贵州省遵义市习水县树人学校中考数学《数与式、方程与不等式》分类检测题(无答案) 人教新课标版

合集下载

中考数学《方程与不等式》专题知识训练50题(含参考答案)

中考数学《方程与不等式》专题知识训练50题(含参考答案)

中考数学《方程与不等式》专题知识训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.若3x >﹣3y ,则下列不等式中一定成立的是( ) A .x >yB .x <yC .x ﹣y >0D .x +y >02.如果1x -大于0,那么x 的取值范围是( ) A .1x >B .1x <C .0x <D .0x >3.一元一次不等式x +1<2的解集在数轴上表示为( ) A . B . C .D .4.不等式﹣3x≤9的解集在数轴上表示正确的是( ) A .B .C .D .5.用配方法解方程22990x x --=,配方后得( ) A .2(1)99x -=B .2(1)100x +=C .2(1)98x -=D .2(1)100x -=6.若关于x 的分式方程43233m xx x +=+--有增根,则m 的值为( ) A .2B .3C .4D .57.一项工程,A 独做10天完成,B 独做15天完成,若A 先做5天,再A 、B 合做,完成全部工程的23,共需( ) A .8天B .7天C .6天D .5天8.若关于x 的方程534x kx -=+有整数解,那么满足条件的所有整数k 的和为( ) A .20B .6C .4D .29.不等式组372378x x -≥⎧⎨-<⎩的所有整数解共有( )A .1个B .2个C .3个D .4个10.下列运用等式性质进行的变形中,正确的是( ) A .如果a b =,那么23a b +=+ B .如果a b =,那么23a b -=- C .如果2a a =,那么1a =D .如果a bc c=,那么a b = 11.下列是一元一次方程的是( ) A .231x y +=B .20x -=C .3x +D .11x= 12.为了践行“绿色生活”的理念,甲、乙两人每天骑自行车出行,甲匀速骑行30公里的时间与乙匀速骑行25公里的时间相同,已知甲每小时比乙多骑行2公里,设甲每小时骑行x 公里,根据题意列出的方程正确的是( ) A .30252=+x x B .30252=+x x C .30252=-x x D .30252=-x x13.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同. 设2,3月份利润的月增长率为x ,那么x 满足的方程为( ) A .B .C .D .14.如图所示两个天平都平衡,则3个球体的质量等于( )个正方体的质量,括号内应填A .2B .3C .4D .515.若﹣3<a ≤3,则关于x 的方程x +a =2解的取值范围为( ) A .﹣1≤x <5B .﹣1<x ≤1C .﹣1≤x <1D .﹣1<x ≤516.下列变形中,正确的是( ) A .若a b =,则11a b +=-B .若32a b =,则a b =C .若2a b -=,则2a b =-D .若44b a -=-,则a b =17.在2019年女排世界杯比赛中,中国队以11场全胜积32分的成绩成为女排世界杯五冠王、女排世界杯比赛积分规则如表所示,若中国队以大比分3:2取胜的场次有x 场,则根据以上信息所列方程正确的是( )A .3x+2x =32B .3(11﹣x )+3(11﹣x )+2x =32C .3(11﹣x )+2x =32D .3x+2(11﹣x )=3218.三元一次方程组10318x y z x y x y z ++=⎧⎪+=⎨⎪=+⎩的解是( )A .532x y z =⎧⎪=⎨⎪=⎩B .352x y z =⎧⎪=⎨⎪=⎩C .542x y z =⎧⎪=⎨⎪=⎩D .431x y z =⎧⎪=⎨⎪=⎩19.已知4个矿泉水空瓶可以换矿泉水一瓶,现有15个矿泉水空瓶,若不交钱,最多可以喝矿泉水( ) A .3瓶B .4瓶C .5瓶D .6瓶20.甲、乙、丙三名打字员承担一项打字任务,已知如下信息:如果每小时只安排1名打字员,那么按照甲、乙、丙的顺序至完成工作任务,共需( )A .1316小时B .1312小时C .1416小时D .1412小时二、填空题21.一罐饮料净重500克,罐上注有“蛋白质含量≥0.4%”,则这罐饮料中蛋白质的含量至少为____克. 22.如果方程23252x x -+=-的解与方程72x b -=的解相同,则b =________. 23.由4x ﹣3y +6=0,可以得到用y 表示x 的式子为x =__.24.已知不等式组212(1)43x x x+>⎧⎨-+>⎩,请写出一个该不等式组的整数解___________.25.已知关于x 的一元二次方程x 2+x+m =0有实数根,则m 的取值范围是_____.26.若关于x 的方程()21410k x x ---=是一元二次方程,则k 的取值范围是______.27.当a =_____时,分式32a a +-的值为-4. 28.三角形的三边长分别为7,1+2x ,13,则x 的取值范围是___ 29.25y x +=用含x 的式子表示y 为________________________.30.若关于x ,y 的二元一次方程组2630x my x y -=⎧⎨-=⎩的解是正整数,则整数m =_______.31.某种服装打折销售,如果每件服装按标价的5折出售将亏35元,而按标价的8折出售将赚55元,则成本价为______元.32.已知A ∠与的B ∠两边分别平行,且A ∠比B ∠的3倍少20°,则A ∠的大小是__________.33.已知x ,y 满足方程组22223212472836x xy y x xy y ⎧-+=⎨++=⎩, (1)代数式224x y +的值是_____. (2)代数式112x y+的值是______.34.已知关于x ,y 的方程组225,234x y m x y m +=-⎧⎨-=-⎩的解满足1x <,2y <,则m 的取值范围为______.35.已知关于x ,y 的不等式组100x x a ->⎧⎨-⎩有以下说法:①若它的解集是1<x ≤4,则a =4;①当a =1时,它无解;①若它的整数解只有2,3,4,则4≤a <5;①若它有解,则a ≥2.其中所有正确说法的序号是_____.36.若关于x ,y 的二元一次方程组221x y x y k +=⎧⎨+=+⎩的解为正数,则k 的取值范围为__.37.不等式组的解集为23113x x -<⎧⎨-≤⎩的解集为______.38.如果关于x 的方程x2+2ax ﹣b2+2=0有两个相等的实数根,且常数a 与b 互为倒数,那么a +b=_____.39.某车间 56 名工人,每人每天能生产螺栓 16 个或螺母 24 个,设有 x 名工人生产螺栓, 有 y 名工人生产螺母,每天生产的螺栓和螺母按 1:2 配套,所列方程组是________. 40.若分式方程2211x m x x x x x+-=++有增根,则m 的值是______.三、解答题 41.解下列方程: (1)3x +7=32﹣2x ; (2)121224x x +--=+. 42.解方程:242111x x x++=---. 43.解方程组:(1)32528x y x y +=⎧⎨-=⎩;(2)234347x y x y ⎧+=⎪⎨⎪-=-⎩.44.某商场进货员预测某商品能畅销市场,就用8万元购进该商品,上市后果然供不应求.商场又用17.6万购进了第二批这种商品,所购数量是第一批购进量的2倍,但进货的单价贵了4元,商场销售该商品时每件定价都是58元,最后剩下150件按八折销售,很快售完.在这两笔生意中,商场共盈利多少元? 45.当k 为何值时,方程x 2﹣6x+k ﹣1=0, (1)两根相等; (2)有一根为0. 46.解方程组或不等式组:(1)20346x y x y +=⎧⎨+=⎩;(2)53231204x x x +≥⎧⎪⎨--<⎪⎩ 47.已知一个四位自然数N ,它的各个数位上的数字均不为0,且满足千位数字与百位数字的和等于十位数字与个位数字的和,则称这个数为“和对称数”,将这个四位自然数N 的千位数字和百位数字互换,十位数字和个位数字互换,得到N ',规定()101N N F N '+=. 例如:4536N =,①4536+=+,①4536是“和对称数”,()45365463453699101F +==.2346N =,①2346+≠+,①2346不是“和对称数”.(1)请判断2451、3972是不是“和对称数”,并说明理由.若是,请求出对应的()F N 的值.(2)已知A ,B 均为“和对称数”,其中100010746A a b =++,1002026B m n =++(其38a ≤≤,05b ≤≤,29m ≤≤,512n ≤≤,且均为整数),令()()32k F A F B =+,当k能被77整除时,求出所有符合条件的A 的值. 48.解决以下问题:(1)221x y ±++,的算术平方根是5,求2318x y -+的立方根; (2)的值互为相反数,求a b c 、、的值. 49.为了促进学生加强体育锻炼,某中学从去年开始,每周除体育课外,又开展了“足球俱乐部1小时”活动.去年学校通过采购平台在某体育用品店购买A 品牌足球共花费2880元,B 品牌足球共花费2400元,且购买A 品牌足球数量是B 品牌数量的1.5倍,每个足球的售价,A 品牌比B 品牌便宜12元. (1)求去年A ,B 两种足球的售价;(2)今年由于参加俱乐部人数增加,需要从该店再购买A ,B 两种足球共50个,已知该店对每个足球的售价,今年进行了调整,A 品牌比去年提高了5%,B 品牌比去年降低了10%,如果今年购买A ,B 两种足球的总费用不超过去年总费用的一半,那么学校最多可购买多少个B 品牌足球?50.某生态柑橘园现有柑橘31吨,租用9辆A 和B 两种型号的货车将柑橘一次性运往外地销售.已知每辆车满载时,A 型货车的总费用500元,B 型货车的总费用480元,每辆B型货车的运费是每辆A型货车的运费的1.2倍.(1)每辆A型货车和B型货车的运费各多少元?(2)若每辆车满载时,租用1辆A型车和7辆B型车也能一次性将柑橘运往外地销售,则每辆A型货车和B型车货各运多少吨?参考答案:1.D【分析】利用不等式的性质由已知条件可得到x+y>0,从而得到正确选项.【详解】①3x>﹣3y,①3x+3y>0,①x+y>0.故选D.【点睛】本题考查了不等式的性质:应用不等式的性质应注意的问题,在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.2.Ax->,即可求得x的取值范围.【分析】1x-大于0即10【详解】根据题意得:x->10x>解得:1故选A.【点睛】本题主要考查了一元一次不等式的应用,把判断一个式子的值的取值范围的问题掌握不等式的问题,这是解本题的关键.3.B【分析】求出不等式的解集,表示出数轴上即可.【详解】解:不等式x+1<2,解得:x<1,如图所示:故选B.【点睛】此题考查了在数轴上表示不等式的解集,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.4.A【详解】试题分析:本题考查了在数轴上表示不等式的解集:利用数轴表示不等式的解集体现了数形结合的思想.也考查了解一元一次不等式.先解不等式得到x≥﹣3,在数轴上表示为﹣3的右侧部分且含﹣3,这样易得到正确选项. 考点:在数轴上表示不等式的解集;解一元一次不等式 5.D【分析】把常数项-99移项后,应该在左右两边同时加上一次项系数-2的一半的平方. 【详解】把方程x 2-2x -99=0的常数项移到等号的右边,得到x 2-2x =99 方程两边同时加上一次项系数一半的平方,得到x 2-2x +1=100 配方得(x -1)2=100. 故选D .【点睛】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 6.D【分析】根据分式方程有增根可求出3x =,方程去分母后将3x =代入求解即可. 【详解】解:①分式方程43233m xx x +=+--有增根, ①3x =,去分母,得()4323m x x +=+-, 将3x =代入,得49m +=, 解得5m =. 故选:D .【点睛】本题考查了分式方程的无解问题,掌握分式方程中增根的定义及增根产生的原因是解题的关键. 7.C【分析】此题是工程问题,它的等量关系是A 独做的加上A 、B 合做的是总工程的23,此题可以分段考虑,A 独做了5天,合作了(x -5)天,利用等量关系列方程即可解得. 【详解】设共需x 天. 根据题意得:5112(5)()1010153x +-+= 解得:x =6. 故选C .8.A【分析】先解方程可得75x k=-,再根据关于x 的方程534x kx -=+有整数解,k 为整数,可得51k -=±或57k -=±,从而可得答案. 【详解】解:①534x kx -=+, ①57x kx -=,即()57k x -=, 当50k -≠时, ①75x k=-, ①关于x 的方程534x kx -=+有整数解,k 为整数, ①51k -=±或57k -=±,解得:4k =或6k =或2k =-或12k =, ①()4621220++-+=,①满足条件的所有整数k 的和为20. 故选A .【点睛】本题考查的是一元一次方程的解与方程的解法,掌握“方程的整数解的含义以及求解整数解的方法”是解本题的关键. 9.B【分析】解不等式组,得到关于x 的解集,再找出符合x 取值范围的整数解即可. 【详解】解:解不等式3x −7≥2得:x ≥3, 解不等式3x −7<8得:x <5, 即不等式组的解集为:3≤x <5,符合3≤x <5的x 的整数解为:3,4共2个, 故选:B .【点睛】本题考查一元一次不等式组的整数解,解题的关键是掌握解一元一次不等式组的方法. 10.D【分析】根据等式的基本性质进行分析判断即可.【详解】解:A 选项中,“如果a b =,那么23a b +=+”是不成立的,故不能选A ; B 选项中,“如果a b =,那么23a b -=-”是不成立的,故不能选B ;C选项中,“如果2a a=,那么1a=”不一定成立,因为a的值可能为0,故不能选C;D选项中,“如果a bc c=,那么a b=”成立,故选D.故选:D.【点睛】本题考查等式的基本性质,熟记“等式的基本性质:(1)等式的两边都加上或者减去同一个整式,所得结果仍是等式;(2)等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式”是解答本题的关键.11.B【分析】根据一元一次方程的定义逐项分析判断即可求解.【详解】解:A、不是一元一次方程,故本选项错误;B、是一元一次方程,故本选项正确;C、不是等式,即不是一元一次方程,故本选项错误;D、不是整式方程,即不是一元一次方程,故本选项错误.故选B.【点睛】本题考查了一元一次方程的定义,掌握一元一次方程的定义是解题的关键.只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).12.C【详解】解:设甲每小时骑行x公里,根据题意得:30252=-x x.故选C.13.D【详解】试题分析:一月份获利10万元,二月份获利10(1+x)万元,三月份获利10万元,然后根据一季度的总获利得出方程.考点:一元二次方程的应用14.D【分析】根据等式的性质求解即可.【详解】解:由图可知,2个球体的质量=5个圆柱的质量,2个正方体的质量=3个圆柱的质量,①6个球体的质量=15个圆柱的质量,10个正方体的质量=15个圆柱的质量,①6个球体的质量=10个正方体的质量,①3个球体的质量=5个正方体的质量,故选D .【点睛】本题考查了等式的基本性质,正确掌握等式的性质是解题的关键.等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式. 15.A【分析】先求出方程的解,再根据﹣3<a ≤3的范围,即可求解.【详解】解:由x +a =2,得:x =2-a ,①﹣3<a ≤3,①﹣1≤2-a <5,即:﹣1≤x <5,故选A .【点睛】本题主要考查解一元一次方程以及不等式的性质,用含a 的代数式表示x ,是解题的关键.16.D【分析】根据等式的性质逐个判断即可得到答案.【详解】解:由题意可得,若a b =,则111a b b +=+>-,故A 选项错误不符合题意;若32a b =,则23a b =,故B 选项错误不符合题意; 若2a b -=,则2a b =+,故C 选项错误不符合题意;若44b a -=-,则a b =,故D 选项正确符合题意;故选D .【点睛】本题考查等式的性质:等式两边同时加上或减去同一个数等式性质不变,等式两边同时乘以或除以同一个不为0的数等式性质不变.17.C【分析】设中国队以大比分3:2取胜的场次有x 场,则中国队以小比分3:1或3:0取胜的场次有(11﹣x )场,根据总积分=3×小比分获胜的场次数+2×大比分获胜场次数,即可得出关于x 的一元一次方程.