河南省中考试题 含答案

合集下载

2021年河南省中考数学试卷(含答案解析版)

2021年河南省中考数学试卷(含答案解析版)

2021年河南省中考数学试卷(含答案解析版)2021年河南省中考数学试卷一、选择题(每小题3分,共30分)1.(3分)下列各数中比1大的数是()a.2b.0c.1d.32.(3分后)2021年,我国国内生产总值达至74.4万亿元,数据“74.4万亿”用科学记数法则表示()a.74.4×1012b.7.44×1013c.74.4×1013d.7.44×10153.(3分后)某几何体的左视图如图所示,则该几何体不可能将就是()a.b.c.d.4.(3分后)求解分式方程2=,回去分母得()a.12(x1)=3b.12(x1)=3c.12x2=3d.12x+2=35.(3分)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()a.95分,95分b.95分后,90分后c.90分,95分d.95分后,85分后6.(3分)一元二次方程2x25x2=0的根的情况是()a.有两个相等的实数根b.存有两个不成正比的实数根c.只有一个实数根d.没有实数根7.(3分后)例如图,在?abcd中,对角线ac,bd平行于点o,嵌入以下条件无法认定?abcd就是菱形的只有()第1页(共30页)a.ac⊥bdb.ab=bcc.ac=bdd.∠1=∠28.(3分)如图是一次数学活动可制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()a.b.c.d.9.(3分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形abcd的边ab在x轴上,ab的中点是坐标原点o,固定点a,b,把正方形沿箭头方向推,使点d落在y轴正半轴上点d′处,则点c的对应点c′的坐标为()a.(,1)b.(2,1)c.(1,)d.(2,)10.(3分)如图,将半径为2,圆心角为120°的扇形oab绕点a逆时针旋转60°,点o,b的对应点分别为o′,b′,连接bb′,则图中阴影部分的面积是()a.b.2c.2d.4二、填空题(每小题3分后,共15分后)第2页(共30页)11.(3分后)排序:23=.的解集是.12.(3分)不等式组<13.(3分)已知点a(1,m),b(2,n)在反比例函数y=的图象上,则m与n的大小关系为.14.(3分)如图1,点p从△a bc的顶点b出发,沿b→c→a匀速运动到点a,图2是点p运动时,线段bp的长度y随时间x变化的关系图象,其中m为曲线部分的最低点,则△abc的面积是.15.(3分后)例如图,在rt△abc中,∠a=90°,ab=ac,bc=+1,点m,n分别就是边bc,ab上的动点,沿mn所在的直线卷曲∠b,使点b的对应点b′始终落到边ac上,若△mb′c为直角三角形,则bm的短为.三、解答题(本题共8个小题,满分75分)216.(8分后)先化简,再表达式:(2x+y)+(xy)(x+y)5x(xy),其中x=+1,y=1.17.(9分后)为了介绍同学们每月零花钱的数额,校园大记者随机调查了本校部分同学,根据调查结果,绘制出来了如下两个尚不完备的统计图表.调查结果统计表界别ab分组(单位:元)0≤x<3030≤x<60人数416第3页(共30页)cde60≤x<9090≤x<120x≥120ab2恳请根据以上图表,答疑以下问题:(1)填空:这次被调查的同学共有人,a+b=,m=;(2)求扇形统计图中扇形c的圆心角度数;(3)该校共计学生1000人,恳请估算每月零花钱的数额x在60≤x<120范围的人数.18.(9分)如图,在△abc中,ab=ac,以ab为直径的⊙o交ac边于点d,过点c作cf∥ab,与过点b的切线交于点f,连接bd.(1)求证:bd=bf;(2)若ab=10,cd=4,谋bc的长.19.(9分)如图所示,我国两艘海监船a,b在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船c,此时,b船在a船的正南方向5海里处,a船测得渔船c在其南偏东45°方向,b船测得渔船c在其南偏东53°方向,已知a船的航速为30海里/小时,b船的航速为25海里/小时,问c船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41)第4页(共30页)20.(9分后)例如图,一次函数y=x+b与反比例函数y=(x>0)的图象处设点a(m,3)和b(3,1).(1)填空题:一次函数的解析式为,反比例函数的解析式为;(2)点p就是线段ab 上一点,过点p作pd⊥x轴于点d,相连接op,若△pod的面积为s,谋s的值域范围.21.(10分)学校“百变魔方”社团准备购买a,b两种魔方,已知购买2个a种魔方和6个b种魔方共需130元,购买3个a种魔方和4个b种魔方所需款数相同.(1)谋这两种魔方的单价;(2)结合社员们的需求,社团决定购买a,b两种魔方共100个(其中a种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.第5页(共30页)。

河南省中考数学真题试题(含解析)

河南省中考数学真题试题(含解析)

河南省中考数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。

1.(3分)﹣的绝对值是()A.﹣B.C.2 D.﹣2【分析】根据一个负数的绝对值是它的相反数进行解答即可.【解答】解:|﹣|=,故选:B.【点评】本题考查的是绝对值的性质,掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0是解题的关键.2.(3分)成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为()A.46×10﹣7B.4.6×10﹣7C.4.6×10﹣6D.0.46×10﹣5【分析】本题用科学记数法的知识即可解答.【解答】解:0.0000046=4.6×10﹣6.故选:C.【点评】本题用科学记数法的知识点,关键是很小的数用科学记数法表示时负指数与0的个数的关系要掌握好.3.(3分)如图,AB∥CD,∠B=75°,∠E=27°,则∠D的度数为()A.45°B.48°C.50°D.58°【分析】根据平行线的性质解答即可.【解答】解:∵AB∥CD,∴∠B=∠1,∵∠1=∠D+∠E,∴∠D=∠B﹣∠E=75°﹣27°=48°,故选:B.【点评】此题考查平行线的性质,关键是根据平行线的性质解答.4.(3分)下列计算正确的是()A.2a+3a=6a B.(﹣3a)2=6a2C.(x﹣y)2=x2﹣y2D.3﹣=2【分析】根据合并同类项法则,完全平方公式,幂的乘方与积的乘方的运算法则进行运算即可;【解答】解:2a+3a=5a,A错误;(﹣3a)2=9a2,B错误;(x﹣y)2=x2﹣2xy+y2,C错误;=2,D正确;故选:D.【点评】本题考查整式的运算;熟练掌握合并同类项法则,完全平方公式,幂的乘方与积的乘方的运算法则是解题的关键.5.(3分)如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的三视图,下列说法正确的是()A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同【分析】根据三视图解答即可.【解答】解:图①的三视图为:图②的三视图为:故选:A.【点评】本题考查了由三视图判断几何体,解题的关键是学生的观察能力和对几何体三种视图的空间想象能力.6.(3分)一元二次方程(x+1)(x﹣1)=2x+3的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【分析】先化成一般式后,在求根的判别式.【解答】解:原方程可化为:x2﹣2x﹣4=0,∴a=1,b=﹣2,c=﹣4,∴△=(﹣2)2﹣4×1×(﹣4)=20>0,∴方程由两个不相等的实数根.故选:A.【点评】本题运用了根的判别式的知识点,把方程转化为一般式是解决问题的关键.7.(3分)某超市销售A,B,C,D四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是()A.1.95元B.2.15元C.2.25元D.2.75元【分析】根据加权平均数的定义列式计算可得.【解答】解:这天销售的矿泉水的平均单价是5×10%+3×15%+2×55%+1×20%=2.25(元),故选:C.【点评】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.8.(3分)已知抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,则n的值为()A.﹣2 B.﹣4 C.2 D.4【分析】根据(﹣2,n)和(4,n)可以确定函数的对称轴x=1,再由对称轴的x=即可求解;【解答】解:抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,可知函数的对称轴x=1,∴=1,∴b=2;∴y=﹣x2+2x+4,将点(﹣2,n)代入函数解析式,可得n=﹣4;故选:B.【点评】本题考查二次函数图象上点的坐标;熟练掌握二次函数图象上点的对称性是解题的关键.9.(3分)如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C 为圆心,大于AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为()A.2B.4 C.3 D.【分析】连接FC,根据基本作图,可得OE垂直平分AC,由垂直平分线的性质得出AF=FC.再根据ASA证明△FOA≌△BOC,那么AF=BC=3,等量代换得到FC=AF=3,利用线段的和差关系求出FD=AD﹣AF=1.然后在直角△FDC中利用勾股定理求出CD的长.【解答】解:如图,连接FC,则AF=FC.∵AD∥BC,∴∠FAO=∠BCO.在△FOA与△BOC中,,∴△FOA≌△BOC(ASA),∴AF=BC=3,∴FC=AF=3,FD=AD﹣AF=4﹣3=1.在△FDC中,∵∠D=90°,∴CD2+DF2=FC2,∴CD2+12=32,∴CD=2.故选:A.【点评】本题考查了作图﹣基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中.求出CF与DF是解题的关键.10.(3分)如图,在△OAB中,顶点O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为()A.(10,3)B.(﹣3,10)C.(10,﹣3)D.(3,﹣10)【分析】先求出AB=6,再利用正方形的性质确定D(﹣3,10),由于70=4×17+2,所以第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转2次,每次旋转90°,此时旋转前后的点D关于原点对称,于是利用关于原点对称的点的坐标特征可出旋转后的点D的坐标.【解答】解:∵A(﹣3,4),B(3,4),∴AB=3+3=6,∵四边形ABCD为正方形,∴AD=AB=6,∴D(﹣3,10),∵70=4×17+2,∴每4次一个循环,第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O 顺时针旋转2次,每次旋转90°,∴点D的坐标为(3,﹣10).故选:D.【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.二、填空题(每小题3分,共15分。

