性质作出关键点的对称点;按原图形中的方式顺次连接对称点).23.某市旧城改造项目计划在一块如图所示的三角形空地上种植某种草皮美化环境,经过测量得AB=AC=40m,△ABC的外角∠ACD=105°.已知这种草皮每平方米a元,则购买这种草皮一共需要多少钱?【分析】如图,过点B作BH⊥AC于点H.证明∠A=30°,求出BH,再求出△ABC的面积,可得结论.解:如图,过点B作BH⊥AC于点H.∵∠ACD=105°,∴∠ACB=75°,∵AB=AC=40m,∴∠ABC=∠ACB=75°,∴∠A=180°﹣2×75°=30°,∵BH⊥AC,∴BH=AB=20m,∴S△ABC=•AC•BH=×40×20=400(m2),∵这种草皮每平方米a元,∴购买这种草皮一共需要400a元.【点评】本题考查等腰三角形的性质,直角三角形30度角的性质,三角形的面积等知识,解题的关键是转化添加常用辅助线,构造直角三角形解决问题.24.如图1,AB=AC,CD⊥AB于D,BE⊥AC于E,CD、BE交于点F.(1)求证:BD=CE;(2)如图2,连接AF,请直接写出图中所有的全等三角形.【分析】(1)根据垂直得出∠CAD=∠BEA=90°,根据全等三角形的判定定理AAS可以证明△ADC≌△AEB,根据全等三角形的性质定理得出AD=AE即可;(2)根据垂直得出∠BDF=∠CEF=90°,根据全等三角形的判定定理得出△BDF≌△CEF,根据全等三角形的性质得出DF=EF,BF=CF,再根据全等三角形的判定定理证明△AFB≌△AFC和△ADF≌△AEF即可.【解答】(1)证明:∵CD⊥AB,BE⊥AC,∴∠CAD=∠BEA=90°,在△ADC和△AEB中,,∴△ADC≌△AEB(AAS),∴AD=AE,∵AB=AC,∴AB﹣AD=AC﹣AE,即BD=CE;(2)解:图中全等三角形有△ADC≌△AEB,△ADF≌△AEF,△ABF≌△ACF,△BDF≌△CEF,理由是:∵CD⊥AB,BE⊥AC,∴∠BDF=∠CEF=90°,在△BDF和△CEF中,,∴△BDF≌△CEF(AAS),∴DF=EF,BF=CF,根据SSS可以证明△AFB≌△AFC和△ADF≌△AEF.【点评】本题考查了全等三角形的判定定理和性质定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL.25.如图,在△ABC中,∠BAC=∠ACB,点D是BC边上一点,且AD=BD,CE平分∠ACB交AD于点E.(1)若∠ADC=80°,求∠2的度数;(2)过点E作EF∥AB,交BD于点F,求证:∠FEC=3∠3.【分析】(1)首先利用三角形外角的性质求得∠B=40°,再利用三角形内角和求出∠ACB的度数,从而得出答案;(2)设∠B=x,则∠1=x,利用平行线的性质和三角形内角和定理分别表示出∠FEC和∠3,从而解决问题.【解答】(1)解:∵AD=BD,∴∠B=∠1,∵∠ADC=∠B+∠1,∴2∠B=80°,∴∠B=40°,∵∠BAC=∠ACB,∴∠ACB=(180°﹣40°)÷2=70°,∵CE平分∠ACB,∴∠2=∠3=35°;(2)证明:设∠B=x,则∠1=x,∵EF∥AB,∴∠DEF=∠1=x,∴∠ACB=90°﹣x,∴∠2=∠3=45°﹣x,∴∠DEC=180°﹣(∠EDC+∠DCE)=180°﹣(2x+45°﹣x)=135°﹣x,∴∠FEC=∠FED+∠CED=x+135°﹣x=135°﹣x,∴∠FEC=3∠3.【点评】本题主要考查了等腰三角形的性质,三角形内角和定理,平行线的性质等知识,利用参数x分别表示出∠FEC和∠3是解题的关键.26.如图1,在△ABC中,AB=AC,点E在AB边上,AD⊥CE交CE的延长线于点D.(1)若∠BAC=2∠DAE,求证:CE=CB;(2)如图2,连接BD,点F为CD的中点,延长BF交AC于点G,连接DG,若AG=DG,求证:BD=BC;(3)如图3,在(2)的条件下,若∠DBC=120°,CD=10,点H为AB的中点,求线段DH的长.【分析】(1)如图1中,过点A作AH⊥BC于点H,过点C作CT⊥AB于点T,设AH交CT于点O.证明∠CET=∠CBT,可得结论;(2)证明GB垂直平分线段CD即可;(3)过点A作AJ⊥BC于点J,交CD于点Q,连接BQ,过点D作DR⊥AB于点R.解直角三角形求出DR,RH,再利用勾股定理,可得结论.【解答】(1)证明:如图1中,过点A作AH⊥BC于点H,过点C作CT⊥AB于点T,设AH交CT于点O.∵AB=AC,AH⊥BC,∴∠BAH=∠CAH,∵AD⊥CD,CT⊥AB,∴∠ADE=∠CTE=90°,∵∠AED=∠CET,∴∠ECT=∠EAD,∵∠ATC=∠AHC=90°,∠AOT=∠COH,∴∠TCB=∠BAH,∵∠BAC=2∠DAE,∴∠BAH=∠DAE,∴∠ECT=∠BCT,∴∠ECT+∠CET=90°,∠TCB+∠CBT=90°,∴∠CEB=∠CBE,∴CE=CB.(2)证明:如图2中,∵GA=GD,∴∠GAD=∠GDA,∵∠ADC=90°,∴∠GAD+∠ACD=90°,∠ADG+∠GDC=90°,∴∠GDC=∠GCD,∴GD=GC,∵DF=FC,∴GB⊥CD,∴BD=BC;(3)解:过点A作AJ⊥BC于点J,交CD于点Q,连接BQ,过点D作DR⊥AB于点R.∵BD=DC,∠DBC=120°,∴∠BCD=∠BDC=30°,∵AB=AC,AJ⊥BC,∴BJ=CJ,∴QB=QC,∴∠QBC=∠QCB=30°,∴∠BQD=∠QBC+∠QCB=60°,∴∠DBQ=90°,∵∠BDQ=30°,∴QD=2BQ=2CQ,∴DQ=CD=,BQ=,DB=BQ=,∵∠ADQ=∠CJQ=90°,∠AQD=∠CQJ,∴∠DAQ=∠QCJ=30°,∴AD=DQ=,∴AB=AC===,设BR=x,∵DR2=BD2﹣BR2=AD2﹣AR2,∴()2﹣x2=()2﹣(﹣x)2,∴x=,∴DR2=DB2﹣BR2=()2﹣()2=,∵BH=AH=,∴RH=﹣=,∴DH===5.【点评】本题属于三角形综合题,考查了等腰三角形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.27.如图1,在平面直角坐标系中,点O为坐标原点,△ABC的顶点B、C在x轴上(C左B右),点A在y轴正半轴上,∠BAC=120°,点O为BC的中点,AB=8.(1)求点A的坐标;(2)如图2,点D为AC上一点,点F为y轴上一点,AD=AF,连接DF,∠BDE=60°,DE交y轴于点E,设线段AD的长为t,线段OE的长为d,请用含t的式子表示d;(3)在(2)的条件下,当点D与点C重合时,在CA的延长线上取点G,作GH⊥CA交x轴于点K,若GK=AC,连接EH,过点A作AM⊥EH于点M,求点M的纵坐标.【分析】(1)由线段垂直平分线的性质证出AC=AB,由等腰三角形的性质得出∠ACB=∠ABC,由直角三角形的性质求出OA的长,则可得出答案;(2)证出△ADF为等边三角形,由等边三角形的性质得出∠ADF=∠DFA=60°,AD=DF,证明△DFE≌△DAB(ASA),由全等三角形的性质得出EF=AB=8,则可得出答案;(3)过点E作EN⊥GH,交GH的延长线于点N,连接CN,BE,FM,证明△CGK≌△ECA(AAS),由全等三角形的性质得出CG=CE,证出△CEB为等边三角形,得出∠ABE=90°,∠HBE=90°,证明Rt△BHE≌Rt△NHE(HL),由全等三角形的性质得出∠BEH=∠NEH,证出AM=EM,由等腰三角形的性质可得出答案.解:(1)∵AO⊥BC,O为BC的中点,∴OA垂直平分BC,∴AC=AB,∴∠ACB=∠ABC,∵∠BAC=120°,∴∠ACB=∠ABC=30°,∴OA=AB=4,(2)∵AB=AC,AO⊥BC,∠CAB=120°,∴∠CAF=60°,∵AD=AF,∴△ADF为等边三角形,∴∠ADF=∠DFA=60°,AD=DF,又∵∠EDB=60°,∴∠EDB﹣∠FDB=∠ADF﹣∠FDB,∴∠EDF=∠ADB,∵∠DFE=∠DAB=120°,∴△DFE≌△DAB(ASA),∴EF=AB=8,∵AD=AF=t,∴AE=t+8,∴OE=AE﹣OA=t+8﹣4=t+4,即d=t+4;(3)过点E作EN⊥GH,交GH的延长线于点N,连接CN,BE,FM,∵∠BCE=60°,∠GCK=30°,∴∠GCE=90°,∴∠CEA=30°,∵GH⊥CA,∴∠G=90°,∴∠G=∠ACE,∠GCK=∠CEA,又∵GK=AC,∴△CGK≌△ECA(AAS),∴CG=CE,∵EN⊥GH,∠G=∠ACE=90°,四边形的内角和为360°,∴∠GNC=∠ENC=45°,∴∠ECN=∠ENC=45°,∴CE=EN,∵OC=OB,AE⊥BC,∴CE=BE,∴△CEB为等边三角形,∴∠ABE=90°,∠HBE=90°,∵BE=EN,EH=EH,∴Rt△BHE≌Rt△NHE(HL),∴∠BEH=∠NEH,∴∠AEH=45°,∵AM⊥EH,∴∠MAE=∠AEM=45°,∴AM=EM,∵AE=16,AF=8,∴AF=EF=8,∴OF=4,MF⊥AE,∴点M的纵坐标为﹣4.【点评】本题是三角形综合题,考查了等腰三角形的性质,线段垂直平分线的性质,坐标与图形的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.。
八年级数学下学期期中测试卷(含答案)

八年级数学下学期期中测试卷考试时间:120分钟;总分:100分题号一二三总分得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
一、选择题(本大题共8小题,共24.0分。
在每小题列出的选项中,选出符合题目的一项)1. 使得式子有意义的x的取值范围是( )√4−xA. x≥4B. x>4C. x≤4D. x<42. 下列根式中属于最简二次根式的是( )C. √8D. √27x3A. √a2+2B. √1123. 如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,AD=1,则BD的长为( )A.√2B. 2B.C. √3 D. 34. 如图,在▱ABCD中,∠ABC的平分线交AD于点E,∠BCD的平分线交AD于点F,若AB=3,AD=4,则EF的长是( )A. 1B. 2C. 2.5D. 35. 如下图,在四边形ABCD中,对角线AC和BD相交于点O,下列条件不能判定四边形ABCD 是平行四边形的是( )A. AB//DC,AD//BCB. AB=DC,AD=BCC. AB//DC,AD=BCD. OA=OC,OB=OD6. 下列各式计算正确的是( )A. √2+√3=√5B. 2+√2=2√2C. 3√2−√2=2√2D. √12−√10=√6−√527. 已知√a−13+√13−a=b+10,则√2a−b的值为( )A. 6B. ±6C. 4D. ±48. 如图,小巷左、右两侧是竖直的墙壁,一架梯子斜靠在左墙上时,梯子底端到左墙角的距离为1米,梯子顶端距离地面3米,若梯子底端位置保持不动,将梯子斜靠在右墙上,此时梯子顶端距离地面2米,则小巷的宽度为( )A. (√6+1)米B. 3米C. 5米 D. 2米2二、填空题(本大题共8小题,共24.0分)9. 在数轴上表示实数a的点如图所示,化简√(a−5)2+|a−2|的结果为.10. 计算√28的结果是.√711. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A、B、C、D的面积之和为cm2.12. 如图,四边形ABCD是平行四边形,若S □ ABCD=12,则S阴影=.13. 如图,在四边形ABCD中,∠C=∠D=90°,若再添加一个条件,就能推出四边形ABCD 是矩形,你所添加的条件是__________.(写出一个条件即可).14. 如图,▱ABCD的对角线AC、BD相交于点O,P是AB边上的中点,且OP=2,则BC的长为.15. 如图,矩形ABCD中,AD=12,AB=8,E是AB上一点,且EB=3,F是BC上一动点,若将△EBF沿EF对折后,点B落在点P处,则点P到点D的最短距离为______.16. 观察下列等式:x 1=√1+112+122=32=1+11×2;x 2=√1+122+132=76=1+12×3;x 3=√1+132+142=1312=1 +13×4;⋯;根据以上规律,计算x 1+x 2+x 3+⋯+x 2022−2023= .三、解答题(本大题共7小题,共52.0分)17. 计算:√18−√32+√2(√2+1).(本小题6.0分)18. 计算:(12)−1+(π−3)0−√12×√33.