【详解】解:设中国队以大比分3:2取胜的场次有x 场,则中国队以小比分3:1或3:0取胜的场次有(11﹣x)场,依题意,得:2x+3(11﹣x)=32.故选:C.【点睛】本题考查了一元一次方程的应用,正确理解题意、找准相等关系是解题的关键. 18.A【分析】由①代入①、①消去x,解二元一次方程组得出y、z的数值,再进一步求得x的数值解决问题.【详解】10318x y zx yx y z++=⎧⎪+=⎨⎪=+⎩①②③,把①代入①得:y+z=5①,把①代入①得:4y+3z=18①,①×4–①得:z=2,把z=2代入①得:y=3,把y=3,z=2代入①得:x=5,则方程组的解为532xyz=⎧⎪=⎨⎪=⎩,故选A.【点睛】此题考查三元一次方程组的解法,注意逐步消元是解决问题的关键.19.C【详解】试题分析:因为15÷4=3余3空瓶,所以可换3瓶喝完,还剩3+3=6空瓶,拿出4空瓶换一瓶,还剩3个空瓶子,找人借一个瓶子凑齐四个喝完还剩一个再把这个瓶子还给那个人,故最多可以喝五瓶矿泉水.故选C.考点:命题.20.C【分析】设甲单独完成任务需要x小时,则乙单独完成任务需要(x﹣5)小时;根据信息二提供的信息列出方程并解答;根据信息三得到丙的工作效率,易得按照甲、乙、丙的顺序至完成工作任务所需的时间.【详解】解:设甲单独完成任务需要x小时,则乙单独完成任务需要(x﹣5)小时,则5x x -解得x =20.经检验x =20是原方程的根,且符合题意.①x =20是所列方程的解.①x -5=15.①甲的工作效率是120,乙的工作效率是115, 则丙的工作效率是110. ①一轮的工作量为:1111320151060++=. ①4轮后剩余的工作量为:52216015-=. ①还需要甲、乙分别工作1小时后,丙需要的工作量为:211115201560--=. ①丙还需要工作16小时. 故一共需要的时间是:3×4+2+16=14 16小时. 故选:C . 【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键. 21.2【分析】根据题意直接列一元一次不等式,并求解即可.【详解】解:设蛋白质的含量至少应为x 克,依题意得:0.4%500x ≥, 解得x ≥2,则蛋白质的含量至少应为2克.【点睛】本题考查了一元一次不等式的应用,根据题意正确列出不等式是解题的关键. 22.7 【分析】先解方程23252x x -+=-,得97x =,因为这个解也是方程72x b -=的解,根据方程的解的定义,把x 代入方程72x b -=中求出b 的值. 【详解】解:由23252x x -+=-,得2420(515),x x -=-+7所以可得97277b =⨯-= 故答案为:7.【点睛】本题考查了解一元一次方程和方程的解的定义,方程的解就是能够使方程左右两边相等的未知数的值.23.364y - 【详解】方程4x −3y +6=0,解得:x =364y -, 故答案为364y -. 24.0##1【分析】分别求出两个不等式的解集,再求出两个解集的公共部分,即可得到答案.【详解】()212143x x x +>⎧⎪⎨-+>⎪⎩①② 解不等式①得:1x >-;解不等式①得:2x <;所以不等式组的解集为:12x -<<;则其整数解为0与1.故答案为:0(或1).【点睛】本题考查了求一元一次不等式组的整数解,正确并熟练地解一元一次不等式是解题的关键.25.m≤14【分析】一元二次方程有实数根,则①≥0,建立关于m 的不等式,求出m 的取值范围.【详解】解:由题意知,①=1﹣4m≥0, ①m≤14, 故答案为m≤14. 【点睛】本题考查根的判别式,解题的关键是明确当一元二次方程有实数根时,①≥0. 26.1k ≠【分析】根据一元二次方程的定义列式计算即可得解.【详解】①关于x 的方程()21410k x x ---=是一元二次方程,①10k -≠,①1k ≠,故答案为:1k ≠.【点睛】本题主要考查了一元二次方程定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.27.1【分析】根据题意列出方程即可求出答案. 【详解】解:由题意得:342a a +=--, 去分母得,()342a a +=-- ,解得,1a =,经检验1a =是分式方程的解,故答案为:1【点睛】本题考查分式方程,解题的关键是熟练运用分式方程的解法.28.3<x <6【详解】试题分析:根据三角形三边之间的关系:两边之和大于第三边,两边之差小于第三边,可得13-7< 1+2x <20,解得3<x <6 .考点:三角形三边之间的关系点评:该题考查了三角形三边之间的关系,已知三角形的两边长,可以求第三边的范围,即两边之差<第三边长<两边之和.29.y=-2x+5【分析】把x 看做已知数求出y 即可.【详解】解:方程y+2x=5,解得:y=-2x+5.故答案为:y=-2x+5.【点睛】此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .30.0,3,4,5【分析】先解方程组2630x myx y-=⎧⎨-=⎩,用m表示出方程组的解,根据方程组有正整数解得出m的值.【详解】解:2630x myx y-=⎧⎨-=⎩①②由①得:x=3y ①,把①代入①得:6y−my=6,①y=66-m,①x=186-m,①方程组2630x myx y-=⎧⎨-=⎩的解是正整数,①6−m>0,①m<6,并且66-m和186-m是正整数,m是整数,①m的值为:0,3,4,5.故答案是:0,3,4,5.【点睛】本题考查了二元一次方程组的解,一般情况下二元一次方程组的解是唯一的.数学概念是数学的基础与出发点,当遇到有关二元一次方程组的解的问题时,要回到定义中去,通常采用代入法,即将解代入原方程组,这种方法主要用在求方程中的字母系数.31.185【分析】设每件服装标价为x元,再根据无论亏本或盈利,其成本价相同,列出方程,求出x的解,最后根据成本价=服装标价×折扣,即可得出答案.【详解】解:设每件服装标价为x元,根据题意得:0.5x+35=0.8x-55,解得:x=300.则每件服装标价为300元,成本价是:300×50%+35=185(元),故答案为:185.【点睛】此题主要考查了一元一次方程的应用,正确找出等量关系是解题的关键.32.10°或130°【分析】根据A ∠与B ∠两边分别平行,由A ∠比B ∠的3倍少20°列方程求解即可得到答案.【详解】①A ∠比B ∠的3倍少20°,①A ∠=3B ∠- 20°,①A ∠与B ∠两边分别平行,①①A 与①B 相等或互补,①当A ∠=B ∠时,得到①A =3①A - 20°,①①A =10°;①当①A +①B =180°时,得到①A =3(180°-①A )-20°,①①A =130°,故答案为:10°或130°.【点睛】此题考查平行线的性质,解一元一次方程,能正确理解两边分别平行的两个角的关系是解题的关键.33. 17 54± 【分析】(1)令224n x y m xy +==,,将原方程组可化为关于m 、n 的二元一次方程组,进行求解即可;(2)先根据完全平方公式求出25x y +=±,再将112x y+通分进行计算即可. 【详解】(1)令224n x y m xy +==,,原方程组可化为3247236m n m n -=⎧⎨+=⎩, 解得172m n =⎧⎨=⎩, 即221724x y xy +==,,故答案为:17;(2)222(2)4178254x y x y xy +=+=+=+,25x y ∴+=±1125224x y x y xy +±∴+==,故答案为:54±. 【点睛】本题考查了解二元一次方程组,完全平方公式的变形,异分母分式相加等,熟练掌握知识点并运用整体代入法是解题的关键.34.823m -<< 【分析】先解出方程组的解,再根据解的情况列出关于m 的不等式组,解不等式组即可求解.【详解】解:225234x y m x y m +=-⎧⎨-=-⎩①② ①+①得:x =-1-m ,将x =-1-m 代入①中,得:y =342m -, ①该方程组的解满足1x <,2y <, ①113422m m --<⎧⎪⎨-<⎪⎩, 解得:823m -<<. 故答案为:823m -<<. 【点睛】本题考查解二元一次方程组的应用、解一元一次不等式组,熟练掌握二元一次方程组、一元一次不等式组的解法,正确解出x 、y 值是解答的关键.35.①①①【分析】先求出各不等式的解集,再根据各小题的结论解答即可.【详解】解:解不等式x ﹣1>0得,x >1;解不等式x ﹣a ≤0得,x ≤a ,故不等式组的解集为:1<x ≤a .①①它的解集是1<x ≤4,①a =4,故本小题正确;①①a =1,x >1,①不等式组无解,故本小题正确;①①它的整数解只有2,3,4,则4≤a <5,①4≤a <5,故本小题正确;①①它有解,①a >1,故本小题错误.故答案为:①①①.【点睛】本题主要考查了解一元一次不等式组,掌握解一元一次不等式组是解题的关键. 36.13k <<【分析】先求出方程组的解,根据题意得出关于k 的不等式组,再求出不等式组的解集即可.【详解】解:解方程组221x y x y k +=⎧⎨+=+⎩得:13x k y k=-⎧⎨=-⎩, 关于x ,y 的二元一次方程组221x y x y k +=⎧⎨+=+⎩的解为正数, ∴1030k k ->⎧⎨->⎩, 解得:13k <<,故答案为:13k <<.【点睛】本题考查了二元一次方程组的解,解二元一次方程组和解一元一次不等式组等知识点,能得出关于k 的不等式组是解此题的关键.37.22x -≤<【分析】分别求出每个不等式的解集,再取它们的公共部分即可得到不等式组的解集.【详解】解:23113x x -<⎧⎨-≤⎩①② 解不等式①得,x <2,解不等式①得,x ≥-2所以,不等式组的解集为:22x -≤<故答案为:22x -≤<.【点睛】此题考查了解一元一次不等式组,解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大中间找,大大小小无法找(空集).38.±2.【分析】根据根的判别式求出△=0,求出a 2+b 2=2,根据完全平方公式求出即可.【详解】解:①关于x 的方程x 2+2ax-b 2+2=0有两个相等的实数根,①①=(2a )2-4×1×(-b 2+2)=0,即a 2+b 2=2,①常数a 与b 互为倒数,①ab=1,①(a+b )2=a 2+b 2+2ab=2+2×1=4,①a+b=±2,故答案为±2.【点睛】本题考查了根的判别式和解高次方程,能得出等式a 2+b 2=2和ab=1是解此题的关键.39.5621624x y x y +=⎧⎨⨯=⎩【分析】此题中的等量关系有:①生产螺栓人数+生产螺母人数=56人;①每天生产的螺栓和螺母按1:2配套,那么螺栓要想与螺母的数量配套,则螺栓数量的2倍=螺母数量.【详解】解:根据生产螺栓人数+生产螺母人数=56人,得方程x+y=56;根据螺栓数量的2倍=螺母数量,得方程2×16x=24y .列方程组为:5621624x y x y +=⎧⎨⨯=⎩故答案为5621624x y x y +=⎧⎨⨯=⎩【点睛】本题考查了由实际问题抽象出二元一次方程组,难点在于理解第二个等量关系:若要保证配套,则生产的螺母的数量是生产的螺栓数量的2倍,所以列方程的时候,应是螺栓数量的2倍=螺母数量.40.1-或2【分析】根据增根是化为整式方程后产生的不适合分式方程的根,先把分式方程去分母化为整式方程,再通过使最简公分母不为0确定增根的可能值,将其代入整式方程即可算出m 的值.【详解】解:①2211x m x x x x x+-=++, ①()2221x m x -=+,①221m x x =--. ①2211x m x x x x x+-=++有增根, ①0x =或=1x -.当0x =时,2211m x x =--=-;当=1x -时,2212m x x =--=.①m 的值为1-或2.故答案为:1-或2【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;①化分式方程为整式方程;①把增根代入整式方程即可求得相关字母的值. 41.(1)x =5;(2)x =4.【分析】(1)移项,合并同类项,系数化成1即可;(2)去分母,然后移项,合并同类项,系数化成1即可.【详解】解:(1)移项合并得:5x =25,解得:x =5;(2)去分母得:2x +2﹣4=8+2﹣x ,移项合并得:3x =12,解得:x =4.【点睛】本题考查一元一次方程的解法,掌握一元一次方程的解法是关键.42.13x = 【分析】观察可得最简公分母是(x +1)(x ﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 【详解】解:242111x x x ++=--- 整理,得:421(1)(1)1x x x x +-=-+-- 方程两边都乘以(x +1)(x ﹣1),得4﹣(x +1)(x +2)=﹣(x 2﹣1),整理,得,3x =1, 解得1x=3. 经检验,1x=3是原方程的根.①原方程的解是1x=3.【点睛】本题考查解分式方程,注意解分式方程,结果要检验.43.(1)32x y =⎧⎨=-⎩;(2)34x y =⎧⎨=⎩. 【分析】(1)利用加减消元法求出解即可.(2)去分母后,加减法消元解方程.【详解】解:(1)32528x yx y+=⎧⎨-=⎩①②,①×2得,4x﹣2y=16①,①+①得,7x=21,解得x=3,把x=3代入①得,2×3﹣y=8,解得y=﹣2,所以,方程组的解是32xy=⎧⎨=-⎩;(2)方程组可化为4324347x yx y+=⎧⎨-=-⎩①②,①×4得,16x+12y=96①,①×3得,9x﹣12y=﹣21①,①+①得,25x=75,解得x=3,把x=3代入①得,3×3﹣4y=﹣7,解得y=4,所以,方程组的解是34xy=⎧⎨=⎩.【点睛】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.44.在这两笔生意中,商场共盈利90260元.【分析】盈利=总售价-总进价,应求出某商品的数量.总价明显,一定是根据单价来列等量关系.本题的关键描述语是:“单价贵了4元”;等量关系为:第一次的单价=第二次的单价-4.【详解】设商场第一次购进某商品x件,则第二次购进某商品2x件,根据题意得:8000017600042x x-=.160000=176000-8x解这个方程得:x=2000.经检验:x=2000是原方程的根.商场利润:(2000+4000-150)×58+58×0.8×150-80000-176000=90260(元).答:在这两笔生意中,商场共盈利90260元.【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.45.(1)k=10;(2)k=1.【分析】(1)方程由两个相等的根,则△=0;(2)有一个根是0,则两根之积为0.【详解】解:(1)△=36﹣4(k-1)=40-4k,①两根相等,①①=0,即k=10;(2)①有一根为0,①0∆≥,即10k≤,由根与系数的关系可得,k﹣1=0,①k=1.【点睛】本题考查了一元二次方程根的判别式,根与系数的关系,熟练掌握是解题的关键.一元二次方程根的情况与判别式①的关系:(1)①>0⇔方程有两个不相等的实数根;(2)①=0⇔方程有两个相等的实数根;(3)①<0⇔方程没有实数根.46.(1)63xy=⎧⎨=-⎩;(2)13x-≤<【分析】(1)方程组利用代入消元法求出解即可;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分求出不等式组的解集,表示在数轴上即可.【详解】(1)解:20 346 x yx y+=⎧⎨+=⎩①②方程①可化为2x y=-①把①代入①,得解得y=-3把y=-3代入①,得x=()236-⨯-=所以原方程组的解为:63x y =⎧⎨=-⎩(2)53231204x x x +≥⎧⎪⎨--<⎪⎩①② 解不等式①得1x ≥-解不等式①得3x <所以不等式组的解集为13x -≤<将其在数轴上表示如下:【点睛】本题两个小题分别考查了解二元一次方程组和解一元一次不等式组,根据相关题目要求按步骤求解是解题的关键47.(1)3972不是“和对称数”,2451是“和对称数”,理由见解析,()F N 值为66(2)A 的值为3746,4756,6776,5766,7786,8796【分析】(1)根据“和对称数”的定义,即可求解;(2)根据题意分别表示出()(),F A F B ,再由()()32k F A F B =+,k 能被77整除,并结合a ,m 的取值范围进行分类讨论,即可求解.【详解】(1)解:3972不是“和对称数”,①3924+≠,①3972不是“和对称数”.2451是“和对称数”,①2451+=+,。