河南省中考语文试题(Word版含答案)

河南省中考语文试题(Word版含答案)

人教版部编版九年级语文河南省2018年中考语文试卷一、积累与运用(共28分)1.下列词语中加点的字,每对读音都不同的一项是()(2分)A.殷.勤∕踏.青咀嚼.∕咬文嚼.字风调.雨顺∕南腔北调.B.儒.雅∕懦.弱侍.奉∕恃.才傲物咄.咄逼人∕相形见绌.C.卡.片∕关卡.屏.障∕屏.气凝神置之度.外∕度.日如年D.譬.如∕偏僻.栅.栏∕姗.姗来迟前仆.后继∕赴.汤蹈火2.下列词语中没有错别字的一项是()(2分)A.松驰慰藉天然气崭露头角记忆犹新B.馈赠涣散座谈会食不果腹源远流长C.精湛遨游俯卧撑谈笑风声通宵达旦D.彰显闲暇水笼头耳熟能详真知灼见3.古诗文默写(8分)(1)复有贫妇人,抱子在其旁,,。

(白居易《观刈麦》)(2)宋濂在《送东阳马生序》中,用“,“解释了自己对同舍生的豪华生活毫不艳羡的原因。

(3)天南地北,别时容易见时难。

所以,困于战火的杜甫只能空发“烽火连三月,家书抵万金“的感慨;归期不定的李商隐只能憧憬“,“(《夜雨寄北》)的幸福;兄弟分离的苏轼只能遥寄“,“(《水调歌头·明月几时有》)的祝愿。

4.名著阅读。

(任选一题作答)(1)下面是两部名著的插图,请任选一幅,简述与画面内容相关的故事情节。

(2)有人评价《西游记》“极幻之事中蕴含极真之理”。

请从下面两个具有奇幻色彩的故事中任选一个,简述故事情节,并指出期中蕴含的“极真之理”。

①悟彻菩提真妙理②尸魔三戏唐三藏5.在下面一段文字的横线处补写恰当的语句,使整段文字语意完整、连贯。

(4分)丁香花香得浓烈,桂花香得甜润,兰花香得清幽,这是为什么呢?原来,花朵中有一种油细胞,里面藏着芳香油,①,所以香味也不同。

芳香油挥发的香味会吸引昆虫前来传授花粉。

颜色艳丽、花瓣大的花一般香味不浓,因为它们主要靠颜色来吸引昆虫;反之,②,因为它们主要靠花香来吸引昆虫。

6.阅读下面材料,按要求答题。

(共8分)材料一:①君子养心莫善于诚,致诚则无他事矣。

河南省2022年中考语文试题(WORD版 含答案)

河南省2022年中考语文试题(WORD版 含答案)

河南省2022年中考语文试题注意事项:1.本试卷共6页,四个大题,满分120分,考试时间120分钟。

2.本试卷上不要答题,请按答题卡上注意事项的要求,直接把答案填写在答题卡上,写在试卷上的答案无效。

一、积累与运用(28分)1.阅读下面语段,回答问题。

(共4分)篆刻是一门综合性很强的艺术,它直溯.渊源,常通书画之理,兼具镌刻技艺,内含着作者的人品性格和文学修养,从里到外都散.发着艺术的魅力,在方寸之间雕世间万物,以刀情笔趣载千秋讯息,zhāng显华夏民族的审美特质,诠释中华文化的审美内hán,是中国传统艺术瑰宝之一。

(1)依次给语段中加点的字注音,全都正确的一项是(2分)A.shuò sānB.sù sànC.sù sānD.shuò sàn(2)根据语境,写出下面词语中拼音所对应的汉字。

(2分)Zhāng()显内hán()2.古诗默写。

(8分)在古代诗歌中,诗人常引“山”入诗,抒发情感。

见南山,陶渊明借“山气日夕佳,①”[《饮酒(其五)》]表现闲适恬淡的心境;望泰山,杜甫用“②,③”(《望岳》)表现登上高峰的决心;登飞来峰,王安石用“④,自缘身在最高层”(《登飞来峰》)表现无所畏惧的气概。

都写到巴山,刘禹锡用“⑤,⑥”(《酬乐天扬州初逢席上见赠》)表现遭受贬谪的辛酸和悲凉;李商隐用“⑦,⑧”(《夜雨寄北》)想象未来重聚的期盼。

3.名著阅读。

(4分)阅读名著要有自已的思考和判断。

在“名著人物大家谈”活动中,下面两个问题是同学们的争论,请选一个....谈谈你的看法,并结合名著内容简述两点理由。

①(西游记)中的沙僧是一个才能平平的人吗?②(水浒传)中的鲁智深是一个性情急躁的人吗?4.依次填入下面一段文字横线处的语句,衔接最恰当...的一项是(3分)登封观星台是我国现存最古老的天文台。

它是一座高大的青砖石结构建筑。

,;,,也反映了我国古代天文科学发展的卓越成就。

河南省2021年中考语文真题试卷(含答案)

河南省2021年中考语文真题试卷(含答案)

河南省2021年中考语文真题试卷姓名:__________班级:__________考号:__________题号一二三四总分评分阅卷人一、积累与运用(共28分)得分阅读下面语段,回答问题。

汉字是世界上最具造型感的文字,而软笔书写更让它散发出变①无穷的魅力。

中国人使用一支有弹性的笔,锲.而不舍地追求书法的线条美,创造出五彩斑斓的书法艺术。

秦代李斯的铁画银钩,东晋王義之的秀美飘②,唐代柳公权的刚劲.有力,明代徐渭的扭曲盘结……不同时代名家③出,掀起了书法艺术的一个又一个高潮。

如今随着书法教育的普及,我们期待这支笔焕发新的生机,带来新的风格流变。

1.依次给语段中加点的字注音,全都正确....的一项是()A.qìjìn B.qièjìn C.qìjìng D.qièjìng2.在语段横线处填入汉字,全都正确的一项是()A.①幻②溢③倍B.①换②逸③倍C.①幻②逸③辈D.①换②溢③辈3.请在下表横线处填写相应的古诗文名句,完成积累卡片。