(本小题6.0分)19. (本小题8.0分)如图,已知AD =4,CD =3,∠ADC =90°,AB =13,∠ACB =90°,求图形中阴影部分的面积.20. (本小题8.0分)如图,在▱ABCD 中,点E 是BC 边的中点,连接AE 并延长与DC 的延长线交于F . (1)求证:四边形ABFC 是平行四边形;(2)若AF 平分∠BAD ,∠D =60°,AD =8,求▱ABCD 的面积.21. (本小题8.0分)如图,四边形ABCD 是平行四边形,E ,F 是对角线AC 上的两点,∠1=∠2. (1)求证:AE =CF .(2)求证:四边形EBFD 是平行四边形.22. (本小题8.0分)在小学,我们已经初步了解到,长方形的对边平行且相等,每个角都是90°.如图,长方形ABCD 中,AD=9cm,AB=4cm,E为边AD上一动点,从点D出发,以1cm/s向终点A运动,同时动点P从点B出发,以acm/s向终点C运动,运动的时间为ts.(1)当t=3时,若EP平分∠AEC,求a的值;(2)若a=1,且△CEP是以CE为腰的等腰三角形,求t的值;(3)连接DP,直接写出点C与点E关于DP对称时的a与t的值.23. (本小题8.0分)我们将(√a+√b)、(√a−√b)称为一对“对偶式”,因为(√a+√b)(√a−√b)=(√a)2−(√b)2=a−b,所以构造“对偶式”再将其相乘可以有效的将(√a+√b)和(√a−√b)中的“√”去掉于是二次根式除法可以这样解:如√3=√3√3√3=√33,√22−√2=√2)2(2−√2)(2+√2)=3+2√2.像这样,通过分子,分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化根据以上材料,理解并运用材料提供的方法,解答以下问题:(1)比较大小√7−2√6−√3用“>”、“<”或“=”填空);(2)已知x=√5+2√5−2y=√5−2√5+2,求x−yx2y+xy2的值;(3)计算:3+√35√3+3√57√5+5√7⋯+99√97+97√99答案1.【答案】D2.【答案】A3.【答案】C4.【答案】B5.【答案】C6.【答案】C7.【答案】A8.【答案】A9.【答案】310.【答案】011.【答案】4912.【答案】313.【答案】∠A=90°(答案不唯一)14.【答案】415.【答案】1016.【答案】−1202317.【答案】解:原式=3√2−4√2+2+√2=2.18.【答案】解:原式=2+1−√12×33=3−√363=3−63=3−2=1.19.【答案】解:在Rt△ABC中,AD=4,CD=3,∴AC=√AD2+CD2=5.在△ABC中,AB=13,AC=5,∠ACB=90°.∴BC=√AB2−AC2=12..20.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AB//CD,AB=CD,∴∠ABE=∠FCE,∵点E是BC边的中点,∴BE=CE,在△ABE和△FCE中,{∠ABE=∠FCE BE=CE∠AEB=∠FEC,∴△ABE≌△FCE(ASA),∴AB=CF,又∵AB//CF,∴四边形ABFC是平行四边形;(2)解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=60°,BC=AD=8,AD//BC,∴∠BEA=∠DAE,∵AF平分∠BAD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BA=BE=12BC=CE=4,∴△ABE是等边三角形,∴∠BAE=∠AEB=60°,∵AE=CE,∴∠EAC=∠ECA=12∠AEB=30°,∴∠BAC=∠BAE+∠EAC=90°,∴AC⊥AB,AC=√BC2−AB2=√82−42=4√3,∴▱ABCD的面积=AB⋅AC=4×4√3=16√3.21.【答案】(1)证明:如图:∵四边形ABCD是平行四边形,∴AD=BC,AD//BC,∠3=∠4,∵∠1=∠3+∠5,∠2=∠4+∠6,∠1=∠2,∴∠5=∠6,∵在△ADE与△CBF中,{∠3=∠4 AD=BC ∠5=∠6,∴△ADE≌△CBF(ASA),∴AE=CF;(2)证明:∵∠1=∠2,∴DE//BF.又∵由(1)知△ADE≌△CBF,∴DE=BF,∴四边形EBFD是平行四边形.22.【答案】解:(1)当t=3时,DE=3,而CD=4,由勾股定理得,CE=5,∵四边形ABCD是长方形,∴AB=CD,AD=BC,AD//BC,∴∠AEP=∠CPE,∵EP平分∠AEC,∴∠AEP=∠CEP,∴∠CPE=∠CEP,∴CP=CE=5,CP=BC−BP,即9−3a=5,∴a=43;(2)当a=1时,由运动过程可知,DE=t,BP=t,∴CP=9−t,在Rt△CDE中,CE2=CD2+DE2=16+t2,△CEP是以CE为腰的等腰三角形,分情况讨论:∴①CE=CP,∴16+t2=(9−t)2,∴t=65,18②CE=PE,CP=DE,由等腰三角形的性质,得12于是,9−t=2t,∴t=3,;即:t的值为3或6518(3)如图,由运动过程知,BP=at,DE=t,∴CP=BC−BP=9−at,∵点C与点E关于DP对称,∴DE=CD,PE=PC,∴t=4,∴BP=4a,CP=9−4a,DE=4,过点P作PF⊥AD于F,∴四边形CDFP是长方形,∴PF=CD=4,DF=CP,在Rt△PEF中,PF=4,EF=DF−DE=9−4a−4=5−4a,根据勾股定理得,PE2=EF2+PF2=(5−4a)2+16,PE2=PC2∴(5−4a)2+16=(9−4a)2,∴a=54.23.【答案】解:(1)>;(2)∵x=√5+2√5−2=(√5+22(√5+2)(√5−2)=5+4√5+4=9+4√5,y=√5−2√5+2=(√5−22(√5+2)(√5−2)=5−4√5+4=9−4√5,∴x+y=9+4√5+9−4√5=18,x−y=9+4√5+−9+4√5=8√5,xy=(9+4√5)(9−4√5)=81−80=1,∴x−y x2y+xy2=x−yxy(x+y)=8√51×18=4√59;3+√35√3+3√57√5+5√7+⋯99√97+97√99=√3)(3+√3)(3−√3)+√3√5)(5√3+3√5)(5√3−3√5)√97√99(7√5+5√7)(7√5−5√7)+⋯+√97√99)(99√97+97√99)(99√97−97√99)=1−√33+√33−√55+√55−√77+⋯+√9797−√9999=1−√99 99=1−√1133.。
2023-2024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)

20232024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)(考试时间:90分钟,满分:100分)一、选择题(每题2分,共20分)1. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=62. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=63. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=64. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8D. 4x2y=65. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=66. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=67. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=68. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=69. 下列哪个选项是正确的?A. 3x+5y=10C. 5x+3y=15D. 4x2y=610. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=6二、填空题(每题2分,共20分)1. 2x+3y=6,求x的值。
2. 3x+5y=10,求y的值。
3. 4x2y=6,求x的值。
4. 5x+3y=15,求y的值。
5. 2x4y=8,求x的值。
6. 3x+5y=10,求y的值。
7. 4x2y=6,求x的值。
8. 5x+3y=15,求y的值。
9. 2x4y=8,求x的值。
10. 3x+5y=10,求y的值。
三、解答题(每题5分,共25分)1. 解方程组:2x+3y=63x+5y=102. 解方程组:5x+3y=153. 解方程组:2x4y=83x+5y=104. 解方程组:3x+5y=104x2y=65. 解方程组:5x+3y=152x4y=8四、计算题(每题10分,共30分)1. 计算:2x+3y=63x+5y=102. 计算:4x2y=65x+3y=153. 计算:2x4y=83x+5y=10五、应用题(每题10分,共20分)1. 应用题:2x+3y=62. 应用题: 4x2y=6 5x+3y=15答案解析:一、选择题1. A2. B3. C4. D5. A6. B7. C8. D9. A10. B二、填空题1. x=12. y=23. x=24. y=35. x=26. y=27. x=28. y=39. x=210. y=2三、解答题1. x=1, y=22. x=2, y=33. x=2, y=24. x=2, y=35. x=2, y=2四、计算题1. x=1, y=22. x=2, y=33. x=2, y=2五、应用题1. x=1, y=22. x=2, y=38. 简答题(每题5分,共25分)1. 简述一元二次方程的一般形式。
人教版数学八年级下册安徽枞阳—期中复习试卷.doc
鑫达捷 初中数学试卷 桑水出品安徽枞阳2014—2015学年八年级下数学期中复习试卷一、 填空题:(每小题3分,共30分)1、下列二次根式是最简二次根式的是 ( )A 、21B 、4C 、3D 、8 2、2的相反数是( )A 、2-B 、2C 、22-D 、223、已知三组数据:①2,3,4; ②3,4,5 ;③ 1,3,2。
分别以每组数据中的三个数据为三角形的三边长,构成直角三角形的有( )A 、①②B 、②③C 、①③D 、①②③4、在Rt △ABC 中,∠C =90°,a =12,b =16,则c 的长为 ( )A 、26B 、18C 、20D 、215、菱形和矩形一定都具有的性质是 ( )A 、对角线相等B 、对角线互相垂直C 、对角线互相平分且相等D 、对角线互相平分6、下列计算正确的是( )A 、562432=+B 、248=C 、327÷=3D 、3)3(2-=- 7、如图,ABCD 中,对角线AC 、BD 交于点O ,点E 是BC的中点.若OE=4 cm ,则AB 的长为 ( )A 、4 cmB 、8 cmC 、2 cmD 、6cm8、等边三角形的边长为2,则该三角形的面积为( )A 、34B 、3C 、32D 、 39、下列二次根式中与2是同类二次根式的是( )A 、12B 、6C 、8D 、18鑫达捷 10、已知a 、b 、c 是三角形的三边长,如果满足()010862=-+-+-c b a , 则三角形的形状是( ) A 、底与边不相等的等腰三角形 B 、等边三角形C 、钝角三角形D 、直角三角形二、填空题:(每小题4分,共24分)。
1、已知3-x 是二次根式,则x 的取值范围是 ;2、计算:825— = ;3、已知一个直角三角形的两条边长分别为5cm 、12cm ,那么这个直角三角形的第三边长为 ;4、已知菱形的两条对角线长分别是6和8,则此菱形的边长是 ,面积为 ;5、如图,∠C=∠ABD=90°,AC=4,BC=3,BD=12,则AD= 。
2022-2023学年八年级数学上学期期中考前必刷卷含答案解析(人教版)(一)