2024年贵州省中考数学试卷及答案

2024年贵州省中考数学试卷及答案

2024年贵州省中考数学试卷一、选择题(本大题共12题,每题3分,共36分.每小题均有A ,B ,C,D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置填涂)1.下列有理数中最小的数是()A.2- B.0C.2D.42.“黔山秀水”写成下列字体,可以看作是轴对称图形的是()A. B. C. D.3.计算23a a +的结果正确的是()A.5aB.6aC.25aD.26a 4.不等式1x <的解集在数轴上的表示,正确的是()A.B. C.D.5.一元二次方程220x x -=的解是()A.13x =,21x = B.12x =,20x = C.13x =,22x =- D.12x =-,21x =-6.为培养青少年的科学态度和科学思维,某校创建了“科技创新”社团.小红将“科”“技”“创”“新”写在如图所示的方格纸中,若建立平面直角坐标系,使“创”“新”的坐标分别为()2,0-,()0,0,则“技”所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限7.为了解学生的阅读情况,某校在4月23日世界读书日,随机抽取100名学生进行阅读情况调查,每月阅读两本以上经典作品的有20名学生,估计该校800名学生中每月阅读经典作品两本以上的人数为()A.100人B.120人C.150人D.160人8.如图,ABCD Y 的对角线AC 与BD 相交于点O ,则下列结论一定正确的是()A.AB BC =B.AD BC =C.OA OB =D.AC BD⊥9.小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,下列说法正确的是()A.小星定点投篮1次,不一定能投中B.小星定点投篮1次,一定可以投中C.小星定点投篮10次,一定投中4次D.小星定点投篮4次,一定投中1次10.如图,在扇形纸扇中,若150AOB ∠=︒,24OA =,则 AB 的长为()A.30πB.25πC.20πD.10π11.小红学习了等式的性质后,在甲、乙两台天平的左右两边分别放入“■”“●”“▲”三种物体,如图所示,天平都保持平衡.若设“■”与“●”的质量分别为x ,y ,则下列关系式正确的是()甲乙A.x y= B.2x y= C.4x y= D.5x y=12.如图,二次函数2y ax bx c =++的部分图象与x 轴的一个交点的横坐标是3-,顶点坐标为()1,4-,则下列说法正确的是()A.二次函数图象的对称轴是直线1x =B.二次函数图象与x 轴的另一个交点的横坐标是2C.当1x <-时,y 随x 的增大而减小D.二次函数图象与y 轴的交点的纵坐标是3二、填空题(本大题共4题,每题4分,共16分)13.的结果是________.14.如图,在ABC 中,以点A 为圆心,线段AB 的长为半径画弧,交BC 于点D ,连接AD .若5AB =,则AD 的长为______.15.在元朝朱世杰所著的《算术启蒙》中,记载了一道题,大意是:快马每天行240里,慢马每天行150里,慢马先行12天,则快马追上慢马需要的天数是______.16.如图,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点,连接AE ,AF.若4sin 5EAF ∠=,5AE =,则AB 的长为______.三、解答题(本大题共9题,共98分.解答应写出必要的文字说明、证明过程或演算步骤)17.(1)在①22,②2-,③()01-,④122⨯中任选3个代数式求和(2)先化简,再求值:()21122x x -⋅+,其中3x =.18.已知点()1,3在反比例函数ky x=的图象上.(1)求反比例函数的表达式(2)点()3,a -,()1,b ,()3,c 都在反比例函数的图象上,比较a ,b ,c 的大小,并说明理由.19.根据《国家体质健康标准》规定,七年级男生、女生50米短跑时间分别不超过7.7秒,8.3秒为优秀等次.某校在七年级学生中挑选男生、女生各5人进行集训,经多次测试得到10名学生的平均成绩(单位:秒)记录如下:男生成绩:7.61,7.38,7.65,7.38,7.38女生成绩:8.23,8.27,8.16,8.26,8.32根据以上信息,解答下列问题:(1)男生成绩的众数为______,女生成绩的中位数为______(2)判断下列两位同学的说法是否正确.(3)教练从成绩最好的3名男生(设为甲,乙,丙)中,随机抽取2名学生代表学校参加比赛,请用画树状图或列表的方法求甲被抽中的概率.20.如图,四边形ABCD 的对角线AC 与BD 相交于点O ,AD BC ∥,90ABC ∠=︒,有下列条件:①AB CD ∥,②AD BC =.(1)请从以上①②中任选1个作为条件,求证:四边形ABCD 是矩形(2)在(1)的条件下,若3AB =,5AC =,求四边形ABCD 的面积.21.为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩?22.综合与实践:小星学习解直角三角形知识后,结合光的折射规律进行了如下综合性学习.【实验操作】第一步:将长方体空水槽放置在水平桌面上,一束光线从水槽边沿A 处投射到底部B 处,入射光线与水槽内壁AC 的夹角为A∠第二步:向水槽注水,水面上升到AC 的中点E 处时,停止注水.(直线NN '为法线,AO 为入射光线,OD 为折射光线.)【测量数据】如图,点A ,B ,C ,D ,E ,F ,O ,N ,N '在同一平面内,测得20cm AC =,45A ∠=︒,折射角32DON ∠=︒.【问题解决】根据以上实验操作和测量的数据,解答下列问题:(1)求BC 的长(2)求B ,D 之间的距离(结果精确到0.1cm ).(参考数据:sin 320.52︒≈,cos320.84︒≈,tan 320.62︒≈)23.如图,AB 为半圆O 的直径,点F 在半圆上,点P 在AB 的延长线上,PC 与半圆相切于点C ,与OF 的延长线相交于点D ,AC 与OF 相交于点E ,DC DE =.(1)写出图中一个与DEC ∠相等的角:______(2)求证:OD AB⊥(3)若2OA OE =,2DF =,求PB 的长.24.某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y(盒)与销售单价x(元)是一次函数关系,下表是y与x的几组对应值.销售单价x/元…1214161820…销售量y/盒…5652484440…(1)求y与x的函数表达式(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m的值.25.综合与探究:如图,90AOB ∠=︒,点P 在AOB ∠的平分线上,PA OA ⊥于点A .图①图②备用图(1)【操作判断】如图①,过点P 作PC OB ⊥于点C ,根据题意在图①中画出PC ,图中APC ∠的度数为______度(2)【问题探究】如图②,点M 在线段AO 上,连接PM ,过点P 作PN PM ⊥交射线OB 于点N ,求证:2OM ON PA +=(3)【拓展延伸】点M 在射线AO 上,连接PM ,过点P 作PN PM ⊥交射线OB 于点N ,射线NM 与射线PO 相交于点F ,若3ON OM =,求OPOF的值.2024年贵州省中考数学试卷答案解析一、选择题.1.【答案】A2.【答案】B3.【答案】A4.【答案】C5.【答案】B6.【答案】A7.【答案】D8.【答案】B9.【答案】A 10.【答案】C 11.【答案】C 12.【答案】D【解析】解∶∵二次函数2y ax bx c =++的顶点坐标为()1,4-∴二次函数图象的对称轴是直线=1x -,故选项A 错误∵二次函数2y ax bx c =++的图象与x 轴的一个交点的横坐标是3-,对称轴是直线=1x -∴二次函数图象与x 轴的另一个交点的横坐标是1,故选项B 错误∵抛物线开口向下,对称轴是直线=1x -∴当1x <-时,y 随x 的增大而增大,故选项C 错误设二次函数解析式为()214y a x =++把()3,0-代入,得()20314a =-++解得1a =-∴()214y x =-++当0x =时,()20143y =-++=∴二次函数图象与y 轴的交点的纵坐标是3,故选项D 正确故选D .二、填空题.13.14.【答案】515.【答案】2016.【解析】【分析】延长BC ,AF 交于点M ,根据菱形的性质和中点性质证明ABE ADF ≌,ADF MCF ≌△,过E 点作EN AF ⊥交N 点,根据三角函数求出EN ,AN ,NF ,MN ,在Rt ENM △中利用勾股定理求出EM ,根据菱形的性质即可得出答案.【详解】延长BC ,AF 交于点M,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点AB BC CD AD ∴===,BE EC CF DF ===,D FCM ∠=∠,B D∠=∠在ABE 和ADF △中AB AD B D BE DF =⎧⎪∠=∠⎨⎪=⎩∴()SAS ABE ADF ≌∴AE AF=在ADF △和MCF △中D FCM DF CF AFD MFC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA ADF MCF ≌∴CM AD =,AF MF=5AE = 5AE AF MF ∴===过E 点作EN AF ⊥交N 点90ANE ∴∠=︒ 4sin 5EAF ∠=,5AE =4EN ∴=,3AN =∴2NF AF AN =-=527MN ∴=+=在Rt ENM △中EM ===即12EM EC CM BC BC =+=+=AB BC CD AD===AB BC ∴==.三、解答题.17.【答案】(1)见解析(2)12x -,1【解析】(1)解:选择①,②,③2022(1)+-+-421=++7=选择①,②,④212222+-+⨯421=++7=选择①,③,④()0212122+-+⨯411=++6=选择②,③,④()012122-+-+⨯211=++4=(2)解:()21122x x -⋅+()()11(1)21x x x =-+⋅+12x -=当3x =时,原式3112-==.18..【答案】(1)3y x =(2)a c b <<,理由见解析【小问1详解】解:把()1,3代入k y x =,得31k =∴3k =∴反比例函数的表达式为3y x =【小问2详解】解:∵30k =>∴函数图象位于第一、三象限∵点()3,a -,()1,b ,()3,c 都在反比例函数的图象上,3013-<<<∴0a c b<<<∴a c b <<.19.【答案】(1)7.38,8.26(2)小星的说法正确,小红的说法错误(3)13【小问1详解】解:男生成绩7.38出现的次数最多,即众数为7.38女生成绩排列为:8.16,8.23,8.26,8.27,8.32,居于中间的数为8.26,故中位数为8.26故答案为:7.38,8.26【小问2详解】解:∵用时越少,成绩越好∴7.38是男生中成绩最好的,故小星的说法正确∵女生8.3秒为优秀成绩,8.328.3>∴有一人成绩达不到优秀,故小红的说法错误【小问3详解】列表为:甲乙丙甲甲,乙甲,丙乙乙,甲乙,丙丙丙,甲丙,乙由表格可知共有6种等可能结果,其中抽中甲的有2种故甲被抽中的概率为2163=.20.【答案】(1)见解析(2)12【小问1详解】选择①证明:∵AB CD ∥,AD BC∥∴ABCD 是平行四边形又∵90ABC ∠=︒∴四边形ABCD 是矩形选择②证明:∵AD BC =,AD BC∥∴ABCD 是平行四边形又∵90ABC ∠=︒∴四边形ABCD 是矩形【小问2详解】解:∵90ABC ∠=︒∴4BC ===∴矩形ABCD 的面积为3412⨯=.21.【答案】(1)种植1亩甲作物和1亩乙作物分别需要5,6名学生(2)至少种植甲作物5亩【小问1详解】解:设种植1亩甲作物和1亩乙作物分别需要x ,y 名学生根据题意,得32272222x y x y +=⎧⎨+=⎩解得56x y =⎧⎨=⎩答:种植1亩甲作物和1亩乙作物分别需要5,6名学生【小问2详解】解:设种植甲作物a 亩,则种植乙作物()10a -亩根据题意,得:()561055a a +-≤解得5a ≥答:至少种植甲作物5亩.22.【答案】(1)20cm(2)3.8cm【小问1详解】解:在Rt ABC 中,45A ∠=︒∴45B ∠=︒∴20cmBC AC ==【小问2详解】解:由题可知110cm 2ON EC AC ===∴10cmNB ON ==又∵32DON ∠=︒∴tan 10tan 32100.62 6.2cmDN ON DON =⋅∠=⨯︒≈⨯=∴10 6.2 3.8cm BD BN DN =-=-=.23.【答案】(1)DCE ∠(答案不唯一)(2)163(3)163【小问1详解】解:∵DC DE=∴DCE DEC∠=∠故答案为:DCE ∠(答案不唯一)【小问2详解】证明:连接OC ∵PC 是切线∴OC CD ⊥,即90DCE ACO ∠+∠=︒∵OA OC=∴OAC ACO∠=∠∵DCE DEC ∠=∠,AEO DEC∠=∠∴90AEO CAO ∠+∠=︒∴90AOE ∠=︒∴OD AB⊥【小问3详解】解:设OE x =,则2AO OF BO x===∴EF OF OE x =-=,22OD OF DF x =+=+∴2DC DE DF EF x==+=+在Rt ODC △中,222OD CD OC =+∴()()()2222222x x x +=++解得14x =,20x =(舍去)∴10OD =,6CD =,8OC =∵tan OP OC D OD CD ==∴8106OP =解得403OP =∴163BP OP OB =-=.24.【答案】(1)280y x =-+(2)糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元(3)2【小问1详解】解∶设y 与x 的函数表达式为y kx b=+把12x =,56y =;20x =,40y =代入,得12562040k b k b +=⎧⎨+=⎩解得280k b =-⎧⎨=⎩∴y 与x 的函数表达式为280y x =-+【小问2详解】解:设日销售利润为w 元根据题意,得()10w x y=-⋅()()10280x x =--+22100800x x =-+-()2225450x =--+∴当25x =时,w 有最大值为450∴糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元【小问3详解】解:设日销售利润为w 元根据题意,得()10w x m y =--⋅()()10280x m x =---+()22100280080x m x m=-++--∴当()100250222m m x ++=-=⨯-时,w 有最大值为()25050210028008022m m m m ++⎛⎫⎛⎫-++-- ⎪ ⎝⎭⎝⎭∵糖果日销售获得的最大利润为392元∴()25050210028008039222m m m m ++⎛⎫⎛⎫-++--= ⎪ ⎪⎝⎭⎝⎭化简得2601160m m -+=解得12m =,258m =(舍去)∴m 的值为2.25.【答案】(1)画图见解析,90(2)见解析(3)23或83【小问1详解】解:如图,PC 即为所求∵90AOB ∠=︒,PA OA ⊥,PC OB⊥∴四边形OAPC 是矩形∴90APC ∠=︒故答案为:90【小问2详解】证明:过P 作PC OB ⊥于C由(1)知:四边形OAPC 是矩形∵点P 在AOB ∠的平分线上,PA OA ⊥,PC OB⊥∴PA PC=∴矩形OAPC 是正方形∴OA AP PC OC ===,90APC ∠=︒∵PN PM⊥∴90APM CPN MPC ∠=∠=︒-∠,又90A PCN ∠=∠=︒,AP CP=∴APM CPN△≌△∴AM CN=∴OM ON OM CN OC+=++OM AM AP=++OA AP=+2AP=【小问3详解】解:①当M 在线段AO 上时,如图,延长NM ,PA 相交于点G由(2)知2OM ON PA+=设OM x =,则3ON x =,2AO PA x==∴AM AO OM x OM=-==∵90AOB MAG ︒∠=∠=,AMG OMN ∠=∠,∴()ASA AMG OMN ≌ ∴3AG ON x==∵90AOB ∠=︒,PA OA⊥∴AP OB∥∴ONF PGF∽∴33325OF ON x PF PG x x ===+∴53PF OF =∴53833OP OF +==②当M 在AO 的延长线上时,如图,过P 作PC OB ⊥于C ,并延长交MN 于G由(2)知:四边形OAPC 是正方形∴OA AP PC OC ===,90APC ∠=︒,PC AO∥∵PN PM⊥∴90APM CPN MPC ∠=∠=︒-∠,又90A PCN ∠=∠=︒,AP CP=∴APM CPN△≌△∴AM CN=∴ON OM-OC CN OM=+-AO AM OM=+-AO AO=+2AO=∵33ON OM x==∴AO x =,2CN AM x==∵PC AO∥∴CGN OMN∽∴CG CN OM ON=,即23CG x x x =∴23CG x =∵PC AO∥∴OMF PGF ∽ ∴3253OF OM x PF PG x x ===+∴53PF OF =∴53233OP OF -==综上,OP OF 的值为23或83.。

精品解析:人教版九年级数学中考训练《方程(组)与不等式(组)》综合检测卷(解析版).docx

精品解析:人教版九年级数学中考训练《方程(组)与不等式(组)》综合检测卷(解析版).docx

《方程(组)与不等式(组)》综合检测卷一、选择题(每小题3分,共30分)1. 不等式3(x-l )<5-x 的非负整数解有()A. 1个B.2个C. 3个D.4个【答案】C【解析】试题分析:解不等式得:3x - 3<5 - x, 4x<8, x<2,所以不等式的非负整数解有0、1、2这3个, 故答案选C.考点:一元一次不等式组的整数解./X + 1 > 02. 不等式Ll x>o 的解集在数轴上表示正确的是(【答案】A 严+ 1 >0① 【解析】卜”0②解①得x> ・ 1:解②得x< 3;・・・不等式组的解集是-l<x<3.故选A.点睛:本题考查了不等式组的解法及解集的数轴表示法,先分别解商个不等式,求岀它们的解集,再求 两个不等式解集的公共部分•不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大 大力5'无解.在数轴上,空心圈表示不包含该点,实点表示包含该点.3. 已知是二元一次方程组f 的解,则m —n 的值是()A. 1B. 2C. 3D. 4【答案】DA. (A)B. (B)C ・(C) D. (D)【解析】把{;爲代入{廟皐7得:{-3M:m , 解得:{器】;,.*.m-n= 1-(-3)= 1+3 = 4.故选D.4.一元一次不等式组為°的解集中,整数解的个数是()A. 4B. 5C. 6D. 7【答案】C【解析】试题分析:・・•解不等式2x+l>0得:x>-£解不等式X-5<04#:X<5, /.不等式组的解集是—<x<5,2 2整数解为0, 1, 2, 3, 4, 5,共6个,故选C.考点:一元一次不等式组的整数解.(■(现频1). 1 15.Xi、X2是关于X的一元二次方程X**—mx+m—2 = 0的两个实数根,是否存在实数m,使一+ —=0成立?X] X2则正确的结论是()A^m=0时成立_____ m=2时成立Qm=0或2时成立______ 不存在【答案】A【解析】・・・£,出是关于兀的一元二次方程x2-bx+b~2 = 0的两个实数根・・・△= (b・2)2+4>0兀i+%2=b, x\xx2=b-21 1 x i+ x2 b• •- + ------ = ---- =X] x2 XjX2 b-21 1 b使一+—=0,则——=0X] x2b-2故满足条件的b的值为0故选A.视频门6.已知关于x的一元二次方程x2+ax+b=0有一个非零根一匕则a — b的值为()AJ ____ -1(L0 ___ -2【答案】A【解析】试题分析:・・•关于x的一元二次方程x'+ax+EO有一个非零根・b,/. b2 - ab+b=O,•・• - go,・・心0,方程两边同时除以b,得b - a+l=0,.*.a - b=l.故选:C.考点:一元二次方程的解.7.为加快环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需吋间与原计划植树300棵所需吋间相同.设现在平均每天植树x棵,则列出的方程为( ) 400 300 400 300 400 300 400 300A ----- = ------B ------------ = — c --------------- = — D ------------ =--------x x-30 x-30 x x + 30 x x x + 30【答案】A【解析】设现在平均每天植树x棵,根据现在植树400棵所需吋间二原计划植树300棵所需吋I'可相同列方程得:400_ 300x x - 30故选A.点睛:本题考查了列分式方程解应用题,一般步骤:①审题;②设未知数;③找出能够表示题目全部含兀的相等关系,列出分式方程;④解分式方程;⑤验根;⑥写出答案.8.某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问老人.如果分给每位老人4盒牛奶,那么剩下28盒牛奶;如果分给每位老人5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒.则这个敬老院的老人最少有()A. 29 人B. 30 人C. 31 人D. 32 人【答案】B【解析】试题分析:设这个敬老院的老人有x人,依题意得:j4x + 28-5(x-l)<4(4x + 28-5(x-l)> 1,解得:29<x<32,・・・x为整数,・・・x可取值30, 31, 32,・・・x最少为30,故选B.考点:一元一次不等式组的应用.2x + H9.关于x的方程——=1的解是正数,则a的取值范围是()X-1A. a>— 1B. a>— 1 且妙0C. a<—1D. a<— 1 且a/—2【答案】D【解析】试题分析:方程左右两端同乘以最小公分母x・l,得2x+a=x・l.解得:x=-a-l且x为正数。

2023-2024学年贵州省遵义市高中数学人教B版 必修一等式与不等式章节测试-20-含解析

2023-2024学年贵州省遵义市高中数学人教B版 必修一等式与不等式章节测试-20-含解析

1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年贵州省遵义市高中数学人教B 版必修一等式与不等式章节测试(20)姓名:____________ 班级:____________ 学号:____________考试时间:120分钟 满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)6431. 已知, 直线ax+by=6平分圆的周长,则的最大值为( )A. B. C. D. 或 或 2. 若关于的不等式 的解集为 ,则关于的不等式 的解集为( )A. B. C. D. (1+ )米2米(1+ )米(2+ )米3. 为了竖一块广告牌,要制造三角形支架,如图,要求∠ACB=60°,BC的长度大于1米,且AC 比AB 长0.5米,为了稳固广告牌,要求AC 越短越好,则AC 最短为( )A. B. C. D. 4. 已知集合 , .则 ( )A. B. C. D.或5. 在等比数列 中, , 是方程 的二根,则 的值为( )A. B. C. D.不存在6. 已知数列 的通项为 ,则数列 的最大值为( )A. B. C. D. a =﹣7,b =10a =7,b =﹣10a =﹣7,b =﹣10a =7,b =107. 若不等式的解集为 ,则 , 的值为( )A. B. C. D. 8. 焦点在轴上的椭圆的离心率的最大值为( )A. B. C. D.182720169. 某商场中秋前30天月饼销售总量f (t )与时间t (0<t≤30)的关系大致满足f (t )=t 2+10t+16,则该商场前t 天平均售出(如前10天的平均售出为)的月饼最少为( )A. B. C. D. 10. 不等式的解集为( )A. B. C. D. 11. 已知直线 过点 ,当直线 与 , 轴的正半轴所围成的三角形面积最小时,直线 的方程是( )A. B. C. D.12. 下列大小关系正确的是 ( )A. B. C. D.13. 二次函数( )的部分对应值如下表:-3-2-101-10-4022则关于 的不等式 的解集为 .14. 已知 , 则的最小值是 .15. 若关于 的不等式 的解集为 ,则实数 的值为 .16. 当 时, 的最小值是 .阅卷人得分三、解答题(共6题,共70分)17. 如图,在四边形 中, , .(1) 求的长;(2) 求 面积的最大值.18. 设函数 .(1) 求 的解集;(2) 若不等式对任意实数x 恒成立,求实数m 的取值范围.19. 已知函数的两个零点为 .(1) 求实数m 的取值范围;(2) 求证: .20. 已知, , .(1) 求证:;(2) 若,求证: .21. 设函数.(1) 若不等式的解集 , 求的值;(2) 当时,设, 满足是对任意 , 都有成立,求实数b 的取值范围.答案及解析部分1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.(2)18.(1)(2)(1)(2)20.(1)(2)21.(1)(2)。