主题古诗文名句乐学孔子说“知之者不如好之者,①”(《论语》),乐学,才能享受到学习的愉悦,这样即使生活艰难,也能“②,不知口体之奉不若人也”(宋濂《送东阳马生序》)。

理想辛弃用“③,④”(《南乡子·登京口北固亭有怀》)直接刻画孙权的年轻有为,借此表达自己渴望为国御敌的理想;龚自珍移情于物,用“⑤,⑥”(《己亥杂诗》其五)表明自己虽然辞官,但仍想为国效力的愿望。

进取老师让选两句诗作为座右铭,小文同学选了“⑦,⑧”(李白《行路难》其一)两句,激励自己乐观进取、积极向上。

名著阅读。

(任选一题....作答)4.《西游记》中的入物形象立体丰满。

请从下面两个故事中任选一个,结合唐僧在其中的表现,从两个方面谈谈你对他的认识。

①四圣试禅心②婴儿戏化禅心乱_____________________________________________________________________________________________ _____________________________________________________________________________________________ _____________________________________________________________________________________________ 5.《钢铁是怎样炼成的》一书中,保尔经过种种考验,成长为一名英雄。

河南省历年中考数学试题及答案

河南省历年中考数学试题及答案

河南省历年中考数学试题及答案河南省历年中考数学试题及答案是许多准备参加中考的学生和家长十分关心的话题。

在这篇文章中,我们将为大家整理和介绍一些河南省历年中考数学试题,并附上详细的答案解析,希望能够为大家的复习提供帮助。

一、选择题选择题是中考数学试卷中的重要组成部分。

以下是河南省历年中考数学试卷中的一道选择题:题目:已知正比例函数y = kx,当x = 4时,y = 10;当x = 6时,y = 15。

求k的值。

解析:根据题意可得到方程组:4k = 106k = 15通过解方程可得k = 2.5,因此,选项B为正确答案。

二、填空题填空题是中考数学试卷中锻炼计算能力和应用能力的重要题型。

以下是河南省历年中考数学试卷中的一道填空题:题目:Kate利用1组花环,每个花环用3朵玫瑰和5朵郁金香制作,共制作了8个花束,请问她用了多少朵玫瑰?解析:设用了x朵玫瑰,则用了24 - x朵郁金香,由题意可得方程:3x + 5(24 - x) = 8 × 8通过解方程可得x = 15,因此,她用了15朵玫瑰,答案为15。

三、解答题解答题是中考数学试卷中考察学生分析问题和解决问题能力的重要题型。

以下是河南省历年中考数学试卷中的一道解答题:题目:如图,直线l1与直线l2相交于点O,∠AOB = 85°,求∠COB的度数。

解析:由于l1与l2相交,根据错综相交线性质,可得∠AOB =∠COE。

又∠AOB = 85°,因此∠COE = 85°。

由于角的两边是射线,所以∠COB = ∠COE - ∠BOE = 85° - 70° = 15°。

四、解析题解析题是中考数学试卷中考察学生解决复杂问题和综合运用知识的重要题型。

以下是河南省历年中考数学试卷中的一道解析题:题目:汽车维修站每天收取基本工时费80元,每小时超时费30元。

某辆车维修时间3小时30分钟,应支付多少元?解析:首先需要计算维修时间的分钟数:3小时30分钟 = 3 × 60 +30 = 210分钟。

2024年河南省商丘市中考数学毕业会考试卷(含答案)