2022-2023学年八年级上学期期中考前必刷卷01数学(考试时间:90分钟试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:八年级上册第11-13章5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的.1.(2021·重庆市璧山中学校八年级期中)在一些美术字中,有的汉字是轴对称图形.下列4个汉字中,可以看作“沿某一条直线折叠后,直线两旁的部分能够互相重合”的是()A .B .C .D .2.(2021·四川·东坡区实验中学八年级期中)如图,△ABC≌△DEF,若∠A=132°,∠FED=15°,则∠C等于()A.13°B.23°C.33°D.43°3.(2022·江西赣州·八年级期中)若a、b、c为△ABC的三边长,且满足|a﹣5|+2b-=0,则c的值可以为()A.6B.7C.8D.94.(2021·山东烟台·七年级期中)如图,要使ABC ABD△≌△,下面给出的四组条件,错误的一组是()A.C D∠=∠,BAC BAD∠=∠B.BC BD=,AC AD=C.BAC BAD∠=∠,ABC ABD∠=∠D.BD BC=,BAC BAD∠=∠5.(2021·浙江·平阳苏步青学校八年级阶段练习)已知△ABC(AC<BC),用尺规作图的方法在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是()A.B.C.D.6.(2021·湖北·襄阳市樊城区青泥湾中学八年级阶段练习)如图,∠O=∠1,∠2=∠3,∠4=∠5,∠6=∠7,∠8=90°则∠O的度数为()A.10°B.15°C.18°D.20°7.(2021·黑龙江·同江市第三中学八年级期中)如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A.16B.18C.26D.288.(2022·辽宁·丹东第九中学八年级期末)如图,ABC的三边AB,BC,CA的长分别为15,20,25,点O是ABC三条角平分线的交点,则ABOS:BCOS△:CAOS△等于()A .1:1:1B .1:2:3C .2:3:4D .3:4:59.(2022·宁夏·中宁县第三中学八年级期末)如图,在ABC 中,4AB AC ==,15B ∠=︒,CD 是腰AB 上的高,则CD 的长( )A .4B .2C .1D .1210.(2022·北京一七一中八年级阶段练习)如图所示,ABC 的两条角平分线相交于点D ,过点D 作EF ∥BC ,交AB 于点E ,交AC 于点F ,若AEF 的周长为30cm ,则AB AC +=( )cm .A .10B .20C .30D .4011.(2022·全国·八年级专题练习)如图,△ABC 中,AB 的垂直平分线交BC 边于点E ,AC 的垂直平分线交BC 边于点N ,若∠BAC =70︒,则∠EAN 的度数为( )A .35︒B .40︒C .50︒D .55︒12.(2022·广东·揭西县宝塔实验学校八年级期中)如图,在△ABC 中,∠C =90°∠B =30°,以A 为圆心,任意长为半径画弧交AB 于M 、AC 于N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于D ,下列四个结论:①AD 是∠BAC 的平分线;②∠ADC =60°;③点D 在AB 的中垂线上;④1:3ACDACBSS=:.其中正确的有( )A .只有①②③B .只有①②④C .只有①③④D .①②③④13.(2021·重庆市璧山中学校八年级期中)如图,过边长为1的等边三角形ABC 的边AB 上一点P ,作PE AC ⊥于点E ,Q 为BC 延长线上一点,当AP CQ =时,PQ 交AC 于点D ,则DE 的长为( )A .13B .12C .23D .不能确定14.(2022·陕西·西安爱知初级中学七年级期末)如图,在ABC 中,90BAC ∠=︒,2AB AC =,点D 是线段AB 的中点,将一块锐角为45︒的直角三角板按如图()ADE 放置,使直角三角板斜边的两个端点分别与A 、D 重合,连接BE 、CE ,CE 与AB 交于点.F 下列判断正确的有( )①ACE ≌DBE ;②BE CE ⊥;③DE DF =;④DEFACFSS=A .①②B .①②③C .①②④D .①②③④第Ⅱ卷二、填空题:本题共4个小题;每个小题3分,共12分,把正确答案填在横线上.15.(2020·福建省福州延安中学八年级期中)已知点Р(a ,3)和点Q (4,b )关于x 轴对称,则()2021a b +=________.16.(2022·福建省龙岩市永定区第二初级中学九年级期中)如图,将一个正六边形与一个正五边形如图放置,顶点A 、B 、C 、D 四点共线,E 为公共顶点.则∠BEC =_____.17.(2021·福建·福州教院二附中八年级期末)如图,将等边△ABC 的三条边向外延长一倍,得到第一个新的111A B C △,第二次将等边111A B C △的三边向外延长一倍,得到第二个新的222A B C △,依此规律继续延长下去,若△ABC 的面积01S =,则第2022个新的三角形的面积2022S 为________18.(2021·江苏南京·八年级阶段练习)如图,已知△ABC ,AB =AC =10cm ,∠B =∠C ,BC =8cm ,点D 为AB 的中点.如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段AC 上由C 点向A 点运动.若点Q 的运动速度为v cm/s ,则当△BPD 与△CQP 全等时,v 的值为_______cm/s .三、解答题:本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分.19.(2021·重庆·巴川初级中学校八年级期中)如图,已知点B ,E ,C ,F 在一条直线上,BE =CF ,AC DE ∥,A D ∠=∠.(1)求证:△ABC ≌△DFE ; (2)若BF =12,EC =4,求BC 的长.20.(2019·北京市八一中学八年级期中)在直角坐标系中,ABC 的三个顶点的位置如图所示.(1)请画出ABC 关于y 轴对称的A B C '''(其中A ',B ',C '分别是A ,B ,C 的对应点,不写画法); (2)直接写出A ',B ',C '三点的坐标:A '( ),B '( ),C '( )(3)在x 轴上找出点P ,使得点P 到点A 、点B 的距离之和最短(保留作图痕迹)(4)点Q 在坐标轴上,且满足BCQ △是等腰三角形,则所有符合条件的Q 点有__________个.21.(2022·黑龙江大庆·八年级期末)如图△ABC 为等边三角形,直线a ∥AB ,D 为直线BC 上任一动点,将一60°角的顶点置于点D 处,它的一边始终经过点A ,另一边与直线a 交于点E .(1)若D 恰好在BC 的中点上(如图1) ①求证CD =CE ;②求证:△ADE 是等边三角形;(2)若D 为直线BC 上任一点(如图2)其他条件不变,“△ADE 是等边三角形”的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.22.(2022·江苏·宜兴外国语学校八年级阶段练习)(1)如图,在7×6的方格中,△ABC 的顶点均在格点上.试只用不带刻度的直尺,按要求画出线段EF (E ,F 均为格点),各画出一条即可.(2)如图,△ABC 的顶点均在正方形网格格点上.只用不带刻度的直尺,作出△ABC 的角平分线BD (不写作法,保留作图痕迹).23.(2022·河南信阳·八年级期中)我们通过“三角形全等的判定”的学习,可以知道“两边和它们的夹角分别相等的两个三角形全等”是一个基本事实,用它可以判定两个三角形全等;而满足条件“两边和其中一边所对的角分别相等”的两个三角形却不一定全等.下面请你来探究“两边和其中一边所对的角分别相等的两个三角形不一定全等”.探究:已知△ABC ,求作一个△DEF ,使EF =BC ,∠F =∠C ,DE =AB (即两边和其中一边所对的角分别相等).(1)动手画图:请依据下面的步骤,用尺规完成作图过程(保留作图痕迹): ①画EF =BC ;②在线段EF 的上方画∠F =∠C ; ③画DE =AB ;④顺次连接相应顶点得所求三角形.(2)观察:观察你画的图形,你会发现满足条件的三角形有____个;其中三角形____(填三角形的名称)与△ABC 明显不全等;(3)小结:经历以上探究过程,可得结论:______.24.(2021·重庆·巴川初级中学校八年级期中)如图,△ABC 中,点D 在边BC 延长线上,100ACB ∠=︒,∠ABC 的平分线交AD 于点E ,过点E 作EH ⊥BD ,垂足为H ,且50CEH ∠=︒.(1)求∠ACE 的度数; (2)求证:AE 平分∠CAF ; (3)若AC+CD =14,AB =8.5,且21ACDS=,求△ABE 的面积.25.(2022·全国·八年级专题练习)(1)如图①,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCED 内部点A '的位置时,∠A 、∠1、∠2之间有怎样的数量关系?并说明理由.(2)如图②,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCED 外部点A '的位置时,∠A 、∠1、∠2之间有怎样的数量关系?并说明理由.(3)如图③,把四边形ABCD 沿EF 折叠,当点A 、D 分别落在四边形BCFE 内部点A '、D 的位置时,你能求出∠A '、∠D 、∠1与∠2之间的数量关系吗?并说明理由.26.(2021·辽宁葫芦岛·八年级期中)如图,在三角形ABC 中,∠ABC =90°,AB =BC ,点A ,B 分别在坐标轴上.(1)如图①,若点C 的横坐标为﹣3,点B 的坐标为 ;(2)如图②,若x 轴恰好平分∠BAC ,BC 交x 轴于点M ,过点C 作CD 垂直x 轴于D 点,试猜想线段CD 与AM 的数量关系,并说明理由;(3)如图③,OB =BF ,∠OBF =90°,连接CF 交y 轴于P 点,点B 在y 轴的正半轴上运动时,△BPC 与△AOB 的面积比是否变化?若不变,直接写出其值,若变化,直接写出取值范围.2022-2023学年八年级上学期期中考前必刷卷01(人教版2022)数学·全解全析【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:选项A、B、D不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项C能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.C【分析】根据△ABC△△DEF,△FED=15°,得△CBA=15°,再根据三角形内角和即可得答案.【详解】解:△△ABC△△DEF,△FED=15°,△△CBA=△FED=15°,△△A=132°,△△C=180°-132°=15°=33°,故选:C.【点睛】本题考查了全等三角形的性质,三角形的内角和,解题的关键是掌握三角形全等的性质.3.A【分析】先根据非负数的性质,求出a、b的值,进一步根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,从而确定c的可能值.【详解】解:△|a﹣,△a﹣5=0,a=5;b﹣2=0,b=2;则5﹣2<c<5+2,3<c<7,6符合条件;故选:A.【点睛】本题考查非负数的性质和三角形三条边的关系,准确求出a、b的值是解题的关键.4.D【分析】根据全等三角形的判定定理逐项判定即可.【详解】解:A 、△C D ∠=∠,BAC BAD ∠=∠,AB =AB ,△ABC ABD △≌△(AAS ),正确,故此选项不符合题意;B 、△BC BD =,AC AD =,AB =AB ,△ABC ABD △≌△(SSS ),正确,故此选项不符合题意; C 、△BAC BAD ∠=∠,ABC ABD ∠=∠,AB =AB ,△ABC ABD △≌△(ASA ),正确,故此选项不符合题意;D 、BD BC =,BAC BAD ∠=∠,AB =AB ,两边以及一边对角对应相等,不能判定ABC ABD △≌△,故此选项符合题意;故选:D .【点睛】本题考查全靠等三角形的判定,熟练掌握全靠三角形判定定理:SSS ,SAS ,ASA ,AAS ,HL 是解题的关键. 5.D【分析】若使PA +PC =BC ,则PA =PB ,点P 在线段AB 的垂直平分线上,需要做线段AB 的垂直平分线.【详解】解:A.由作图可知BA =BP ,△BC =BP +PC =BA +PC ,故A 不符合题意; B.由作图可知PA =PC ,△BC =BP +PC =BP +PA ,故B 不符合题意; C.由作图可知AC =PC ,△BC =BP +PC =BP +AC ,故C 不符合题意; D.