2024年贵州省中考数学试题含参考答案

2024年贵州省中考数学试题含参考答案

贵州省2024年初中学业水平考试(中考)试题卷数 学同学你好!答题前请认真阅读以下内容:1.全卷共6页,三个大题,共25小题,满分150分.考试时长120分钟.考试形式为闭卷.2.请在答题卡相应位置作答,在试题卷上答题无效.3.不能使用计算器.一、选择题(本大题共12题,每题3分,共36分.每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置填涂)1. 下列有理数中最小的数是( )A. 2−B. 0C. 2D. 42. “黔山秀水”写成下列字体,可以看作是轴对称图形的是( )A. B. C. D. 3. 计算23a a +结果正确的是( )A. 5aB. 6aC. 25aD. 26a4. 不等式1x <的解集在数轴上的表示,正确的是( )A.B.C.D. 5. 一元二次方程220x x −=的解是( )A. 13x =,21x =B. 12x =,20x =C. 13x =,22x =−D. 12x =−,21x =− 6. 为培养青少年的科学态度和科学思维,某校创建了“科技创新”社团.小红将“科”“技”“创”“新”写在如图所示的方格纸中,若建立平面直角坐标系,使“创”“新”的坐标分别为()2,0−,()0,0,则“技”所在的象限为( )A 第一象限 B. 第二象限 C. 第三象限 D. 第四象限的.7. 为了解学生的阅读情况,某校在4月23日世界读书日,随机抽取100名学生进行阅读情况调查,每月阅读两本以上经典作品的有20名学生,估计该校800名学生中每月阅读经典作品两本以上的人数为( )A. 100人B. 120人C. 150人D. 160人8. 如图,ABCD 的对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A. AB BC =B. AD BC =C. OA OB =D. AC BD ⊥9. 小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,下列说法正确的是( )A. 小星定点投篮1次,不一定能投中B. 小星定点投篮1次,一定可以投中C. 小星定点投篮10次,一定投中4次D. 小星定点投篮4次,一定投中1次10. 如图,在扇形纸扇中,若150AOB ∠=°,24OA =,则 AB 的长为( )A. 30πB. 25πC. 20πD. 10π11. 小红学习了等式的性质后,在甲、乙两台天平的左右两边分别放入“■”“●”“▲”三种物体,如图所示,天平都保持平衡.若设“■”与“●”的质量分别为x ,y ,则下列关系式正确的是( )A. x y =B. 2x y =C. 4x y =D. 5x y =12. 如图,二次函数2y ax bx c ++部分图象与x 轴的一个交点的横坐标是3−,顶点坐标为()1,4−,则下列说法正确的是( )的A. 二次函数图象的对称轴是直线1x =B. 二次函数图象与x 轴另一个交点的横坐标是2C. 当1x <−时,y 随x 的增大而减小D. 二次函数图象与y 轴的交点的纵坐标是3二、填空题(本大题共4题,每题4分,共16分)13.的结果是________.14. 如图,在ABC 中,以点A 为圆心,线段AB 的长为半径画弧,交BC 于点D ,连接AD .若5AB =,则AD 的长为______.15. 在元朝朱世杰所著的《算术启蒙》中,记载了一道题,大意是:快马每天行240里,慢马每天行150里,慢马先行12天,则快马追上慢马需要的天数是______.16. 如图,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点,连接AE ,AF .若4sin 5EAF ∠=,5AE =,则AB 的长为______.三、解答题(本大题共9题,共98分.解答应写出必要的文字说明、证明过程或演算步骤)17. (1)在①22,②2−,③()01−,④122×中任选3个代数式求和; (2)先化简,再求值:()21122x x −⋅+,其中3x =. 18. 已知点()1,3在反比例函数k y x=的图象上.的(1)求反比例函数的表达式;(2)点()3,a −,()1,b ,()3,c 都在反比例函数的图象上,比较a ,b ,c 的大小,并说明理由. 19. 根据《国家体质健康标准》规定,七年级男生、女生50米短跑时间分别不超过7.7秒、8.3秒为优秀等次.某校在七年级学生中挑选男生、女生各5人进行集训,经多次测试得到10名学生的平均成绩(单位:秒)记录如下:男生成绩:7.61,7.38,7.65,7.38,7.38女生成绩:8.23,8.27,8.16,8.26,8.32根据以上信息,解答下列问题:(1)男生成绩众数为______,女生成绩的中位数为______;(2)判断下列两位同学的说法是否正确.(3)教练从成绩最好的3名男生(设为甲,乙,丙)中,随机抽取2名学生代表学校参加比赛,请用画树状图或列表的方法求甲被抽中的概率.20. 如图,四边形ABCD 的对角线AC 与BD 相交于点O ,AD BC ∥,90ABC ∠=°,有下列条件: ①AB CD ∥,②AD BC =.(1)请从以上①②中任选1个作为条件,求证:四边形ABCD 是矩形;(2)在(1)的条件下,若3AB =,5AC =,求四边形ABCD 的面积.21. 为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩?22. 综合与实践:小星学习解直角三角形知识后,结合光的折射规律进行了如下综合性学习.【实验操作】的第一步:将长方体空水槽放置在水平桌面上,一束光线从水槽边沿A 处投射到底部B 处,入射光线与水槽内壁AC 的夹角为A ∠;第二步:向水槽注水,水面上升到AC 的中点E 处时,停止注水.(直线NN ′为法线,AO 为入射光线,OD 为折射光线.) 【测量数据】如图,点A ,B ,C ,D ,E ,F ,O ,N ,N ′在同一平面内,测得20cm AC =,45A ∠=°,折射角32DON ∠=°.【问题解决】根据以上实验操作和测量的数据,解答下列问题:(1)求BC 的长;(2)求B ,D 之间的距离(结果精确到0.1cm ).(参考数据:sin 320.52°≈,cos320.84°≈,tan 320.62°≈)23. 如图,AB 为半圆O F 在半圆上,点P 在AB 的延长线上,PC 与半圆相切于点C ,与OF 的延长线相交于点D ,AC 与OF 相交于点E ,DC DE =.(1)写出图中一个与DEC ∠相等的角:______;(2)求证:OD AB ⊥;(3)若2OA OE =,2DF =,求PB 的长.24. 某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y (盒)与销售单价x (元)是一次函数关系,下表是y 与x 的几组对应值. 销售单价x /元 … 12 14 16 18 20 …销售量y /盒 … 56 52 48 44 40 …(1)求y 与x 的函数表达式;(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m 元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m 的值.25. 综合与探究:如图,90AOB ∠=°,点P 在AOB ∠的平分线上,PA OA ⊥于点A .(1)【操作判断】如图①,过点P 作PC OB ⊥于点C ,根据题意在图①中画出PC ,图中APC ∠的度数为______度; (2)【问题探究】如图②,点M 在线段AO 上,连接PM ,过点P 作PN PM ⊥交射线OB 于点N ,求证:2OM ON PA +=;(3)【拓展延伸】点M 在射线AO 上,连接PM P 作PN PM ⊥交射线OB 于点N ,射线NM 与射线PO 相交于点F ,若3ON OM =,求OP OF的值.贵州省2024年初中学业水平考试(中考)试题卷数 学同学你好!答题前请认真阅读以下内容:1.全卷共6页,三个大题,共25小题,满分150分.考试时长120分钟.考试形式为闭卷.2.请在答题卡相应位置作答,在试题卷上答题无效.3.不能使用计算器.一、选择题(本大题共12题,每题3分,共36分.每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置填涂)1. 下列有理数中最小的数是( )A. 2−B. 0C. 2D. 4【答案】A【解析】【分析】本题考查有理数的大小比较,解题的关键是掌握比较有理数大小的方法.根据有理数的大小比较选出最小的数.【详解】解:∵2024−<<<,∴最小的数是2−,故选:A .2. “黔山秀水”写成下列字体,可以看作是轴对称图形的是( )A. B. C. D.【答案】B【解析】【分析】本题考查了轴对称图形概念,一个图形沿着某条直线折叠后直线两旁的部分能够完全重合,这个图形就叫轴对称图形.根据轴对称图形概念,结合所给图形即可得出答案.【详解】解:A .不是轴对称图形,不符合题意;B . 是轴对称图形,符合题意;C . 不是轴对称图形,不符合题意;D . 不是轴对称图形,不符合题意;故选:B .3. 计算23a a +结果正确的是( )的A. 5aB. 6aC. 25aD. 26a【答案】A【解析】 【分析】本题主要考查合并同类项,根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变即可得.【详解】解: 235a a a +=,故选:A .4. 不等式1x <的解集在数轴上的表示,正确的是( )A.B. C.D.【答案】C【解析】【分析】根据小于向左,无等号为空心圆圈,即可得出答案.本题考查在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解题的关键.【详解】不等式1x <的解集在数轴上的表示如下:.故选:C .5. 一元二次方程220x x −=的解是( )A. 13x =,21x =B. 12x =,20x =C. 13x =,22x =−D. 12x =−,21x =− 【答案】B【解析】【分析】本题考查了解一元二次方程,利用因式分解法求解即可.【详解】解∶ 220x x −=, ∴()20x x −=, ∴0x =或20x −=,∴12x =,20x =,故选∶B .6. 为培养青少年的科学态度和科学思维,某校创建了“科技创新”社团.小红将“科”“技”“创”“新”写在如图所示的方格纸中,若建立平面直角坐标系,使“创”“新”的坐标分别为()2,0−,()0,0,则“技”所在的象限为( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】 【分析】本题考查坐标与图形,先根据题意确定平面直角坐标系,然后确定点的位置.【详解】解:如图建立直角坐标系,则“技”在第一象限,故选A .7. 为了解学生的阅读情况,某校在月23日世界读书日,随机抽取100名学生进行阅读情况调查,每月阅读两本以上经典作品的有20名学生,估计该校800名学生中每月阅读经典作品两本以上的人数为( )A. 100人B. 120人C. 150人D. 160人 【答案】D【解析】【分析】本题考查用样本反映总体,利用样本百分比乘以总人数计算即可解题. 【详解】解:20800160100×=(人), 故选D .8. 如图,ABCD 的对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A. AB BC =B. AD BC =C. OA OB =D. AC BD ⊥【答案】B【解析】 【分析】本题主要考查平行四边形的性质,掌握平行四边形的对边平行且相等,对角线互相平分是解题的关键.【详解】解:∵ABCD 是平行四边形,∴AB CD AD BC AO OC BO OD ====,,,,故选B .9. 小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,下列说法正确的是( )A. 小星定点投篮1次,不一定能投中B. 小星定点投篮1次,一定可以投中C. 小星定点投篮10次,一定投中4次D. 小星定点投篮4次,一定投中1次【答案】A【解析】【分析】本题主要考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,据此求解即可.【详解】解:小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,则由概率的意义可知,小星定点投篮1次,不一定能投中,故选项A 正确,选项B 错误;小星定点投篮10次,不一定投中4次,故选项C 错误;小星定点投篮4次,不一定投中1次,故选项D 错误故选;A .10. 如图,在扇形纸扇中,若150AOB ∠=°,24OA =,则 AB 的长为( )A. 30πB. 25πC. 20πD. 10π【答案】C【解析】 【分析】本题考查了弧长,根据弧长公式∶π180n r l =求解即可. 【详解】解∵150AOB ∠=°,24OA =,∴ AB 的长为150π2420π180×=, 故选∶C . 11. 小红学习了等式的性质后,在甲、乙两台天平的左右两边分别放入“■”“●”“▲”三种物体,如图所示,天平都保持平衡.若设“■”与“●”的质量分别为x ,y ,则下列关系式正确的是( )A. x y =B. 2x y =C. 4x y =D. 5x y =【答案】C【解析】【分析】本题考查等式的性质,设“▲”的质量为a ,根据题意列出等式2x y y a +=+,2x a x y +=+,然后化简代入即可解题.【详解】解:设“▲”的质量为a ,由甲图可得2x y y a +=+,即2x a =,由乙图可得2x a x y +=+,即2a y =,∴4x y =,故选C .12. 如图,二次函数2y ax bx c ++的部分图象与x 轴的一个交点的横坐标是3−,顶点坐标为()1,4−,则下列说法正确的是( )A. 二次函数图象的对称轴是直线1x =B. 二次函数图象与x 轴的另一个交点的横坐标是2C. 当1x <−时,y 随x 的增大而减小D. 二次函数图象与y 轴的交点的纵坐标是3【答案】D【解析】【分析】本题考查了二次函数性质,待定系数法求二次函数解析式,利用二次函数的性质,对称性,增减性判断选项A 、B 、C ,利用待定系数法求出二次函数的解析式,再求出与y 轴的交点坐标即可判定选项D .【详解】解∶ ∵二次函数2y ax bx c ++的顶点坐标为()1,4−,∴二次函数图象的对称轴是直线=1x −,故选项A 错误;∵二次函数2y ax bx c ++的图象与x 轴的一个交点的横坐标是3−,对称轴是直线=1x −,∴二次函数图象与x 轴的另一个交点的横坐标是1,故选项B 错误;∵抛物线开口向下, 对称轴是直线=1x −,∴当1x <−时,y 随x 的增大而增大,故选项C 错误;设二次函数解析式为()214y a x =++,把()3,0−代入,得()20314a =−++, 解得1a =−,∴()214y x =−++,当0x =时,()20143y =−++=, ∴二次函数图象与y 轴的交点的纵坐标是3,故选项D 正确,故选D . 二、填空题(本大题共4题,每题4分,共16分)13.的结果是________.【解析】【分析】利用二次根式的乘法运算法则进行计算.【详解】解:原式,.a ≥0,b >0)是解题关键.14. 如图,在ABC 中,以点A 为圆心,线段AB 的长为半径画弧,交BC 于点D ,连接AD .若的5AB =,则AD 的长为______.【答案】5【解析】【分析】本题考查了尺规作图,根据作一条线段等于已知线段的作法可得出AD AB =,即可求解.【详解】解∶由作图可知∶ AD AB =,∵5AB =,∴5AD =,故答案为∶5.15. 在元朝朱世杰所著的《算术启蒙》中,记载了一道题,大意是:快马每天行240里,慢马每天行150里,慢马先行12天,则快马追上慢马需要的天数是______.【答案】20【解析】【分析】本题考查了一元一次方程的应用,设快马追上慢马需要x 天,根据快马走的路程等于慢马走的总路程,列方程求解即可.【详解】解∶设快马追上慢马需要x 天,根据题意,得()24015012x x =+, 解得20x ,故答案为:20.16. 如图,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点,连接AE ,AF .若4sin 5EAF ∠=,5AE =,则AB 的长为______.【解析】【分析】延长BC ,AF 交于点M ,根据菱形的性质和中点性质证明ABE ADF ≌,ADF MCF ≌△,过E 点作EN AF ⊥交N 点,根据三角函数求出EN ,AN ,NF ,MN ,在Rt ENM △中利用勾股定理求出EM ,根据菱形的性质即可得出答案.