2019年天津高考数学(文)试卷及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年普通高等学校招生全国统一考试(天津卷)
数 学(文史类)
第Ⅰ卷
本卷共8小题,每小题5分共40分。 参考公式:
·如果事件A ,B 互斥,那么()()()P A
B P A P B =+.
·圆柱的体积公式V Sh =,其中S 表示圆柱的底面面积,h 表示圆柱的高. ·棱锥的体积公式1
3
V Sh =
,其中S 表示棱锥的底面面积,h 表示棱锥的高. 一、单项选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。 (1)设集合{1,1,2,3,5},
{2,3,4},{|13}A B C x x =-==∈ A C B = (A ){2} (B ){2,3} (C ){-1,2,3} (D ){1,2,3,4} (2)设变量x ,y 满足约束条件20,20,1,1, x y x y x y +-≤⎧⎪-+≥⎪ ⎨-⎪⎪-⎩则目标函数4z x y =-+的最大值为 (A )2 (B )3 (C )5 (D )6 (3)设x ∈R ,则“05x <<”是“|1|1x -<”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件 (4)阅读下边的程序框图,运行相应的程序,输出S 的值为 (A )5 (B )8 (C )24 (D )29 (5)已知0.2 23log 7,log 8,0.3a b c ===,则a ,b ,c 的大小关系为 (A )c b a << (B )a b c << (c )b c a << (D )c a b << (6)已知抛物线2 4y x =的焦点为F ,准线为l .若l 与双曲线22 221(0,0)x y a b a b -=>>的两条渐近线 分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为 (A (B (C )2 (D (7)已知函数()sin()(0,0,||π)f x A x A ωϕωϕ=+>><是奇函数,且()f x 的最小正周期为π,将 ()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x . 若π4g ⎛⎫= ⎪⎝⎭3π8f ⎛⎫ = ⎪⎝⎭ (A )-2 (B ) (C (D )2 (8 )已知函数01 ()1, 1x f x x x ⎧≤≤⎪ =⎨>⎪⎩若关于x 的方程1()()4f x x a a =-+∈R 恰有两个互异的实 数解,则a 的取值范围为 (A )59,44 ⎡⎤⎢⎥⎣⎦ (B )59,44⎛⎤ ⎥⎝⎦ (C ) 59,{1}44⎛⎤ ⋃ ⎥⎝⎦ (D )59,{1}44 ⎡⎤⋃⎢⎥⎣⎦ 绝密★启用前 2019年普通高等学校招生全国统一考试(天津卷) 数 学(文史类) 第Ⅱ卷 注意事项: 1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。 2.本卷共12小题,共110分。 二、填空题:本大题共6小题,每小题5分,共30分。 (9)i 是虚数单位,则 5i 1i -+的值为__________. (10)设x ∈R ,使不等式2320x x +-<成立的x 的取值范围为__________. (11)曲线cos 2 x y x =- 在点(0,1)处的切线方程为__________. (12若圆柱的一个底面的圆周经过四棱 锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________. (13)设0, 0,24x y x y >>+=,则 (1)(21) x y xy ++的最小值为__________. (14)在四边形ABCD 中,, 5,30AD BC AB AD A ==∠=︒∥,点E 在线段CB 的延长 线上,且AE BE =,则BD AE ⋅=__________. 三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. (15)(本小题满分13分) 2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况. (Ⅰ)应从老、中、青员工中分别抽取多少人? (Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为, , , , , A B C D E F .享受情况如下表,其中“ ○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访. 赡养老人 ○ ○ × × × ○ (i )试用所给字母列举出所有可能的抽取结果; (ii )设M 为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M 发生的概率. (16)(本小题满分13分) 在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =. (Ⅰ)求cos B 的值; (Ⅱ)求sin 26πB ⎛ ⎫+ ⎪⎝ ⎭的值. (17)(本小题满分13分) 如图,在四棱锥-P ABCD 中,底面ABCD 为平行四边形,PCD △为等边三角形,平面PAC ⊥平面PCD ,,2,3PA CD CD AD ⊥==. (Ⅰ)设G ,H 分别为PB ,AC 的中点,求证:GH ∥平面PAD ; (Ⅱ)求证:PA ⊥平面PCD ; (Ⅲ)求直线AD 与平面PAC 所成角的正弦值. (18)(本小题满分13分) 设{}n a 是等差数列,{}n b 是等比数列,公比大于0,已知1123323,,43a b b a b a ====+. (Ⅰ)求{}n a 和{}n b 的通项公式; (Ⅱ)设数列{}n c 满足2 1n n n c b n ⎧⎪ =⎨⎪⎩,为奇数 ,为偶数,求*112222()n n a c a c a c n ++ +∈N . (19)(本小题满分14分) 设椭圆22 221(0)x y a b a b +=>>的左焦点为F ,左顶点为A ,顶点为B .3|2||OA OB =(O