由作图可知PA =PB ,△BC =BP +PC =PA +PC ,故D 符合题意; 故选:D.【点睛】本题考查了垂直平分线的性质及作图,熟练掌握垂直平分线的作图方法是解题关键. 6.C【分析】设△O=x ,进而根据三角形外角的性质表示出△2,即可表示出△3,同理表示出△4,可得△5,再表示出△6,即可△7,最后根据△8=△O +△7得出答案即可. 【详解】设△O=x ,△△2是△ABO 的外角,且△O =△1, △△2=△O +△1=2x , △△3=△2=2x . △△4是△BCO 的外角, △△4=△O +△3=3x , △△5=△4=3x . △△6是△CDO 的外角, △△6=△O +△5=4x , △△7=△6=4x .△△8是△DEO 的外角, △△8=△O +△7=5x , 即5x =90°, 解得x =18°. 故选:C .【点睛】本题主要考查了三角形的外角的性质,根据三角形外角的性质得出待求角之间的等量关系是解题的关键. 7.B【分析】根据垂直平分线的性质可得EC =AE ,据此即可作答. 【详解】△ED 是边AC 的垂直平分线, △AE =EC ,△AB =10厘米,BC =8厘米,△BC +CE +EB =BC +AE +EB =BC +AB =18厘米, 即△BEC 的周长为18厘米, 故选:B .【点睛】本题主要考查了垂直平分线的性质,根据垂直平分线的性质可得EC =AE ,是解答本题的关键. 8.D【分析】过O 点作⊥OD AB 于D ,OE BC ⊥于E ,OF CA ⊥于F ,如图,利用角平分线的性质得到OD OE OF ==,然后根据三角形面积公式得到ABOS:BCO S △:CAOS AB =:BC :AC .【详解】过O 点作⊥OD AB 于D ,OE BC ⊥于E ,OF CA ⊥于F ,如图,点O 是ABC 三条角平分线的交点, OD OE OF ∴==,ABO S∴:BCO S △:12CAOSAB OD ⎛⎫=⋅ ⎪⎝⎭:12OE BC ⎛⎫⋅ ⎪⎝⎭:12OF AC AB ⎛⎫⋅= ⎪⎝⎭:BC :15AC =:20:253=:4:5.故选:D .【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了三角形的面积公式. 9.B【分析】根据三角形外角的性质得30DAC ∠=︒,再利用含30角的直角三角形的性质可得CD的长. 【详解】解:AB AC =,15B ∠=︒,15ACB B ∴∠=∠=︒,30DAC ∴∠=︒,CD 是腰AB 上的高, CD AB ∴⊥,122CD AC ∴==, 故选:B【点睛】本题主要考查了等腰三角形的性质,含30角的直角三角形的性质等知识,求出30DAC ∠=︒是解题的关键.10.C【分析】利用平行线的性质和角平分线的定义得到△EBD =△EDB ,证出ED =EB ,同理DF =FC ,则△AEF 的周长即为AB +AC ,可得出答案. 【详解】解:△EF ∥BC , △△EDB =△DBC , △BD 平分△ABC , △△ABD =△DBC , △△EBD =△EDB , △ED =EB , 同理:FD =FC ,△AE +AF +EF =AE +EB +AF +FC =AB +AC =30cm , 即AB +AC =30cm , 故选:C .【点睛】本题考查了等腰三角形的判定和性质、平行线的性质等知识,证出ED =EB ,FD =FC 是解题的关键. 11.B【分析】根据三角形内角和定理可求△B +△C ,根据垂直平分线性质,EA =EB ,NA =NC ,则△EAB =△B ,△NAC =△C ,从而可得△BAC =△BAE +△NAC -△EAN =△B +△C -△EAN ,即可得到△EAN =△B +△C -△BAC ,即可得解. 【详解】解:△△BAC =70︒ , △△B +△C =18070110︒︒︒﹣= , △AB 的垂直平分线交BC 边于点E ,AC 的垂直平分线交BC 边于点N , △EA =EB ,NA =NC ,△△EAB =△B ,△NAC =△C ,△△BAC =△BAE +△NAC -△EAN =△B +△C -△EAN , △△EAN =△B +△C -△BAC , =11070︒︒﹣ =40︒. 故选:B .【点睛】本题主要考查了三角形的内角和,线段垂直平分线的性质,角的和差关系,能得到求△EAN 的关系式是关键. 12.D【分析】①根据作图的过程可以判定AD 是△BAC 的角平分线;②利用角平分线的定义可以推知△CAD =30°,则由直角三角形的性质来求△ADC 的度数;③利用等角对等边可以证得△ADB 的等腰三角形,由等腰三角形的“三线合一”的性质可以证明点D 在AB 的中垂线上;④利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比. 【详解】解:①根据作图的过程可知,AD 是△BAC 的平分线. 故①正确; ②如图,△在△ABC 中,△C =90°,△B =30°, △△CAB =60°.又△AD 是△BAC 的平分线, △△1=△2=12△CAB =30°,△△3=90°-△2=60°,即△ADC =60°. 故②正确; ③△△1=△B =30°, △AD =BD ,△点D 在AB 的中垂线上. 故③正确;④△如图,在直角△ACD 中,△2=30°, △CD =12AD ,△BC =CD +BD =12AD +AD =32AD ,DACS=12AC •CD =14AC •AD .△ABCS =12AC •BC =12AC •32AD =34AC •AD .△DACS:ABCS=14AC •AD :34AC •AD =1:3. 故④正确.综上所述,正确的结论是:①②③④, 故选D .【点睛】本题考查了角平分线的判定、线段垂直平分线的判定和性质、含30度角的直角三角形的性质以及作图-基本作图.解题时,需要熟悉线段垂直平分线的判定和性质. 13.B【分析】根据题意先过点Q 作AD 的延长线的垂线QF ,证明AEP ≅CFQ ,再证明DEP ≅DFQ 得到DE =DF ,最后可以得到DE =12AC ,求出最终结果. 【详解】如图,过点Q 作AD 的延长线的垂线于点F , △△ABC 是等边三角形, △△A =△ACB =60°, △△ACB =△QCF , △△QCF =60°, 又△PE △AC ,QF △AC , △△AEP =△CFQ =90° , 又AP =CQ ,△△AEP △△CFQ (AAS ) , △AE =CF ,PE =QF , 同理可证,△DEP △△DFQ , △DE =DF ,△AC =AE +DE +CD =DE +CD +CF =DE +DF =2DE , △DE =12AC =12 . 故选B .【点睛】本题属于全等三角形的综合问题,考查作辅助线、全等三角形的判定和等边三角形的性质,熟练掌握和运用全等三角形的判定定理是关键.14.C【分析】利用ADE 为等腰直角三角形得到45EAD EDA ∠∠==︒,EA ED =,则135EAC EDB ∠∠==︒,则可根据“SAS ”判断ACE △DBE SAS (),从而对①进行判断;再利用AEC DEB ∠∠=证明90BEC DEA ∠∠==︒,则可对②进行判断;由于9090DEF BED AEC ∠∠∠=︒-=︒-,90DFE AFC ACE ∠∠∠==︒-,而AC AD AE =>得到AEC ACE ∠∠>,所以DEF DFE ∠∠<,于是可对③进行判断;由ACE △DBE 得到ACE DBE S S =,由BD AD =得到DAE DBE S S =,所以ACE DAE S S =,从而可对④进行判断.【详解】解:2AB AC =,点D 是线段AB 的中点,BD AD AC ∴==, ADE 为等腰直角三角形,45EAD EDA ∠∠∴==︒,EA ED =,4590135EAC EAD BAC ∠∠∠=+=︒+︒=︒,180********EDB EDA ∠∠=︒-=︒-︒=︒, EAC EDB ∠∠∴=,在ACE 和DBE 中,EA ED EAC EDB AC DB =⎧⎪∠=∠⎨⎪=⎩,ACE ∴△SAS DBE (),所以①正确;AEC DEB ∠∠∴=,90BEC BED DEC AEC DEC DEA ∠∠∠∠∠∠∴=+=+==︒,BE EC ∴⊥,所以②正确;90DEF BED ∠∠=︒-.而AEC DEB ∠∠=,90DEF AEC ∠∠∴=︒-,90DFE AFC ACE ∠∠∠==︒-,而AC AD AE =>,AEC ACE ∠∠∴>,DEF DFE ∠∠∴<,DE DF ∴>,所以③错误; ACE △DBE ,ACE DBE S S ∴=,BD AD =,DAE DBE S S ∴=,ACE DAE SS ∴=, DEF ACFS S ∴=,所以④正确. 故选:C .【点睛】本题考查全等三角形的判定:熟练掌握全等三角形的5种判定方法是解决问题的关键.15.1【分析】直接利用关于x 轴对称点的性质(横坐标不变,纵坐标互为相反数)得出a ,b 的值,进而得出答案.【详解】解:△点P (a ,3)和点Q (4,b )关于x 轴对称,△a =4,b =-3,则20212021()(43)1a b +=-=.故答案为:1.【点睛】此题主要考查了关于x 轴对称点的性质,正确得出a ,b 的值是解题关键. 16.48°##48度【分析】根据多边形的内角和,分别得出△ABE =120°,△DCE =108°,再根据平角的定义和三角形的内角和算出△BEC .【详解】解:由多边形的内角和可得,△ABE =()621806-⨯︒ =120°, △△EBC =180°﹣△ABE =180°﹣120°=60°,△△DCE =()521805-⨯︒=108°,△△BCE =180°﹣108°=72°,由三角形的内角和得:△BEC =180°﹣△EBC ﹣△BCE =180°﹣60°﹣72°=48°.故答案为:48°.【点睛】本题考查了多边形的内角和定理,掌握定理是解题的关键.17.20227【分析】连接1CB ,根据等底同高可得1111112,2,2B BC A CC A AB S S S ===,从而可得17S =,同样的方法可得227S =,再归纳类推出一般规律即可得.【详解】解:如图,连接1CB ,1AB BB =,ABC 的面积01S =,101BCB ABC S S S ∴===,又1BC CC =,1111B CC BCB SS ∴==, 112B BC S ∴=,同理可得:11112,2A CC A AB SS ==, 111122217A B C S S ∴==+++=,同理可得:2221112277A B C A B C S S S ===,归纳类推得:7n n n A B n C n S S==,其中n 为非负整数,202220227S ∴=, 故答案为:20227.【点睛】本题考查了图形类规律探索、三角形中线与面积,正确归纳类推出一般规律是解题关键.18.3或154【分析】分情况讨论BPD △,CQP 全等:①设运动了t 秒,BPD CQP ≅△△,得BP CQ =,3t vt =,算出v ;②设运动了t 秒,BDP QCP ≅,得BD CQ =,PB PC =;得34t =,5vt =,解出v ,即可.10AB AC ==,8BC =【详解】①设运动了t 秒,BP CQ =,BPD CQP ≅△△,△点D 是AB 的中点 △152BD AB == △BD PC =△()853BP cm =-=△B 点向C 点运动了33t =,1t =秒△BPD CQP ≅△△△BP CQ =△31v =⨯△3/s v cm =②设运动了t 秒,当BD CQ =时,BDP QCP ≅△5BD =,142PB PC BC === △34t = 解得43t =秒 △BD CQ = △453v =⨯ △15/s 4v cm = 故答案为:3或154. 【点睛】本题考查全等三角形、动点问题,解题的关键是以静制动,利用全等三角形的性质进行解答.19.(1)证明见解析(2)8【分析】(1)先根据平行线的性质可得ACB DEF ∠=∠,再根据线段和差可得BC FE =,然后根据AAS 定理即可得证;(2)先根据线段和差可得8BE CF +=,从而可得4BE =,再根据BC BE EC =+即可得.(1)证明:AC DE ∥,ACB DEF ∠=∠∴,BE CF =,BE CE CF CE ∴+=+,即BC FE =,在ABC 和DFE △中,A D ACB DEF BC FE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS ABC DFE ∴≅.