【详解】延长BC ,AF 交于点M ,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点,AB BC CD AD ∴===,BE EC CF DF ===,D FCM ∠=∠,B D ∠=∠在ABE 和ADF △中AB ADB D BE DF= ∠=∠ = ,∴()SAS ABE ADF ≌,∴AE AF =,在ADF △和MCF △中D FCMDF CF AFD MFC∠=∠ = ∠=∠ ,∴()ASA ADF MCF ≌,∴CM AD =,AF MF =,5AE = ,5AE AF MF ∴===,过E 点作EN AF ⊥交N 点,90ANE ∴∠=° 4sin 5EAF ∠=,5AE =,4EN ∴=,3AN =,∴2NF AF AN =−=,527MN ∴=+=,在Rt ENM △中EM ,即12EM EC CM BC BC =+=+= AB BC CD AD === ,AB BC ∴==,. 【点睛】本题考查了菱形的性质,全等三角形的判定和性质,运用三角函数解直角三角形,勾股定理等,熟练根据题意灵活构造辅助线构造直角三角形是解本题的关键.三、解答题(本大题共9题,共98分.解答应写出必要的文字说明、证明过程或演算步骤)17. (1)在①22,②2−,③()01−,④122×中任选3个代数式求和; (2)先化简,再求值:()21122x x −⋅+,其中3x =. 【答案】(1)见解析 (2)12x −,1 【解析】【分析】本题考查分式的化简求值和实数的混合运算,掌握运算法则是解题的关键.(1)利用实数的混合运算的法则和运算顺序解题即可;(2)先把分式的分子、分母分解因式,然后约分化为最简分式,最后代入数值解题即可.【详解】(1)解:选择①,②,③,2022(1)+−+−421=++7=;选择①,②,④,212222+−+× 421=++7=;选择①,③,④,()0212122+−+× 411=++6=;选择②,③,④,()012122−+−+× 211=++4=;(2)解:()21122x x −⋅+ ()()11(1)21x x x =−+⋅+ 12x −=; 当3x =时,原式3112−=. 18. 已知点()1,3在反比例函数k y x=的图象上. (1)求反比例函数的表达式; (2)点()3,a −,()1,b ,()3,c 都在反比例函数的图象上,比较a ,b ,c 的大小,并说明理由.【答案】(1)3y x= (2)a c b <<,理由见解析【解析】【分析】本题主要考查了反比例函数的性质,以及函数图象上点的坐标特点,待定系数法求反比例函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.(1)把点()1,3代入k y x=可得k 的值,进而可得函数的解析式; (2)根据反比例函数表达式可得函数图象位于第一、三象限,再根据点A 、点B 和点C 的横坐标即可比较大小.【小问1详解】解:把()1,3代入k y x =,得31k =, ∴3k =,∴反比例函数的表达式为3y x =;【小问2详解】解:∵30k =>,∴函数图象位于第一、三象限,∵点()3,a −,()1,b ,()3,c 都在反比例函数的图象上,3013−<<<,∴0a c b <<<,∴a c b <<.19. 根据《国家体质健康标准》规定,七年级男生、女生50米短跑时间分别不超过7.7秒、8.3秒为优秀等次.某校在七年级学生中挑选男生、女生各5人进行集训,经多次测试得到10名学生的平均成绩(单位:秒)记录如下:男生成绩:7.61,7.38,7.65,7.38,7.38女生成绩:8.23,8.27,8.16,8.26,8.32根据以上信息,解答下列问题:(1)男生成绩的众数为______,女生成绩的中位数为______;(2)判断下列两位同学的说法是否正确.(3)教练从成绩最好的3名男生(设为甲,乙,丙)中,随机抽取2名学生代表学校参加比赛,请用画树状图或列表的方法求甲被抽中的概率.【答案】(1)7.38,8.26(2)小星的说法正确,小红的说法错误(3)13【解析】【分析】本题考查用树状图或列表法求概率,众数和中位数的定义,掌握列表法或树状图求概率是解题的关键.(1)利用中位数和众数的定义解题即可;(2)根据优秀等次的要求进行比较解题即可;(3)列表格得到所有可能的结果数n ,找出符合要求的数量m ,根据概率公式计算即可.【小问1详解】解:男生成绩7.38出现的次数最多,即众数为7.38,女生成绩排列为:8.16,8.23,8.26,8.27,8.32,居于中间的数为8.26,故中位数为8.26,故答案为:7.38,8.26;【小问2详解】解:∵用时越少,成绩越好,∴7.38是男生中成绩最好的,故小星的说法正确;∵女生8.3秒为优秀成绩,8.328.3>,∴有一人成绩达不到优秀,故小红的说法错误;【小问3详解】列表为:甲乙 丙甲甲,乙 甲,丙 乙乙,甲乙,丙 丙丙,甲 丙,乙由表格可知共有6种等可能结果,其中抽中甲的有2种,故甲被抽中的概率为2163=. 20. 如图,四边形ABCD 的对角线AC 与BD 相交于点O ,AD BC ∥,90ABC ∠=°,有下列条件: ①AB CD ∥,②AD BC =.(1)请从以上①②中任选1个作为条件,求证:四边形ABCD 是矩形;(2)在(1)的条件下,若3AB =,5AC =,求四边形ABCD 的面积.【答案】(1)见解析 (2)12【解析】【分析】本题考查矩形的判定,勾股定理,掌握矩形的判定定理是解题的关键.(1)先根据条件利用两组对边平行或一组对边平行且相等证明ABCD 是平行四边形,然后根据矩形定义得到结论即可;(2)利用勾股定理得到BC 长,然后利用矩形的面积公式计算即可.【小问1详解】选择①,证明:∵AB CD ∥,AD BC ∥,∴ABCD 是平行四边形,又∵90ABC ∠=°,∴四边形ABCD 是矩形;选择②,证明:∵AD BC =,AD BC ∥,∴ABCD 是平行四边形,又∵90ABC ∠=°,∴四边形ABCD 是矩形;小问2详解】解:∵90ABC ∠=°,∴4BC ===,∴矩形ABCD 的面积为3412×=21. 为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩?【答案】(1)种植1亩甲作物和1亩乙作物分别需要5、6名学生(2)至少种植甲作物5亩【解析】【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,(1)设种植1亩甲作物和1亩乙作物分别需要x 、y 名学生,根据“种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名”列方程组求解即可;的【(2)设种植甲作物a 亩,则种植乙作物()10a −亩,根据“所需学生人数不超过55人”列不等式求解即可.【小问1详解】解:设种植1亩甲作物和1亩乙作物分别需要x 、y 名学生,根据题意,得32272222x y x y += +=, 解得56x y = = , 答:种植1亩甲作物和1亩乙作物分别需要5、6名学生;【小问2详解】解:设种植甲作物a 亩,则种植乙作物()10a −亩,根据题意,得:()561055a a +−≤,解得5a ≥,答:至少种植甲作物5亩.22. 综合与实践:小星学习解直角三角形知识后,结合光的折射规律进行了如下综合性学习.【实验操作】第一步:将长方体空水槽放置在水平桌面上,一束光线从水槽边沿A 处投射到底部B 处,入射光线与水槽内壁AC 的夹角为A ∠;第二步:向水槽注水,水面上升到AC 的中点E 处时,停止注水.(直线NN ′为法线,AO 为入射光线,OD 为折射光线.) 【测量数据】如图,点A ,B ,C ,D ,E ,F ,O ,N ,N ′在同一平面内,测得20cm AC =,45A ∠=°,折射角32DON ∠=°.【问题解决】根据以上实验操作和测量的数据,解答下列问题:(1)求BC 的长;(2)求B ,D 之间的距离(结果精确到0.1cm ).(参考数据:sin 320.52°≈,cos320.84°≈,tan 320.62°≈)【答案】(1)20cm(2)3.8cm【解析】【分析】本题考查解直角三角形的应用,解答本题的关键是明确题意,利用数形结合的思想解答. (1)根据等腰三角形的性质计算出的值;(2)利用锐角三角函数求出DN 长,然后根据BD BN DN =−计算即可.小问1详解】解:在Rt ABC 中,45A ∠=°,∴45B ∠=°,∴20cm BC AC ==,【小问2详解】 解:由题可知110cm 2ONEC AC ===, ∴10cm NB ON ==,又∵32DON ∠=°, ∴tan 10tan 32100.62 6.2cm DN ON DON =⋅∠=×°≈×=,∴10 6.2 3.8cm BD BN DN =−=−=.23. 如图,AB 为半圆O 的直径,点F 在半圆上,点P 在AB 的延长线上,PC 与半圆相切于点C ,与OF 的延长线相交于点D ,AC 与OF 相交于点E ,DC DE =.(1)写出图中一个与DEC ∠相等的角:______;(2)求证:OD AB ⊥;(3)若2OA OE =,2DF =,求PB 的长.【答案】(1)DCE ∠(答案不唯一)(2)163【(3)163【解析】【分析】(1)利用等边对等角可得出DCE DEC ∠=∠,即可求解;(2)连接OC ,利用切线的性质可得出90DCE ACO ∠+∠=°,利用等边对等角和对顶角的性质可得出AOE DCE ∠=∠,等量代换得出90AEO CAO ∠+∠=°,然后利用三角形内角和定理求出90AOE ∠=°,即可得证;(3)设2OE =,则可求2AOOF BO x ===,EF x =,22OD x =+,2DC DE x ==+,在Rt ODC △中,利用勾股定理得出()()()2222222x x x +=++,求出x 的值,利用tanOP OC D OD CD==可求出OP ,即可求解.【小问1详解】解:∵DC DE =,∴DCE DEC ∠=∠,故答案为:DCE ∠(答案不唯一); 【小问2详解】证明:连接OC , ,∵PC 是切线,∴OC CD ⊥,即90DCE ACO ∠+∠=°,∵OA OC =,∴OAC ACO ∠=∠,∵DCE DEC ∠=∠,AEO DEC ∠=∠,∴90AEO CAO∠+∠=°, ∴90AOE ∠=°,∴OD AB ⊥;【小问3详解】解:设OE x =,则2AOOF BO x ===, ∴EF OF OE x =−=,22OD OF DF x =+=+, ∴2DC DE DF EF x ==+=+,在Rt ODC △中,222OD CD OC =+, ∴()()()2222222x x x +=++,解得14x =,20x =(舍去)∴10OD =,6CD =,8OC =, ∵tanOP OC D OD CD ==, ∴8106OP =, 解得403OP =, ∴163BP OP OB =−=. 【点睛】本题考查了等腰三角形的性质,切线的性质,勾股定理,解直角三角形的应用等知识,灵活运用以上知识是解题的关键.24. 某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y (盒)与销售单价x (元)是一次函数关系,下表是y 与x 的几组对应值. 销售单价x /元 … 12 14 16 18 20 …销售量y /盒… 56 52 48 44 40 …(1)求y 与x 的函数表达式;(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m 元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m 的值. 【答案】(1)280y x =−+ (2)糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元(3)2【解析】【分析】本题考查了二次函数的应用,解题的关键是:(1)利用待定系数法求解即可;(2)设日销售利润为w 元,根据利润=单件利润×销售量求出w 关于x 的函数表达式,然后利用二次函数的性质求解即可;(3)设日销售利润为w 元,根据利润=单件利润×销售量-m ×销售量求出w 关于x 的函数表达式,然后利用二次函数的性质求解即可.【小问1详解】解∶设y 与x 的函数表达式为y kx b =+, 把12x =,56y =;20x ,40y =代入,得12562040k b k b += +=, 解得280k b =− = , ∴y 与x 的函数表达式为280y x =−+; 【小问2详解】解:设日销售利润为w 元,根据题意,得()10w x y =−⋅()()10280x x =−−+22100800x x =−+−()2225450x =−−+,∴当25x =时,w 有最大值为∴糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元;【小问3详解】解:设日销售利润为w 元,根据题意,得()10w x m y =−−⋅ ()()10280x m x =−−−+()22100280080x m x m =−++−−,∴当()100250222m m x ++=−=×−时,w 有最大值为()25050210028008022m m m m ++ −++−−, ∵糖果日销售获得的最大利润为392元,∴()25050210028008039222m m m m ++ −++−−=, 化简得2601160m m −+=解得12m =,258m =(舍去)∴m 的值为2.25. 综合与探究:如图,90AOB ∠=°,点P 在AOB ∠的平分线上,PA OA ⊥于点A .(1)【操作判断】如图①,过点P 作PC OB ⊥于点C ,根据题意在图①中画出PC ,图中APC ∠的度数为______度; (2)【问题探究】如图②,点M 在线段AO 上,连接PM ,过点P 作PN PM ⊥交射线OB 于点N ,求证:2OM ON PA +=;(3)【拓展延伸】点M 在射线AO 上,连接PM ,过点P 作PN PM ⊥交射线OB 于点N ,射线NM 与射线PO 相交于点F ,若3ON OM =,求OP OF的值. 【答案】(1)画图见解析,90(2)见解析 (3)23或83【解析】【分析】(1)依题意画出图形即可,证明四边形OAPC 是矩形,即可求解; (2)过P 作PC OB ⊥于C ,证明矩形OAPC 是正方形,得出OAAP PC OC ===,利用ASA 证明APM CPN △≌△,得出AM CN =,然后利用线段的和差关系以及等量代换即可得证;(3)分M 在线段AO ,线段AO 的延长线讨论,利用相似三角形的判定与性质求解即可;【小问1详解】解:如图,PC 即为所求,∵90AOB ∠=°,PA OA ⊥,PC OB ⊥,∴四边形OAPC 是矩形,∴90APC ∠=°,故答案为:90;【小问2详解】证明:过P 作PC OB ⊥于C ,由(1)知:四边形OAPC 是矩形,∵点P 在AOB ∠的平分线上,PA OA ⊥,PC OB ⊥,∴PA PC =,∴矩形OAPC 是正方形,∴OA AP PC OC ===,90APC ∠=°,∵PN PM ⊥,∴90APM CPN MPC ∠=∠=°−∠,又90A PCN ∠=∠=°,AP CP =, ∴APM CPN △≌△,∴AM CN =,∴OM ON OM CN OC +=++OM AM AP =++OA AP =+2AP =;【小问3详解】解:①当M 在线段AO 上时,如图,延长NM 、PA 相交于点G ,由(2)知2OM ON PA +=,设OM x =,则3ON x =,2AOPA x ==, ∴AM AO OM x OM =−==, ∵90AOB MAG °∠=∠=,AMG OMN ∠=∠, ∴()ASA AMG OMN ≌,∴3AGON x ==, ∵90AOB ∠=°,PA OA ⊥,∴AP OB ∥,∴ONF PGF ∽ , ∴33325OF ON x PF PG x x ===+, ∴53PF OF =, ∴53833OP OF +==; ②当M 在AO 的延长线上时,如图,过P 作PC OB ⊥于C ,并延长交MN 于G由(2)知:四边形OAPC 是正方形,∴OA AP PC OC ===,90APC ∠=°,PC AO ∥,∵PN PM ⊥,∴90APM CPN MPC ∠=∠=°−∠,又90A PCN ∠=∠=°,AP CP =, ∴APM CPN △≌△,∴AM CN =,∴ON OM −OC CN OM =+−AO AM OM =+−AO AO +2AO =,∵33ON OM x == ∴AO x =,2CNAM x ==, ∵PC AO ∥,∴CGN OMN ∽, ∴CG CN OM ON=,即23CG x x x =, ∴23CG x =, ∵PC AO ∥,∴OMF PGF ∽ , ∴3253OF OM x PF PG x x ===+, ∴53PF OF =, ∴53233OP OF −==; 综上,OP OF 的值为23或83. 【点睛】本题考查了矩形的判定与性质,正方形的判定与性质,角平分线的性质,全等三角形的判断与性质,相似三角形的判断与性质等知识,明确题意,添加合适辅助线,构造全等三角形、相似三角形,合理分类讨论是解题的关键.。