2024年河南省商丘市中考数学毕业会考试卷一、选择题(每题3分,共30分)1.(3分)数学美是简洁性、对称性、统一性和奇异性的有机结合.下列曲线中,既是中心对称图形,又是轴对称图形的是 A .爱心曲线B .蝴蝶曲线C .费马螺线曲线D .四叶花曲线2.(3分)下列成语或词语所反映的事件中,发生的可能性大小最小的是 A .守株待兔B .旭日东升C .瓜熟蒂落D .夕阳西下3.(3分)在中,若,则的度数是 A .B .C .D .4.(3分)已知关于的方程的一根为0,另一根不为0,则的值为 A .1B .C .1或D .以上均不对5.(3分)如图,在平面直角坐标系中,已知点、,以原点为位似中心,相似比为,把缩小,则点的对应点的坐标是 ()()ABC ∆21|sin |cos )02A B -+-=C ∠()120︒105︒75︒45︒x 22(3)230m x x m m ++++-=m ()3-3-(3,6)A -(9,3)B --O 13ABO ∆A A '()A .B .C .或D .或6.(3分)函数与在同一平面直角坐标系中的图象大致是 A .B .C .D .7.(3分)如图,在平面直角坐标系中,矩形的两边,分别在轴和轴上,并且,.若把矩形绕着点逆时针旋转,使点恰好落在边上的处,则点的对应点的坐标为 A .,B .,C .,D .,8.(3分)如图,在中,为的直径,,,,则弦 (1,2)-(9,18)-(9,18)-(9,18)-(1,2)-(1,2)-21y kx =-(0)ky k x=≠()OABC OA OC x y 5OA =3OC =OABC O A BC 1A C 1C ()9(5-12)512(5-9)516(5-12)512(5-16)5O CD O CD AB ⊥60AEC ∠=︒4OB =(AB =)A .B .C .D .9.(3分)如图,在中,延长斜边到点,使,连接,若,则的值为 ABC .D .10.(3分)如图,矩形中,,,点为平面内一点,且,点为上一个动点,则的最小值为 A .11B .CD .13二、填空题(每小题3分,共15分)11.(3分)若,则的值为 .12.(3分)设,是方程的两个实数根,则 .13.(3分)若函数的图象与轴只有一个交点,那么的值为 .14.(3分)如图,在中,,点在轴上,、分别为、的中点,连接,为上任意一点,连接、,反比例函数的图象经过点.若的面积为6,则的值为 .15.(3分)如图,在中,,,,将绕直角顶点顺时针旋转Rt ABC ∆BC D 12CD BC =AD 5tan 3B =tan CAD ∠()1315ABCD 5AB =6AD =P 2BP =Q CD AQ PQ +()2-2-25m n =22m nm-a b 220240x x +-=22a a b ++=21(2)12y mx m x m =++++x m AOB ∆AO AB =B x C D OA OB CD E CD AE BE (0)ky x x=<A ABE ∆k ABC ∆90BAC ∠=︒30ACB ∠=︒2AB =ABC ∆A得,点的对应点是点,则图中阴影部分面积为 .三、计算题(本题共8题,共75分)16.(8分)(1)解方程:;(2)计算:.17.(9分)“二十四节气”是中华上古农耕文明的智慧结晶,被国际气象界誉为“中国第五大发明”,小明购买了“二十四节气”主题邮票,他将“立春”“清明”“雨水”三张纪念邮票(除正面内容不同外,其余均相同)背面朝上,洗匀放好.(1)小明从中随机抽取一张邮票是“清明”的概率是 .(2)小明从中随机抽取一张邮票,记下内容后,正面向下放回,洗匀后再从中随机抽取一张邮票,请用画树状图或列表的方法,求小明两次抽取的邮票中至少有一张是“雨水”的概率(这三张邮票依次分别用字母,,表示).18.(9分)为了增强学生体质、锤炼学生意志,某校组织一次定向越野拉练活动.如图,点为出发点,途中设置两个检查点,分别为点和点,行进路线为.点在点的南偏东方向处,点在点的北偏东方向,行进路线和所在直线的夹角为.(1)求行进路线和所在直线的夹角的度数;(2)求检查点和之间的距离(结果保留根号).60︒ADE ∆E C 2650x x ++=2|cos60sin 45tan 30sin 60︒+︒-︒︒A B C A B C A B C A →→→B A 25︒C A 80︒AB BC ABC ∠45︒BC CA BCA ∠B C19.(9分)某景区旅游商店以20元的价格采购一款旅游食品加工后出售,销售价格不低于22元,不高于45元.经市场调查发现每天的销售量与销售价格(元之间的函数关系如图所示.(1)求关于的函数表达式;(2)当销售价格定为多少时,该商店销售这款食品每天获得的销售利润最大?最大销售利润是多少?【销售利润(销售价格采购价格)销售量】20.(9分)已知抛物线交轴于,,两点,为抛物线的顶点,,为抛物线上不与,重合的相异两点,记的中点为,直线,的交点为.(1)求抛物线的函数表达式;(2)若,,且,求证:,,三点共线;(3)小明研究发现,无论,在抛物线上如何运动,只要,,三点共线,的面积恒为定值,请求出此定值.21.(10分)如图,是的外接圆,为的直径,过点作平分交于点,过点作的平行线分别交、的延长线于点,,于点,连接.(1)求证:;(2)求证:是的切线;/kg /kg /kg ()y kg x /)kg y x =-⨯23y ax bx =++x (1A 0)(3B 0)M C D A B AB E AD BC P (4,3)C 3(,)4D m -2m <C DE C D C D E ABP ∆O ABC ∆AB O A AD BAC ∠O D D BC AC AB EF DG AB ⊥G BD AED DGB ∆∆∽EF O(3)若,,求劣弧的长度(结果保留.22.(10分)《函数)复习课后,为加深对函数的认识,李老师引导同学们对函数的图象与性质进行探究,过程如下,请完成探究过程:(1)初步感知:函数的自变量取值范围是 ;(2)作出图象:①列表:0123235表中 , ;②描点,连线:在平面直角坐标系中,描出以表中各对对应值为坐标的点,根据描出的点画出该函数的图象;(3)研究性质:小明观察图象,发现这个图象为双曲线,进一步研究中,小明将函数转化为,他判断该函数图象就是反比例函数通过某种平移转化而来,反比例函数是中心对称图形,对称中心为,则函数的对称中心为 ;BF DF =6OA = BD )π1xy x =+1xy x =+x⋯3-2-74-32-54-34-12-14-⋯y⋯32m 3-1-13-n122334⋯m =n =1x y x =+111x -+1y x =-1y x=-(0,0)1xy x =+(4)拓展应用:当时,关于的方程有实数解,求的取值范围.23.(11分)如图①,是一块锐角三角形材料,边,高.把它加工成正方形零件,使正方形的一边在上,其余两个定点分别在,上,这个正方形零件的边长是多少?(1)解这个题目,求出这个正方形零件的边长是多少?变式训练:(2)如果要加工成一个矩形零件,如图②,这样,此矩形零件的两边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长是多少?(3)如图③,在中,,正方形的边长是8,且四个顶点都在的各边上,.求的值.14x ……x 11xkx x +=+k ABC ∆100BC mm =60AD mm =BC AB AC ABC ∆90A ∠=︒DEFG ABC ∆4CE =:AGF ABC S S ∆∆2024年河南省商丘市中考数学毕业会考试卷参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)数学美是简洁性、对称性、统一性和奇异性的有机结合.下列曲线中,既是中心对称图形,又是轴对称图形的是 A .爱心曲线B .蝴蝶曲线C .费马螺线曲线D .四叶花曲线【解答】解:.是轴对称图形,不是中心对称图形,故不符合题意;.是轴对称图形,不是中心对称图形,故不符合题意;.是中心对称图形,不是轴对称图形,故不符合题意;.既是轴对称图形,也是中心对称图形,故符合题意.故选:.2.(3分)下列成语或词语所反映的事件中,发生的可能性大小最小的是 A .守株待兔B .旭日东升C .瓜熟蒂落D .夕阳西下【解答】解:.守株待兔所反映的事件可能发生也可能不发生,是不确定事件,符合题意;.旭日东升,是必然事件,发生的可能性为1,不符合题意;.瓜熟蒂落,是必然事件,发生的可能性为1,不符合题意;.夕阳西下,是必然事件,发生的可能性为1,不符合题意;故选:.3.(3分)在中,若,则的度数是 A .B .C .D.()A B C D D ()A B C D A ABC∆21|sin |cos )02A B -+-=C ∠()120︒105︒75︒45︒【解答】解:,,,,,,.故选:.4.(3分)已知关于的方程的一根为0,另一根不为0,则的值为 A .1B .C .1或D .以上均不对【解答】解:关于的方程的一根为0,,即,解得:或.又关于的方程的另一根不为0,所以△,即,解得:,当时,,此方程不可能有两根,故选:.5.(3分)如图,在平面直角坐标系中,已知点、,以原点为位似中心,相似比为,把缩小,则点的对应点的坐标是 A .B . 