(2)解:12,4BF EC ==,8BE CF BF EC ∴+=-=,BE CF =,4BE ∴=,448∴=+=+=.BC BE EC【点睛】本题考查了平行线的性质、三角形全等的判定,线段和差,熟练掌握三角形全等的判定方法是解题关键.20.(1)见解析;(2)4,1;2,3;−1,−2;(3)见解析;(4)10.【分析】(1)由点的对称性,作出图形即可;(2)关于y轴对称的点的坐标特点:横坐标变为相反数,纵坐标不变,即可求解;(3)作A点关于x轴的对称点A'',连接A B''交x轴于点P,P点即为所求;(4)利用两圆一线确定等腰三角形,作出图形即可求解.(1)如图1:(2)由图可知A(−4,1),B(−2,3),C(1,−2),△A点关于y轴对称的点为(4,1),B点关于y轴对称的点为(2,3),C点关于y轴对称的点为(−1,−2),△A′(4,1),B′(2,3),C′(−1,−2),故答案为:4,1;2,3;−1,−2;(3)如图2:作A点关于x轴的对称点A'',连接A B''交x轴于点P,△AP BP A P BP A B ''''+=+=,此时PA +PB 值最小;(4)如图:以B 为圆心,BC 长为半径做圆,此圆与坐标轴有4个交点,以C 为圆心,BC 长为半径做圆,此圆与坐标轴有4个交点,作线段BC 的垂直平分线,此线与坐标轴有2个交点,△△BCQ 是等腰三角形时,Q 点坐标有10个,故答案为:10.【点睛】本题考查轴对称作图,图形与坐标,熟练掌握轴对称的性质,垂直平分线的性质,等腰三角形的性质,两圆一线确定等腰三角形的方法是解题的关键.21.(1)①见解析;②见解析(2)成立,理由见解析【分析】(1)①利用等边三角形的性质得到BD=CD,AD△BC,进一步求出△EDC=30°,然后根据三角形内角和定理推出△DOC=90°,再根据三角形的外角性质可求出△DEC=30°,从而得出△EDC=△DEC,再根据“等角对等边”即可证明结论;②由SAS证明△ABD△△ACE得出AD=AE,然后根据“有一个角是60°的等腰三角形是等边三角形”可判断出△ADE是等边三角形的结论;(1)在AC上取点F,使CF=CD,连结DF,先证得△ADF△△EDC得出AD=ED,再运用已证的结论“△ADE=60°”和根据“有一个角是60°的等腰三角形是等边三角形”可证明出△ADE是等边三角形的结论.(1)①证明:△a∥AB,且△ABC为等边三角形,△△ACE=△BAC=△ABD=60°,AB=AC,△D是BC中点,即BD=CD,△AD△BC,△△ADC=90°,△△ADE=60°,△△EDC=△ADC-△ADE=90°-60°=30°,△△DOC=180°-△EDC-△ACB=90°,△△DEC=△DOC-△ACE=90°-60°=30°,△△EDC=△DEC,△CD=CE;②△BD=CD,CD=CE,△BD=CE,在△ABD和△ACE中,△AB ACABD ACEBD CE=⎧⎪∠=∠⎨⎪=⎩,△△ABD△△ACE(SAS),△AD=AE,又△△ADE=60°,△△ADE是等边三角形;(2)解:“△ADE是等边三角形”的结论仍然成立.证明如下:在AC上取点F,使CF=CD,连结DF,如图2所示:,△△ACB=60°,△△DCF是等边三角形,△DF=CD,△△ADF+△FDE=△EDC+△FDE=60°,△△ADF=△EDC,△△DAF+△ADE=△DEC+△ACE,△ACE=△ADE=60°,△△DAF=△DEC,△△ADF△△EDC(AAS),△AD=ED,又△△ADE=60°,△△ADE是等边三角形.【点睛】本题考查的是等边三角形的判定与性质、全等三角形的判定与性质、等腰三角形的判定与性质、三角形内角和定理、三角形的外角性质、平行线的性质.解题关键是注意熟练掌握及熟练等边三角形的判定定理与性质定理、全等三角形的判定与性质.22.(1)见解析;(2)见解析【分析】(1)根据题目要求,利用数形结合的思想画出线段EF即可;(2)取格点Q,连接AQ,取AQ的中点J,作射线BJ交AC于点D,线段BD即为所求.【详解】解:(1)如图,线段EF即为所求:(2)如图,线段BD即为所求.【点睛】本题考查作图-应用与设计作图,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.23.(1)见解析';(2)2,D EF(3)两边和其中一边所对的角分别相等的两个三角形不一定全等【分析】(1)根据尺规作线段,作一个角等于已知角的步骤作图即可;(2)根据所画图形填空即可;(3)根据探究过程结合全等三角形的判定可得出结论.(1)解:如图所示:(2)'(填三角形的名称)与观察所画的图形,发现满足条件的三角形有2个;其中三角形D EF△ABC明显不全等,';故答案为:2,D EF(3)经历以上探究过程,可得结论:两边和其中一边所对的角分别相等的两个三角形不一定全等,故答案为:两边和其中一边所对的角分别相等的两个三角形不一定全等.【点睛】本题考查了尺规作图,全等三角形的判定,熟练掌握尺规作图的方法和全等三角形的判定定理是解题的关键.24.(1)40︒(2)证明见解析(3)514【分析】(1)先求出80ACD ∠=︒,再根据直角三角形的两个锐角互余可得40DCE ∠=︒,然后根据ACE ACD DCE ∠=∠-∠即可得;(2)过点E 作EM BF ⊥于点M ,作EN AC ⊥于点N ,先根据角平分线的性质可得,EM EH EN EH ==,从而可得EM EN =,再根据角平分线的判定即可得证; (3)过点E 作EM BF ⊥于点M ,作EN AC ⊥于点N ,则EM EH EN ==,设EM EH EN x ===,再根据21ACE DCE ACD S S S +==和三角形的面积公式可得x 的值,从而可得EM 的值,然后利用三角形的面积公式即可得.(1)解:100ACB ∠=︒,18080ACD ACB ∴∠=︒-∠=︒,,50EH BD CEH ⊥∠=︒,9040DCE CEH ∴∠=︒-∠=︒,40ACE ACD DCE ∴∠=∠-∠=︒.(2)证明:如图,过点E 作EM BF ⊥于点M ,作EN AC ⊥于点N ,BE 平分ABC ∠,,EM BF EH BD ⊥⊥,EM EH ∴=,由(1)可知,40ACE DCE ∠=∠=︒,即CE 平分ACD ∠, EN EH ∴=,EM EN ∴=,又点E 在CAF ∠的内部,AE ∴平分CAF ∠.(3)解:如图,过点E 作EM BF ⊥于点M ,作EN AC ⊥于点N ,由(2)已得:EM EH EN ==,设EM EH EN x ===,21ACD S =, 21ACE DCE S S +∴=,112221AC EN CD EH ∴⋅+⋅=,即()1221x AC CD +=, 又14AC CD +=,211223142x AC CD ⨯=∴⨯==+, 3EM ∴=,8.5AB =,ABE ∴的面积为11518.53224AB EM ⋅=⨯⨯=. 【点睛】本题主要考查了角平分线的判定与性质,解题的关键是熟练掌握角平分线的性质定理:角的平分线上的点到角的两边的距离相等.25.(1)2△A =△1+△2;见解析;(2)2△A =△1﹣△2;见解析;(3)2(△A +△D )=△1+△2+360°,见解析【分析】(1)根据翻折的性质表示出△3、△4,再根据三角形的内角和定理列式整理即可得解;(2)先根据翻折的性质以及平角的定义表示出△3、△4,再根据三角形的内角和定理列式整理即可得解;(3)先根据翻折的性质表示出△3、△4,再根据四边形的内角和定理列式整理即可得解.【详解】解:(1)如图,根据翻折的性质,△3=EDA '∠=12(180-△1),△4=DEA '∠=12(180-△2),△△A +△3+△4=180°,△△A +12(180-△1)+12(180-△2)=180°,整理得,2△A =△1+△2;(2)如图,同理,根据翻折的性质,△3=12(180-△1),△4=12(180+△2),△△A+△3+△4=180°,△△A+12(180-△1)+12(180+△2)=180°,整理得,2△A=△1-△2;(3)如图,同理,根据翻折的性质,△3=12(180-△1),△4=12(180-△2),△△A+△D+△3+△4=360°,△△A+△D+12(180-△1)+12(180-△2)=360°,整理得,2(△A+△D)=△1+△2+360°.【点睛】本题主要考查了三角形的内角和定理,多边形的内角与外角,翻折的性质,整体思想的利用是解题的关键.26.(1)(0,3);(2)AM =2CD ,理由见解析;(3)不变,12【分析】(1)过点C 作CH △y 轴于H ,由全等三角形的判定定理可得ABO BCH ≌,可得3CH BO ==,即可求解; (2)延长AB ,CD 交于点N ,由全等三角形的判定定理可得ADN ADC ≌,得出CD DN =,再依据全等三角形判定定理证明ABM CBN ≌,可得AM CN =,即可得结论;(3)如图③,作CG △y 轴于G ,由全等三角形判定定理可得BAO CBG ≌,得出BG AO =,CG OB =,再依据全等三角形的判定可证CGP FBP ≌,得出PB PG =,可得1122PB BG AO ==,由三角形面积公式可求解. 【详解】解:(1)如图①,过点C 作CH △y 轴于H ,△90BHC ABC ∠=︒=∠,△90BCH CBH ABH CBH ∠+∠=∠+∠=︒,△BCH ABH ∠=∠,△点C 的横坐标为﹣3,△3CH =,在ABO 和BCH 中,BCH ABH BHC AOB BC AB ∠=∠⎧⎪∠∠⎨⎪=⎩=,△ABO BCH ≌,△3CH BO ==,△点B (0,3);故答案为:(0,3);(2)2AM CD =,如图②,延长AB ,CD 交于点N ,△AD 平分BAC ∠,△BAD CAD ∠=∠,在ADN 和ADC 中,90BAD CAD AD AD ADN ADC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, △ADN ADC ≌,△CD DN =,△2CN CD =,△90BAD ∠+∠=︒N ,90BCN ∠+∠=︒N ,△BAD BCN ∠=∠,在ABM 和CBN 中,BAM BCN BA BC ABM CBN ∠=∠⎧⎪=⎨⎪∠=∠⎩, △ABM CBN ≌,△AM CN =,△2AM CD =;(3)△BPC 与△AOB 的面积比不会变化,理由:如图③,作CG △y 轴于G ,△90BAO OBA ∠+∠︒=,90OBA CBG ∠+∠︒=,△BAO CBG ∠∠=,在BAO 和CBG 中,90AOB BGC BAO CBG AB BC ∠=∠=︒⎧⎪∠∠⎨⎪=⎩=,△BAO CBG ≌,△BG AO =,CG OB =,△OB BF =,△BF GC =,在CGP 和FBP 中,90CPG FPB CGP FBP CG BF ∠=∠⎧⎪∠∠=︒⎨⎪=⎩=,△CGP FBP ≌,△PB PG =, △1122PB BG AO ==, △12AOB S OB OA ∆=⨯⨯,111222PBC S PB GC OB OA ∆=⨯⨯=⨯⨯⨯, △12PBC AOB S S ∆∆=:. 【点睛】题目主要考查全等三角形的判定定理和性质,理解题意,作出相应辅助线,充分运用全等三角形的判定是解题关键.。
广东省广州市黄埔区2023-2024学年八年级上学期期中考试数学试卷(11月)(含解析)