2024年贵州省中考数学真题试卷及答案解析

2024年贵州省中考数学真题试卷及答案解析

贵州省2024年初中学业水平考试(中考)试题卷数学同学你好!答题前请认真阅读以下内容:1.全卷共6页,三个大题,共25小题,满分150分.考试时长120分钟.考试形式为闭卷.2.请在答题卡相应位置作答,在试题卷上答题无效.3.不能使用计算器.一、选择题(本大题共12题,每题3分,共36分.每小题均有A.B.C.D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置填涂)1.下列有理数中最小的数是()A.2- B.0 C.2D.42.“黔山秀水”写成下列字体,可以看作是轴对称图形的是()A. B. C. D.3.计算23a a +的结果正确的是()A.5a B.6a C.25a D.26a 4.不等式1x <的解集在数轴上的表示,正确的是()A. B.C. D.5.一元二次方程220x x -=的解是()A.13x =,21x =B.12x =,20x = C.13x =,22x =- D.12x =-,21x =-6.为培养青少年的科学态度和科学思维,某校创建了“科技创新”社团.小红将“科”“技”“创”“新”写在如图所示的方格纸中,若建立平面直角坐标系,使“创”“新”的坐标分别为()2,0-,()0,0,则“技”所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限7.为了解学生的阅读情况,某校在4月23日世界读书日,随机抽取100名学生进行阅读情况调查,每月阅读两本以上经典作品的有20名学生,估计该校800名学生中每月阅读经典作品两本以上的人数为()A.100人 B.120人 C.150人 D.160人8.如图,ABCD Y 的对角线AC 与BD 相交于点O ,则下列结论一定正确的是()A .AB BC = B.AD BC = C.OA OB = D.AC BD⊥9.小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,下列说法正确的是()A.小星定点投篮1次,不一定能投中B.小星定点投篮1次,一定可以投中C.小星定点投篮10次,一定投中4次D.小星定点投篮4次,一定投中1次10.如图,在扇形纸扇中,若150AOB ∠=︒,24OA =,则 AB 的长为()A.30πB.25πC.20πD.10π11.小红学习了等式的性质后,在甲、乙两台天平的左右两边分别放入“■”“●”“▲”三种物体,如图所示,天平都保持平衡.若设“■”与“●”的质量分别为x ,y ,则下列关系式正确的是()A.x y =B.2x y =C.4x y =D.5x y=12.如图,二次函数2y ax bx c =++的部分图象与x 轴的一个交点的横坐标是3-,顶点坐标为()1,4-,则下列说法正确的是()A.二次函数图象的对称轴是直线1x =B.二次函数图象与x 轴的另一个交点的横坐标是2C.当1x <-时,y 随x 的增大而减小D.二次函数图象与y 轴的交点的纵坐标是3二、填空题(本大题共4题,每题4分,共16分)13.计算的结果是________.14.如图,在ABC 中,以点A 为圆心,线段AB 的长为半径画弧,交BC 于点D ,连接AD .若5AB =,则AD 的长为______.15.在元朝朱世杰所著的《算术启蒙》中,记载了一道题,大意是:快马每天行240里,慢马每天行150里,慢马先行12天,则快马追上慢马需要的天数是______.16.如图,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点,连接AE ,AF .若4sin 5EAF ∠=,5AE =,则AB 的长为______.三、解答题(本大题共9题,共98分.解答应写出必要的文字说明、证明过程或演算步骤)17.(1)在①22,②2-,③()01-,④122⨯中任选3个代数式求和;(2)先化简,再求值:()21122x x -⋅+,其中3x =.18.已知点()1,3在反比例函数k y x=的图象上.(1)求反比例函数的表达式;(2)点()3,a -,()1,b ,()3,c 都在反比例函数的图象上,比较a ,b ,c 的大小,并说明理由.19.根据《国家体质健康标准》规定,七年级男生、女生50米短跑时间分别不超过7.7秒、8.3秒为优秀等次.某校在七年级学生中挑选男生、女生各5人进行集训,经多次测试得到10名学生的平均成绩(单位:秒)记录如下:男生成绩:7.61,7.38,7.65,7.38,7.38女生成绩:8.23,8.27,8.16,8.26,8.32根据以上信息,解答下列问题:(1)男生成绩的众数为______,女生成绩的中位数为______;(2)判断下列两位同学的说法是否正确.(3)教练从成绩最好的3名男生(设为甲,乙,丙)中,随机抽取2名学生代表学校参加比赛,请用画树状图或列表的方法求甲被抽中的概率.20.如图,四边形ABCD 的对角线AC 与BD 相交于点O ,AD BC ∥,90ABC ∠=︒,有下列条件:①AB CD ∥,②AD BC =.(1)请从以上①②中任选1个作为条件,求证:四边形ABCD 是矩形;(2)在(1)的条件下,若3AB =,5AC =,求四边形ABCD 的面积.21.为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩?22.综合与实践:小星学习解直角三角形知识后,结合光的折射规律进行了如下综合性学习.【实验操作】第一步:将长方体空水槽放置在水平桌面上,一束光线从水槽边沿A 处投射到底部B 处,入射光线与水槽内壁AC 的夹角为A ∠;第二步:向水槽注水,水面上升到AC 的中点E 处时,停止注水.(直线NN '为法线,AO 为入射光线,OD 为折射光线.)【测量数据】如图,点A ,B ,C ,D ,E ,F ,O ,N ,N '在同一平面内,测得20cm AC =,45A ∠=︒,折射角32DON ∠=︒.【问题解决】根据以上实验操作和测量的数据,解答下列问题:(1)求BC 的长;(2)求B ,D 之间的距离(结果精确到0.1cm ).(参考数据:sin 320.52︒≈,cos320.84︒≈,tan 320.62︒≈)23.如图,AB 为半圆O 的直径,点F 在半圆上,点P 在AB 的延长线上,PC 与半圆相切于点C ,与OF 的延长线相交于点D ,AC 与OF 相交于点E ,DC DE =.(1)写出图中一个与DEC ∠相等的角:______;(2)求证:OD AB ⊥;(3)若2OA OE =,2DF =,求PB 的长.24.某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y (盒)与销售单价x (元)是一次函数关系,下表是y 与x 的几组对应值.销售单价x /元…1214161820…销售量y /盒…5652484440…(1)求y 与x 的函数表达式;(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m 元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m 的值.25.综合与探究:如图,90AOB ∠=︒,点P 在AOB ∠的平分线上,PA OA ⊥于点A .(1)【操作判断】如图①,过点P 作PC OB ⊥于点C ,根据题意在图①中画出PC ,图中APC ∠的度数为______度;(2)【问题探究】如图②,点M 在线段AO 上,连接PM ,过点P 作PN PM ⊥交射线OB 于点N ,求证:2OM ON PA +=;(3)【拓展延伸】点M 在射线AO 上,连接PM ,过点P 作PN PM ⊥交射线OB 于点N ,射线NM 与射线PO 相交于点F ,若3ON OM =,求OP OF的值.参考答案1.【答案】A【解析】【分析】本题考查有理数的大小比较,解题的关键是掌握比较有理数大小的方法.根据有理数的大小比较选出最小的数.【详解】解:∵2024-<<<,∴最小的数是2-,故选:A .2.【答案】B【解析】【分析】本题考查了轴对称图形概念,一个图形沿着某条直线折叠后直线两旁的部分能够完全重合,这个图形就叫轴对称图形.根据轴对称图形概念,结合所给图形即可得出答案.【详解】解:A .不是轴对称图形,不符合题意;B .是轴对称图形,符合题意;C .不是轴对称图形,不符合题意;D .不是轴对称图形,不符合题意;故选:B .3.【答案】A【解析】【分析】本题主要考查合并同类项,根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变即可得.【详解】解:235a a a +=,故选:A .【解析】【分析】根据小于向左,无等号为空心圆圈,即可得出答案.本题考查在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解题的关键.【详解】不等式1x <的解集在数轴上的表示如下:.故选:C .5.【答案】B【解析】【分析】本题考查了解一元二次方程,利用因式分解法求解即可.【详解】解∶220x x -=,∴()20x x -=,∴0x =或20x -=,∴12x =,20x =,故选∶B .6.【答案】A【解析】【分析】本题考查坐标与图形,先根据题意确定平面直角坐标系,然后确定点的位置.【详解】解:如图建立直角坐标系,则“技”在第一象限,故选A .【解析】【分析】本题考查用样本反映总体,利用样本百分比乘以总人数计算即可解题.【详解】解:20800160100⨯=(人),故选D .8.【答案】B【解析】【分析】本题主要考查平行四边形的性质,掌握平行四边形的对边平行且相等,对角线互相平分是解题的关键.【详解】解:∵ABCD 是平行四边形,∴AB CD AD BC AO OC BO OD ====,,,,故选B .9.【答案】A【解析】【分析】本题主要考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,据此求解即可.【详解】解:小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,则由概率的意义可知,小星定点投篮1次,不一定能投中,故选项A 正确,选项B 错误;小星定点投篮10次,不一定投中4次,故选项C 错误;小星定点投篮4次,不一定投中1次,故选项D 错误故选;A .10.【答案】C【解析】【分析】本题考查了弧长,根据弧长公式∶π180n r l =求解即可.【详解】解∵150AOB ∠=︒,24OA =,∴ AB 的长为150π2420π180⨯=,故选∶C .11.【答案】C【解析】【分析】本题考查等式的性质,设“▲”的质量为a ,根据题意列出等式2x y y a +=+,2x a x y +=+,然后化简代入即可解题.【详解】解:设“▲”的质量为a ,由甲图可得2x y y a +=+,即2x a =,由乙图可得2x a x y +=+,即2a y =,∴4x y =,故选C .12.【答案】D【解析】【分析】本题考查了二次函数的性质,待定系数法求二次函数解析式,利用二次函数的性质,对称性,增减性判断选项A.B.C ,利用待定系数法求出二次函数的解析式,再求出与y 轴的交点坐标即可判定选项D .【详解】解∶∵二次函数2y ax bx c =++的顶点坐标为()1,4-,∴二次函数图象的对称轴是直线=1x -,故选项A 错误;∵二次函数2y ax bx c =++的图象与x 轴的一个交点的横坐标是3-,对称轴是直线=1x -,∴二次函数图象与x 轴的另一个交点的横坐标是1,故选项B 错误;∵抛物线开口向下,对称轴是直线=1x -,∴当1x <-时,y 随x 的增大而增大,故选项C 错误;设二次函数解析式为()214y a x =++,把()3,0-代入,得()20314a =-++,解得1a =-,∴()214y x =-++,当0x =时,()20143y =-++=,∴二次函数图象与y 轴的交点的纵坐标是3,故选项D 正确,故选D .二、填空题(本大题共4题,每题4分,共16分)13.【解析】【分析】利用二次根式的乘法运算法则进行计算.【详解】解:原式,.=a ≥0,b >0)是解题关键.14.【答案】5【解析】【分析】本题考查了尺规作图,根据作一条线段等于已知线段的作法可得出AD AB =,即可求解.【详解】解∶由作图可知∶AD AB =,∵5AB =,∴5AD =,故答案为∶5.15.【答案】20【解析】【分析】本题考查了一元一次方程的应用,设快马追上慢马需要x 天,根据快马走的路程等于慢马走的总路程,列方程求解即可.【详解】解∶设快马追上慢马需要x 天,根据题意,得()24015012x x =+,解得20x =,故答案为:20.16.##2653【解析】【分析】延长BC ,AF 交于点M ,根据菱形的性质和中点性质证明ABE ADF ≌,ADF MCF ≌,过E 点作EN AF ⊥交N 点,根据三角函数求出EN ,AN ,NF ,MN ,在Rt ENM △中利用勾股定理求出EM ,根据菱形的性质即可得出答案.【详解】延长BC ,AF 交于点M,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点,AB BC CD AD ∴===,BE EC CF DF ===,AD BC ,D FCM ∠=∠,B D∠=∠在ABE 和ADF △中AB AD B D BE DF =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABE ADF ≌,∴AE AF =,在ADF △和MCF △中D FCM DF CF AFD MFC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA ADF MCF ≌,∴CM AD =,AF MF =,5AE = ,5AE AF MF ∴===,过E 点作EN AF ⊥于N 点,90ANE ∴∠=︒ 4sin 5EAF ∠=,5AE =,4EN ∴=,3AN =,∴2NF AF AN =-=,527MN ∴=+=,在Rt ENM △中EM ===,即12EM EC CM BC BC =+=+=AB BC CD AD ===,AB BC ∴==,.【点拨】本题考查了菱形的性质,全等三角形的判定和性质,运用三角函数解直角三角形,勾股定理等,正确添加辅助线构造直角三角形是解本题的关键.三、解答题(本大题共9题,共98分.解答应写出必要的文字说明、证明过程或演算步骤)17.【答案】(1)见解析(2)12x -,1【解析】【分析】本题考查分式的化简求值和实数的混合运算,掌握运算法则是解题的关键.(1)利用实数的混合运算的法则和运算顺序解题即可;(2)先把分式的分子、分母分解因式,然后约分化为最简分式,最后代入数值解题即可.【详解】(1)解:选择①,②,③,2022(1)+-+-421=++7=;选择①,②,④,212222+-+⨯421=++7=;选择①,③,④,()0212122+-+⨯411=++6=;选择②,③,④,()012122-+-+⨯211=++4=;(2)解:()21122x x -⋅+()()11(1)21x x x =-+⋅+12x -=;当3x =时,原式3112-==.18.【答案】(1)3y x =(2)a c b <<,理由见解析【解析】【分析】本题主要考查了反比例函数的性质,以及函数图象上点的坐标特点,待定系数法求反比例函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.(1)把点()1,3代入k y x=可得k 的值,进而可得函数的解析式;(2)根据反比例函数表达式可得函数图象位于第一、三象限,再根据点A.点B 和点C 的横坐标即可比较大小.【小问1详解】解:把()1,3代入k y x=,得31k =,∴3k =,∴反比例函数的表达式为3y x =;【小问2详解】解:∵30k =>,∴函数图象位于第一、三象限,∵点()3,a -,()1,b ,()3,c 都在反比例函数的图象上,3013-<<<,∴0a c b <<<,∴a c b <<.19.【答案】(1)7.38,8.26(2)小星的说法正确,小红的说法错误(3)2 3【解析】【分析】本题考查用树状图或列表法求概率,众数和中位数的定义,掌握列表法或树状图求概率是解题的关键.(1)利用中位数和众数的定义解题即可;(2)根据优秀等次的要求进行比较解题即可;(3)列表格得到所有可能的结果数n,找出符合要求的数量m,根据概率公式计算即可.【小问1详解】解:男生成绩7.38出现的次数最多,即众数为7.38,女生成绩排列为:8.16,8.23,8.26,8.27,8.32,居于中间的数为8.26,故中位数为8.26,故答案为:7.38,8.26;【小问2详解】解:∵用时越少,成绩越好,∴7.38是男生中成绩最好的,故小星的说法正确;∵女生8.3秒为优秀成绩,8.328.3,∴有一人成绩达不到优秀,故小红的说法错误;【小问3详解】列表为:甲乙丙甲甲,乙甲,丙乙乙,甲乙,丙丙丙,甲丙,乙由表格可知共有6种等可能结果,其中抽中甲的有4种,故甲被抽中的概率为4263=.20.【答案】(1)见解析(2)12【解析】【分析】本题考查矩形的判定,勾股定理,掌握矩形的判定定理是解题的关键.(1)先根据条件利用两组对边平行或一组对边平行且相等证明ABCD 是平行四边形,然后根据矩形的定义得到结论即可;(2)利用勾股定理得到BC 长,然后利用矩形的面积公式计算即可.【小问1详解】选择①,证明:∵AB CD ∥,AD BC ∥,∴ABCD 是平行四边形,又∵90ABC ∠=︒,∴四边形ABCD 是矩形;选择②,证明:∵AD BC =,AD BC ∥,∴ABCD 是平行四边形,又∵90ABC ∠=︒,∴四边形ABCD 是矩形;【小问2详解】解:∵90ABC ∠=︒,∴4BC ===,∴矩形ABCD 的面积为3412⨯=.21.【答案】(1)种植1亩甲作物和1亩乙作物分别需要5.6名学生(2)至少种植甲作物5亩【解析】【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,(1)设种植1亩甲作物和1亩乙作物分别需要x 、y 名学生,根据“种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名”列方程组求解即可;(2)设种植甲作物a 亩,则种植乙作物()10a -亩,根据“所需学生人数不超过55人”列不等式求解即可.【小问1详解】解:设种植1亩甲作物和1亩乙作物分别需要x 、y 名学生,根据题意,得32272222x y x y +=⎧⎨+=⎩,解得56x y =⎧⎨=⎩,答:种植1亩甲作物和1亩乙作物分别需要5.6名学生;【小问2详解】解:设种植甲作物a 亩,则种植乙作物()10a -亩,根据题意,得:()561055a a +-≤,解得5a ≥,答:至少种植甲作物5亩.22.【答案】(1)20cm(2)3.8cm【解析】【分析】本题考查解直角三角形的应用,解答本题的关键是明确题意,利用数形结合的思想解答.(1)根据等腰三角形的性质计算出的值;(2)利用锐角三角函数求出DN 长,然后根据BD BN DN =-计算即可.【小问1详解】解:在Rt ABC 中,45A ∠=︒,∴45B ∠=︒,∴20cm BC AC ==,【小问2详解】解:由题可知110cm 2ON EC AC ===,∴10cm NB ON ==,又∵32DON ∠=︒,∴tan 10tan 32100.62 6.2cm DN ON DON =⋅∠=⨯︒≈⨯=,∴10 6.2 3.8cm BD BN DN =-=-=.23.【答案】(1)DCE ∠(答案不唯一)(2)163(3)163【解析】【分析】(1)利用等边对等角可得出DCE DEC ∠=∠,即可求解;(2)连接OC ,利用切线的性质可得出90DCE ACO ∠+∠=︒,利用等边对等角和对顶角的性质可得出AOE DCE ∠=∠,等量代换得出90AEO CAO ∠+∠=︒,然后利用三角形内角和定理求出90AOE ∠=︒,即可得证;(3)设2OE =,则可求2AO OF BO x ===,EF x =,22OD x =+,2DC DE x ==+,在Rt ODC △中,利用勾股定理得出()()()2222222x x x +=++,求出x 的值,利用tan OP OC D OD CD==可求出OP ,即可求解.【小问1详解】解:∵DC DE =,∴DCE DEC ∠=∠,故答案为:DCE ∠(答案不唯一);【小问2详解】证明:连接OC ,,∵PC 是切线,∴OC CD ⊥,即90DCE ACO ∠+∠=︒,∵OA OC =,∴OAC ACO ∠=∠,∵DCE DEC ∠=∠,AEO DEC ∠=∠,∴90AEO CAO ∠+∠=︒,∴90AOE ∠=︒,∴OD AB ⊥;【小问3详解】解:设OE x =,则2AO OF BO x ===,∴EF OF OE x =-=,22OD OF DF x =+=+,∴2DC DE DF EF x ==+=+,在Rt ODC △中,222OD CD OC =+,∴()()()2222222x x x +=++,解得14x =,20x =(舍去)∴10OD =,6CD =,8OC =,∵tan OP OC D OD CD ==,∴8106OP =,解得403OP =,∴163BP OP OB =-=.【点拨】本题考查了等腰三角形的性质,切线的性质,勾股定理,解直角三角形的应用等知识,灵活运用以上知识是解题的关键.24.【答案】(1)280y x =-+(2)糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元(3)2【解析】【分析】本题考查了二次函数的应用,解题的关键是:(1)利用待定系数法求解即可;(2)设日销售利润为w 元,根据利润=单件利润×销售量求出w 关于x 的函数表达式,然后利用二次函数的性质求解即可;(3)设日销售利润为w 元,根据利润=单件利润×销售量-m ×销售量求出w 关于x 的函数表达式,然后利用二次函数的性质求解即可.【小问1详解】解∶设y 与x 的函数表达式为y kx b =+,把12x =,56y =;20x =,40y =代入,得12562040k b k b +=⎧⎨+=⎩,解得280k b =-⎧⎨=⎩,∴y 与x 的函数表达式为280y x =-+;【小问2详解】解:设日销售利润为w 元,根据题意,得()10w x y=-⋅()()10280x x =--+22100800x x =-+-()2225450x =--+,∴当25x =时,w 有最大值为450,∴糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元;【小问3详解】解:设日销售利润为w 元,根据题意,得()10w x m y =--⋅()()10280x m x =---+()22100280080x m x m =-++--,∴当()100250222m m x ++=-=⨯-时,w 有最大值为()25050210028008022m m m m ++⎛⎫⎛⎫-++-- ⎪ ⎪⎝⎭⎝⎭,∵糖果日销售获得的最大利润为392元,∴()25050210028008039222m m m m ++⎛⎫⎛⎫-++--= ⎪ ⎪⎝⎭⎝⎭,化简得2601160m m -+=解得12m =,258m =当58m =时,542b x a=-=,则每盒的利润为:5410580--<,舍去,∴m 的值为2.25.【答案】(1)画图见解析,90(2)见解析(3)23或83【解析】【分析】(1)依题意画出图形即可,证明四边形OAPC 是矩形,即可求解;(2)过P 作PC OB ⊥于C ,证明矩形OAPC 是正方形,得出OA AP PC OC ===,利用ASA 证明APM CPN △≌△,得出AM CN =,然后利用线段的和差关系以及等量代换即可得证;(3)分M 在线段AO ,线段AO 的延长线讨论,利用相似三角形的判定与性质求解即可;【小问1详解】解:如图,PC 即为所求,∵90AOB ∠=︒,PA OA ⊥,PC OB ⊥,∴四边形OAPC 是矩形,∴90APC ∠=︒,故答案为:90;【小问2详解】证明:过P 作PC OB ⊥于C ,由(1)知:四边形OAPC 是矩形,∵点P 在AOB ∠的平分线上,PA OA ⊥,PC OB ⊥,∴PA PC =,∴矩形OAPC 是正方形,∴OA AP PC OC ===,90APC ∠=︒,∵PN PM ⊥,∴90APM CPN MPC ∠=∠=︒-∠,又90A PCN ∠=∠=︒,AP CP =,∴APM CPN △≌△,∴AM CN =,∴OM ON OM CN OC+=++OM AM AP=++OA AP=+2AP =;【小问3详解】解:①当M 在线段AO 上时,如图,延长NM 、PA 相交于点G ,由(2)知2OM ON PA +=,设OM x =,则3ON x =,2AO PA x ==,∴AM AO OM x OM =-==,∵90AOB MAG ︒∠=∠=,AMG OMN ∠=∠,∴()ASA AMG OMN ≌,∴3AG ON x ==,∵90AOB ∠=︒,PA OA ⊥,∴AP OB ∥,∴ONF PGF ∽ ,∴33325OF ON x PF PG x x ===+,∴53PF OF =,∴53833OP OF +==;②当M 在AO 的延长线上时,如图,过P 作PC OB ⊥于C ,并延长交MN 于G由(2)知:四边形OAPC 是正方形,∴OA AP PC OC ===,90APC ∠=︒,PC AO ∥,∵PN PM ⊥,∴90APM CPN MPC ∠=∠=︒-∠,又90A PCN ∠=∠=︒,AP CP =,∴APM CPN △≌△,∴AM CN =,∴ON OM-OC CN OM=+-AO AM OM=+-AO AO=+2AO =,∵33ON OM x==∴AO x =,2CN AM x ==,∵PC AO ∥,∴CGN OMN ∽,∴CG CN OM ON=,即23CG x x x =,∴23CG x =,∵PC AO ∥,∴OMF PGF ∽ ,∴3253OF OM x PF PG x x ===+,∴53PF OF =,∴53233OP OF -==;综上,OP OF 的值为23或83.【点拨】本题考查了矩形的判定与性质,正方形的判定与性质,角平分线的性质,全等三角形的判断与性质,相似三角形的判断与性质等知识,明确题意,添加合适辅助线,构造全等三角形、相似三角形,合理分类讨论是解题的关键.。