21|sin |cos )02A B -+-=∴1sin 02A -=cos 0B -=∴1sin 2A =cos B =30A ∴∠=︒30B ∠=︒180120C A B ∴∠=︒-∠-∠=︒A x 22(3)230m x x m m ++++-=m ()3-3- x 22(3)230m x x m m ++++-=22(3)00230m m m ∴+⨯+++-=2230m m +-=1m =3-x 0>214(3)(23)0m m m -++->(,)m ∈-∞+∞3m =-30m +=A (3,6)A -(9,3)B --O 13ABO ∆A A '()(1,2)-(9,18)-C.或D.或【解答】解:点,以原点为位似中心,相似比为,把缩小,点的对应点的坐标是或,故选:.6.(3分)函数与在同一平面直角坐标系中的图象大致是 A.B.C.D.【解答】解:分两种情况讨论:①当时,反比例函数,在一、三象限,而二次函数开口向上,与轴交点为,都不符;②当时,反比例函数,在二、四象限,而二次函数开口向下,与轴交点为,符合.故选:.7.(3分)如图,在平面直角坐标系中,矩形的两边,分别在轴和轴上,并且,.若把矩形绕着点逆时针旋转,使点恰好落在边上的处,则点的对应点的坐标为 (9,18)-(9,18)-(1,2)-(1,2)-(3,6)A-O13ABO∆∴A A'(1,2)-(1,2)-D21y kx=-(0)ky kx=≠()k>kyx=21y kx=-y(0,1)-0k<kyx=21y kx=-y(0,1)-DDOABC OA OC x y5OA= 3OC=OABC O A BC1A C1C ()A .,B .,C .,D .,【解答】解:方法一:过点作轴于点,过点作轴于点,由题意可得:,,则△△,,,,,,设,则,,则,解得:(负数舍去),则,,故点的对应点的坐标为:,.故选:.方法二:设旋转角为,过作轴于,过作轴于,由题意知:,,,9(5-12)512(5-9)516(5-12)512(5-16)51C 1C N x ⊥N 1A 1A M x ⊥M 1190C NO A MO ∠=∠=︒123∠=∠=∠1A OM ∽1OC N 5OA = 3OC =15OA ∴=13A M =4OM ∴=∴3NO x =14NC x =13OC =22(3)(4)9x x +=35x =±95NO =1125NC =C 1C 9(5-125A α1C 1C P y ⊥P 1A 1A Q x ⊥Q 1||3A Q =1||5A O =||4OQ ∴=,,又,,,,,故选:.8.(3分)如图,在中,为的直径,,,,则弦 A .B .C .D .【解答】解:连接,3sin 5α∴=4cos 5α=1||3OC=119||||sin 5PC OC α∴=⋅=112||||cos 5OP OC α=⋅=19(5C ∴-12)5A O CD O CD AB ⊥60AEC ∠=︒4OB =(AB =)BD为的直径,,,,,,,是等边三角形,,,,,故选:.9.(3分)如图,在中,延长斜边到点,使,连接,若,则的值为 ABC .D .【解答】解:如图,作交于.在中,,可以假设,,,,,,,CD O CD AB ⊥2AB BF ∴= AC BC=60AEC ∠=︒ 60ODB AEC ∴∠=∠=︒OD OB = OBD ∴∆4OB OD ∴==122OF OD ∴==BF ∴===2AB BF ∴==D Rt ABC ∆BC D 12CD BC =AD 5tan 3B =tan CAD ∠()1315//DE AC AB E Rt ABD ∆5tan 3AD B AB ==∴5AD k =3AB k =BD ∴=CD =//DE AC DAC ADE ∴∠=∠23BE BD BA BC ==,,,故选:.10.(3分)如图,矩形中,,,点为平面内一点,且,点为上一个动点,则的最小值为 A .11B .CD .13【解答】解:点为平面内一点,且,点在以为圆心,2为半径的上,延长到,使,连接,连接交于点,四边形使矩形,垂直平分,,,的最小值为,在△中,2BE k ∴=AE k ∴=1tan tan 55AE k CAD ADE AD k ∴∠=∠===D ABCD 5AB =6AD =P 2BP =Q CD AQ PQ +()2-2- P 2BP =∴P B B AD A '6DA DA '==QA 'BA 'B P ' ABCD CD ∴AA 'QA QA '∴=2AQ PQ A Q PQ PB P B A B P B A B '''''+=++--=- …AQ PQ ∴+2A B '-Rt A AB ',,由勾股定理,得,的最小值为,故选:.二、填空题(每小题3分,共15分)11.(3分)若,则的值为 .【解答】解:设,,则原式.故答案为:.12.(3分)设,是方程的两个实数根,则 2023 .【解答】解:,是方程的两个实数根,,,.故答案为:2023.13.(3分)若函数的图象与轴只有一个交点,那么的值为 0或2或 .【解答】解:当时,函数为,其图象与轴只有一个交点.当时,△,即.解得:.当,或时,函数的图象与轴只有一个交点.故答案为:0或2或.14.(3分)如图,在中,,点在轴上,、分别为、的中点,连接,为上任意一点,连接、,反比例函数的图象经过点.若的面积为6,则的值为 .212A A AD '==5AB =13A B '===AQ PQ ∴+213211A B '-=-=A 25m n =22m n m-2-2m k =5n k =2104k k k-=84kk -=2=-2-a b 220240x x +-=22a a b ++=a b 220240x x +-=22024a a ∴+=1a b +=-222()()202412023a a b a a a b ∴++=+++=-=21(2)12y mx m x m =++++x m 2-0m =21y x =+x 0m ≠0=21(2)4(1)02m m m +-+=2m =±∴0m =2m =±21(2)12y mx m x m =++++x 2-AOB ∆AO AB =B x C D OA OB CD E CD AE BE (0)k y x x=<A ABE ∆k 12-【解答】解:如图:连接,中,,在轴上,、分别为,的中点,,,,.故答案为:.15.(3分)如图,在中,,,,将绕直角顶点顺时针旋转得,点的对应点是点,则图中阴影部分面积为 【解答】解:如图,由题意可知,,,在中,,,,,在中,,,AD AOB ∆AO AB =OB x C D AB OB AD OB∴⊥//AB CD6ABE AOD S S ∆∆∴==12k ∴=-12-ABC ∆90BAC ∠=︒30ACB ∠=︒2AB =ABC ∆A 60︒ADE ∆E C 2π60CAE ∠=︒ABC ADE ∆≅∆Rt ABC ∆30ACB ∠=︒2AB =AC ∴==24BC AB ==Rt ADF ∆906030ADF B ∠=∠=︒-︒=︒2AB AD ==,,,.故答案为:.三、计算题(本题共8题,共75分)16.(8分)(1)解方程:;(2)计算:.【解答】解:(1),,或,解得,;(2)17.(9分)“二十四节气”是中华上古农耕文明的智慧结晶,被国际气象界誉为“中国第五大发明”,小明购买了“二十四节气”主题邮票,他将“立春”“清明”“雨水”三张纪念邮票(除正面内容不同外,其余112DF AD ∴==AF AD ==413EF DE DF ∴=-=-=AEFACE S S S ∆∴=-阴影部分扇形132=-2π=2π2650x x ++=2|cos60sin 45tan 30sin 60︒+︒-︒︒2650x x ++=(1)(5)0x x ++=10x +=50x +=11x =-25x =-2|cos60sin 45tan 30sin 60︒+︒-︒︒212=+1122=+-=均相同)背面朝上,洗匀放好.(1)小明从中随机抽取一张邮票是“清明”的概率是 .(2)小明从中随机抽取一张邮票,记下内容后,正面向下放回,洗匀后再从中随机抽取一张邮票,请用画树状图或列表的方法,求小明两次抽取的邮票中至少有一张是“雨水”的概率(这三张邮票依次分别用字母,,表示).【解答】解:(1)一共有三种可能,(抽到“清明” ;(2)列树状图:(至少一张雨水).18.(9分)为了增强学生体质、锤炼学生意志,某校组织一次定向越野拉练活动.如图,点为出发点,途中设置两个检查点,分别为点和点,行进路线为.点在点的南偏东方向处,点在点的北偏东方向,行进路线和所在直线的夹角为.(1)求行进路线和所在直线的夹角的度数;(2)求检查点和之间的距离(结果保留根号).13A B C P 1)3=P 59=A B C A B C A →→→B A 25︒C A 80︒AB BC ABC ∠45︒BC CA BCA ∠B C【解答】解:(1)由题意得:,,,,,行进路线和所在直线的夹角的度数为;(2)过点作,垂足为,在中,,,,,在中,,,,检查点和之间的距离.80NAC ∠=︒25BAS ∠=︒18075CAB NAC BAS ∴∠=︒-∠-∠=︒45ABC ∠=︒ 18060ACB CAB ABC ∴∠=︒-∠-∠=︒∴BC CA BCA ∠60︒A AD BC ⊥D Rt ABD∆AB =45ABC ∠=︒sin 453()AD AB km ∴=⋅︒==cos 453()BD AB km =⋅︒==Rt ADC ∆60ACB ∠=︒)tan 60AD CD km ===︒(3BC BD CD km ∴=+=+∴BC (3km +19.