2023年11月-黄埔期中考-八年级数学卷一.选择题(共10小题,每题3分,共30分)1.下面各图形不是轴对称图形的是( )A.圆B.长方形C.等腰梯形D.平行四边形2.如图,有A、B、C三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( )A.∠A、∠B两内角的平分线的交点处B.AC、AB两边高线的交点处C.AC、AB两边中线的交点处D.AC、AB两边垂直平分线的交点处3.如图,要测量池塘两岸相对的两点A、B的距离,可以在池塘外取AB的垂线BF上的两点C、D,使得BC=CD,再画出BF的垂线DE,使点E与点A、C在一条直线上,这是测得线段DE 的长就是线段AB的长,其原理运用到三角形全等的判定是( )A.ASA B.SSS C.HL D.SAS4.如图,在△ABC中,AC的垂直平分线交AB于点D,CD平分∠ACB,若∠A=50°,则∠B的度数为( )A.25°B.30°C.35°D.40°5.设等腰三角形的一边长为5,另一边长为10,则其周长为( )A.15B.20C.25D.20或256.如图,△ABC≌△DEC,点E在线段AB上,∠B=75°,则∠ACD的度数为( )A.20°B.25°C.30°D.40°7.如图,在△ABC中,分别以点A和点C为圆心,以大于AC的长为半径作弧,两弧相交于M、N 两点;作直线MN分别交BC、AC于点D、E.若AE=6cm,△ABD的周长为26cm,则△ABC 的周长为( )A.32cm B.38cm C.44cm D.50cm8.小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于( )A.280°B.285°C.290°D.295°9.如图,等边△ABC中,AD为BC边上的高,点M、N分别在AD、AC上,且AM=CN,连BM、BN,当BM+BN最小时,∠MBN的度数为( )A.15°B.22.5°C.30°D.47.5°10.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过O点作EF∥BC交AB于点E,交AC于点F,过点O作OD⊥AC于D,下列四个结论:①EF=BE+CF;②∠BOC=90°+∠A;③点O到△ABC各边的距离相等;④设OD=m,AE+AF=n,则S△AEF=mn,正确的结论有( )个.A.1B.2C.3D.4二.填空题(共6小题,每题3分,共18分)11.已知点P(﹣a+3b,3)与点Q(﹣5,a﹣2b)关于x轴对称,则a= b = .12.正n边形的每个内角都是120°,这个正n边形的对角线条数为 条.13.如图,在平面直角坐标系中,已知点A(0,3),点B(9,0),且∠ACB=90°,CA=CB,则点C的坐标为 .14.如图,△ABC中,∠A=60°,将△ABC沿DE翻折后,点A落在BC边上的A′处,如果∠A′EC=70°,那么∠ADE= 度.15.如图所示,∠BOC=10°,点A在OB上,且OA=1,按下列要求画图:以点A为圆心、1为半径向右画弧交OC于点A1得到第1条线段AA1;再以点A1为圆心、1为半径向右画弧交OB于点A2,得到第2条线段A1A2;再以点A2为圆心、1为半径向右画弧交OC于点A3,得到第3条线段A2A3…这样画下去,则∠A6A7C的度数为 .16.如图,△ABC中,∠C=90°,AD平分∠BAC,E为AC边上的点,连接DE,DE=DB,下列结论:①∠DEA+∠B=180°;②AB﹣AC=CE;③AC=(AB+CD);④S△ADC=S四边形ABDE,其中一定正确的结论有 (填写序号即可).三.解答题(共8小题,共72分)17.(本题6分)如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F,且BE=CF.求证:AB=AC.18.(本题6分)如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,求证:∠A =2∠P.19.(本题8分)如图,在正方形网格上的一个△ABC,且每个小正方形的边长为1(其中点A,B,C 均在网格上).(1)画出△ABC关于直线MN对称的△A1B1C1;(2)直接写出△ABC的面积为 ;(3)在直线MN上画出点P,使得PA+PC最小(保留作图痕迹).20.(本题8分)使用直尺与圆规完成下面作图,(不写作法,保留作图痕迹)(1)在AB上找一点P使得P到AC和BC的距离相等;(2)在射线CP上找一点Q,使得QB=QC;(3)若BC=16,则点Q到边AC的距离为 .21.(本题10分)如图,在四边形ABDE中,C是BD边的中点.若AC平分∠BAE,∠ACE=90°,猜想线段AE、AB、DE的长度满足的数量关系为并证明.22.(本题10分)如图,在△ABC中,AC=BC,∠ACB=120°,CD是BC边上的中线,BD的垂直平分线EF交BC于点E,交AB于点F,∠CDG=15°.(1)求证:AG=BD;(2)判断△CDE的形状,并加以证明;(3)若EF=1,求AC边的长.23.(本题12分)对于平面直角坐标系xOy中的线段MN及点Q,给出如下定义:若点Q满足QM=QN,则称点Q为线段MN的“中垂点”;当QM=QN=MN时,称点Q为线段MN的“完美中垂点”.(1)如图1,A(4,0),下列各点中,线段OA的中垂点是 .Q1(1,4),Q2(4,),Q3(2,﹣2)(2)如图2,点A为x轴上一点,若Q(1,)为线段OA的“完美中垂点”,∠QOA=60°写出线段OQ的两个“完美中垂点”是 和 .(3)如图3,若点A为x轴正半轴上一点,点Q为线段OA的“完美中垂点”,点P(0,m)在y轴负半轴上,在线段PA上方画出线段AP的“完美中垂点”M,直接写出MQ= .(用含m的式子表示).并求出∠MQA.24.(本题12分)0在平面直角坐标系中,已知A(a,0),B(0,b),AB=AC,且AB⊥AC,AC 交y轴于点E.(1)如图1,若点C的横坐标为﹣a,求证:AE=CE;(2)如图2,若BE平分∠ABC,点E的坐标为(0,b﹣6),求点C的横坐标;(3)如图3,若a=1,以BC为边在BC的左侧作等边△BCM,当∠BOM=60°时,求OC的长.2023年11月-黄埔期中考-八年级数学卷参考答案与试题解析一.选择题(共10小题)1.下面各图形不是轴对称图形的是( )A.圆B.长方形C.等腰梯形D.平行四边形【解答】解:圆、长方形和等腰三角形都能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,平行四边形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,故选:D.2.如图,有A、B、C三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( )A.∠A、∠B两内角的平分线的交点处B.AC、AB两边高线的交点处C.AC、AB两边中线的交点处D.AC、AB两边垂直平分线的交点处【解答】解:根据线段垂直平分线上的点到线段两个端点的距离相等,超市应建在AC、AB两边垂直平分线的交点处,故选:D.3.如图,要测量池塘两岸相对的两点A、B的距离,可以在池塘外取AB的垂线BF上的两点C、D,使得BC=CD,再画出BF的垂线DE,使点E与点A、C在一条直线上,这是测得线段DE 的长就是线段AB的长,其原理运用到三角形全等的判定是( )A.ASA B.SSS C.HL D.SAS【解答】解:因为证明在△ABC≌△EDC用到的条件是:CD=BC,∠ABC=∠EDC,∠ACB=∠ECD,所以用到的是两角及这两角的夹边对应相等即ASA这一方法.故选:A.4.如图,在△ABC中,AC的垂直平分线交AB于点D,CD平分∠ACB,若∠A=50°,则∠B的度数为( )A.25°B.30°C.35°D.40°【解答】解:∵DE垂直平分AC,∴AD=CD,∴∠A=∠ACD又∵CD平分∠ACB,∴∠ACB=2∠ACD=100°,∴∠B=180°﹣∠A﹣∠ACB=180°﹣50°﹣100°=30°,故选:B.5.设等腰三角形的一边长为5,另一边长为10,则其周长为( )A.15B.20C.25D.20或25【解答】解:分两种情况:当腰为5时,5+5=10,所以不能构成三角形;当腰为10时,5+10>10,所以能构成三角形,周长是:10+10+5=25.故选:C.6.如图,△ABC≌△DEC,点E在线段AB上,∠B=75°,则∠ACD的度数为( )A.20°B.25°C.30°D.40°【解答】解:∵△ABC≌△DEC,∴∠ACB=∠DCE,BC=EC,∴∠ACB﹣∠ACE=∠DCE﹣∠ACE,即∠BCE=∠ACD,∠BEC=∠B=75°,∴∠BCE=180°﹣∠B﹣∠BEC=30°,∴∠ACD=30°.故选:C.7.如图,在△ABC中,分别以点A和点C为圆心,以大于AC的长为半径作弧,两弧相交于M、N 两点;作直线MN分别交BC、AC于点D、E.若AE=6cm,△ABD的周长为26cm,则△ABC 的周长为( )A.32cm B.38cm C.44cm D.50cm【解答】解:∵DE垂直平分线段AC,∴DA=DC,AE+EC=12(cm),∵AB+AD+BD=26(cm),∴AB+BD+DC=26(cm,∴△ABC的周长=AB+BD+BC+AC=26+12=38(cm),故选:B.8.小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于( )A.280°B.285°C.290°D.295°【解答】解:∵∠C=∠F=90°,∠A=45°,∠D=30°,∴∠2+∠3=180°﹣∠D=150°,∵∠α=∠1+∠A,∠β=∠4+∠C,∵∠1=∠2,∠3=∠4,∴∠α+∠β=∠A+∠1+∠4+∠C=∠A+∠C+∠2+∠3=45°+90°+150°=285°,故选:B.9.如图,等边△ABC中,AD为BC边上的高,点M、N分别在AD、AC上,且AM=CN,连BM、BN,当BM+BN最小时,∠MBN的度数为( )A.15°B.22.5°C.30°D.47.5°【解答】解:如图1中,作CH⊥BC,使得CH=BC,连接NH,BH.∵△ABC是等边三角形,AD⊥BC,CH⊥BC,∴∠DAC=∠DAB=30°,AD∥CH,∴∠HCN=∠CAD=∠BAM=30°,∵AM=CN,AB=BC=CH,∴△ABM≌△CHN(SAS),∴BM=HN,∵BN+HN≥BH,∴B,N,H共线时,BM+BN=NH+BN的值最小,如图2中,当B,N,H共线时,∵△ABM≌△CHN,∴∠ABM=∠CHB=∠CBH=45°,∵∠ABD=60°,∴∠DBM=15°,∴∠MBN=45°﹣15°=30°,∴当BM+BN的值最小时,∠MBN=30°,故选:C.10.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过O点作EF∥BC交AB于点E,交AC于点F,过点O作OD⊥AC于D,下列四个结论:①EF=BE+CF;②∠BOC=90°+∠A;③点O到△ABC各边的距离相等;④设OD=m,AE+AF=n,则S△AEF=mn,正确的结论有( )个.A.1B.2C.3D.4【解答】解:∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠ABC,∠OCB=∠ACB,∠A+∠ABC+∠ACB=180°,∴∠OBC+∠OCB=90°﹣∠A,∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+∠A;故②正确;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠OBE,∠OCB=∠OCF,∵EF∥BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∴∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,故①正确;过点O作OM⊥AB于M,作ON⊥BC于N,连接OA,∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴ON=OD=OM=m,∴S△AEF=S△AOE+S△AOF=AE•OM+AF•OD=OD•(AE+AF)=mn;故④正确;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴点O到△ABC各边的距离相等,故③正确.故选:D.二.填空题(共6小题)11.已知点P(﹣a+3b,3)与点Q(﹣5,a﹣2b)关于x轴对称,则a= ﹣19 b= ﹣8 .【解答】解:∵点P(﹣a+3b,3)与点Q(﹣5,a﹣2b)关于x轴对称,∴,解得.故答案为:﹣19,﹣8.12.正n边形的每个内角都是120°,这个正n边形的对角线条数为 9 条.【解答】解:由多边形内角和公式列方程,180°(n﹣2)=120°n解得,n=6.∴该正多边形为正六边形.所以该六边形对角线条数==9(条).故答案为9.13.如图,在平面直角坐标系中,已知点A(0,3),点B(9,0),且∠ACB=90°,CA=CB,则点C的坐标为 (6,6)或(3,﹣3) .【解答】解:如图,当点C在第一象限时,过点C作CE⊥OA,CF⊥OB,∵∠AOB=90°,∴四边形OECF是矩形,∴∠ECF=90°,∵∠ACB=90°,∴∠ACE=∠BCF,在△ACE和△BCF中,,∴△ACE≌△BCF(AAS),∴CE=CF,∵四边形OECF是矩形,∴矩形OECF是正方形,∴OE=OF,∵AE=OE﹣OA=OE﹣3,BF=OB﹣OF=9﹣OF,∴OE=OF=6,∴C(6,6),当点C在第四象限时,过点C'作C'H⊥OA,CG⊥OB,同理得,C'(3,﹣3)故答案为:(6,6)或(3,﹣3).14.