2024年贵州省中考数学真题试卷及解析

2024年贵州省中考数学真题试卷一、选择题(本大题共12题,每题3分,共36分.每小题均有A ,B ,C,D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置填涂)1. 下列有理数中最小的数是( )A. 2-B. 0C. 2D. 42. “黔山秀水”写成下列字体,可以看作是轴对称图形的是( )A. B. C. D. 3. 计算23a a +的结果正确的是( )A. 5aB. 6aC. 25aD. 26a 4. 不等式1x <的解集在数轴上的表示,正确的是( )A.B. C.D. 5. 一元二次方程220x x -=的解是( )A. 13x =,21x =B. 12x =,20x =C. 13x =,22x =-D. 12x =-,21x =- 6. 为培养青少年的科学态度和科学思维,某校创建了“科技创新”社团.小红将“科”“技”“创”“新”写在如图所示的方格纸中,若建立平面直角坐标系,使“创”“新”的坐标分别为()2,0-,()0,0,则“技”所在的象限为( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 7. 为了解学生的阅读情况,某校在4月23日世界读书日,随机抽取100名学生进行阅读情况调查,每月阅读两本以上经典作品的有20名学生,估计该校800名学生中每月阅读经典作品两本以上的人数为( )A. 100人B. 120人C. 150人D. 160人 8. 如图,ABCD 的对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A. AB BC =B. AD BC =C. OA OB =D. AC BD ⊥ 9. 小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,下列说法正确的是( )A. 小星定点投篮1次,不一定能投中B. 小星定点投篮1次,一定可以投中C. 小星定点投篮10次,一定投中4次D. 小星定点投篮4次,一定投中1次10. 如图,在扇形纸扇中,若150AOB ∠=︒,24OA =,则AB 的长为( )A. 30πB. 25πC. 20πD. 10π11. 小红学习了等式的性质后,在甲、乙两台天平的左右两边分别放入“■”“●”“▲”三种物体,如图所示,天平都保持平衡.若设“■”与“●”的质量分别为x ,y ,则下列关系式正确的是( )甲 乙A. x y =B. 2x y =C. 4x y =D. 5x y =12. 如图,二次函数2y ax bx c =++的部分图象与x 轴的一个交点的横坐标是3-,顶点坐标为()1,4-,则下列说法正确的是( )A. 二次函数图象的对称轴是直线1x =B. 二次函数图象与x 轴的另一个交点的横坐标是2C. 当1x <-时,y 随x 的增大而减小D. 二次函数图象与y 轴的交点的纵坐标是3二、填空题(本大题共4题,每题4分,共16分)13. ________.14. 如图,在ABC 中,以点A 为圆心,线段AB 的长为半径画弧,交BC 于点D ,连接AD .若5AB =,则AD 的长为______.15. 在元朝朱世杰所著的《算术启蒙》中,记载了一道题,大意是:快马每天行240里,慢马每天行150里,慢马先行12天,则快马追上慢马需要的天数是______.16. 如图,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点,连接AE ,AF .若4sin 5EAF ∠=,5AE =,则AB 的长为______.三、解答题(本大题共9题,共98分.解答应写出必要的文字说明、证明过程或演算步骤)17. (1)在①22,②2-,③()01-,④122⨯中任选3个代数式求和 (2)先化简,再求值:()21122x x -⋅+,其中3x =. 18. 已知点()1,3在反比例函数k y x=的图象上. (1)求反比例函数的表达式(2)点()3,a -,()1,b ,()3,c 都在反比例函数的图象上,比较a ,b ,c 的大小,并说明理由.19. 根据《国家体质健康标准》规定,七年级男生、女生50米短跑时间分别不超过7.7秒,8.3秒为优秀等次.某校在七年级学生中挑选男生、女生各5人进行集训,经多次测试得到10名学生的平均成绩(单位:秒)记录如下:男生成绩:7.61,7.38,7.65,7.38,7.38女生成绩:8.23,8.27,8.16,8.26,8.32根据以上信息,解答下列问题:(1)男生成绩的众数为______,女生成绩的中位数为______(2)判断下列两位同学的说法是否正确.(3)教练从成绩最好的3名男生(设为甲,乙,丙)中,随机抽取2名学生代表学校参加比赛,请用画树状图或列表的方法求甲被抽中的概率.20. 如图,四边形ABCD 的对角线AC 与BD 相交于点O ,AD BC ∥,90ABC ∠=︒,有下列条件: ①AB CD ∥,②AD BC =.(1)请从以上①②中任选1个作为条件,求证:四边形ABCD 是矩形(2)在(1)的条件下,若3AB =,5AC =,求四边形ABCD 的面积.21. 为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩?22. 综合与实践:小星学习解直角三角形知识后,结合光的折射规律进行了如下综合性学习.【实验操作】第一步:将长方体空水槽放置在水平桌面上,一束光线从水槽边沿A 处投射到底部B 处,入射光线与水槽内壁AC 的夹角为A ∠第二步:向水槽注水,水面上升到AC 的中点E 处时,停止注水.(直线NN '为法线,AO 为入射光线,OD为折射光线.)【测量数据】如图,点A ,B ,C ,D ,E ,F ,O ,N ,N '在同一平面内,测得20cm AC =,45A ∠=︒,折射角32DON ∠=︒.【问题解决】根据以上实验操作和测量的数据,解答下列问题:(1)求BC 的长(2)求B ,D 之间的距离(结果精确到0.1cm ).(参考数据:sin320.52︒≈,cos320.84︒≈,tan320.62︒≈)23. 如图,AB 为半圆O 的直径,点F 在半圆上,点P 在AB 的延长线上,PC 与半圆相切于点C ,与OF 的延长线相交于点D ,AC 与OF 相交于点E ,DC DE =.(1)写出图中一个与DEC ∠相等的角:______(2)求证:OD AB ⊥(3)若2OA OE =,2DF =,求PB 的长.24. 某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y (盒)与销售单价x (元)是一次函数关系,下表是y 与x 的几组对应值.(1)求y 与x 的函数表达式(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m 元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m 的值.25. 综合与探究:如图,90AOB ∠=︒,点P 在AOB ∠的平分线上,PA OA ⊥于点A .图① 图① 备用图(1)【操作判断】如图①,过点P 作PC OB ⊥于点C ,根据题意在图①中画出PC ,图中APC ∠的度数为______度 (2)【问题探究】如图①,点M 在线段AO 上,连接PM ,过点P 作PN PM ⊥交射线OB 于点N ,求证:2OM ON PA += (3)【拓展延伸】点M 在射线AO 上,连接PM ,过点P 作PN PM ⊥交射线OB 于点N ,射线NM 与射线PO 相交于点F ,若3ON OM =,求OP OF 的值.2024年贵州省中考数学真题试卷答案解析一、选择题.1. 【答案】A2. 【答案】B3. 【答案】A4. 【答案】C5. 【答案】B6. 【答案】A7. 【答案】D8. 【答案】B9. 【答案】A10.【答案】C11. 【答案】C12. 【答案】D【解析】解∶ ①二次函数2y ax bx c =++的顶点坐标为()1,4- ∴二次函数图象的对称轴是直线=1x -,故选项A 错误∵二次函数2y ax bx c =++的图象与x 轴的一个交点的横坐标是3-,对称轴是直线=1x - ①二次函数图象与x 轴的另一个交点的横坐标是1,故选项B 错误∵抛物线开口向下, 对称轴是直线=1x -∴当1x <-时,y 随x 的增大而增大,故选项C 错误设二次函数解析式为()214y a x =++把()3,0-代入,得()20314a =-++ 解得1a =-①()214y x =-++当0x =时,()20143y =-++=①二次函数图象与y 轴的交点的纵坐标是3,故选项D 正确故选D . 二、填空题.13.14. 【答案】515. 【答案】2016.【解析】【分析】延长BC ,AF 交于点M ,根据菱形的性质和中点性质证明ABE ADF ≌,ADF MCF ≌△,过E 点作EN AF ⊥交N 点,根据三角函数求出EN ,AN ,NF ,MN ,在Rt ENM △中利用勾股定理求出EM ,根据菱形的性质即可得出答案.【详解】延长BC ,AF 交于点M ,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点AB BC CD AD ∴===,BE EC CF DF ===,D FCM ∠=∠,B D ∠=∠在ABE 和ADF △中AB AD B D BE DF =⎧⎪∠=∠⎨⎪=⎩∴()SAS ABE ADF ≌∴AE AF =在ADF △和MCF △中D FCM DF CFAFD MFC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA ADF MCF ≌∴CM AD =,AF MF =5AE =5AE AF MF ∴===过E 点作EN AF ⊥交N 点90ANE ∴∠=︒4sin5EAF ∠=,5AE = 4EN ∴=,3AN =∴2NF AF AN =-=527MN ∴=+=在Rt ENM △中EM ==即12EM EC CM BC BC =+=+=AB BC CD AD ===AB BC ∴==故答案为. 三、解答题.17. 【答案】(1)见解析 (2)12x -,1 【解析】(1)解:选择①,②,③ 2022(1)+-+-421=++7=选择①,②,④212222+-+⨯ 421=++7=选择①,③,④()0212122+-+⨯ 411=++6=选择②,③,④()012122-+-+⨯ 211=++4=(2)解:()21122x x -⋅+ ()()11(1)21x x x =-+⋅+ 12x -= 当3x =时,原式3112-==. 18. .【答案】(1)3y x =(2)a c b <<,理由见解析【小问1详解】解:把()1,3代入k y x =,得31k = ∴3k = ∴反比例函数的表达式为3y x =【小问2详解】解:∵30k =>∴函数图象位于第一、三象限∵点()3,a -,()1,b ,()3,c 都在反比例函数的图象上,3013-<<< ∴0a c b <<<∴a c b <<.19. 【答案】(1)7.38,8.26(2)小星的说法正确,小红的说法错误 (3)13【小问1详解】解:男生成绩7.38出现的次数最多,即众数为7.38女生成绩排列为:8.16,8.23,8.26,8.27,8.32,居于中间的数为8.26,故中位数为8.26 故答案为:7.38,8.26【小问2详解】解:∵用时越少,成绩越好∴7.38是男生中成绩最好的,故小星的说法正确∵女生8.3秒为优秀成绩,8.328.3>∴有一人成绩达不到优秀,故小红的说法错误【小问3详解】列表为:由表格可知共有6种等可能结果,其中抽中甲的有2种故甲被抽中的概率为2163=. 20. 【答案】(1)见解析 (2)12【小问1详解】选择①证明:∵AB CD ∥,AD BC ∥∴ABCD 是平行四边形又∵90ABC ∠=︒∴四边形ABCD 是矩形选择②证明:∵AD BC =,AD BC ∥∴ABCD 是平行四边形又∵90ABC ∠=︒∴四边形ABCD 是矩形【小问2详解】解:∵90ABC ∠=︒∴4BC ===∴矩形ABCD 的面积为3412⨯=.21. 【答案】(1)种植1亩甲作物和1亩乙作物分别需要5,6名学生 (2)至少种植甲作物5亩【小问1详解】解:设种植1亩甲作物和1亩乙作物分别需要x ,y 名学生根据题意,得32272222x y x y +=⎧⎨+=⎩ 解得56x y =⎧⎨=⎩答:种植1亩甲作物和1亩乙作物分别需要5,6名学生【小问2详解】解:设种植甲作物a 亩,则种植乙作物()10a -亩根据题意,得:()561055a a +-≤解得5a ≥答:至少种植甲作物5亩.22. 【答案】(1)20cm(2)3.8cm【小问1详解】解:在Rt ABC 中,45A ∠=︒∴45B ∠=︒∴20cm BC AC ==【小问2详解】解:由题可知110cm 2ON EC AC ===∴10cm NB ON ==又∵32DON ∠=︒∴tan 10tan32100.62 6.2cm DN ON DON =⋅∠=⨯︒≈⨯=∴10 6.2 3.8cm BD BN DN =-=-=.23. 【答案】(1)DCE ∠(答案不唯一) (2)163 (3)163【小问1详解】解:∵DC DE =∴DCE DEC ∠=∠故答案为:DCE ∠(答案不唯一)【小问2详解】证明:连接OC∵PC 是切线∴OC CD ⊥,即90DCE ACO ∠+∠=︒∵OA OC =∴OAC ACO ∠=∠∵DCE DEC ∠=∠,AEO DEC ∠=∠∴90AEO CAO ∠+∠=︒∴90AOE ∠=︒∴OD AB ⊥【小问3详解】解:设OE x =,则2AO OF BO x ===∴EF OF OE x =-=,22OD OF DF x =+=+∴2DC DE DF EF x ==+=+在Rt ODC △中,222OD CD OC =+∴()()()2222222x x x +=++解得14x =,20x =(舍去)∴10OD =,6CD =,8OC = ∵tan OP OC D OD CD == ∴8106OP = 解得403OP = ∴163BP OP OB =-=. 24. 【答案】(1)280y x =-+(2)糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元 (3)2【小问1详解】解∶设y 与x 的函数表达式为y kx b =+把12x =,56y =;20x ,40y =代入,得12562040k b k b +=⎧⎨+=⎩ 解得280k b =-⎧⎨=⎩①y 与x 的函数表达式为280y x =-+【小问2详解】解:设日销售利润为w 元根据题意,得()10w x y =-⋅()()10280x x =--+22100800x x =-+-()2225450x =--+①当25x =时,w 有最大值为450①糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元【小问3详解】解:设日销售利润为w 元根据题意,得()10w x m y =--⋅()()10280x m x =---+()22100280080x m x m =-++--①当()100250222m m x ++=-=⨯-时,w 有最大值为()25050210028008022m m m m ++⎛⎫⎛⎫-++-- ⎪ ⎪⎝⎭⎝⎭①糖果日销售获得的最大利润为392元 ①()25050210028008039222m m m m ++⎛⎫⎛⎫-++--= ⎪ ⎪⎝⎭⎝⎭化简得2601160m m -+=解得12m =,258m =(舍去)∴m 的值为2.25.【答案】(1)画图见解析,90(2)见解析 (3)23或83【小问1详解】解:如图,PC 即为所求∵90AOB ∠=︒,PA OA ⊥,PC OB ⊥∴四边形OAPC 是矩形∴90APC ∠=︒故答案为:90【小问2详解】证明:过P 作PC OB ⊥于C由(1)知:四边形OAPC 是矩形∵点P 在AOB ∠的平分线上,PA OA ⊥,PC OB ⊥∴PA PC =∴矩形OAPC 是正方形∴OA AP PC OC ===,90APC ∠=︒∵PN PM ⊥∴90APM CPN MPC ∠=∠=︒-∠,又90A PCN ∠=∠=︒,AP CP =∴APM CPN △≌△∴AM CN =∴OM ON OM CN OC +=++OM AM AP =++OA AP =+2AP =【小问3详解】解:①当M 在线段AO 上时,如图,延长NM ,PA 相交于点G由(2)知2OM ON PA +=设OM x =,则3ON x =,2AO PA x ==∴AM AO OM x OM =-==∵90AOB MAG ︒∠=∠=,AMG OMN ∠=∠,∴()ASA AMG OMN ≌∴3AG ON x ==∵90AOB ∠=︒,PA OA ⊥∴AP OB ∥∴ONF PGF ∽∴33325OF ON x PF PG x x ===+ ∴53PF OF = ∴53833OP OF +== ②当M 在AO 的延长线上时,如图,过P 作PC OB ⊥于C ,并延长交MN 于G由(2)知:四边形OAPC 是正方形∴OA AP PC OC ===,90APC ∠=︒,PC AO ∥∵PN PM ⊥∴90APM CPN MPC ∠=∠=︒-∠,又90A PCN ∠=∠=︒,AP CP =∴APM CPN △≌△∴AM CN =∴ON OM -OC CN OM =+-AO AM OM =+-AO AO =+2AO =∵33ON OM x ==∴AO x =,2CN AM x ==∵PC AO ∥∴CGN OMN ∽ ∴CG CN OM ON=,即23CG x x x = ∴23CG x =∵PC AO∥∴OMF PGF∽∴3253OF OM xPF PG x x===+∴53 PF OF=∴53233 OPOF-==综上,OPOF的值为23或83.。

遵义专版中考数学总复习第二编中档专项训练篇中档题型训练二方程组不等式组的解法及其应用试题

中档题型训练(二)方程(组)、不等式(组)的解法及其应用本专题主要考查方程(组)、不等式(组)的解法以及方程(组)和不等式的应用,遵义中考往往以解答题的形式出现,属中档题•复习时要熟练掌握方程(组)与不等式(组)的解法以及它们的应用,并会检验解答结果的正确与否.方程(组)的解法【例1】(2016遵义红花岗一模)解方程组:2(x —y) _ (x + y) =_ 丄3 _4 =_ 72,3 (x + y)_ 2 (2x —y)= 3.【解析】先化简方程组,再灵活选择代入法或加减法.5x —11y = —1,①【学生解答】解:原方程组整理得:由②得x= 5y — 3.③—x+ 5y = 3.②—1, 14y = 14, y= 1.将y = 1代入③得x = 2. •••原方程组的解为1 5 将③代入①得25y —15—11y =x = 2, y= 1.1. (2016遵义六中二模)解方程:+ 2・qx+ 1)= 8+ x.1 5 1 5解:去括号,得於+ gx+ 2= 8 + x,移项,得@x+ 2X —x= 8 —2,合并同类项,得2x = 6,系数化为1,得x = 3.22. (2016遵义一中二模)解方程:x + 2x—3 = 0.2 2解:a = 1, b = 2, c = — 3, b — 4ac = 2 — 4X 1X ( — 3) = 16>0, 【解析】先求不等式组的解集,在解集中找整数解.1【学生解答】解不等式①得 x<2.解不等式②得x> — 2.把①、②的解集表示在数轴上,如图,故原不等式组的 、 1 解集是:—2<x<2.其整数解是:0, 1.—2^H6— 2±4x= - =——2 2.X 1 = 1, X 2=— 3.3. (2016遵义二中一模)解方程组:x — 3y = 1,① x + 2y = 6.②解:②一①,得y = 1.把y = 1代入①,得x =4. •••原方程组的解为 4. (2016遵义红花岗二模)解三元一次方程组: x — 2y + z = 0,① y = 1.3x + y — 2z = 0,② 7x + 6y + 7z = 100.③解:①x 2+②,得5x — 3y = 0,解得x = |y ,将x = 5y 代入①得z = 5y ,将x = |y , z = fy 代入③得,217y+496y + y = 100,解得 y = 5,. x = 3,5z =乙.••原方程组的解为x = 3,y = 5, z = 7.5. (2016遵义六中二模)解方程: 解:x = 3.1 _ 1 32x — 1= 2 4x —2x1 6. (2016遵义-一中一模中考)解方程: +^— = 1.x — 1 x — 1解不等式(组)【例2】(2016遵义十九一模)解不等式组:9x + 5<8x + 7,① 42 并写出其整数解.+ 2>1— §x.②1 + x7. ( 2016连云港中考)解不等式—<x—1,并将解集在数轴上表示出来.解:去分母,得:1 + x<3x — 3,移项,得:x — 3x< — 3 — 1,合并同类项,得:— 2x< — 4,系数化为1,得: x>2,将解集表示在数轴上如图所示.解:解①得x>1,解②得x<3,所以不等式组的解集为3x + 1 w 2 (x + 1),9. (2016南京中考)解不等式组 并写出它的整数解.—x<5x + 12,解:解不等式 3x + 1w 2(x + 1),得:x < 1,解不等式— x<5x + 12,得:x> — 2,则不等式组的解集为:— 2<x w 1,则不等式组的整数解为一 1、0、1.10. (2016原创)已知关于x , y 的方程组方程(组)、不等式(组)的应用)随着铁路客运量的不断增长,重庆火车站越来越拥挤,为了满足铁路交通的快& (2016郴州中考)解不等式组x — 1>0,①3 (x — 1) <2x.②1<x<3.5x + 2y = 11a + 18,2x — 3y = 12a — 8 的解满足x>0, y>0,求实数a 的取值范围.解:解方程组得x = 3a + 2, y =— 2a + 4.由题意得3a +2>0, —2a + 4>0.解这个不等式组得-【例3】(2016遵义一中一模速发展,该火车站从去年开始启动了扩建工程•其中某项工程,甲队单独完成所需时间比乙队单独完成所需的时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1) 求甲、乙两队单独完成这项工程各需几个月;(2) 若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元•在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程•在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过 1 500万元?(甲、乙两队的施工时间按月取整数)【解析】(1)利用两队单独完成此项工程所需的时间关系列出一元二次方程求解即可. (2)利用“甲队工程款+乙队工程款w 1 500”列出不等式求解.【学生解答】解:(1)设甲队单独完成这项工程需要x个月,乙队单独完成这项工程需要(x —5)个月,由题意得x(x —5) = 6(x + x —5).整理得x —17x + 30= 0.解得X1= 2, X2= 15.x 1= 2(不合题意,舍去),故x = 15, x — 5 =10.答:甲队单独完成这项工程需要15个月,乙队单独完成这项工程需要10个月;(2)设在完成这项工程中甲队做了m个月,则乙队做了£个月,根据题意列不等式,得100m+ 150 -夕三1 500.4解得0^87. T m为整数,••• m的最大整数值为8.答:完成这项工程,甲队最多施工8个月.11. (2016江西中考)如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成,闲置时鱼竿可收缩,完全收缩后,鱼竿的长度即为第1节套管的长度(如图(1)所示),使用时,可将鱼竿的每一节套管都完全拉伸(如图(2)所示),图(3)是这根鱼竿所有套管都处于完全拉伸状态下的平面示意图,已知第1节套管长50cm第2节套管长46 cm以此类推,每一节套管都比前一节套管少 4 cm完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为x cm.(1) 请直接写出第5节套管的长度;(2) 当这根鱼竿完全拉伸时,其长度为311 cm求x的值.解:⑴第5节套管的长度为:50 —4X (5 —1) = 34( cm) ; (2)第10节套管的长度为:50 —4X (10 —1)=14( cm),设每相邻两节套管间重叠的长度为x cm,根据题意得:(50 + 46 + 42+…+ 14) —9x = 311,即:320 —9x=311,解得:x= 1.答:每相邻两节套管间重叠的长度为 1 cm12. (2016百色中考)在直角墙角AOB(O£OB且OA OB长度不限)中,要砌20 m长的墙,与直角墙角AOB 围成地面为矩形的储仓,且地面矩形AOBC勺面积为96 m2.(1) 求该地面矩形的长;(2) 有规格为0.80 X 0.80和1.00 X 1.00(单位:m)的地板砖单价分别为55元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?解:(1)设该地面矩形的长是x m则依题意得:x(20 —x) = 96,解得X1= 12, X2= 8(舍去).答:该地面矩形的长是12 m (2)规格为0.80 X 0.80 所需的费用:96- (0.80 X 0.80) X 55= 8 250(元);规格为1.00 X 1.00 所需的费用:96-(1.00 X 1.00) X 80= 7 680(元).因为8 250<7 680,所以采用规格为 1.00 X 1.00所需的费用较少.13. (2016新疆中考)周口体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28 场比赛,应邀请多少支球队参加比赛?解:设要邀请x支球队参加比赛,由题意,得^x(x —1) = 28,解得:X1= 8,X2=—7(舍去).答:应邀请8支球队参加比赛.14. (2016随州中考)某校学生利用双休时间去距学校10 km的炎帝故里参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车沿相同路线出发,结果他们同时到达•已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度和汽车的速度.解:设骑车学生的速度为10 10 20x km h ,汽车的速度为2x km /h ,可得:x = 2x + 60,解得x =15,经检验,x=15是原方程的解,2x = 2X 15= 30.答:骑车学生的速度和汽车的速度分别是 15 km /h , 30 km /h .15. (2016西宁中考)青海新闻网讯:2016年2月21日,西宁市首条绿道免费公共自行车租赁系统正式启 用•市政府今年投资了 112万元,建成40个公共自行车站点、配置 720辆公共自行车•今后将逐年增加投资,用 于建设新站点、配置公共自行车.预计 2018年将投资340.5万元,新建120个公共自行车站点、配置 2 205辆公 共自行车•(1)请问每个站点的造价和公共自行车的单价分别是多少万元?(2)请你求出2016年到2018年市政府配置公共自行车数量的年平均增长率一一 一22 4413数量的年平均增长率为a.根据题意可得:720(1 + a) = 2 205,解此方程:(1 + a)= 面,即:◎= 4= 75% a 2=—4(不符合题意,舍去)•答:2016年到2018年市政府配置公共自行车数量的年平均增长率为75%.16.(2016永州中考)某种商品的标价为 400元/件,经过两次降价后的价格为324元/件,并且两次降价的百 分率相同.(1) 求该种商品每次降价的百分率;(2) 若该种商品进价为 300元/件,两次降价共售出此种商品 100件,为使两次降价销售的总利润不少于 3210元•问第一次降价后至少要售出该种商品多少件?2解:(1)设该种商品每次降价的百分率为 x%,依题意得:400X (1 — x%) = 324,解得:x = 10,或x = 190(舍 去).答:该种商品每次降价的百分率为 10% (2)设第一次降价后售出该种商品 m 件,「则第二次降价后售出该种 商品(100 — m)件,第一次降价后的单件利润为:400X (1 — 10%)— 300 = 60(元/件);第二次降价后的单件利润为: 324 — 300 = 24(元/ 件).依题意得:60m + 24X (100 — m)= 36m + 2 400》3 210,解得 22.5 ,二 m > 23.答:为使 两次降价销售的总利润不少于 3 210元•第一次降价后至少要售出该种商品 23件.17. (2016遵义一中一模)某蔬菜经营户从蔬菜批发市场批发蔬菜进行零售,部分蔬菜批发价格与零售价格如 下表:蔬菜品种 西红柿 冃椒 西「兰花 豆角 批发价(元/kg ) 3.6 5.4 8 4.8 零售价(元/kg )5.48.414P 7.6请解答下列问题:(1) 第一天,该经营户批发西红柿和西兰花两种蔬菜共 300 kg ,用去了 1 520元钱,这两种蔬菜当天全部售 完后一共能赚多少元钱?(2) 第二天,该经营户用 1 520元钱仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于 1 050 元,则该经营户最多能批发西红柿多少千克?x + y = 300,x = 200,解:(1)设批发西红柿x kg ,西兰花 y kg .由题意得解得 200 X (5.4 — 3.6) +3.6x + 8y = 1 520. y = 100.100X (14 — 8) = 960(元).答:这两种蔬菜当天全部售完后一共能赚 960元钱;(2)设批发西红柿 m kg ,由题意得 (5.4 — 3.6)m + (14 — 8) X1 520— 3.6m > 1 050.解得 100.答:该经营户最多能批发西红柿100 kg .818. (2016遵义十六中三模)某学校计划从商场购买 A 、B 两种型号的小黑板,经洽谈,购买一块 A 型小黑板 比购买一块B 型小黑板多用20元,且购买5块A 型小黑板和4块B 型小黑板共需820元•求:(1) 购一块A 型小黑板,一块 B 型小黑板各需多少元? (2) 根据这所学校的实际情况,需从商场购买 A 、B 两种型号的小黑板共 60块,要求购买 A B 两种型号小黑1板的总费用不超过 5 240元,并且购买 A 型小黑板的数量应大于购买 A 、B 两种型号黑板总数量的 :,请你通过计3算,求出该学校从商场购买 A 、B 两种型号的小黑板有哪几种方案?解:(1)设购买一块A 型小黑板需要x 元,则一块B 型小黑板需要(x — 20)元.由题意得,5x + 4(x — 20) = 820,解 得x = 100,二x — 20= 80.答:购买一块 A 型小黑板需要100元,一块B 型小黑板需要80元;(2)设购买A 型小黑解:(1)设每个站点造价 x 万元,自行车单价为 y 万元.根据题意可得: 40x + 720y = 112, 120x + 2 205y = 340.5 ,解得x = 1,y = 0.1.1万元,自行车单价为0.1万元;⑵设2016年到 2018年市政府配置公共自行车每个站点造价为11 /8100m + 80 (60 — m w 5 240,板m 块,则购买B 型小黑板(60 — m)块,由题意得 1解得20<n W 22,而 m>60x 3, 以m 为21或22.当m= 21时,60 — m= 39;当m= 22时,60 — m = 38.所以有两种购买方案:方案一:购 小黑板21块,B 型号小黑板39块;方案二:购买 A 型号小黑板22块,B 型号小黑板38块.m 为整数,所E A 型号。