(9分)某景区旅游商店以20元的价格采购一款旅游食品加工后出售,销售价格不低于22元,不高于45元.经市场调查发现每天的销售量与销售价格(元之间的函数关系如图所示.(1)求关于的函数表达式;(2)当销售价格定为多少时,该商店销售这款食品每天获得的销售利润最大?最大销售利润是多少?【销售利润(销售价格采购价格)销售量】【解答】解:(1)当时,设函数表达式为,将,代入解析式得,,解得,函数表达式为:;当时,设函数表达式为:,将,代入解析式得,,解得,函数表达式为:,综上,与的函数表达式为:;(2)设利润为元,当时,,在范围内,随着的增大而增大,当时,取得最大值为400;/kg /kg /kg ()y kg x /)kg y x =-⨯2230x ……y kx b =+(22,48)(30,40)22483040k b k b +=⎧⎨+=⎩170k b =-⎧⎨=⎩∴70y x =-+3045x <…y mx n =+(30,40)(45,10)30404510m n m n +=⎧⎨+=⎩2100m n =-⎧⎨=⎩∴2100y x =-+y x 70(2230)2100(3045)x x y x x -+≤≤⎧=⎨-+<≤⎩w 2230x ……22(20)(70)901400(45)625w x x x x x =--+=-+-=--+ 2230x ……w x ∴30x =w当时,,当时,取得最大值为450;,当销售价格为35元时,利润最大为450元.20.(9分)已知抛物线交轴于,,两点,为抛物线的顶点,,为抛物线上不与,重合的相异两点,记的中点为,直线,的交点为.(1)求抛物线的函数表达式;(2)若,,且,求证:,,三点共线;(3)小明研究发现,无论,在抛物线上如何运动,只要,,三点共线,的面积恒为定值,请求出此定值.【解答】(1)解:由题意得:,则,即抛物线的函数表达式为;(2)证明:设直线对应的函数表达式为,因为为中点,所以.又因为,所以,解得:,所以直线对应的函数表达式为,因为点在抛物线上,所以,解得:或,所以,,因为,即满足直线对应的函数表达式,所以点在直线上,即,,三点共线;3045x <…22(20)(2100)214020002(35)450w x x x x x =--+=-+-=--+35x =w 450400> ∴/kg 23y ax bx =++x (1A 0)(3B 0)M C D A B AB E AD BC P (4,3)C 3(,)4D m -2m <C DE C D C D E ABP ∆22(1)(3)(43)3y a x x a x x ax bx =--=-+=++1a =243y x x =-+CE (0)y kx n k =+≠E AB (2,0)E (4,3)C 2043k n k n +=⎧⎨+=⎩ 1.53k n =⎧⎨=-⎩CE 1.53y x =-D 23434m m -+=-32m =523(2D 34-3333224⨯-=-D CE D CE C D E(3)解:小明研究发现,无论,在抛物线上如何运动,只要,,三点共线,的面积恒为定值,故在(2)的条件下,,,,,直线对应的函数表达式为;直线对应的函数表达式为,联立上述两式得:,解得:,则点,,此时 的面积.21.(10分)如图,是的外接圆,为的直径,过点作平分交于点,过点作的平行线分别交、的延长线于点,,于点,连接.(1)求证:;(2)求证:是的切线;(3)若,,求劣弧的长度(结果保留.【解答】(1)证明:过点作平分交于点,过点作的平行线分别交、的延长线于点,,于点,连接.是的外接圆,为的直径,,,,平分,,,,C D C D E ABP ∆(3,0)B (4,3)C 3(2D 3)4-∴BC 39y x =-AD 3322y x =-+333922x x -=-+73x =7(3P 2)-ABP ∆11||(31)2222P AB y =⨯⨯=⨯-⨯=O ABC ∆AB O A AD BAC ∠O D D BC AC AB E F DG AB ⊥G BD AED DGB ∆∆∽EF O BF DF =6OA = BD)πA AD BAC ∠O D D BC AC AB E F DG AB ⊥G BD O ABC ∆AB O 90ACB ADB ∴∠=∠=︒//BC EF 90AED ACB ∴∠=∠=︒AD BAC ∠EAD DAB ∴∠=∠ADE ABD ∴∠=∠DG AB ⊥,;(2)证明:连接,,,,,,,,,是的切线;(3)解:,,,,,,,,,,,90BGD AED ∴∠=∠=︒AED DGB ∴∆∆∽OD OA OD = OAD ADO ∴∠=∠2DOF OAD ADO DAF ∴∠=∠+∠=∠2EAF DAF ∠=∠ EAF DOF ∴∠=∠//AE OD ∴AE EF ⊥ OD EF ∴⊥EF ∴O 90EAD ADE ∠+∠=︒ 90DAF ADE ∴∠+∠=︒90BDF ADE ∠+∠=︒ DAF BDF ∴∠=∠ADF DBF ∴∆∆∽∴AD AF DFDB DF BF===2222(66)AD BD AB +==+ 22)144AD AD ∴+=AD ∴=6BD ∴=tan BD DAB AD ∴∠==30DAB ∴∠=︒,.22.(10分)《函数)复习课后,为加深对函数的认识,李老师引导同学们对函数的图象与性质进行探究,过程如下,请完成探究过程:(1)初步感知:函数的自变量取值范围是 ;(2)作出图象:①列表:0123235表中 , ;②描点,连线:在平面直角坐标系中,描出以表中各对对应值为坐标的点,根据描出的点画出该函数的图象;(3)研究性质:小明观察图象,发现这个图象为双曲线,进一步研究中,小明将函数转化为,他判断该函数图象就是反比例函数通过某种平移转化而来,反比例函数是中心对称图形,对称中心为,则函数的对称中心为 ;(4)拓展应用:当时,关于的方程有实数解,求的取值范围.【解答】解:(1)函数的自变量的取值范围是.故答案为.60DOB∴∠=︒∴ 6062180BDππ⋅⋅==1xyx=+1xyx=+1x≠-x⋯3-2-74-32-54-34-12-14-⋯y⋯32m3-1-13-n122334⋯m=n=1xyx=+111x-+1yx=-1yx=-(0,0)1xyx=+14x (x1)1xkxx+=+k1xyx=+x1x≠-1x≠-(2)①时,,.当时,,,故答案为:,0;②函数图象如图所示:(3)函数的对称中心为,故答案为:;(4)当时,函数中,,把,代入函数得,,解得,把,代入函数得,解得,当时,关于的方程有实数解,的取值范围是.23.(11分)如图①,是一块锐角三角形材料,边,高.把它加工成正方形零件,使正方形的一边在上,其余两个定点分别在,上,这个正方形零件的边长是多少?74x =-7747314y -==-+73m ∴=0x =0y =0n ∴=731xy x =+(1,1)-(1,1)-14x ……1x y x =+1425y ……4x =45y =1y kx =+4415k =+120k =-1x =12y =1y kx =+1212k =+14k =-∴14x ……x 11x kx x +=+k 11420k --……ABC ∆100BC mm =60AD mm =BC AB AC(1)解这个题目,求出这个正方形零件的边长是多少?变式训练:(2)如果要加工成一个矩形零件,如图②,这样,此矩形零件的两边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长是多少?(3)如图③,在中,,正方形的边长是8,且四个顶点都在的各边上,.求的值.【解答】解:(1)四边形为正方形,,,设正方形零件的边长为 ,则 ,,,,即,解得,故这个正方形零件的边长是.(2)设 ,四边形为矩形,,,,,,ABC ∆90A ∠=︒DEFG ABC ∆4CE =:AGF ABC S S ∆∆ EGHF //BC EF ∴AEF ABC ∴∆∆∽x mm KD EF x ==mm (60)AK x mm =-AD BC ⊥∴EF AKBC AD =6010060x x-=752x =752mm EG a =mm EGHF //EF BC ∴AEF ABC ∴∆∆∽∴EF AKBC AD =∴6010060EF a-=∴5(60)510033a aEF -==-矩形面积,时,此时矩形面积最大.即当,时,此时矩形面积最大.(3)四边形是正方形,,,,,,,,,,,,,,.∴22555(100)100(30)1500333a a S a a a =⨯-=-+=--+30a ∴=30EG mm =50EF mm = EFGD 8DE EF DG mm ∴===90GDE DEF ∠=∠=︒90BDG CEF ∴∠=∠=︒90B C ∠+∠=︒ 90C CFE ∠+∠=︒B CFE ∴∠=∠BDG FEC ∴∆∆∽∴BD DGEF EC =∴884BD =16BD ∴=168428BC BD DE EC ∴=++=++=//FG BC AGF ABC ∴∆∆∽228:()()4:4928AGF ABC GF S S BC ∆∆∴===。