如图,△ABC中,∠A=60°,将△ABC沿DE翻折后,点A落在BC边上的A′处,如果∠A′EC=70°,那么∠ADE= 65 度.【解答】解:∵∠A′EC=70°,∴∠AEA′=180°﹣∠A′EC=180°﹣70°=110°,由折叠性质可得:∠A′ED=∠AED=∠AEA′=55°,∵∠A=60°,∴∠ADE=180°﹣∠AED﹣∠A=180°﹣55°﹣60°=65°.故答案为:65.15.如图所示,∠BOC=10°,点A在OB上,且OA=1,按下列要求画图:以点A为圆心、1为半径向右画弧交OC于点A1得到第1条线段AA1;再以点A1为圆心、1为半径向右画弧交OB于点A2,得到第2条线段A1A2;再以点A2为圆心、1为半径向右画弧交OC于点A3,得到第3条线段A2A3…这样画下去,则∠A6A7C的度数为 110° .【解答】解:∵AO=A1A,A1A=A2A1,…;则∠AOA1=∠OA1A,∠A1AA2=∠A1A2A,…;∵∠BOC=10°,∴∠A1AB=2∠BOC=20°同理可得∠A2A1C=30°,∠A3A2B=40°,∠A4A3C=50°,∠A5A4B=60°,∠A6A5C=70°,∠A7A6B=80°,∴∠A6A7O=∠A7A6B﹣∠BOC=70°∴∠A6A7C=180°﹣∠A6A7O=110°,故答案为:110°.16.如图,△ABC中,∠C=90°,AD平分∠BAC,E为AC边上的点,连接DE,DE=DB,下列结论:①∠DEA+∠B=180°;②AB﹣AC=CE;③AC=(AB+CD);④S△ADC=S四边形ABDE,其中一定正确的结论有 ①②④ (填写序号即可).【解答】解:如图,过D作DF⊥AB于F,∵∠C=90°,AD是角平分线,∴DC=DF,∠C=∠DFB,又∵DE=DB,∴Rt△CDE≌Rt△FDB(HL),∴∠B=∠CED,∠CDE=∠FDB,CE=BF,又∵∠DEA+∠DEC=180°,∴∠DEA+∠B=180°,故①正确;∵AD=AD,DC=DF,∴Rt△CDA≌Rt△FDA(HL),∴AC=AF,∴AB﹣AC=AB﹣AF=BF=CE,故②正确;∵AC=AF,∴AB+AE=(AF+FB)+(AC﹣CE)=AF+AC=2AC,∴AC=(AB+AE),∵CD≠AE,∴AC≠(AB+CD),故③错误;∵Rt△CDE≌Rt△FDB,∴S△CDE=S△FDB,∴S四边形ABDE=S四边形ACDF,又∵△ACD≌△AFD,∴S△ACD=S△ADF,∴S△ADC=S四边形ACDF=S四边形ABDE,故④正确;∴一定正确的结论有①②④.故答案为:①②④.三.解答题(共8小题)17.如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F,且BE=CF.求证:AB=AC.【解答】证明:∵D是BC的中点,∴BD=CD,∵DE⊥AB,DF⊥AC,∴△BED和△CFD都是直角三角形,在△BED和△CFD中,,∴△BED≌△CFD(HL),∴∠B=∠C,∴AB=AC(等角对等边).18.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,求证:∠A=2∠P.【解答】证明:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠PBC=∠ABC,∠PCM=∠ACM,∵∠ACM是△ABC的外角,∠PCM是△PBC的外角,∴∠PCM=∠P+∠PBC,∠ACM=∠A+∠ABC,∴∠ACM=∠P+∠ABC,∴(∠A+∠ABC)=∠P+∠ABC,∠A+∠ABC=∠P+∠ABC,∠A=∠P,∴∠A=2∠P.19.如图,在正方形网格上的一个△ABC,且每个小正方形的边长为1(其中点A,B,C均在网格上).(1)画出△ABC关于直线MN对称的△A1B1C1;(2)直接写出△ABC的面积为 5.5 ;(3)在直线MN上画出点P,使得PA+PC最小(保留作图痕迹).【解答】解:(1)如图,△A1B1C1即为所求;故答案为:5.5;(3)如图,点P即为所求.20.使用直尺与圆规完成下面作图,(不写作法,保留作图痕迹)(1)在AB上找一点P使得P到AC和BC的距离相等;(2)在射线CP上找一点Q,使得QB=QC;(3)若BC=16,则点Q到边AC的距离为 8 .【解答】解:(1)如图所示,点P即为所求;(2)如图所示,点Q即为所求;(3)如图所示,设线段BC的垂直平分线交BC于点D,∴∠QDB=90°=∠ACB,,∴AC∥QD,∴点Q到AC的距离为CD的长,即为8(平行线间间距相等),故答案为:8.21.如图,在四边形ABDE中,C是BD边的中点.若AC平分∠BAE,∠ACE=90°,猜想线段AE、AB、DE的长度满足的数量关系为并证明.【解答】解:AE=AB+DE;理由:在AE上取一点F,使AF=AB.∵AC平分∠BAE,∴∠BAC=∠FAC.在△ACB和△ACF中,,∴△ACB≌△ACF(SAS),∴BC=FC,∠ACB=∠ACF.∵C是BD边的中点.∴BC=CD,∴CF=CD.∵∠ACE=90°,∴∠ACB+∠DCE=90°,∠ACF+∠ECF=90°∴∠ECF=∠ECD.在△CEF和△CED中,,∴△CEF≌△CED(SAS),∴EF=ED.∵AE=AF+EF,∴AE=AB+DE.22.如图,在△ABC中,AC=BC,∠ACB=120°,CD是BC边上的中线,BD的垂直平分线EF 交BC于点E,交AB于点F,∠CDG=15°.(1)求证:AG=BD;(2)判断△CDE的形状,并加以证明;(3)若EF=1,求AC边的长.【解答】证明:∵AC=BC,∠ACB=120°,CD是BC边上的中线,∴CD⊥AB,∠A=∠B=(180°﹣∠ACB)=30°,AD=BD,∴∠ADC=∠CDB=90°,∵∠CDG=15°,∴∠ADG=90°﹣∠CDG=75°,∴∠AGD=180°﹣∠A﹣∠ADG=75°,∴∠AGD=∠ADG,∴AG=AD,∴AG=BD;(2)结论:△CDE是等边三角形.∵EF垂直平分线段BD,∴DE=EB,∵∠B=30°,∴∠EDB=∠B=30°,∴∠CDE=90°﹣∠EDB=60°,又∵AC=BC,∠ACB=120°,CD是BC边上的中线,∴∠DCB=∠ACB=60°,∴∠DCE=∠CDE=60°,∴△CDE是等边三角形;(3)∵EF⊥DB,∠B=30°,EF=1,∴BE=2EF=2,∴DE=2,∵△CDE是等边三角形,∴CE=DE=2,∴BC=4,∴AC=BC=4.23.对于平面直角坐标系xOy中的线段MN及点Q,给出如下定义:若点Q满足QM=QN,则称点Q为线段MN的“中垂点”;当QM=QN=MN时,称点Q为线段MN的“完美中垂点”.(1)如图1,A(4,0),下列各点中,线段OA的中垂点是 Q3(2,﹣2) .Q1(1,4),Q2(4,),Q3(2,﹣2)(2)如图2,点A为x轴上一点,若Q(1,)为线段OA的“完美中垂点”,∠QOA=60°写出线段OQ的两个“完美中垂点”是 (2,0) 和 (﹣1,) .(3)如图3,若点A为x轴正半轴上一点,点Q为线段OA的“完美中垂点”,点P(0,m)在y轴负半轴上,在线段PA上方画出线段AP的“完美中垂点”M,直接写出MQ= ﹣m .(用含m的式子表示).并求出∠MQA.【解答】解:(1)∵A(4,0),∴线段OA的垂直平分线为直线x=2,∵Q是线段OA的中垂点,∴点Q在线段OA的垂直平分线上,即点Q在直线x=2上,∴点Q的横坐标为2,∴只有Q2(2,﹣2)是线段OA的中垂点,故答案为:Q3(2,﹣2);(2)∵,∴,∵Q为线段OA的“完美中垂点”,∴OA=QA=OQ=2,即A(2,0)为线段OQ的一个“完美中垂点”,设线段OQ的另外一个“完美中垂点”为L,如图所示,∴OL=QL=OA=QA=OQ=2,∴△LOQ和AOQ都是等边三角形,∴∠LQO=∠AOQ=60°,∴LQ∥OA,∴.故答案为:(2,0),(﹣1,);(3)如图,分别以A、P为圆心,以AP的长为半径画弧,二者的交点在线段PA上方即为M;∵M是AP的“完美中垂点”,点Q为线段OA的“完美中垂点”∴PA=PM=AM,OQ=QA=OA,∴△OQA和△AMP都为等边三角形,∴∠OAQ=∠PAM,AQ=AO,PA=MA,∴∠OAP=∠QAM,∴△OAP≌△QAM(SAS),∵P(O,m).∴MQ=0P=﹣m,∠MQA=∠POA=90°.24.在平面直角坐标系中,已知A(a,0),B(0,b),AB=AC,且AB⊥AC,AC交y轴于点E.(1)如图1,若点C的横坐标为﹣a,求证:AE=CE;(2)如图2,若BE平分∠ABC,点E的坐标为(0,b﹣6),求点C的横坐标;(3)如图3,若a=1,以BC为边在BC的左侧作等边△BCM,当∠BOM=60°时,求OC的长.【解答】(1)证明:如图1中,过点C作CH⊥x轴于点H,连接HE.∵∠AHC=∠BOA=∠BAC=90°,∴∠CAH+∠BAO=90°,∠BAO+∠ABO=90°,∴∠CAH=∠∠ABO,在△AHC和△BOA中,,∴△AHC≌△BOA(AAS),∴CH=OA,∵A(a,0),点C的横坐标为﹣a,∴OA=OH,∵OE⊥AH,∴EH=EA,∴∠EAH=∠EHA,∵∠EAH+∠ACH=90°,∠AHE+∠CHE=90°,∴∠ECH=∠EHC,∴EH=EC,∴AE=EC;(2)解:如图2中,过点C作CH⊥x轴于点H,设BC交AH于点J.∵BE平分∠ABC,∴∠ABO=∠JBO,∵∠ABO+∠BAO=90°,∠JBO+∠BJO=90°,∴∠BAO=∠BJO,∴BJ=BA,∵OB⊥AJ,∴OJ=OA=a,∵CH∥OB,∴∠HCJ=∠JBO,∵∠CAH=∠ABO,∴∠HCJ=∠OAE,∵△AHC≌△BOA,∴CH=AO,在△CHJ和△AOE中,,∴△CHJ≌△AOE(ASA),∴OE=JH,AH=OB=b.∵E(0,b﹣6),∴HJ=OE=6﹣b,∵OA=OJ=a,∴OH=a+6﹣b,∴AH=a+6﹣b+a=b,∴a﹣b=3,OH=3∴点C的横坐标为﹣3;(3)解:如图3中,过点C作CJ⊥x轴于点J,在OM上取一点H,使得OH=OB.∵A(1,0),∴OA=1,∵OH=OB,∠BOH=60°,∴△OBH是等边三角形,∴BO=BH,∠OHB=60°,∴∠BHM=120°,∵△BCM是等边三角形,∴BC=BM,∠CBM=∠OBH=60°,∴∠MBH=∠CBO,在△MBH和△CBO中,,∴△MBH≌△CBO(SAS),∴∠BHM=∠BOC=120°,∴∠COJ=120°﹣90°=30°,∵CJ⊥AJ,同法可证△AJC≌△BOA,∴CJ=OA=1,∴OC=2CJ=2.。
河北省廊坊市三河市第九中学2023-2024学年八年级上学期期中数学试题