(遵义专版)中考数学总复习 第2章 方程(组)与不等式(组)第3节 分式方程及应用(精讲)试题

第三节 分式方程及应用,遵义五年中考命题规律),遵义五年中考真题及模拟)分式方程解的概念及解法1.(2015遵义中考)若x =3是分式方程a -2x -1x -2=0的根,则a 的值是( A )A .5B .-5C .3D .-32.(2016遵义一中三模)解分式方程2x -1+x +21-x=3时,去分母后变形为( C )A .2+(x +2)=3(x -1)B .2-x +2=3(x -1)C .2-(x +2)=3(x -1)D .2-(x +2)=3(1-x)分式方程的应用3.(2017遵义中考节选)为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区,某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A ,B 两种不同款型,请回答下列问题:问题:投放方式该公司决定采取如下投放方式:甲街区每 1 000人投放a 辆“小黄车”,乙街区每 1 000人投放8a +240a 辆“小黄车”,按照这种投放方式,甲街区共投放1 500辆,乙街区共投放1 200辆,如果两个街区共有15万人,试求a 的值.解:由题可得,1 500a ×1 000+ 1 2008a +240a ×1 000=150 000,解得a =15,经检验,a =15是所列方程的解,故a的值为15.,中考考点清单)分式方程的概念1.分母中含有__未知数__的方程叫做分式方程.【温馨提示】“分母中含有未知数”是分式方程与整式方程的根本区别,也是判断一个方程是否为分式方程的依据.分式方程的解法2.解法步骤(1)去分母:将方程两边都乘以__最简公分母__,把它化为整式方程;(2)解这个整式方程;(3)__检验__.【温馨提示】找最简公分母的方法:(1)取各分式的分母中各项系数的最小公倍数;(2)各分式的分母中所有字母或因式都要取到;(3)利用字母(或因式)的幂取指数最大的;(4)所得的系数的最小公倍数与各个字母(或因式)的最高次幂的积即为最简公分母.3.检验方法(1)利用方程的解的概念进行检验;(2)将解得的整式方程的根代入__最简公分母__,看计算结果__是否为0__,不为0就是原方程的根;若为0,则为增根,必须舍去;(3)增根:当分母的值为0时,分式方程__无解__,这样的根叫做分式方程的__增根__.分式方程的应用4.列分式方程解应用题的六个步骤(1)审:弄清题目中涉及的已知量和未知量以及量与量之间的等量关系;(2)设:设未知数,根据等量关系用含未知数的代数式表示其他未知量;(3)列:根据等量关系,列出方程;(4)解:求出所列方程的解;(5)检:双检验.①检验是否是分式方程的解;②检验是否符合实际问题;(6)答:写出答案.5.常见关系分式方程的应用题主要涉及工作量问题,行程问题等,每个问题中涉及三个量的关系.如:工作时间=__工作量工作效率__,时间=__路程速度__.【方法点拨】列分式方程解应用题时,要验根作答,不但要检验是否为方程的增根,还要检验是否符合题意,即“双重验根”.,中考重难点突破)分式方程的概念及解法【例1】(2017海淀二模)若关于x 的方程4x -m 2x =1的根是2,求(m -4)2-2m +8的值.【解析】把x =2代入分式方程求出m 的值,代入原式计算即可得到结果. 【答案】解:∵关于x 的方程4x -m2x =1的根是2,∴把x =2代入方程得:2-m4=1,解得m =4,则(m -4)2-2m +8=(4-4)2-2×4+8=0.1.(2017黔东南中考)分式方程3x (x +1)=1-3x +1的根为( C )A .-1或3B .-1C .3D .1或-32.(2017凉山中考)关于x 的方程3x -2x +1=2+mx +1无解,则m 的值为( A )A .-5B .-8C .-2D .53.(2017绵阳中考)关于x 的分式方程2x -1-1x +1=11-x 的解是x =__-2____.4.(2017济宁中考)解方程:2x x -2=1-12-x .解:去分母,得2x =x -2+1, 移项合并,得x =-1,经检验,x =-1是分式方程的解. 故原方程的解为x =-1.含参数的分式方程【例2】(巴中中考)若分式方程x x -1-m1-x=2有增根,则这个增根是________.【解析】本题主要考查了增根的概念:使最简公分母为0的根叫做分式方程的增根,由分母x -1=0,得x =1,这就是方程的增根.【答案】x =15.(2017西市中考)若关于x 的分式方程2m +x x -3-1=2x无解,则m 的值为( D )A .-32B .1C .32或2 D .-12或-326.(2017凉山中考)关于x 的分式方程2x -mx +1=3的解是负数,则字母m 的取值范围是( C )A .m >3B .m ≥-3C .m >-3 且m≠-2D .m ≤-37.(2017泸州中考)若关于x 的分式方程x +m x -2+2m2-x =3的解为正实数,则实数m 的取值范围是__m <6且m≠2__.分式方程的应用【例3】(2017衡阳中考)杭州国际动漫节开幕前,某动漫公司预测某种动漫玩具能够畅销,就用32 000元购进了一批这种玩具,上市后很快脱销,动漫公司又用68 000元购进第二批这种玩具,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该动漫公司两次共购进这种玩具多少套?(2)如果这两批玩具每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?【解析】本题考查理解题意能力,根据两次购进的价格不同的等量关系列出方程求解,根据全部售完后总利润率不低于20%,列出不等式求解.【答案】解:(1)设该动漫公司第一次购进x 套玩具. 由题意,得68 0002x -32 000x =10,解得x =200,经检验,x =200是原方程的根. ∴2x +x =2×200+200=600.答:该动漫公司两次共购进这种玩具600套; (2)设每套玩具的售价y 元,由题意,得600y -32 000-68 00032 000+68 000≥20%,解得y≥200.答:每套玩具的售价至少是200元.8.(2017杭州中考)甲、乙两列火车长分别是150 m 和200 m ,它们相向行驶在平行的轨道上,已知甲车上某位乘客测得乙车在他窗口外经过的时间是10 s ,那么乙车上的乘客看见甲车在他窗口经过的时间是( B )A .5 sB .7.5 sC .8.5 sD .10 s9.(2017娄底中考)某人从A 地步行到B 地,当走到预定时间时,离B 地还有0.5 km ;若把步行速度提高25%,则可比预定时间早半小时到达B 地.已知AB 两地相距12.5 km ,则某人原来步行的速度是( B )A .2 km /hB .4 km /hC .5 km /hD .6 km /h10.(2017日照中考)甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( A )A .8B .7C .6D .511.(2017梧州中考)父子两人沿周长为a 的圆周骑自行车匀速行驶.同向行驶时父亲不时超过儿子,而反向行驶时相遇的频率增大为11倍.已知儿子的速度为v ,则父亲的速度为( B )A .1.1vB .1.2vC .1.3vD .1.4v12.(长沙中考)2015年4月30日新的津蓟铁路市郊列车取代了传统的绿皮车,实现列车升级,并且升级后列车从天津到蓟县的行驶路程比原路程缩短25公里,实现升级后列车的行驶速度是原来速度的107倍,从天津到蓟县的行驶时间缩短了1 h .若列车升级前绿皮车从天津到蓟县的行驶路程为175公里,则列车升级后的速度为( D )A .45公里/hB .60公里/hC .90公里/hD .100公里/h13.(2017路北中考)某市为解决部分市民冬季集中取暖问题,需铺设一条长3 000 m 的管道,为尽量减少施工对交通造成的影响,实际施工时“……”,设实际每天铺设管道x m ,则可得方程3 000x -10-3 000x=15 ,根据此情景,题中用“……”表示的缺失的条件应补为( C ) A .每天比原计划多铺设10 m ,结果延期15天才完成 B .每天比原计划少铺设10 m ,结果延期15天才完成 C .每天比原计划多铺设10 m ,结果提前15天才完成 D .每天比原计划少铺设10 m ,结果提前15天才完成14.(2017建昌中考)我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12 000元购进的科普书与用8 000元购进的文学书本数相等.(1)去年购进的文学书和科普书的单价各是多少钱?(2)今年文学书和科普书的单价和去年相比保持不变,该校打算用10 000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?解:(1)设文学书的单价为每本x 元,则科普书的单价为每本(x +4)元.依题意,得 12 000x +4=8 000x,解得x =8, 经检验,x =8是方程的解,且符合题意. ∴x +4=12.答:去年购进的文学书和科普书的单价分别是8元和12元; (2)设购进文学书550本后还能购进y 本科普书. 依题意,得550×8+12y≤10 000, 解得y≤46623,∵y 为整数, ∴y 的最大值为466.∴至多还能购进466本科普书.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年中考分类检测题(考察内容:数与式、方程与不等式)
一.选择题:(每小题3分,共30分)
1.2012的相反数是( )

A.2012 B.2012 C.12011 D.12011
2.2011年秋天,我市遭爱特大旱灾。收到捐款共358 000元。用科学记数法表示这个数字。结果是( )
A.358×103 B.3.58×105 C.0.358×106 D.3.58×10
6
3.下列运算中,正确的是 ( )

A.2xxx B.21xx C.336()xx D.824xxx

4.若分式1xx有意义,则x的取值范围是( )
A.1x B.1x C.10xx且 D.
1 x
5. 若11xx2()xy,则x-y的值为( )
A.-1 B.1 C.2 D.3

6.二元一次方程组2337xyxy的解是( )

A.21xy B.21xy C.1,1.xy D.1,1.xy
7.已知21,xx是方程0242xx的两个根,则21xx=_______;21xx=______( )
A.4,2 B.4,-2 C.-4,2 D.
-4,-2

8. 如图:,在数轴上表示实数15的点可能是
( )
A.P B.Q C.M D.N

9.方程(3)(1)3xxx的解是( )
A.0x B.3x C.3x或1x D.3x或
0x

10.2010年12月25日,人民日报在一版重要位置刊登通讯,报道我省大力推进“四绿”工程建设,让绿色
为全省人民群众带来更多实惠。“这里是满眼绿色的省份——全省森林覆盖率达63.1%,居全国第一。”
我省提出,今冬明春造林650万亩,到2013年森林覆盖率达65%以上,继续保持森林覆盖率居全国首位。
并进一步增强人们的幸福指数。设从2010年起我省森林覆盖率年平均增长率为x,则可列方程( )

A.63.1%(12)65%x B.63.1%(13)65%x
C.263.1%(1)65%x D.363.1%(1)65%x

0 1 3 4
P Q M N
二.填空题:(每小题4分,共32分)
11.分解因式: 224yx= .

12.请写出一个比5大的负整数 .
13.已知x2-2=0,则214x的值是 .
14. 方程4x+y=20的正整数解有_________组.
15.按一定规律排列的一列数依次为:-2,5,-10,17,-26,、、、,按此规律排下去,这列数中的第9个
数是 。
16.在实数范围内定义一种新运算“※”,其规则为:a※b=a2-b2.根据这个规则,方程(x-2)※1=0的
解是 .

17.如果关于x的一元二次方程2210kxx有两个不相等的实数根,那么k的取值范围是 .
18.不等式10x-3(20-x)70的解集是 .
三.解答题:(共88分)
19.(6分)计算:

(1)235×51+3. (2) 01232822

20.(8分)先化简,再求值:22221369xyxyxyxxyy ,其中21,1xy

21.(10分)解方程:
(1) 0232xx (用两种不同方法解) (2) 22121xxx

22.(10分).解方程组32825xyxy
23.(10)解不等式组1221253xxxx 并将其解集在数轴上表示出来
24.(10分)已知关于x的一元二次方程22(21)0xmxm有两个实数根1x和2x.
(1)求实数m的取值范围;
(2)当22120xx时,求m的值.

25.(10分)为了防止干旱带来更多的灾难,某省投入资金建设水窖,用于储水。某公司承担了在某县打井
2万口的任务,计划10天完成.
(1)按此计划,该公司平均每天应打井 口;
(2)打井2天后,公司又从其它部门抽调了42名工人参加打井,同时,通过技术革新等手段使每位工
...

人.的工作效率比原计划提高了25%,结果提前2天完成了任务.求该公司原计划安排多少名工人

打井?

26.(10分)今年上半年,我班中考落榜的小明同学为了在假期赚到补习的书学费,到某商店应聘营业员。
了解到商店实行“月总工资=基本工资+计件奖金”的方法,并获得表中信息:
(1)该店营业员月基本工资是多少?销售每件奖励多少元?
(2)若小明想获得每月不低于1800元的收入,那么当月至少要 卖服装多少件?
27 .(14分) 某商场将进价为2000元的冰箱以2400元售出,平均每天能售8台,为了配合国家“家电下
乡”政策的实施,商场决定采取适当的降价措施,调查表明:这种冰箱的售价每降价50元,平均每
天就能多出售出4台。
(1)假设每台冰箱降价X元,用X的代数式表示商场每天销售这种冰箱的利润;
(2)商场要想在这种冰箱销售中盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少元?

营业员 小陈 小江
月销售件数(件) 200 150
月总收入(元) 1400 1250

相关文档
最新文档