2023年河南省中考语文试题[附答案]

2023年河南省普通高中招生考试试卷语文注意事项:1.本试卷共6页,五个大题,满分120分,考试时间120分钟。

2.本试卷上不要答题,请按答题卡上注意事项的要求,直接把答案填写在答题卡上。

答在试卷上的答案无效。

一、积累与运用(共22分)班级拟召开“家在河南”主题班会,以下是班长小豫准备的部分材料,请你帮他完善。

1.下面是开场白,其中有些字词小豫拿不准,请帮他判断。

(共4分)同学们,我们的家乡河南是一片神奇的土地,她哺.育了一代代中原儿女,是中华文明的重要发①(详祥)地,是夏、商、周三代的文化核心区,历史上先后有20多个王朝在此建都兴.业。

历史长河滚滚向前,在中原大地留下星罗②(其棋)布的文化遗迹。

守护历史根脉.,传承中华文明,就从了解我们的家乡河南开始吧。

(1)语段中三个加点字怎么读?请帮他作出选择。

(2分)A. pǔ xīng mòB. bǔ xìng mòC. bǔ xīng màiD. pǔ xìng mài(2)语段中两个横线处应分别选用哪个字?请工整书写。

(2分)2.小豫想在下面这张幻灯片中引用一些古诗文名句,请帮他补写。

(8分)3.小豫感觉用文字呈现汉字文化发展史不够直观,请根据下面幻灯片的内容帮他完成时间轴。

要求:语言简洁,每处不超过15字。

(4分)【汉字源流】汉字文化源远流长。

在舞阳贾湖遗址发现的契刻符号距今约8000年,是目前所知世界最早的文字雏形之一。

在安阳殷墟发现的距今3000多年的甲骨文,是我国已知最早的成系统的文字。

东汉时期,许慎编写了一部研究文字形义关系和使用现象的专著《说文解字》,这是世界上第一部字典。

20世纪八十年代,王永民发明“王码五笔字型”,解决了汉字的电脑输入难题……这些在汉字发展史上具有里程碑意义的大事件都与河南有关。

4.小豫想为下面幻灯片中的文字选配一幅插图。

A、B两幅备选图中,你建议选择哪一幅,请简述理由。

2023年河南省中考物理试卷(含答案)233653

2023年河南省中考物理试卷试卷考试总分:64 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(本题共计 6 小题,每题 2 分,共计12分)1. 运汽油的汽车都有一条铁链子拖地,它的作用是( )A.发出声响,让路人注意B.作为运油车的统一标志C.通过它向空气和大地散热D.通过与地相连的铁链将汽油和铁罐因摩擦起电所带的电荷导入大地,从而避免危害发生2. 下列现象与惯性无关的是()A.跳远运动员助跑一段距离后才起跳B.举重运动员把杠铃举在空中不动C.踢出去的足球继续向前飞行D.百米赛跑运动员到达终点不能马上停下来3. 兰兰对下列物理现象中所发生的物态变化进行了判断,你认为正确的是( )A.春天,冰雪消融--汽化B.盛夏,打开冰箱门形成的“白气”-------液化C.秋天的夜晚,小草上出现露珠--升华D.冬天的早晨窗户玻璃上出现的冰花--凝固4. 下列关于电与磁的说法,正确的是( )A.地磁场北极在地理北极附近B.扬声器与电动机工作原理相同C.当水位到达时,绿灯亮,红灯不亮AD.实验研究的是通电导体在磁场中的受力。

5. 我国新型反潜巡逻机安装的“磁异探测器”,能将潜艇经过的海域引起的磁场变化转化为电流,从而发现潜艇.图中能解释“磁异探测器”工作原理的是( ) A. B. C. D.6. 如图,是一位同学组装的提升重物的装置,他用的拉力,在内把重的重物提升,则此过程中( )A.该滑轮组的效率为B.他做的总功为C.他做的有用功为D.他对滑轮组做功的功率为二、 多选题 (本题共计 2 小题 ,每题 2 分 ,共计4分 )7. 甲、乙两只完全相同的杯子盛有不同浓度的盐水,将同一只鸡蛋先后放入其中。

当鸡蛋静止时,在甲杯中悬浮,在乙杯中漂浮,且两杯中液面相平,鸡蛋所处的位置如图所示.则下列说法正确的是()A.鸡蛋在乙杯中受到的浮力较大B.鸡蛋在两杯里排开液体的质量相等C.甲杯底部所受液体的压力较大D.乙杯底部所受液体的压强较大8. 犬于能源,信息和材料,下列说法错误的是( )A. 手机通话是利片电磁波来传递信息的100N F 10s 150N G 4m 75%1200J800J60WB.随着科技的发展永动机不久将会实现C.煤、太阳能、天然气都是可再生能源D.灯中的发光二极管由超导材料制成三、 填空题 (本题共计 5 小题 ,每题 2 分 ,共计10分 )9. 如图所示,敲响右边的音叉,左边完全相同的音叉也会发声,并且把泡沫塑料球弹起。

2021年河南省中考生物试卷(word,解析版)真题含答案

2021年河南省中考生物试卷一、选择题下列每小题列出的四个选项中,只有一个选项是最符合题目要求的。

请将正确选项的字母代号涂写在答题卡相应位置上。

1.草长莺飞,蛙鸣鱼跃……多彩的大自然、奇妙的生物世界带给我们难忘的童趣。

下列选项不符合生物特征的是()A.生石花开花B.东北虎捕食C.钟乳石长大D.运动后出汗2.小华制作人的口腔上皮细胞临时装片的部分操作步骤如下。

其中不正确的是()A.滴加清水B.涂抹材料C.盖盖玻片D.碘液染色3.怀菊花产于古怀庆府(今河南焦作境内),具有抗菌消炎、降血脂等作用。

从植物体的结构层次上来说,菊的花属于()A.细胞B.组织C.器官D.系统4.苏辙有“苦寒坏我千竿绿,好雨还催众笋长”的诗句。

下列选项中,与该诗句体现的生物与环境关系一致的是()A.蚯蚓的活动使土壤疏松B.全球变暖致珊瑚虫死亡C.蚜虫滋生造成小麦减产D.野兔泛滥加速草场退化5.周末,小明给爸爸妈妈准备了午餐:烧鸡翅、小炒肉、蒸鸡蛋和米饭。

从合理营养的角度来看,下列菜品中最适合补充到午餐中的是()A.清炖牛肉B.蒜蓉青菜C.油炸带鱼D.红烧大虾6.郑州市龙湖湿地公园遍布芦苇、菖蒲等植物,有天鹅鸳鸯等多种野生禽鸟在此栖息。

下列说法不正确的是()A.上述植物和动物就能构成一个完整的生态系统B.芦苇、菖蒲等绿色植物是湿地生态系统中的生产者C.天鹅、鸳鸯在湖中捕食,是湿地生态系统中的消费者D.湿地生态系统的成分越复杂,其自动调节能力就越强7.我国大力推进国土绿化行动,森林面盖率不断提高,生态环境明显改善。

下列说法不正确的是()A.森林可以涵养水源、保持水土B.森林为陆生动物提供了栖息环境C.绿色植物的热腾作用能提高大气湿度,增加降水D.绿色植物的呼吸作用维持了生物圈的碳氧平衡8.如图为人体三类血管横切面示意图。

下列有关描述不正确的是()A.甲的管壁较薄且有限膜,为静脉B.乙管壁的平滑肌较厚,弹性大C.丙的结构特点便于充分进行物质交换D.血液在三类血管中的流动方向为甲→丙→乙9.如图为血液流经人体某器官M的示意图,①②表示血管,表示血流方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 2015年河南初中学业水平暨高级中等学校招生考试试题 数 学(解析版) 注意事项: 1. 本试卷共6页,三个大题,满分120分,考试时间100分钟。 2. 本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上。答在试卷上的答案无效。 一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的。 1. 下列各数中最大的数是( )

A. 5 B.3 C. π D. -8 A【解析】本题考查实数的比较大小.∵732.13,π≈3.14,∴5>π>3>8,∴最大的数为5. 2. 如图所示的几何体的俯视图是( )

B【解析】本题考查实物体的俯视图的判断,俯视图是从上往下看得到的图形,从上面看可以看到轮廓是一个矩形和中间有一条竖着的实线,故B选项符合题意. 3. 据统计,2014年我国高新技术产品出口总额达40 570亿元,将数据40 570亿用科学记数法表示为( ) A. 4.0570×109 B. 0.40570×1010 C. 40.570×1011 D. 4.0570×1012 D 【解析】本题考查带计数单位的大数科学计数法.∵1亿=108 ,40570=4.057×104,∴ 40570亿=4.057×104×108=4.0570×1012. 4. 如图,直线a,b被直线e,d所截,若∠1=∠2,∠3=125°,则∠4的度数为( ) A. 55° B. 60° C.70° D. 75°

C D B A 正面 第2题

d c b a

第4题 2

A【解析】本题考查了平行线的判定和相交线与平行线性质求角度.∵∠1=∠2,∴a∥b.∴∠5=∠3=125°, ∴∠4=180°-∠5=180°-125°=55°.