三河市第九中学2023-2024学年度第一学期数学期中考试卷八年级数学试卷考试时间:90分钟;注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题1.下列图形属于轴对称图形的是()A. B. C.D.2.已知等腰三角形的两条边长分别为3和7,则它的周长为( ).A.13B.13或17C.17D.15或173.如图,用三角板作ABC △的边AB 上的高线,下列三角板的摆放位置正确的是()A. B.C. D.4.若一个正多边形的每个内角都是120°,则这个正多边形的边数是( )A.12B.10C.8D.65.元旦联欢会上,同学们玩抢凳子游戏,在与A 、B 、C 三名同学距离相等的位置放一个凳子,谁先抢到凳子谁获胜.如果将A 、B 、C 三名同学所在位置看作ABC △的三个顶点,那么凳子应该放在ABC △的( )A.三边中线的交点B.三条角平分线的交点C.三边上高的交点D.三边垂直平分线的交点6.如图,//AE DF ,AE DF ,要使EAC FDB △≌△,需要添加下列选项中的()A.AB CD =B.EC BF =C.A B ∠=∠D.AB BC =7.小枣一笔画成了如图所示的图形,若60A ∠=︒,40B ∠=︒,30C ∠=︒,则D E ∠+∠等于()A.100°B.110°C.120°D.130°8.一个正方形和两个等边三角形的位置如图所示,若350∠=︒,则12∠+∠等于()A.90°B.100°C.130°D.180°9.如图,AD 是ABC △的边BC 上的中线,7AB =,5AD =,则AC 的取值范围为()A.515AC <<B.315AC <<C.317AC <<D.517AC <<10.如图,小明从A 点出发,沿直线前进10米后向左转45°,再沿直线前进10米,又向左转45°照这样走下去,他第一次回到出发点A 时,共走路程为()A.80米B.100米C.120米D.160米11.如图,AB CD ⊥,且AB CD =,E ,F 是AD 上两点,CE AD ⊥,BF AD ⊥.若4CE =,3BF =,2EF =,则AD 的长( )A.3B.5C.6D.712.如图,等边ABC △的边AB 上一点P ,作PE AC ⊥于E ,Q 为BC 延长线上的一点,当PA CQ =时,连接PQ 交AC 于点D ,下列结论中不一定正确的是()A.PD DQ =B.12DE AC =C.12AE CQ =D.PQ AB ⊥13.如图,110BAC ∠=︒,若MP 和NQ 分别垂直平分AB 和AC ,则PAQ ∠的度数是()A.20°B.60°C.50°D.40°14.如图,在方格纸中,以AB 为一边作ABP △,使之与ABC △全等,从1234,,,P P P P 四个点中找出符合条件的点P ,则点P 有()A.1个B.2个C.3个D.4个15.如图,在ABC △中,P 为BC 上一点,PR AB ⊥,垂足为R ,PS AC ⊥,垂足为S ,CAP APQ ∠=∠,PR PS =,下面的结论:①AS AR =;②//QP AR ;③BRP CSP △≌△.其中正确的是()A.①②B.②③C.①③D.①②③第Ⅱ卷(非选择题)二、填空题16.平面直角坐标系中,若点(),P x y 的坐标满足等式()2450x y -+-=,则点P 关于y 轴对称点的坐标为______.17.如图,ABC DEC △≌△,其中3BE =,4AE =,则DE 的长是______.18.一副三角板如图所示叠放在一起,则图中α∠的度数是______.19.已知:如图所示,在ABC △中,点D ,E ,F 分别为BC ,AD ,CE 的中点,且24cm ABC S =△,则阴影部分的面积为______2cm .20.如图,在ABC △中,90ACB ∠=︒,30A ∠=︒.边AC 的垂直平分线DE 分别交边AB AC 、于点D 、E ,P 为直线DE 上一点,若4BC =,则BCP △周长的最小值为______.21.在平面直角坐标系xOy 中,已知点()2,3A ,在x 轴上找一点P ,使得AOP △是等腰三角形,则这样的点P 共有______个.三、解答题22.如图,在平面直角坐标系中,ABC △的三个顶点分别为()2,3A ,()3,1B ,()2,2C --.(1)请在图中作出ABC △关于y 轴的对称图形DEF △(A 、B 、C 的对称点分别是D 、E 、F ),并直接写出D 、E 、F 的坐标; (2)求ABC △的面积23.如图,在ABC △中,AD 是高,AE BF 、是角平分线,它们相交于点O ,70C ∠=︒.(1)求AOB ∠的度数;(2)若60ABC ∠=︒,求DAE ∠的度数.24.如图,BA AF ⊥于点A ,ED DC ⊥于点D ,点E 、F 在线段BC 上,DE 与AF 交于点O ,且AB DC =,BE CF =.(1)求证:AF DE =;(2)若OP 平分EOF ∠,求证:OP 垂直平分EF .25.如图,已知ABD △和AEC △中,AD AB =,AE AC =,60DAB EAC ∠=∠=︒,CD BE 、相交于点P .(1)用全等三角形判定方法证明:BE DC =; (2)求BPC ∠的度数;26.如图,在ABC △中,30cm AB =,35cm BC =,60B ∠=︒,有一动点M 自A 向B 以1cm/s 的速度运动,动点N 自B 向C 以2cm/s 的速度运动,若M ,N 同时分别从A ,B 出发.(1)经过多少秒,BMN △为等边三角形; (2)经过多少秒,BMN △为直角三角形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学期中复习试卷一 一、选择题(本大题共8小题,每小题2分,共1 6分) 1.下列函数是反比例函数的为 ( ) A.y=2x3 B.y=23x C. y=23x D.y=3x
2.若把分式xxy中的x、y都扩大2倍,则分式的值 ( ) A.扩大为原来的2倍 B.不变 C.缩小为原来的2倍 D.缩小为原来的4倍 3.在同一坐标系中,函数y=kx和y=kx+3的图象大致是 ( )
4. 在下列命题中,正确的是( ). A.两个钝角三角形一定相似 B.两个等腰三角形一定相似 C.两个直角三角形一定相似 D.两个等边三角形一定相似
5.如果2ab,则2222aabbab= ( ) A. 45 B. 1 C. 35 D. 2 6.若A(a1,b1)、B(a2,b2)是反比例函数2yx图象上的两个点,且a1<a2, 则b1与b2的大小关系是( ). A.b1<b2 B.b1=b2 C.b1>b2 D.大小不确定
7.化简211xxx的结果是( ) A.1x B.1x C.11x D.11x
8.如图,A、B是反比例函数y=x1上的两个点,AC⊥x轴于点C, BD⊥y轴交于点D,连接AD、BC,则△ABD与△ACB的面积大小关系是( ) A.SADB>SACB B.SADB<SACB C.SACB=SADB D.以上都有可能 二、填空题(本大题共10小题,每小题2分,共20分) 9.已知y与x成反比例,当x=3时,y=1,则y与x间的函数关系式为_______.
A B D
C 10.当x_____时,分式212xx的值为零. 11.如图,若OAOB=_____,则△OAC∽△OBD. 12.已知反比例函数2kyx,其图象在第一、三象限内,则k的取值范围为_______. 13.若方程244xaxx有增根,则a=__________.
14.已知113xy,则代数式21422xxyyxxyy的值为 . 15.已知,如图,△ABC中,DE∥BC,DF∥AC, 则图中共有____对相似三角形.
16.关于x的方程211xax的解是正数,则a的取值范围是__________.
17.甲、乙两人在电脑上合打一份稿件,4小时后甲另有任务,余下部分由乙单独完成又用6小时.已知甲打6小时的稿件乙要打7.5小时,若设甲单独完成需x小时,则根据题意可列方程 .
18.如图,在平面直角坐标系中,函数kyx(x>0,常数k>0)的图象经过点A(1,2)、 B(m,n)(m>1).过点B作y轴的垂线,垂足为C若△ABC的面积为2,则点B的坐标为______. 三、解答题(本大题共64分)
19.(8分)计算:(1)2xxyxy (2) 231221.2422aaaa
20.(6分)先化简)221(p÷422ppp,再求值(其中P是满足-3
21.(6分)解方程:xxxxx413412169652 22.(6分)已知y=y1y2,y1与x成正比例,y2与x+3成反比例,当x=0 时,y=2;当x=3时,y=2;求y与x的函数关系式。 23.(8分)如图,△ABC和△DEF均为正三角形,D,E分别在AB,BC上,请找出一个与△DBE相似的三角形并证明. 24.(8分)有160个零件,平均分给甲、乙两车间加工,由于乙另有任务,所以在甲开始工作3小时后,乙才开始工作,因此比甲迟20分钟完成任务,已知乙每小时加工零件的个数是甲的3倍,问甲、乙两车间每小时各加工多少零件?
25.(6分)如图,一次函数ykxb的图象与反比例函数myx的图象交于A、B两点. (1)利用图中条件,求反比例函数和一次函数的解析式; (2)根据图象求出使一次函数的值大于反比例函数的值时,x的取值范围.
27. (8分)如图,点A(m,m+1)、B(m+3,m-1)都在反比例函数kyx的图象上. (1)求m,k的值; (2)如果M为x轴上一点,N为y轴上一点,以点A、B、M、N为顶点的四边形 是平行四边形,试求直线MN的函数表达式. 答案 1.C 2.B 3.A 4.D 5.C 6.D 7.A 8. C 9. xy3 10. 21x 11. OCOD 12. k>2 13. 4 14. 4 15.4 16.a<-1且a≠-2
17.14244155xxx 18. 233,
19.(1) 2yxy (2)3 20. 12pp p取-1.值为21 21. x=8 22. y=x63x 23. △GAD或△ECH或△GFH,证△GAD∽△DBE. 证明:∵△ABC,△DEF是等边三角表, ∴∠A=∠B=∠FDE=60°, ∴∠BDE+∠GDA=120°, 又∵∠BDE+∠DEB=120°, ∴∠ADG=∠DEB, ∴△GAD∽△DBE. 24. 甲20 ,乙60
25. xy2,1xy;102xx或者 26. 114 27.(1)m=3 k=12 (2) 直线MN的函数表达式223yx或223yx
八年级数学期中复习试卷二 一、选择题 1.如果分式2xx的值为0,那么x的值为 ( ) A.-2 B.0 C.1 D.2 2.下列各式从左到右的变形中,正确的是 ( )
A.122122xyxyxyxy B.0.220.22abababab
C.11xxxyxy D.abababab 3.如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①、②、③、④四个三角形.若OA:OC=OB:OD,则下列结论中一定正确的是 ( ) A.①与②相似 B.①与③相似 C.①与④相似 D.②与④相似 4.炎炎夏日,甲安装队为A小区安装66台空调,乙安装队为B小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x台,根据题意,下列所列方程正确的是 ( ) A.66602xx B. 66602xx C.66602xx D.66602xx 5.要把分式方程23242xx化为整式方程,方程两边需要同时乘 ( ) A.2x(x-2) B.2x-4 C.2x D.2x(x+2) 6.已知反比例函数y=-3x,下列结论不正确的是 ( ) A.图象必经过点(-1,3) B.y随x的增大而增大 C.图象位于第二、四象限内 D.若x>1,则y>-3 7.如图,△ABC是直角三角形,S1,S2,S3为正方形,已知a,b,c分别为S1,S2,S3的边长,则( ) A.a=b+c B.b2=ac C.a2=b2+c2 D.a=b+2c
第7题 第9题 第10题 8.若M(2,2)和N(b,-1-n2)是反比例函数y=kx的图象上的两个点,则一次函数y=kx+b的图象经过 ( ) A.第一、二、三象限 B.第一、二、四象限 C.第一、三、四象限 D.第二、三、四象限 9.如图,反比例函数y=kx(x>0)的图象经过矩形OABC对角线的交点M,分别与AB、BC相交于点D、E若四边形ODBE的面积为6,则k的值为 ( ) A.1 B.2 C.3 D.4 10.如图,已知∠C=90°,四边形CDEF是正方形,AC=15,BC=10,AF与ED交于点G.则EG的长为 ( ) A.52 B.2310 C. 113 D.125 二、填空题(每题3分,共24分) 11.当x=3时,分式22121xxx_______. 12.若分式351xx无意义,则当510322mxmx时,m=_______. 13.把一个矩形剪去一个正方形,若余下的矩形与原矩形相似,则原矩形长宽之比为_____. 14.已知点P(a,b)在反比例函数y=2x的图象上,若点P关于y轴对称的点在反比例函数y=kx的图象上,则k的值为_______. 15.在平面直角坐标系xOy中,反比例函数y=3x的图象与正比例函数y=kx的图象交于点A(1,3)和点B,则点B的坐标为_______. 16.设有反比例函数y=1kx,(x1,y1)、(x2,y2)为其图象上的两点,若当x1<0y2,则k的取值范围是_______. 17.已知222211,333322,444433„„若1010aabb(a、b都是正整数),则a+b的最小值是_______. 18.如图,已知△ABC是面积为3的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则△AEF的面积等于 ______(结果保留根号).
三、解答题 19.(6分)化简:(1) 21422xxx; (2) 2111xxx.
20.(6分)解分式方程:(1)11121xxx; (2) 2322xx. 21.(6分)先化简,再求值:22453262aaaaa,选一个使原代数式有意义的数代入求值. 23.(8分)某工厂承担了加工2 100个机器零件的任务,甲车间单独加工了900个零件后,由于任务紧急,要求乙车间与甲车间同时加工,结果比原计划提前了12天完成任务.已知乙车间的工作效率是甲车间的1.5倍,则甲、乙两车间每天加工零件各多少个?