5. 不等式组13,05xx的解集在数轴上表示为( )

C【解析】本题考查解一元一次不等式组及在数轴上表示.由不等式x+5≥0,解得:x≥-5 ; 由不 等式3-x>1,解得:x<2,则该不等式组的解集为-5≤x<2,故C选项符合. 6. 小王参加某企业招聘测试,他的笔试,面试、技能操作得分分别为85分,80分,90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是( ) A. 255分 B. 84分 C. 84.5分 D.86分

C【解析】本题考查加权平均数的应用.根据题意得86532590380285x—,∴小王成绩为86分. 7. 如图,在□ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=5,则AE的长为( ) A. 4 B. 6 C. 8 D. 10

C【解析】本题考查平行四边形的性质和角平分线的性质,以及基本的尺规作图. 设AE与BF交于点O,∵AF=AB,∠BAE= ∠FAE ,∴AE⊥BF,OB=21BF=3在Rt△AOB中,

AO=22-453,∵四边形ABCD是平行四边形,∴AD∥BC∴∠FAE= ∠BEA,

-5 2 0 -5 2 0 -5 2 0 -5 2 0 C D

B A

E F C D B G A

第7图 3

∴∠BAE=∠BEA ,∴AB=BE,∴AE=2AO=8. 8. 如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,… 组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒2个单位长度,则第2015秒时,点P的坐标是( ) A.(2014,0) B.(2015,-1) C. (2015,1) D. (2016,0) B【解析】本题考查直角坐标系中点坐标的规律探索. ∵半圆的半径r=1,∴半圆长度=π, ∴第2015秒点P运动的路径长为:2π×2015, ∵2π×2015÷π=1007…1,∴点P位于第1008个半圆的中点上,且这个半圆在x轴的下方. ∴此时点P的横坐标为:1008×2-1=2015,纵坐标为-1,∴点P(2015,-1) .

第8题解图 二、填空题(每小题3分,共21分) 9. 计算:(-3)0+3-1= . 9.34【解析】313,1310)(,∴原式=1+31 = 34. 10. 如图,△ABC中,点D、E分别在边AB,BC上,DE//AC, 若DB=4,DA=2,BE=3,则EC= .

23【解析】本题考查平行线分线段成比例定理.∵DE∥AC,∴ECBEDABD,

∴EC=23432BDBEDA. 11. 如图,直线y=kx与双曲线)0(2xxy交于点 A(1,a),则k= . 2【解析】本题考查一次函数与反比例函数结合. 把点A坐标(1,a)代入 y=x2 ,得a=12=2 ∴点A的坐标为(1,2),再把点A(1,2)代入y=kx中,得k=2.

P O 第8题 O1 x y O2 O3

E C D B A 第10题

O A 第11题 x

y 4

12. 已知点A(4,y1),B(2,y2),C(-2,y3)都在二次函数y=(x-2)2-1的图象上,则y1,y2,y3的大小关系是 . .213yyy【解析】本题考查二次函数图象及其性质.方法一:解:∵ A(4,y1)、B(2, y2)C(-2,y3)在抛物线y=21-2x()上,∴y1=3,y2=5-42,y3=15.∵5-42<3< 15,∴y2<y1<y3

方法二:解:设点A、B、C三点到抛物线对称轴的距离分别为d1、d2、d3,∵y=212)x(

∴对称轴为直线x=2,∴d1=2,d2=2-2,d3=4∵2-2<2<4,且a=1>0,∴y2<y1<y3.

方法三:解:∵y=1)22x(,∴对称轴为直线x=2,∴点A(4, y1)关于x=2

的对称点是(0,y1).∵-2<0<2且a=1>0,∴y2<y1<y3. 13. 现有四张分别标有数字1,2,3,4的卡片,它们除数字外完全相同,把卡片背面朝上洗匀,从中随机抽取一张后放回,再背面朝上洗匀,从中随机抽取一张,则两次抽出的卡片所标数字不同的概率是 .

85【解析】本题考查用列表法或画树状图的方法求概率.列表如下:

1 2 2 3 1 (1,1) (1,2) (1,2) (1,3) 2 (2,1) (2,2) (2,2) (2,3) 2 (2,1) (2,2) (2,2) (2,3) 3 (3,1) (3,2) (3,2) (3,3) 或画树状图如解图: 开始

第一次 1 2 2 3 第二次 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 第13题解图 5

由列表或树状图可得所有等可能的情况有16种,其中两次抽出卡片所标数字不同的情况有10种,则P=851610.

14. 如图,在扇形AOB中,∠AOB=90°,点C为OA的中点, CE⊥OA交AB于点E,以点O为圆心,OC的长为半径 作CD交OB于点D,若OA=2,则阴影部分的面积为 . 【分析】先观察阴影部分的图形为不规则图形,相到利用转化的思想,并作出必要的辅助线,即连接OE,得到CODOCEOBESSSS扇形扇形阴影,再分别计算出各图形的面积即可求解.

3122π【解析】本题考查阴影部分面积的计算.如解图,连接OE,∵点C是OA的中

点,∴OC=21OA=1,∵OE=OA=2,∴OC=21OE. ∵CE⊥OA,∴∠OEC=30°,∴∠COE

=60°.在Rt△OCE中,CE=3,∴S△OCE=21OC·CE=23.∵∠AOB=90°, ∴∠BOE =∠AOB-∠COE=30°,∴S扇形OBE=230360π2=3π,S扇形COD=2901360π=4π,

∴[来CODOCEOBESSSS扇形扇形阴影=3π+23-4=2312. E

CAO

BD

第14题解图 15. 如图,正方形ABCD的边长是16,点E在边AB上,AE=3, 点F是边BC上不与点B、C重合的一个动点,把△EBF沿

E O C D B A 第14题

E F C D B

A

第15题 B′ 6

EF折叠,点B落在B′处,若△CDB′恰为等腰三角形,则DB′的长为 . 【分析】若△CDB恰为等腰三角形,判断以CD为腰或为底边分为三种情况:①DB′=DC;②CB′=CD;③CB′=DB′,针对每一种情况利用正方形和折叠的性质进行分析求解.

16或54【解析】本题考查正方形、矩形的性质和勾股定理的运用,以及分类讨论思想.根据题意,若△CDB恰为等腰三角形需分三种情况讨论:(1)若DB′=DC时,则DB′=16(易知点F在BC上且不与点C、B重合) ;(2)当CB′=CD时,∵EB=EB′,CB=CB′∴点E、C在BB′的垂直平分线上,∴EC垂直平分BB′,由折叠可知点F与点C重合,不符合题意,舍去;(3)如解图,当CB′=DB′时,作BG⊥AB与点G,交CD于点H.∵AB∥CD, ∴B′H⊥CD,∵CB′=DB′,∴DH=21CD=8,∴AG=DH=8,∴GE=AG-AE=5,在Rt△B′EG

中,由勾股定理得B′G=12,∴B′H=GH-B′G=4.在Rt△B′DH中,由勾股定理得DB′=54,综上所述DB′=16或54.

F G B'H

DA

BCE

第15题解图 三、解答题(本大题共8个小题,满分75分)

16.(8分)先化简,再求值:)11(22222abbababa,其中15a,15b. 【分析】解答本题应从运算顺序入手,先将括号里通分,能因式分解的进行因式分解,然后将除法变乘法,最后约分化简成最简分式后,将a,b的值代入求解.

解:原式=abbababa)(2

2)(

……………………………………………………(4分)

=baabba2 =2

ab.……………………………………………………(6分)

当51,51ab时,原式=22152)15(15)(.…………(8分)

相关文档
最新文档